Properties

Label 864.4.c.a.863.17
Level $864$
Weight $4$
Character 864.863
Analytic conductor $50.978$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,4,Mod(863,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.863"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.9776502450\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 863.17
Character \(\chi\) \(=\) 864.863
Dual form 864.4.c.a.863.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.05443i q^{5} -20.0504i q^{7} -14.7358 q^{11} +12.7687 q^{13} +58.0032i q^{17} +10.9489i q^{19} -74.3941 q^{23} +60.1262 q^{25} +144.541i q^{29} -181.662i q^{31} +161.495 q^{35} +99.7875 q^{37} -249.867i q^{41} +201.712i q^{43} +416.814 q^{47} -59.0193 q^{49} +420.474i q^{53} -118.689i q^{55} +266.159 q^{59} +199.785 q^{61} +102.845i q^{65} +55.6890i q^{67} +704.878 q^{71} -1109.82 q^{73} +295.460i q^{77} +751.695i q^{79} +746.773 q^{83} -467.182 q^{85} +1251.58i q^{89} -256.018i q^{91} -88.1871 q^{95} +575.314 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{13} - 264 q^{25} + 24 q^{37} - 456 q^{61} + 2184 q^{73} + 3072 q^{85} - 3672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.05443i 0.720410i 0.932873 + 0.360205i \(0.117293\pi\)
−0.932873 + 0.360205i \(0.882707\pi\)
\(6\) 0 0
\(7\) − 20.0504i − 1.08262i −0.840823 0.541310i \(-0.817928\pi\)
0.840823 0.541310i \(-0.182072\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.7358 −0.403911 −0.201956 0.979395i \(-0.564730\pi\)
−0.201956 + 0.979395i \(0.564730\pi\)
\(12\) 0 0
\(13\) 12.7687 0.272416 0.136208 0.990680i \(-0.456508\pi\)
0.136208 + 0.990680i \(0.456508\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 58.0032i 0.827520i 0.910386 + 0.413760i \(0.135785\pi\)
−0.910386 + 0.413760i \(0.864215\pi\)
\(18\) 0 0
\(19\) 10.9489i 0.132203i 0.997813 + 0.0661013i \(0.0210561\pi\)
−0.997813 + 0.0661013i \(0.978944\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −74.3941 −0.674445 −0.337223 0.941425i \(-0.609488\pi\)
−0.337223 + 0.941425i \(0.609488\pi\)
\(24\) 0 0
\(25\) 60.1262 0.481010
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 144.541i 0.925537i 0.886479 + 0.462769i \(0.153144\pi\)
−0.886479 + 0.462769i \(0.846856\pi\)
\(30\) 0 0
\(31\) − 181.662i − 1.05250i −0.850331 0.526248i \(-0.823598\pi\)
0.850331 0.526248i \(-0.176402\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 161.495 0.779931
\(36\) 0 0
\(37\) 99.7875 0.443378 0.221689 0.975117i \(-0.428843\pi\)
0.221689 + 0.975117i \(0.428843\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 249.867i − 0.951774i −0.879506 0.475887i \(-0.842127\pi\)
0.879506 0.475887i \(-0.157873\pi\)
\(42\) 0 0
\(43\) 201.712i 0.715368i 0.933843 + 0.357684i \(0.116433\pi\)
−0.933843 + 0.357684i \(0.883567\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 416.814 1.29359 0.646793 0.762666i \(-0.276110\pi\)
0.646793 + 0.762666i \(0.276110\pi\)
\(48\) 0 0
\(49\) −59.0193 −0.172068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 420.474i 1.08975i 0.838518 + 0.544873i \(0.183422\pi\)
−0.838518 + 0.544873i \(0.816578\pi\)
\(54\) 0 0
\(55\) − 118.689i − 0.290982i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 266.159 0.587304 0.293652 0.955912i \(-0.405129\pi\)
0.293652 + 0.955912i \(0.405129\pi\)
\(60\) 0 0
\(61\) 199.785 0.419342 0.209671 0.977772i \(-0.432761\pi\)
0.209671 + 0.977772i \(0.432761\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 102.845i 0.196251i
\(66\) 0 0
\(67\) 55.6890i 0.101545i 0.998710 + 0.0507724i \(0.0161683\pi\)
−0.998710 + 0.0507724i \(0.983832\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 704.878 1.17822 0.589110 0.808053i \(-0.299478\pi\)
0.589110 + 0.808053i \(0.299478\pi\)
\(72\) 0 0
\(73\) −1109.82 −1.77937 −0.889687 0.456572i \(-0.849077\pi\)
−0.889687 + 0.456572i \(0.849077\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 295.460i 0.437283i
\(78\) 0 0
\(79\) 751.695i 1.07053i 0.844683 + 0.535267i \(0.179789\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 746.773 0.987578 0.493789 0.869582i \(-0.335612\pi\)
0.493789 + 0.869582i \(0.335612\pi\)
\(84\) 0 0
\(85\) −467.182 −0.596153
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1251.58i 1.49064i 0.666707 + 0.745320i \(0.267703\pi\)
−0.666707 + 0.745320i \(0.732297\pi\)
\(90\) 0 0
\(91\) − 256.018i − 0.294923i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −88.1871 −0.0952401
\(96\) 0 0
\(97\) 575.314 0.602209 0.301104 0.953591i \(-0.402645\pi\)
0.301104 + 0.953591i \(0.402645\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 849.450i 0.836866i 0.908248 + 0.418433i \(0.137421\pi\)
−0.908248 + 0.418433i \(0.862579\pi\)
\(102\) 0 0
\(103\) 247.993i 0.237237i 0.992940 + 0.118619i \(0.0378466\pi\)
−0.992940 + 0.118619i \(0.962153\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −535.255 −0.483599 −0.241799 0.970326i \(-0.577738\pi\)
−0.241799 + 0.970326i \(0.577738\pi\)
\(108\) 0 0
\(109\) 1864.26 1.63820 0.819098 0.573654i \(-0.194475\pi\)
0.819098 + 0.573654i \(0.194475\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1606.33i 1.33726i 0.743594 + 0.668632i \(0.233120\pi\)
−0.743594 + 0.668632i \(0.766880\pi\)
\(114\) 0 0
\(115\) − 599.202i − 0.485877i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1162.99 0.895890
\(120\) 0 0
\(121\) −1113.86 −0.836856
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1491.09i 1.06693i
\(126\) 0 0
\(127\) 342.133i 0.239050i 0.992831 + 0.119525i \(0.0381372\pi\)
−0.992831 + 0.119525i \(0.961863\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2849.78 1.90066 0.950328 0.311249i \(-0.100747\pi\)
0.950328 + 0.311249i \(0.100747\pi\)
\(132\) 0 0
\(133\) 219.530 0.143125
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 609.068i 0.379826i 0.981801 + 0.189913i \(0.0608206\pi\)
−0.981801 + 0.189913i \(0.939179\pi\)
\(138\) 0 0
\(139\) − 925.200i − 0.564565i −0.959331 0.282282i \(-0.908909\pi\)
0.959331 0.282282i \(-0.0910915\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −188.158 −0.110032
\(144\) 0 0
\(145\) −1164.19 −0.666766
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 770.540i 0.423658i 0.977307 + 0.211829i \(0.0679420\pi\)
−0.977307 + 0.211829i \(0.932058\pi\)
\(150\) 0 0
\(151\) − 298.289i − 0.160758i −0.996764 0.0803788i \(-0.974387\pi\)
0.996764 0.0803788i \(-0.0256130\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1463.18 0.758229
\(156\) 0 0
\(157\) 2757.64 1.40181 0.700903 0.713257i \(-0.252781\pi\)
0.700903 + 0.713257i \(0.252781\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1491.63i 0.730168i
\(162\) 0 0
\(163\) 247.512i 0.118936i 0.998230 + 0.0594682i \(0.0189405\pi\)
−0.998230 + 0.0594682i \(0.981060\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3501.34 1.62240 0.811202 0.584766i \(-0.198814\pi\)
0.811202 + 0.584766i \(0.198814\pi\)
\(168\) 0 0
\(169\) −2033.96 −0.925790
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2591.04i − 1.13869i −0.822099 0.569345i \(-0.807197\pi\)
0.822099 0.569345i \(-0.192803\pi\)
\(174\) 0 0
\(175\) − 1205.56i − 0.520751i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1183.11 −0.494020 −0.247010 0.969013i \(-0.579448\pi\)
−0.247010 + 0.969013i \(0.579448\pi\)
\(180\) 0 0
\(181\) 1955.27 0.802949 0.401475 0.915870i \(-0.368498\pi\)
0.401475 + 0.915870i \(0.368498\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 803.731i 0.319414i
\(186\) 0 0
\(187\) − 854.725i − 0.334244i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1888.71 0.715510 0.357755 0.933815i \(-0.383542\pi\)
0.357755 + 0.933815i \(0.383542\pi\)
\(192\) 0 0
\(193\) −346.356 −0.129178 −0.0645888 0.997912i \(-0.520574\pi\)
−0.0645888 + 0.997912i \(0.520574\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 642.954i 0.232531i 0.993218 + 0.116265i \(0.0370923\pi\)
−0.993218 + 0.116265i \(0.962908\pi\)
\(198\) 0 0
\(199\) − 1992.53i − 0.709783i −0.934907 0.354892i \(-0.884518\pi\)
0.934907 0.354892i \(-0.115482\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2898.11 1.00201
\(204\) 0 0
\(205\) 2012.54 0.685667
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 161.341i − 0.0533981i
\(210\) 0 0
\(211\) 4698.88i 1.53310i 0.642185 + 0.766550i \(0.278028\pi\)
−0.642185 + 0.766550i \(0.721972\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1624.68 −0.515358
\(216\) 0 0
\(217\) −3642.39 −1.13945
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 740.626i 0.225430i
\(222\) 0 0
\(223\) 322.474i 0.0968362i 0.998827 + 0.0484181i \(0.0154180\pi\)
−0.998827 + 0.0484181i \(0.984582\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1065.03 0.311404 0.155702 0.987804i \(-0.450236\pi\)
0.155702 + 0.987804i \(0.450236\pi\)
\(228\) 0 0
\(229\) 2006.11 0.578898 0.289449 0.957193i \(-0.406528\pi\)
0.289449 + 0.957193i \(0.406528\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3146.22i 0.884617i 0.896863 + 0.442308i \(0.145840\pi\)
−0.896863 + 0.442308i \(0.854160\pi\)
\(234\) 0 0
\(235\) 3357.20i 0.931912i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4032.30 −1.09133 −0.545665 0.838004i \(-0.683723\pi\)
−0.545665 + 0.838004i \(0.683723\pi\)
\(240\) 0 0
\(241\) −5876.62 −1.57073 −0.785366 0.619031i \(-0.787525\pi\)
−0.785366 + 0.619031i \(0.787525\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 475.366i − 0.123959i
\(246\) 0 0
\(247\) 139.803i 0.0360141i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7225.11 −1.81691 −0.908457 0.417979i \(-0.862738\pi\)
−0.908457 + 0.417979i \(0.862738\pi\)
\(252\) 0 0
\(253\) 1096.26 0.272416
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3390.88i − 0.823024i −0.911404 0.411512i \(-0.865001\pi\)
0.911404 0.411512i \(-0.134999\pi\)
\(258\) 0 0
\(259\) − 2000.78i − 0.480010i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3851.88 0.903107 0.451553 0.892244i \(-0.350870\pi\)
0.451553 + 0.892244i \(0.350870\pi\)
\(264\) 0 0
\(265\) −3386.68 −0.785064
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8562.30i 1.94072i 0.241672 + 0.970358i \(0.422304\pi\)
−0.241672 + 0.970358i \(0.577696\pi\)
\(270\) 0 0
\(271\) 2404.22i 0.538916i 0.963012 + 0.269458i \(0.0868445\pi\)
−0.963012 + 0.269458i \(0.913155\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −886.010 −0.194285
\(276\) 0 0
\(277\) 2936.82 0.637026 0.318513 0.947918i \(-0.396816\pi\)
0.318513 + 0.947918i \(0.396816\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 5696.37i − 1.20931i −0.796486 0.604657i \(-0.793310\pi\)
0.796486 0.604657i \(-0.206690\pi\)
\(282\) 0 0
\(283\) − 1138.94i − 0.239233i −0.992820 0.119617i \(-0.961833\pi\)
0.992820 0.119617i \(-0.0381665\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5009.95 −1.03041
\(288\) 0 0
\(289\) 1548.63 0.315211
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 6467.29i − 1.28950i −0.764394 0.644750i \(-0.776962\pi\)
0.764394 0.644750i \(-0.223038\pi\)
\(294\) 0 0
\(295\) 2143.76i 0.423099i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −949.917 −0.183730
\(300\) 0 0
\(301\) 4044.41 0.774472
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1609.15i 0.302098i
\(306\) 0 0
\(307\) − 427.736i − 0.0795185i −0.999209 0.0397592i \(-0.987341\pi\)
0.999209 0.0397592i \(-0.0126591\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2414.58 −0.440252 −0.220126 0.975471i \(-0.570647\pi\)
−0.220126 + 0.975471i \(0.570647\pi\)
\(312\) 0 0
\(313\) −4562.86 −0.823988 −0.411994 0.911187i \(-0.635167\pi\)
−0.411994 + 0.911187i \(0.635167\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 4388.37i − 0.777525i −0.921338 0.388762i \(-0.872903\pi\)
0.921338 0.388762i \(-0.127097\pi\)
\(318\) 0 0
\(319\) − 2129.93i − 0.373835i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −635.071 −0.109400
\(324\) 0 0
\(325\) 767.735 0.131035
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 8357.29i − 1.40046i
\(330\) 0 0
\(331\) − 10042.7i − 1.66767i −0.552013 0.833836i \(-0.686140\pi\)
0.552013 0.833836i \(-0.313860\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −448.543 −0.0731538
\(336\) 0 0
\(337\) −6324.52 −1.02231 −0.511155 0.859488i \(-0.670782\pi\)
−0.511155 + 0.859488i \(0.670782\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2676.94i 0.425115i
\(342\) 0 0
\(343\) − 5693.93i − 0.896337i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5525.21 −0.854781 −0.427390 0.904067i \(-0.640567\pi\)
−0.427390 + 0.904067i \(0.640567\pi\)
\(348\) 0 0
\(349\) 5467.82 0.838641 0.419321 0.907838i \(-0.362268\pi\)
0.419321 + 0.907838i \(0.362268\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 11837.4i − 1.78482i −0.451230 0.892408i \(-0.649015\pi\)
0.451230 0.892408i \(-0.350985\pi\)
\(354\) 0 0
\(355\) 5677.39i 0.848802i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11818.4 −1.73748 −0.868738 0.495272i \(-0.835068\pi\)
−0.868738 + 0.495272i \(0.835068\pi\)
\(360\) 0 0
\(361\) 6739.12 0.982522
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 8938.94i − 1.28188i
\(366\) 0 0
\(367\) 11931.5i 1.69705i 0.529156 + 0.848525i \(0.322509\pi\)
−0.529156 + 0.848525i \(0.677491\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8430.68 1.17978
\(372\) 0 0
\(373\) 8170.05 1.13413 0.567063 0.823674i \(-0.308079\pi\)
0.567063 + 0.823674i \(0.308079\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1845.60i 0.252131i
\(378\) 0 0
\(379\) − 3653.30i − 0.495138i −0.968870 0.247569i \(-0.920368\pi\)
0.968870 0.247569i \(-0.0796317\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6593.77 0.879702 0.439851 0.898071i \(-0.355031\pi\)
0.439851 + 0.898071i \(0.355031\pi\)
\(384\) 0 0
\(385\) −2379.76 −0.315023
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 6674.21i − 0.869912i −0.900452 0.434956i \(-0.856764\pi\)
0.900452 0.434956i \(-0.143236\pi\)
\(390\) 0 0
\(391\) − 4315.09i − 0.558117i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6054.47 −0.771224
\(396\) 0 0
\(397\) −3658.10 −0.462455 −0.231228 0.972900i \(-0.574274\pi\)
−0.231228 + 0.972900i \(0.574274\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 5849.71i − 0.728481i −0.931305 0.364240i \(-0.881329\pi\)
0.931305 0.364240i \(-0.118671\pi\)
\(402\) 0 0
\(403\) − 2319.59i − 0.286717i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1470.45 −0.179085
\(408\) 0 0
\(409\) −3027.49 −0.366014 −0.183007 0.983112i \(-0.558583\pi\)
−0.183007 + 0.983112i \(0.558583\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 5336.59i − 0.635827i
\(414\) 0 0
\(415\) 6014.83i 0.711461i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11155.5 −1.30067 −0.650337 0.759646i \(-0.725372\pi\)
−0.650337 + 0.759646i \(0.725372\pi\)
\(420\) 0 0
\(421\) 10107.7 1.17011 0.585057 0.810992i \(-0.301072\pi\)
0.585057 + 0.810992i \(0.301072\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3487.51i 0.398045i
\(426\) 0 0
\(427\) − 4005.77i − 0.453988i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10898.7 −1.21804 −0.609019 0.793156i \(-0.708437\pi\)
−0.609019 + 0.793156i \(0.708437\pi\)
\(432\) 0 0
\(433\) −10256.8 −1.13836 −0.569179 0.822213i \(-0.692739\pi\)
−0.569179 + 0.822213i \(0.692739\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 814.534i − 0.0891634i
\(438\) 0 0
\(439\) 2765.38i 0.300648i 0.988637 + 0.150324i \(0.0480317\pi\)
−0.988637 + 0.150324i \(0.951968\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2418.62 −0.259395 −0.129698 0.991554i \(-0.541401\pi\)
−0.129698 + 0.991554i \(0.541401\pi\)
\(444\) 0 0
\(445\) −10080.7 −1.07387
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14158.1i 1.48811i 0.668120 + 0.744054i \(0.267099\pi\)
−0.668120 + 0.744054i \(0.732901\pi\)
\(450\) 0 0
\(451\) 3682.01i 0.384432i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2062.08 0.212466
\(456\) 0 0
\(457\) 11498.5 1.17697 0.588487 0.808507i \(-0.299724\pi\)
0.588487 + 0.808507i \(0.299724\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 10805.2i − 1.09165i −0.837900 0.545824i \(-0.816217\pi\)
0.837900 0.545824i \(-0.183783\pi\)
\(462\) 0 0
\(463\) − 13005.2i − 1.30541i −0.757612 0.652705i \(-0.773634\pi\)
0.757612 0.652705i \(-0.226366\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19806.1 −1.96257 −0.981284 0.192567i \(-0.938319\pi\)
−0.981284 + 0.192567i \(0.938319\pi\)
\(468\) 0 0
\(469\) 1116.59 0.109934
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 2972.40i − 0.288945i
\(474\) 0 0
\(475\) 658.316i 0.0635907i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4540.81 −0.433142 −0.216571 0.976267i \(-0.569487\pi\)
−0.216571 + 0.976267i \(0.569487\pi\)
\(480\) 0 0
\(481\) 1274.16 0.120783
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4633.82i 0.433837i
\(486\) 0 0
\(487\) − 17236.2i − 1.60379i −0.597464 0.801896i \(-0.703825\pi\)
0.597464 0.801896i \(-0.296175\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9264.37 0.851517 0.425759 0.904837i \(-0.360007\pi\)
0.425759 + 0.904837i \(0.360007\pi\)
\(492\) 0 0
\(493\) −8383.83 −0.765900
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 14133.1i − 1.27557i
\(498\) 0 0
\(499\) 21195.2i 1.90146i 0.310027 + 0.950728i \(0.399662\pi\)
−0.310027 + 0.950728i \(0.600338\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10426.8 −0.924267 −0.462134 0.886810i \(-0.652916\pi\)
−0.462134 + 0.886810i \(0.652916\pi\)
\(504\) 0 0
\(505\) −6841.84 −0.602886
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8235.12i 0.717122i 0.933506 + 0.358561i \(0.116733\pi\)
−0.933506 + 0.358561i \(0.883267\pi\)
\(510\) 0 0
\(511\) 22252.3i 1.92639i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1997.44 −0.170908
\(516\) 0 0
\(517\) −6142.10 −0.522494
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 5265.62i − 0.442785i −0.975185 0.221393i \(-0.928940\pi\)
0.975185 0.221393i \(-0.0710602\pi\)
\(522\) 0 0
\(523\) 12675.7i 1.05979i 0.848064 + 0.529894i \(0.177768\pi\)
−0.848064 + 0.529894i \(0.822232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10537.0 0.870962
\(528\) 0 0
\(529\) −6632.52 −0.545124
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3190.49i − 0.259278i
\(534\) 0 0
\(535\) − 4311.17i − 0.348389i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 869.698 0.0695001
\(540\) 0 0
\(541\) −4698.09 −0.373358 −0.186679 0.982421i \(-0.559772\pi\)
−0.186679 + 0.982421i \(0.559772\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15015.5i 1.18017i
\(546\) 0 0
\(547\) − 6668.52i − 0.521253i −0.965440 0.260627i \(-0.916071\pi\)
0.965440 0.260627i \(-0.0839291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1582.56 −0.122358
\(552\) 0 0
\(553\) 15071.8 1.15898
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2283.58i 0.173714i 0.996221 + 0.0868569i \(0.0276823\pi\)
−0.996221 + 0.0868569i \(0.972318\pi\)
\(558\) 0 0
\(559\) 2575.61i 0.194878i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6323.88 0.473392 0.236696 0.971584i \(-0.423935\pi\)
0.236696 + 0.971584i \(0.423935\pi\)
\(564\) 0 0
\(565\) −12938.1 −0.963378
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4953.43i 0.364954i 0.983210 + 0.182477i \(0.0584114\pi\)
−0.983210 + 0.182477i \(0.941589\pi\)
\(570\) 0 0
\(571\) − 11295.9i − 0.827877i −0.910305 0.413938i \(-0.864153\pi\)
0.910305 0.413938i \(-0.135847\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4473.03 −0.324415
\(576\) 0 0
\(577\) 16341.3 1.17903 0.589514 0.807758i \(-0.299319\pi\)
0.589514 + 0.807758i \(0.299319\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 14973.1i − 1.06917i
\(582\) 0 0
\(583\) − 6196.04i − 0.440161i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24609.9 1.73042 0.865212 0.501407i \(-0.167184\pi\)
0.865212 + 0.501407i \(0.167184\pi\)
\(588\) 0 0
\(589\) 1989.00 0.139143
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6930.38i 0.479927i 0.970782 + 0.239963i \(0.0771354\pi\)
−0.970782 + 0.239963i \(0.922865\pi\)
\(594\) 0 0
\(595\) 9367.20i 0.645408i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10182.6 0.694572 0.347286 0.937759i \(-0.387103\pi\)
0.347286 + 0.937759i \(0.387103\pi\)
\(600\) 0 0
\(601\) 9536.14 0.647234 0.323617 0.946188i \(-0.395101\pi\)
0.323617 + 0.946188i \(0.395101\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 8971.46i − 0.602879i
\(606\) 0 0
\(607\) − 6873.14i − 0.459592i −0.973239 0.229796i \(-0.926194\pi\)
0.973239 0.229796i \(-0.0738058\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5322.18 0.352393
\(612\) 0 0
\(613\) 11378.4 0.749704 0.374852 0.927085i \(-0.377694\pi\)
0.374852 + 0.927085i \(0.377694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1884.90i − 0.122987i −0.998107 0.0614937i \(-0.980414\pi\)
0.998107 0.0614937i \(-0.0195864\pi\)
\(618\) 0 0
\(619\) − 25715.0i − 1.66975i −0.550441 0.834874i \(-0.685540\pi\)
0.550441 0.834874i \(-0.314460\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25094.7 1.61380
\(624\) 0 0
\(625\) −4494.07 −0.287620
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5787.99i 0.366904i
\(630\) 0 0
\(631\) − 8509.78i − 0.536876i −0.963297 0.268438i \(-0.913493\pi\)
0.963297 0.268438i \(-0.0865075\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2755.68 −0.172214
\(636\) 0 0
\(637\) −753.601 −0.0468740
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 2720.43i − 0.167630i −0.996481 0.0838148i \(-0.973290\pi\)
0.996481 0.0838148i \(-0.0267104\pi\)
\(642\) 0 0
\(643\) 24207.3i 1.48467i 0.670029 + 0.742335i \(0.266282\pi\)
−0.670029 + 0.742335i \(0.733718\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 832.754 0.0506012 0.0253006 0.999680i \(-0.491946\pi\)
0.0253006 + 0.999680i \(0.491946\pi\)
\(648\) 0 0
\(649\) −3922.07 −0.237219
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14518.1i 0.870043i 0.900420 + 0.435021i \(0.143259\pi\)
−0.900420 + 0.435021i \(0.856741\pi\)
\(654\) 0 0
\(655\) 22953.3i 1.36925i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10396.2 −0.614532 −0.307266 0.951624i \(-0.599414\pi\)
−0.307266 + 0.951624i \(0.599414\pi\)
\(660\) 0 0
\(661\) −15419.6 −0.907343 −0.453672 0.891169i \(-0.649886\pi\)
−0.453672 + 0.891169i \(0.649886\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1768.19i 0.103109i
\(666\) 0 0
\(667\) − 10753.0i − 0.624224i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2944.00 −0.169377
\(672\) 0 0
\(673\) 32417.9 1.85679 0.928394 0.371597i \(-0.121190\pi\)
0.928394 + 0.371597i \(0.121190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27165.3i 1.54217i 0.636735 + 0.771083i \(0.280285\pi\)
−0.636735 + 0.771083i \(0.719715\pi\)
\(678\) 0 0
\(679\) − 11535.3i − 0.651964i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19995.4 1.12021 0.560104 0.828422i \(-0.310761\pi\)
0.560104 + 0.828422i \(0.310761\pi\)
\(684\) 0 0
\(685\) −4905.69 −0.273630
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5368.92i 0.296864i
\(690\) 0 0
\(691\) − 28011.7i − 1.54213i −0.636755 0.771066i \(-0.719724\pi\)
0.636755 0.771066i \(-0.280276\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7451.96 0.406718
\(696\) 0 0
\(697\) 14493.1 0.787612
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23915.4i 1.28855i 0.764795 + 0.644274i \(0.222840\pi\)
−0.764795 + 0.644274i \(0.777160\pi\)
\(702\) 0 0
\(703\) 1092.56i 0.0586157i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17031.8 0.906008
\(708\) 0 0
\(709\) −33718.3 −1.78606 −0.893030 0.449997i \(-0.851425\pi\)
−0.893030 + 0.449997i \(0.851425\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13514.6i 0.709851i
\(714\) 0 0
\(715\) − 1515.50i − 0.0792680i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13347.3 0.692312 0.346156 0.938177i \(-0.387487\pi\)
0.346156 + 0.938177i \(0.387487\pi\)
\(720\) 0 0
\(721\) 4972.36 0.256838
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8690.70i 0.445192i
\(726\) 0 0
\(727\) 12331.5i 0.629093i 0.949242 + 0.314547i \(0.101852\pi\)
−0.949242 + 0.314547i \(0.898148\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11699.9 −0.591981
\(732\) 0 0
\(733\) −4599.02 −0.231744 −0.115872 0.993264i \(-0.536966\pi\)
−0.115872 + 0.993264i \(0.536966\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 820.624i − 0.0410150i
\(738\) 0 0
\(739\) 11846.4i 0.589687i 0.955546 + 0.294843i \(0.0952675\pi\)
−0.955546 + 0.294843i \(0.904733\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12096.8 −0.597294 −0.298647 0.954364i \(-0.596535\pi\)
−0.298647 + 0.954364i \(0.596535\pi\)
\(744\) 0 0
\(745\) −6206.26 −0.305208
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10732.1i 0.523554i
\(750\) 0 0
\(751\) 19161.3i 0.931035i 0.885039 + 0.465518i \(0.154132\pi\)
−0.885039 + 0.465518i \(0.845868\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2402.55 0.115811
\(756\) 0 0
\(757\) −3351.80 −0.160929 −0.0804645 0.996757i \(-0.525640\pi\)
−0.0804645 + 0.996757i \(0.525640\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 6196.36i − 0.295162i −0.989050 0.147581i \(-0.952851\pi\)
0.989050 0.147581i \(-0.0471487\pi\)
\(762\) 0 0
\(763\) − 37379.1i − 1.77354i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3398.51 0.159991
\(768\) 0 0
\(769\) 36368.9 1.70546 0.852728 0.522355i \(-0.174946\pi\)
0.852728 + 0.522355i \(0.174946\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25925.2i 1.20629i 0.797631 + 0.603146i \(0.206086\pi\)
−0.797631 + 0.603146i \(0.793914\pi\)
\(774\) 0 0
\(775\) − 10922.6i − 0.506261i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2735.77 0.125827
\(780\) 0 0
\(781\) −10387.0 −0.475896
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22211.2i 1.00987i
\(786\) 0 0
\(787\) 31849.9i 1.44260i 0.692622 + 0.721301i \(0.256456\pi\)
−0.692622 + 0.721301i \(0.743544\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 32207.6 1.44775
\(792\) 0 0
\(793\) 2551.00 0.114235
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10138.1i 0.450576i 0.974292 + 0.225288i \(0.0723323\pi\)
−0.974292 + 0.225288i \(0.927668\pi\)
\(798\) 0 0
\(799\) 24176.5i 1.07047i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16354.1 0.718709
\(804\) 0 0
\(805\) −12014.2 −0.526021
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14786.4i 0.642597i 0.946978 + 0.321299i \(0.104119\pi\)
−0.946978 + 0.321299i \(0.895881\pi\)
\(810\) 0 0
\(811\) − 16494.2i − 0.714168i −0.934072 0.357084i \(-0.883771\pi\)
0.934072 0.357084i \(-0.116229\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1993.57 −0.0856829
\(816\) 0 0
\(817\) −2208.53 −0.0945735
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16305.6i 0.693142i 0.938024 + 0.346571i \(0.112654\pi\)
−0.938024 + 0.346571i \(0.887346\pi\)
\(822\) 0 0
\(823\) − 34129.3i − 1.44553i −0.691093 0.722766i \(-0.742870\pi\)
0.691093 0.722766i \(-0.257130\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1299.90 0.0546578 0.0273289 0.999626i \(-0.491300\pi\)
0.0273289 + 0.999626i \(0.491300\pi\)
\(828\) 0 0
\(829\) −14143.6 −0.592555 −0.296277 0.955102i \(-0.595745\pi\)
−0.296277 + 0.955102i \(0.595745\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 3423.30i − 0.142390i
\(834\) 0 0
\(835\) 28201.2i 1.16880i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4548.95 −0.187184 −0.0935919 0.995611i \(-0.529835\pi\)
−0.0935919 + 0.995611i \(0.529835\pi\)
\(840\) 0 0
\(841\) 3496.92 0.143381
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 16382.4i − 0.666948i
\(846\) 0 0
\(847\) 22333.3i 0.905997i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7423.60 −0.299034
\(852\) 0 0
\(853\) −12354.3 −0.495901 −0.247951 0.968773i \(-0.579757\pi\)
−0.247951 + 0.968773i \(0.579757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17157.4i 0.683882i 0.939721 + 0.341941i \(0.111084\pi\)
−0.939721 + 0.341941i \(0.888916\pi\)
\(858\) 0 0
\(859\) 13098.1i 0.520256i 0.965574 + 0.260128i \(0.0837648\pi\)
−0.965574 + 0.260128i \(0.916235\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43684.8 1.72311 0.861557 0.507661i \(-0.169490\pi\)
0.861557 + 0.507661i \(0.169490\pi\)
\(864\) 0 0
\(865\) 20869.4 0.820323
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 11076.9i − 0.432401i
\(870\) 0 0
\(871\) 711.078i 0.0276624i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29896.9 1.15508
\(876\) 0 0
\(877\) −11013.2 −0.424046 −0.212023 0.977265i \(-0.568005\pi\)
−0.212023 + 0.977265i \(0.568005\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 8301.14i − 0.317449i −0.987323 0.158725i \(-0.949262\pi\)
0.987323 0.158725i \(-0.0507382\pi\)
\(882\) 0 0
\(883\) 41641.5i 1.58703i 0.608550 + 0.793516i \(0.291752\pi\)
−0.608550 + 0.793516i \(0.708248\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11662.3 −0.441466 −0.220733 0.975334i \(-0.570845\pi\)
−0.220733 + 0.975334i \(0.570845\pi\)
\(888\) 0 0
\(889\) 6859.90 0.258801
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4563.65i 0.171015i
\(894\) 0 0
\(895\) − 9529.24i − 0.355897i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26257.5 0.974125
\(900\) 0 0
\(901\) −24388.8 −0.901787
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15748.5i 0.578452i
\(906\) 0 0
\(907\) − 31427.5i − 1.15053i −0.817967 0.575266i \(-0.804899\pi\)
0.817967 0.575266i \(-0.195101\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11268.3 −0.409810 −0.204905 0.978782i \(-0.565689\pi\)
−0.204905 + 0.978782i \(0.565689\pi\)
\(912\) 0 0
\(913\) −11004.3 −0.398894
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 57139.2i − 2.05769i
\(918\) 0 0
\(919\) − 24439.4i − 0.877239i −0.898673 0.438619i \(-0.855468\pi\)
0.898673 0.438619i \(-0.144532\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9000.39 0.320966
\(924\) 0 0
\(925\) 5999.85 0.213269
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 13333.3i − 0.470884i −0.971888 0.235442i \(-0.924346\pi\)
0.971888 0.235442i \(-0.0756538\pi\)
\(930\) 0 0
\(931\) − 646.196i − 0.0227478i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6884.32 0.240793
\(936\) 0 0
\(937\) 7456.96 0.259988 0.129994 0.991515i \(-0.458504\pi\)
0.129994 + 0.991515i \(0.458504\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7265.74i 0.251707i 0.992049 + 0.125853i \(0.0401669\pi\)
−0.992049 + 0.125853i \(0.959833\pi\)
\(942\) 0 0
\(943\) 18588.7i 0.641919i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24711.6 −0.847962 −0.423981 0.905671i \(-0.639368\pi\)
−0.423981 + 0.905671i \(0.639368\pi\)
\(948\) 0 0
\(949\) −14170.9 −0.484730
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 13880.3i − 0.471802i −0.971777 0.235901i \(-0.924196\pi\)
0.971777 0.235901i \(-0.0758041\pi\)
\(954\) 0 0
\(955\) 15212.5i 0.515461i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12212.1 0.411208
\(960\) 0 0
\(961\) −3209.94 −0.107749
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 2789.70i − 0.0930608i
\(966\) 0 0
\(967\) − 51087.4i − 1.69892i −0.527650 0.849462i \(-0.676927\pi\)
0.527650 0.849462i \(-0.323073\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7695.91 −0.254350 −0.127175 0.991880i \(-0.540591\pi\)
−0.127175 + 0.991880i \(0.540591\pi\)
\(972\) 0 0
\(973\) −18550.7 −0.611209
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19421.0i 0.635959i 0.948098 + 0.317980i \(0.103004\pi\)
−0.948098 + 0.317980i \(0.896996\pi\)
\(978\) 0 0
\(979\) − 18443.1i − 0.602086i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8871.76 −0.287859 −0.143929 0.989588i \(-0.545974\pi\)
−0.143929 + 0.989588i \(0.545974\pi\)
\(984\) 0 0
\(985\) −5178.62 −0.167517
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 15006.2i − 0.482476i
\(990\) 0 0
\(991\) − 7872.58i − 0.252352i −0.992008 0.126176i \(-0.959730\pi\)
0.992008 0.126176i \(-0.0402704\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16048.7 0.511335
\(996\) 0 0
\(997\) −1073.89 −0.0341127 −0.0170564 0.999855i \(-0.505429\pi\)
−0.0170564 + 0.999855i \(0.505429\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.4.c.a.863.17 yes 24
3.2 odd 2 inner 864.4.c.a.863.7 24
4.3 odd 2 inner 864.4.c.a.863.18 yes 24
8.3 odd 2 1728.4.c.l.1727.8 24
8.5 even 2 1728.4.c.l.1727.7 24
12.11 even 2 inner 864.4.c.a.863.8 yes 24
24.5 odd 2 1728.4.c.l.1727.17 24
24.11 even 2 1728.4.c.l.1727.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.c.a.863.7 24 3.2 odd 2 inner
864.4.c.a.863.8 yes 24 12.11 even 2 inner
864.4.c.a.863.17 yes 24 1.1 even 1 trivial
864.4.c.a.863.18 yes 24 4.3 odd 2 inner
1728.4.c.l.1727.7 24 8.5 even 2
1728.4.c.l.1727.8 24 8.3 odd 2
1728.4.c.l.1727.17 24 24.5 odd 2
1728.4.c.l.1727.18 24 24.11 even 2