Properties

Label 864.4.c
Level $864$
Weight $4$
Character orbit 864.c
Rep. character $\chi_{864}(863,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $2$
Sturm bound $576$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(576\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(864, [\chi])\).

Total New Old
Modular forms 456 48 408
Cusp forms 408 48 360
Eisenstein series 48 0 48

Trace form

\( 48 q + 72 q^{13} - 1032 q^{25} + 1560 q^{37} - 2304 q^{49} + 2328 q^{61} + 768 q^{73} + 2256 q^{85} - 3024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(864, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
864.4.c.a 864.c 12.b $24$ $50.978$ None 864.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
864.4.c.b 864.c 12.b $24$ $50.978$ None 864.4.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(864, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)