Properties

Label 1728.4.c.l.1727.17
Level $1728$
Weight $4$
Character 1728.1727
Analytic conductor $101.955$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1727,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1727"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 864)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1727.17
Character \(\chi\) \(=\) 1728.1727
Dual form 1728.4.c.l.1727.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.05443i q^{5} -20.0504i q^{7} -14.7358 q^{11} -12.7687 q^{13} -58.0032i q^{17} -10.9489i q^{19} +74.3941 q^{23} +60.1262 q^{25} +144.541i q^{29} -181.662i q^{31} +161.495 q^{35} -99.7875 q^{37} +249.867i q^{41} -201.712i q^{43} -416.814 q^{47} -59.0193 q^{49} +420.474i q^{53} -118.689i q^{55} +266.159 q^{59} -199.785 q^{61} -102.845i q^{65} -55.6890i q^{67} -704.878 q^{71} -1109.82 q^{73} +295.460i q^{77} +751.695i q^{79} +746.773 q^{83} +467.182 q^{85} -1251.58i q^{89} +256.018i q^{91} +88.1871 q^{95} +575.314 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 72 q^{13} - 264 q^{25} - 24 q^{37} + 456 q^{61} + 2184 q^{73} - 3072 q^{85} - 3672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.05443i 0.720410i 0.932873 + 0.360205i \(0.117293\pi\)
−0.932873 + 0.360205i \(0.882707\pi\)
\(6\) 0 0
\(7\) − 20.0504i − 1.08262i −0.840823 0.541310i \(-0.817928\pi\)
0.840823 0.541310i \(-0.182072\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.7358 −0.403911 −0.201956 0.979395i \(-0.564730\pi\)
−0.201956 + 0.979395i \(0.564730\pi\)
\(12\) 0 0
\(13\) −12.7687 −0.272416 −0.136208 0.990680i \(-0.543492\pi\)
−0.136208 + 0.990680i \(0.543492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 58.0032i − 0.827520i −0.910386 0.413760i \(-0.864215\pi\)
0.910386 0.413760i \(-0.135785\pi\)
\(18\) 0 0
\(19\) − 10.9489i − 0.132203i −0.997813 0.0661013i \(-0.978944\pi\)
0.997813 0.0661013i \(-0.0210561\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 74.3941 0.674445 0.337223 0.941425i \(-0.390512\pi\)
0.337223 + 0.941425i \(0.390512\pi\)
\(24\) 0 0
\(25\) 60.1262 0.481010
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 144.541i 0.925537i 0.886479 + 0.462769i \(0.153144\pi\)
−0.886479 + 0.462769i \(0.846856\pi\)
\(30\) 0 0
\(31\) − 181.662i − 1.05250i −0.850331 0.526248i \(-0.823598\pi\)
0.850331 0.526248i \(-0.176402\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 161.495 0.779931
\(36\) 0 0
\(37\) −99.7875 −0.443378 −0.221689 0.975117i \(-0.571157\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 249.867i 0.951774i 0.879506 + 0.475887i \(0.157873\pi\)
−0.879506 + 0.475887i \(0.842127\pi\)
\(42\) 0 0
\(43\) − 201.712i − 0.715368i −0.933843 0.357684i \(-0.883567\pi\)
0.933843 0.357684i \(-0.116433\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −416.814 −1.29359 −0.646793 0.762666i \(-0.723890\pi\)
−0.646793 + 0.762666i \(0.723890\pi\)
\(48\) 0 0
\(49\) −59.0193 −0.172068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 420.474i 1.08975i 0.838518 + 0.544873i \(0.183422\pi\)
−0.838518 + 0.544873i \(0.816578\pi\)
\(54\) 0 0
\(55\) − 118.689i − 0.290982i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 266.159 0.587304 0.293652 0.955912i \(-0.405129\pi\)
0.293652 + 0.955912i \(0.405129\pi\)
\(60\) 0 0
\(61\) −199.785 −0.419342 −0.209671 0.977772i \(-0.567239\pi\)
−0.209671 + 0.977772i \(0.567239\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 102.845i − 0.196251i
\(66\) 0 0
\(67\) − 55.6890i − 0.101545i −0.998710 0.0507724i \(-0.983832\pi\)
0.998710 0.0507724i \(-0.0161683\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −704.878 −1.17822 −0.589110 0.808053i \(-0.700522\pi\)
−0.589110 + 0.808053i \(0.700522\pi\)
\(72\) 0 0
\(73\) −1109.82 −1.77937 −0.889687 0.456572i \(-0.849077\pi\)
−0.889687 + 0.456572i \(0.849077\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 295.460i 0.437283i
\(78\) 0 0
\(79\) 751.695i 1.07053i 0.844683 + 0.535267i \(0.179789\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 746.773 0.987578 0.493789 0.869582i \(-0.335612\pi\)
0.493789 + 0.869582i \(0.335612\pi\)
\(84\) 0 0
\(85\) 467.182 0.596153
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 1251.58i − 1.49064i −0.666707 0.745320i \(-0.732297\pi\)
0.666707 0.745320i \(-0.267703\pi\)
\(90\) 0 0
\(91\) 256.018i 0.294923i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 88.1871 0.0952401
\(96\) 0 0
\(97\) 575.314 0.602209 0.301104 0.953591i \(-0.402645\pi\)
0.301104 + 0.953591i \(0.402645\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 849.450i 0.836866i 0.908248 + 0.418433i \(0.137421\pi\)
−0.908248 + 0.418433i \(0.862579\pi\)
\(102\) 0 0
\(103\) 247.993i 0.237237i 0.992940 + 0.118619i \(0.0378466\pi\)
−0.992940 + 0.118619i \(0.962153\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −535.255 −0.483599 −0.241799 0.970326i \(-0.577738\pi\)
−0.241799 + 0.970326i \(0.577738\pi\)
\(108\) 0 0
\(109\) −1864.26 −1.63820 −0.819098 0.573654i \(-0.805525\pi\)
−0.819098 + 0.573654i \(0.805525\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1606.33i − 1.33726i −0.743594 0.668632i \(-0.766880\pi\)
0.743594 0.668632i \(-0.233120\pi\)
\(114\) 0 0
\(115\) 599.202i 0.485877i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1162.99 −0.895890
\(120\) 0 0
\(121\) −1113.86 −0.836856
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1491.09i 1.06693i
\(126\) 0 0
\(127\) 342.133i 0.239050i 0.992831 + 0.119525i \(0.0381372\pi\)
−0.992831 + 0.119525i \(0.961863\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2849.78 1.90066 0.950328 0.311249i \(-0.100747\pi\)
0.950328 + 0.311249i \(0.100747\pi\)
\(132\) 0 0
\(133\) −219.530 −0.143125
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 609.068i − 0.379826i −0.981801 0.189913i \(-0.939179\pi\)
0.981801 0.189913i \(-0.0608206\pi\)
\(138\) 0 0
\(139\) 925.200i 0.564565i 0.959331 + 0.282282i \(0.0910915\pi\)
−0.959331 + 0.282282i \(0.908909\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 188.158 0.110032
\(144\) 0 0
\(145\) −1164.19 −0.666766
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 770.540i 0.423658i 0.977307 + 0.211829i \(0.0679420\pi\)
−0.977307 + 0.211829i \(0.932058\pi\)
\(150\) 0 0
\(151\) − 298.289i − 0.160758i −0.996764 0.0803788i \(-0.974387\pi\)
0.996764 0.0803788i \(-0.0256130\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1463.18 0.758229
\(156\) 0 0
\(157\) −2757.64 −1.40181 −0.700903 0.713257i \(-0.747219\pi\)
−0.700903 + 0.713257i \(0.747219\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1491.63i − 0.730168i
\(162\) 0 0
\(163\) − 247.512i − 0.118936i −0.998230 0.0594682i \(-0.981060\pi\)
0.998230 0.0594682i \(-0.0189405\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3501.34 −1.62240 −0.811202 0.584766i \(-0.801186\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(168\) 0 0
\(169\) −2033.96 −0.925790
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2591.04i − 1.13869i −0.822099 0.569345i \(-0.807197\pi\)
0.822099 0.569345i \(-0.192803\pi\)
\(174\) 0 0
\(175\) − 1205.56i − 0.520751i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1183.11 −0.494020 −0.247010 0.969013i \(-0.579448\pi\)
−0.247010 + 0.969013i \(0.579448\pi\)
\(180\) 0 0
\(181\) −1955.27 −0.802949 −0.401475 0.915870i \(-0.631502\pi\)
−0.401475 + 0.915870i \(0.631502\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 803.731i − 0.319414i
\(186\) 0 0
\(187\) 854.725i 0.334244i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1888.71 −0.715510 −0.357755 0.933815i \(-0.616458\pi\)
−0.357755 + 0.933815i \(0.616458\pi\)
\(192\) 0 0
\(193\) −346.356 −0.129178 −0.0645888 0.997912i \(-0.520574\pi\)
−0.0645888 + 0.997912i \(0.520574\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 642.954i 0.232531i 0.993218 + 0.116265i \(0.0370923\pi\)
−0.993218 + 0.116265i \(0.962908\pi\)
\(198\) 0 0
\(199\) − 1992.53i − 0.709783i −0.934907 0.354892i \(-0.884518\pi\)
0.934907 0.354892i \(-0.115482\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2898.11 1.00201
\(204\) 0 0
\(205\) −2012.54 −0.685667
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 161.341i 0.0533981i
\(210\) 0 0
\(211\) − 4698.88i − 1.53310i −0.642185 0.766550i \(-0.721972\pi\)
0.642185 0.766550i \(-0.278028\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1624.68 0.515358
\(216\) 0 0
\(217\) −3642.39 −1.13945
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 740.626i 0.225430i
\(222\) 0 0
\(223\) 322.474i 0.0968362i 0.998827 + 0.0484181i \(0.0154180\pi\)
−0.998827 + 0.0484181i \(0.984582\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1065.03 0.311404 0.155702 0.987804i \(-0.450236\pi\)
0.155702 + 0.987804i \(0.450236\pi\)
\(228\) 0 0
\(229\) −2006.11 −0.578898 −0.289449 0.957193i \(-0.593472\pi\)
−0.289449 + 0.957193i \(0.593472\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3146.22i − 0.884617i −0.896863 0.442308i \(-0.854160\pi\)
0.896863 0.442308i \(-0.145840\pi\)
\(234\) 0 0
\(235\) − 3357.20i − 0.931912i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4032.30 1.09133 0.545665 0.838004i \(-0.316277\pi\)
0.545665 + 0.838004i \(0.316277\pi\)
\(240\) 0 0
\(241\) −5876.62 −1.57073 −0.785366 0.619031i \(-0.787525\pi\)
−0.785366 + 0.619031i \(0.787525\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 475.366i − 0.123959i
\(246\) 0 0
\(247\) 139.803i 0.0360141i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7225.11 −1.81691 −0.908457 0.417979i \(-0.862738\pi\)
−0.908457 + 0.417979i \(0.862738\pi\)
\(252\) 0 0
\(253\) −1096.26 −0.272416
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3390.88i 0.823024i 0.911404 + 0.411512i \(0.134999\pi\)
−0.911404 + 0.411512i \(0.865001\pi\)
\(258\) 0 0
\(259\) 2000.78i 0.480010i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3851.88 −0.903107 −0.451553 0.892244i \(-0.649130\pi\)
−0.451553 + 0.892244i \(0.649130\pi\)
\(264\) 0 0
\(265\) −3386.68 −0.785064
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8562.30i 1.94072i 0.241672 + 0.970358i \(0.422304\pi\)
−0.241672 + 0.970358i \(0.577696\pi\)
\(270\) 0 0
\(271\) 2404.22i 0.538916i 0.963012 + 0.269458i \(0.0868445\pi\)
−0.963012 + 0.269458i \(0.913155\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −886.010 −0.194285
\(276\) 0 0
\(277\) −2936.82 −0.637026 −0.318513 0.947918i \(-0.603184\pi\)
−0.318513 + 0.947918i \(0.603184\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5696.37i 1.20931i 0.796486 + 0.604657i \(0.206690\pi\)
−0.796486 + 0.604657i \(0.793310\pi\)
\(282\) 0 0
\(283\) 1138.94i 0.239233i 0.992820 + 0.119617i \(0.0381665\pi\)
−0.992820 + 0.119617i \(0.961833\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5009.95 1.03041
\(288\) 0 0
\(289\) 1548.63 0.315211
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 6467.29i − 1.28950i −0.764394 0.644750i \(-0.776962\pi\)
0.764394 0.644750i \(-0.223038\pi\)
\(294\) 0 0
\(295\) 2143.76i 0.423099i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −949.917 −0.183730
\(300\) 0 0
\(301\) −4044.41 −0.774472
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1609.15i − 0.302098i
\(306\) 0 0
\(307\) 427.736i 0.0795185i 0.999209 + 0.0397592i \(0.0126591\pi\)
−0.999209 + 0.0397592i \(0.987341\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2414.58 0.440252 0.220126 0.975471i \(-0.429353\pi\)
0.220126 + 0.975471i \(0.429353\pi\)
\(312\) 0 0
\(313\) −4562.86 −0.823988 −0.411994 0.911187i \(-0.635167\pi\)
−0.411994 + 0.911187i \(0.635167\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 4388.37i − 0.777525i −0.921338 0.388762i \(-0.872903\pi\)
0.921338 0.388762i \(-0.127097\pi\)
\(318\) 0 0
\(319\) − 2129.93i − 0.373835i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −635.071 −0.109400
\(324\) 0 0
\(325\) −767.735 −0.131035
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8357.29i 1.40046i
\(330\) 0 0
\(331\) 10042.7i 1.66767i 0.552013 + 0.833836i \(0.313860\pi\)
−0.552013 + 0.833836i \(0.686140\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 448.543 0.0731538
\(336\) 0 0
\(337\) −6324.52 −1.02231 −0.511155 0.859488i \(-0.670782\pi\)
−0.511155 + 0.859488i \(0.670782\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2676.94i 0.425115i
\(342\) 0 0
\(343\) − 5693.93i − 0.896337i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5525.21 −0.854781 −0.427390 0.904067i \(-0.640567\pi\)
−0.427390 + 0.904067i \(0.640567\pi\)
\(348\) 0 0
\(349\) −5467.82 −0.838641 −0.419321 0.907838i \(-0.637732\pi\)
−0.419321 + 0.907838i \(0.637732\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11837.4i 1.78482i 0.451230 + 0.892408i \(0.350985\pi\)
−0.451230 + 0.892408i \(0.649015\pi\)
\(354\) 0 0
\(355\) − 5677.39i − 0.848802i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11818.4 1.73748 0.868738 0.495272i \(-0.164932\pi\)
0.868738 + 0.495272i \(0.164932\pi\)
\(360\) 0 0
\(361\) 6739.12 0.982522
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 8938.94i − 1.28188i
\(366\) 0 0
\(367\) 11931.5i 1.69705i 0.529156 + 0.848525i \(0.322509\pi\)
−0.529156 + 0.848525i \(0.677491\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8430.68 1.17978
\(372\) 0 0
\(373\) −8170.05 −1.13413 −0.567063 0.823674i \(-0.691921\pi\)
−0.567063 + 0.823674i \(0.691921\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1845.60i − 0.252131i
\(378\) 0 0
\(379\) 3653.30i 0.495138i 0.968870 + 0.247569i \(0.0796317\pi\)
−0.968870 + 0.247569i \(0.920368\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6593.77 −0.879702 −0.439851 0.898071i \(-0.644969\pi\)
−0.439851 + 0.898071i \(0.644969\pi\)
\(384\) 0 0
\(385\) −2379.76 −0.315023
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 6674.21i − 0.869912i −0.900452 0.434956i \(-0.856764\pi\)
0.900452 0.434956i \(-0.143236\pi\)
\(390\) 0 0
\(391\) − 4315.09i − 0.558117i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6054.47 −0.771224
\(396\) 0 0
\(397\) 3658.10 0.462455 0.231228 0.972900i \(-0.425726\pi\)
0.231228 + 0.972900i \(0.425726\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5849.71i 0.728481i 0.931305 + 0.364240i \(0.118671\pi\)
−0.931305 + 0.364240i \(0.881329\pi\)
\(402\) 0 0
\(403\) 2319.59i 0.286717i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1470.45 0.179085
\(408\) 0 0
\(409\) −3027.49 −0.366014 −0.183007 0.983112i \(-0.558583\pi\)
−0.183007 + 0.983112i \(0.558583\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 5336.59i − 0.635827i
\(414\) 0 0
\(415\) 6014.83i 0.711461i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11155.5 −1.30067 −0.650337 0.759646i \(-0.725372\pi\)
−0.650337 + 0.759646i \(0.725372\pi\)
\(420\) 0 0
\(421\) −10107.7 −1.17011 −0.585057 0.810992i \(-0.698928\pi\)
−0.585057 + 0.810992i \(0.698928\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 3487.51i − 0.398045i
\(426\) 0 0
\(427\) 4005.77i 0.453988i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10898.7 1.21804 0.609019 0.793156i \(-0.291563\pi\)
0.609019 + 0.793156i \(0.291563\pi\)
\(432\) 0 0
\(433\) −10256.8 −1.13836 −0.569179 0.822213i \(-0.692739\pi\)
−0.569179 + 0.822213i \(0.692739\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 814.534i − 0.0891634i
\(438\) 0 0
\(439\) 2765.38i 0.300648i 0.988637 + 0.150324i \(0.0480317\pi\)
−0.988637 + 0.150324i \(0.951968\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2418.62 −0.259395 −0.129698 0.991554i \(-0.541401\pi\)
−0.129698 + 0.991554i \(0.541401\pi\)
\(444\) 0 0
\(445\) 10080.7 1.07387
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 14158.1i − 1.48811i −0.668120 0.744054i \(-0.732901\pi\)
0.668120 0.744054i \(-0.267099\pi\)
\(450\) 0 0
\(451\) − 3682.01i − 0.384432i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2062.08 −0.212466
\(456\) 0 0
\(457\) 11498.5 1.17697 0.588487 0.808507i \(-0.299724\pi\)
0.588487 + 0.808507i \(0.299724\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 10805.2i − 1.09165i −0.837900 0.545824i \(-0.816217\pi\)
0.837900 0.545824i \(-0.183783\pi\)
\(462\) 0 0
\(463\) − 13005.2i − 1.30541i −0.757612 0.652705i \(-0.773634\pi\)
0.757612 0.652705i \(-0.226366\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19806.1 −1.96257 −0.981284 0.192567i \(-0.938319\pi\)
−0.981284 + 0.192567i \(0.938319\pi\)
\(468\) 0 0
\(469\) −1116.59 −0.109934
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2972.40i 0.288945i
\(474\) 0 0
\(475\) − 658.316i − 0.0635907i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4540.81 0.433142 0.216571 0.976267i \(-0.430513\pi\)
0.216571 + 0.976267i \(0.430513\pi\)
\(480\) 0 0
\(481\) 1274.16 0.120783
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4633.82i 0.433837i
\(486\) 0 0
\(487\) − 17236.2i − 1.60379i −0.597464 0.801896i \(-0.703825\pi\)
0.597464 0.801896i \(-0.296175\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9264.37 0.851517 0.425759 0.904837i \(-0.360007\pi\)
0.425759 + 0.904837i \(0.360007\pi\)
\(492\) 0 0
\(493\) 8383.83 0.765900
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14133.1i 1.27557i
\(498\) 0 0
\(499\) − 21195.2i − 1.90146i −0.310027 0.950728i \(-0.600338\pi\)
0.310027 0.950728i \(-0.399662\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10426.8 0.924267 0.462134 0.886810i \(-0.347084\pi\)
0.462134 + 0.886810i \(0.347084\pi\)
\(504\) 0 0
\(505\) −6841.84 −0.602886
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8235.12i 0.717122i 0.933506 + 0.358561i \(0.116733\pi\)
−0.933506 + 0.358561i \(0.883267\pi\)
\(510\) 0 0
\(511\) 22252.3i 1.92639i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1997.44 −0.170908
\(516\) 0 0
\(517\) 6142.10 0.522494
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5265.62i 0.442785i 0.975185 + 0.221393i \(0.0710602\pi\)
−0.975185 + 0.221393i \(0.928940\pi\)
\(522\) 0 0
\(523\) − 12675.7i − 1.05979i −0.848064 0.529894i \(-0.822232\pi\)
0.848064 0.529894i \(-0.177768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10537.0 −0.870962
\(528\) 0 0
\(529\) −6632.52 −0.545124
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3190.49i − 0.259278i
\(534\) 0 0
\(535\) − 4311.17i − 0.348389i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 869.698 0.0695001
\(540\) 0 0
\(541\) 4698.09 0.373358 0.186679 0.982421i \(-0.440228\pi\)
0.186679 + 0.982421i \(0.440228\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 15015.5i − 1.18017i
\(546\) 0 0
\(547\) 6668.52i 0.521253i 0.965440 + 0.260627i \(0.0839291\pi\)
−0.965440 + 0.260627i \(0.916071\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1582.56 0.122358
\(552\) 0 0
\(553\) 15071.8 1.15898
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2283.58i 0.173714i 0.996221 + 0.0868569i \(0.0276823\pi\)
−0.996221 + 0.0868569i \(0.972318\pi\)
\(558\) 0 0
\(559\) 2575.61i 0.194878i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6323.88 0.473392 0.236696 0.971584i \(-0.423935\pi\)
0.236696 + 0.971584i \(0.423935\pi\)
\(564\) 0 0
\(565\) 12938.1 0.963378
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 4953.43i − 0.364954i −0.983210 0.182477i \(-0.941589\pi\)
0.983210 0.182477i \(-0.0584114\pi\)
\(570\) 0 0
\(571\) 11295.9i 0.827877i 0.910305 + 0.413938i \(0.135847\pi\)
−0.910305 + 0.413938i \(0.864153\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4473.03 0.324415
\(576\) 0 0
\(577\) 16341.3 1.17903 0.589514 0.807758i \(-0.299319\pi\)
0.589514 + 0.807758i \(0.299319\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 14973.1i − 1.06917i
\(582\) 0 0
\(583\) − 6196.04i − 0.440161i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24609.9 1.73042 0.865212 0.501407i \(-0.167184\pi\)
0.865212 + 0.501407i \(0.167184\pi\)
\(588\) 0 0
\(589\) −1989.00 −0.139143
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 6930.38i − 0.479927i −0.970782 0.239963i \(-0.922865\pi\)
0.970782 0.239963i \(-0.0771354\pi\)
\(594\) 0 0
\(595\) − 9367.20i − 0.645408i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10182.6 −0.694572 −0.347286 0.937759i \(-0.612897\pi\)
−0.347286 + 0.937759i \(0.612897\pi\)
\(600\) 0 0
\(601\) 9536.14 0.647234 0.323617 0.946188i \(-0.395101\pi\)
0.323617 + 0.946188i \(0.395101\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 8971.46i − 0.602879i
\(606\) 0 0
\(607\) − 6873.14i − 0.459592i −0.973239 0.229796i \(-0.926194\pi\)
0.973239 0.229796i \(-0.0738058\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5322.18 0.352393
\(612\) 0 0
\(613\) −11378.4 −0.749704 −0.374852 0.927085i \(-0.622306\pi\)
−0.374852 + 0.927085i \(0.622306\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1884.90i 0.122987i 0.998107 + 0.0614937i \(0.0195864\pi\)
−0.998107 + 0.0614937i \(0.980414\pi\)
\(618\) 0 0
\(619\) 25715.0i 1.66975i 0.550441 + 0.834874i \(0.314460\pi\)
−0.550441 + 0.834874i \(0.685540\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25094.7 −1.61380
\(624\) 0 0
\(625\) −4494.07 −0.287620
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5787.99i 0.366904i
\(630\) 0 0
\(631\) − 8509.78i − 0.536876i −0.963297 0.268438i \(-0.913493\pi\)
0.963297 0.268438i \(-0.0865075\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2755.68 −0.172214
\(636\) 0 0
\(637\) 753.601 0.0468740
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2720.43i 0.167630i 0.996481 + 0.0838148i \(0.0267104\pi\)
−0.996481 + 0.0838148i \(0.973290\pi\)
\(642\) 0 0
\(643\) − 24207.3i − 1.48467i −0.670029 0.742335i \(-0.733718\pi\)
0.670029 0.742335i \(-0.266282\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −832.754 −0.0506012 −0.0253006 0.999680i \(-0.508054\pi\)
−0.0253006 + 0.999680i \(0.508054\pi\)
\(648\) 0 0
\(649\) −3922.07 −0.237219
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14518.1i 0.870043i 0.900420 + 0.435021i \(0.143259\pi\)
−0.900420 + 0.435021i \(0.856741\pi\)
\(654\) 0 0
\(655\) 22953.3i 1.36925i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10396.2 −0.614532 −0.307266 0.951624i \(-0.599414\pi\)
−0.307266 + 0.951624i \(0.599414\pi\)
\(660\) 0 0
\(661\) 15419.6 0.907343 0.453672 0.891169i \(-0.350114\pi\)
0.453672 + 0.891169i \(0.350114\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 1768.19i − 0.103109i
\(666\) 0 0
\(667\) 10753.0i 0.624224i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2944.00 0.169377
\(672\) 0 0
\(673\) 32417.9 1.85679 0.928394 0.371597i \(-0.121190\pi\)
0.928394 + 0.371597i \(0.121190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27165.3i 1.54217i 0.636735 + 0.771083i \(0.280285\pi\)
−0.636735 + 0.771083i \(0.719715\pi\)
\(678\) 0 0
\(679\) − 11535.3i − 0.651964i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19995.4 1.12021 0.560104 0.828422i \(-0.310761\pi\)
0.560104 + 0.828422i \(0.310761\pi\)
\(684\) 0 0
\(685\) 4905.69 0.273630
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 5368.92i − 0.296864i
\(690\) 0 0
\(691\) 28011.7i 1.54213i 0.636755 + 0.771066i \(0.280276\pi\)
−0.636755 + 0.771066i \(0.719724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7451.96 −0.406718
\(696\) 0 0
\(697\) 14493.1 0.787612
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23915.4i 1.28855i 0.764795 + 0.644274i \(0.222840\pi\)
−0.764795 + 0.644274i \(0.777160\pi\)
\(702\) 0 0
\(703\) 1092.56i 0.0586157i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17031.8 0.906008
\(708\) 0 0
\(709\) 33718.3 1.78606 0.893030 0.449997i \(-0.148575\pi\)
0.893030 + 0.449997i \(0.148575\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 13514.6i − 0.709851i
\(714\) 0 0
\(715\) 1515.50i 0.0792680i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13347.3 −0.692312 −0.346156 0.938177i \(-0.612513\pi\)
−0.346156 + 0.938177i \(0.612513\pi\)
\(720\) 0 0
\(721\) 4972.36 0.256838
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8690.70i 0.445192i
\(726\) 0 0
\(727\) 12331.5i 0.629093i 0.949242 + 0.314547i \(0.101852\pi\)
−0.949242 + 0.314547i \(0.898148\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11699.9 −0.591981
\(732\) 0 0
\(733\) 4599.02 0.231744 0.115872 0.993264i \(-0.463034\pi\)
0.115872 + 0.993264i \(0.463034\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 820.624i 0.0410150i
\(738\) 0 0
\(739\) − 11846.4i − 0.589687i −0.955546 0.294843i \(-0.904733\pi\)
0.955546 0.294843i \(-0.0952675\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12096.8 0.597294 0.298647 0.954364i \(-0.403465\pi\)
0.298647 + 0.954364i \(0.403465\pi\)
\(744\) 0 0
\(745\) −6206.26 −0.305208
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10732.1i 0.523554i
\(750\) 0 0
\(751\) 19161.3i 0.931035i 0.885039 + 0.465518i \(0.154132\pi\)
−0.885039 + 0.465518i \(0.845868\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2402.55 0.115811
\(756\) 0 0
\(757\) 3351.80 0.160929 0.0804645 0.996757i \(-0.474360\pi\)
0.0804645 + 0.996757i \(0.474360\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6196.36i 0.295162i 0.989050 + 0.147581i \(0.0471487\pi\)
−0.989050 + 0.147581i \(0.952851\pi\)
\(762\) 0 0
\(763\) 37379.1i 1.77354i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3398.51 −0.159991
\(768\) 0 0
\(769\) 36368.9 1.70546 0.852728 0.522355i \(-0.174946\pi\)
0.852728 + 0.522355i \(0.174946\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25925.2i 1.20629i 0.797631 + 0.603146i \(0.206086\pi\)
−0.797631 + 0.603146i \(0.793914\pi\)
\(774\) 0 0
\(775\) − 10922.6i − 0.506261i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2735.77 0.125827
\(780\) 0 0
\(781\) 10387.0 0.475896
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 22211.2i − 1.00987i
\(786\) 0 0
\(787\) − 31849.9i − 1.44260i −0.692622 0.721301i \(-0.743544\pi\)
0.692622 0.721301i \(-0.256456\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −32207.6 −1.44775
\(792\) 0 0
\(793\) 2551.00 0.114235
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10138.1i 0.450576i 0.974292 + 0.225288i \(0.0723323\pi\)
−0.974292 + 0.225288i \(0.927668\pi\)
\(798\) 0 0
\(799\) 24176.5i 1.07047i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16354.1 0.718709
\(804\) 0 0
\(805\) 12014.2 0.526021
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 14786.4i − 0.642597i −0.946978 0.321299i \(-0.895881\pi\)
0.946978 0.321299i \(-0.104119\pi\)
\(810\) 0 0
\(811\) 16494.2i 0.714168i 0.934072 + 0.357084i \(0.116229\pi\)
−0.934072 + 0.357084i \(0.883771\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1993.57 0.0856829
\(816\) 0 0
\(817\) −2208.53 −0.0945735
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16305.6i 0.693142i 0.938024 + 0.346571i \(0.112654\pi\)
−0.938024 + 0.346571i \(0.887346\pi\)
\(822\) 0 0
\(823\) − 34129.3i − 1.44553i −0.691093 0.722766i \(-0.742870\pi\)
0.691093 0.722766i \(-0.257130\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1299.90 0.0546578 0.0273289 0.999626i \(-0.491300\pi\)
0.0273289 + 0.999626i \(0.491300\pi\)
\(828\) 0 0
\(829\) 14143.6 0.592555 0.296277 0.955102i \(-0.404255\pi\)
0.296277 + 0.955102i \(0.404255\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3423.30i 0.142390i
\(834\) 0 0
\(835\) − 28201.2i − 1.16880i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4548.95 0.187184 0.0935919 0.995611i \(-0.470165\pi\)
0.0935919 + 0.995611i \(0.470165\pi\)
\(840\) 0 0
\(841\) 3496.92 0.143381
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 16382.4i − 0.666948i
\(846\) 0 0
\(847\) 22333.3i 0.905997i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7423.60 −0.299034
\(852\) 0 0
\(853\) 12354.3 0.495901 0.247951 0.968773i \(-0.420243\pi\)
0.247951 + 0.968773i \(0.420243\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 17157.4i − 0.683882i −0.939721 0.341941i \(-0.888916\pi\)
0.939721 0.341941i \(-0.111084\pi\)
\(858\) 0 0
\(859\) − 13098.1i − 0.520256i −0.965574 0.260128i \(-0.916235\pi\)
0.965574 0.260128i \(-0.0837648\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −43684.8 −1.72311 −0.861557 0.507661i \(-0.830510\pi\)
−0.861557 + 0.507661i \(0.830510\pi\)
\(864\) 0 0
\(865\) 20869.4 0.820323
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 11076.9i − 0.432401i
\(870\) 0 0
\(871\) 711.078i 0.0276624i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29896.9 1.15508
\(876\) 0 0
\(877\) 11013.2 0.424046 0.212023 0.977265i \(-0.431995\pi\)
0.212023 + 0.977265i \(0.431995\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8301.14i 0.317449i 0.987323 + 0.158725i \(0.0507382\pi\)
−0.987323 + 0.158725i \(0.949262\pi\)
\(882\) 0 0
\(883\) − 41641.5i − 1.58703i −0.608550 0.793516i \(-0.708248\pi\)
0.608550 0.793516i \(-0.291752\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11662.3 0.441466 0.220733 0.975334i \(-0.429155\pi\)
0.220733 + 0.975334i \(0.429155\pi\)
\(888\) 0 0
\(889\) 6859.90 0.258801
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4563.65i 0.171015i
\(894\) 0 0
\(895\) − 9529.24i − 0.355897i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26257.5 0.974125
\(900\) 0 0
\(901\) 24388.8 0.901787
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 15748.5i − 0.578452i
\(906\) 0 0
\(907\) 31427.5i 1.15053i 0.817967 + 0.575266i \(0.195101\pi\)
−0.817967 + 0.575266i \(0.804899\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11268.3 0.409810 0.204905 0.978782i \(-0.434311\pi\)
0.204905 + 0.978782i \(0.434311\pi\)
\(912\) 0 0
\(913\) −11004.3 −0.398894
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 57139.2i − 2.05769i
\(918\) 0 0
\(919\) − 24439.4i − 0.877239i −0.898673 0.438619i \(-0.855468\pi\)
0.898673 0.438619i \(-0.144532\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9000.39 0.320966
\(924\) 0 0
\(925\) −5999.85 −0.213269
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13333.3i 0.470884i 0.971888 + 0.235442i \(0.0756538\pi\)
−0.971888 + 0.235442i \(0.924346\pi\)
\(930\) 0 0
\(931\) 646.196i 0.0227478i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6884.32 −0.240793
\(936\) 0 0
\(937\) 7456.96 0.259988 0.129994 0.991515i \(-0.458504\pi\)
0.129994 + 0.991515i \(0.458504\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7265.74i 0.251707i 0.992049 + 0.125853i \(0.0401669\pi\)
−0.992049 + 0.125853i \(0.959833\pi\)
\(942\) 0 0
\(943\) 18588.7i 0.641919i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24711.6 −0.847962 −0.423981 0.905671i \(-0.639368\pi\)
−0.423981 + 0.905671i \(0.639368\pi\)
\(948\) 0 0
\(949\) 14170.9 0.484730
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13880.3i 0.471802i 0.971777 + 0.235901i \(0.0758041\pi\)
−0.971777 + 0.235901i \(0.924196\pi\)
\(954\) 0 0
\(955\) − 15212.5i − 0.515461i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12212.1 −0.411208
\(960\) 0 0
\(961\) −3209.94 −0.107749
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 2789.70i − 0.0930608i
\(966\) 0 0
\(967\) − 51087.4i − 1.69892i −0.527650 0.849462i \(-0.676927\pi\)
0.527650 0.849462i \(-0.323073\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7695.91 −0.254350 −0.127175 0.991880i \(-0.540591\pi\)
−0.127175 + 0.991880i \(0.540591\pi\)
\(972\) 0 0
\(973\) 18550.7 0.611209
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 19421.0i − 0.635959i −0.948098 0.317980i \(-0.896996\pi\)
0.948098 0.317980i \(-0.103004\pi\)
\(978\) 0 0
\(979\) 18443.1i 0.602086i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8871.76 0.287859 0.143929 0.989588i \(-0.454026\pi\)
0.143929 + 0.989588i \(0.454026\pi\)
\(984\) 0 0
\(985\) −5178.62 −0.167517
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 15006.2i − 0.482476i
\(990\) 0 0
\(991\) − 7872.58i − 0.252352i −0.992008 0.126176i \(-0.959730\pi\)
0.992008 0.126176i \(-0.0402704\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16048.7 0.511335
\(996\) 0 0
\(997\) 1073.89 0.0341127 0.0170564 0.999855i \(-0.494571\pi\)
0.0170564 + 0.999855i \(0.494571\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.c.l.1727.17 24
3.2 odd 2 inner 1728.4.c.l.1727.7 24
4.3 odd 2 inner 1728.4.c.l.1727.18 24
8.3 odd 2 864.4.c.a.863.8 yes 24
8.5 even 2 864.4.c.a.863.7 24
12.11 even 2 inner 1728.4.c.l.1727.8 24
24.5 odd 2 864.4.c.a.863.17 yes 24
24.11 even 2 864.4.c.a.863.18 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.c.a.863.7 24 8.5 even 2
864.4.c.a.863.8 yes 24 8.3 odd 2
864.4.c.a.863.17 yes 24 24.5 odd 2
864.4.c.a.863.18 yes 24 24.11 even 2
1728.4.c.l.1727.7 24 3.2 odd 2 inner
1728.4.c.l.1727.8 24 12.11 even 2 inner
1728.4.c.l.1727.17 24 1.1 even 1 trivial
1728.4.c.l.1727.18 24 4.3 odd 2 inner