Properties

Label 1728.4.c
Level $1728$
Weight $4$
Character orbit 1728.c
Rep. character $\chi_{1728}(1727,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $12$
Sturm bound $1152$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(1152\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1728, [\chi])\).

Total New Old
Modular forms 900 96 804
Cusp forms 828 96 732
Eisenstein series 72 0 72

Trace form

\( 96 q - 72 q^{13} - 2400 q^{25} - 504 q^{37} - 4704 q^{49} - 168 q^{61} + 240 q^{85} - 1488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1728.4.c.a 1728.c 12.b $2$ $101.955$ \(\Q(\sqrt{-3}) \) None 432.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-12\beta q^{5}+17\beta q^{7}-36 q^{11}-19 q^{13}+\cdots\)
1728.4.c.b 1728.c 12.b $2$ $101.955$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 432.4.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{7}-19 q^{13}-17\beta q^{19}+125 q^{25}+\cdots\)
1728.4.c.c 1728.c 12.b $2$ $101.955$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 432.4.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+19\beta q^{7}+89 q^{13}+73\beta q^{19}+125 q^{25}+\cdots\)
1728.4.c.d 1728.c 12.b $2$ $101.955$ \(\Q(\sqrt{-3}) \) None 432.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-12\beta q^{5}-17\beta q^{7}+36 q^{11}-19 q^{13}+\cdots\)
1728.4.c.e 1728.c 12.b $4$ $101.955$ \(\Q(\zeta_{12})\) None 432.4.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-6\beta_{2}+\beta_1)q^{5}+(\beta_{2}-6\beta_1)q^{7}+\cdots\)
1728.4.c.f 1728.c 12.b $4$ $101.955$ \(\Q(\zeta_{12})\) None 432.4.c.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{5}+\beta_{2} q^{7}+\beta_{3} q^{11}-7 q^{13}+\cdots\)
1728.4.c.g 1728.c 12.b $4$ $101.955$ \(\Q(\sqrt{3}, \sqrt{-17})\) None 432.4.c.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}-\beta _{3}q^{7}-\beta _{2}q^{11}+2q^{13}+\cdots\)
1728.4.c.h 1728.c 12.b $4$ $101.955$ \(\Q(\zeta_{12})\) None 432.4.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-6\beta_{2}+\beta_1)q^{5}+(-\beta_{2}+6\beta_1)q^{7}+\cdots\)
1728.4.c.i 1728.c 12.b $12$ $101.955$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 108.4.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{5}-\beta _{1}q^{7}+\beta _{5}q^{11}+(-3-\beta _{2}+\cdots)q^{13}+\cdots\)
1728.4.c.j 1728.c 12.b $12$ $101.955$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 108.4.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}-\beta _{1}q^{7}-\beta _{6}q^{11}+(6-\beta _{5}+\cdots)q^{13}+\cdots\)
1728.4.c.k 1728.c 12.b $24$ $101.955$ None 864.4.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
1728.4.c.l 1728.c 12.b $24$ $101.955$ None 864.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)