Properties

Label 864.2.bn.a.683.28
Level $864$
Weight $2$
Character 864.683
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 683.28
Character \(\chi\) \(=\) 864.683
Dual form 864.2.bn.a.611.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.484847 - 1.32850i) q^{2} +(-1.52985 - 1.28824i) q^{4} +(0.0345958 + 0.262781i) q^{5} +(0.779563 + 2.90937i) q^{7} +(-2.45318 + 1.40781i) q^{8} +(0.365879 + 0.0814479i) q^{10} +(0.904502 - 0.694049i) q^{11} +(-2.05487 + 2.67796i) q^{13} +(4.24308 + 0.374946i) q^{14} +(0.680862 + 3.94163i) q^{16} +6.62015 q^{17} +(5.15825 - 2.13662i) q^{19} +(0.285599 - 0.446582i) q^{20} +(-0.483502 - 1.53814i) q^{22} +(1.36994 + 0.367075i) q^{23} +(4.76177 - 1.27591i) q^{25} +(2.56139 + 4.02831i) q^{26} +(2.55536 - 5.45516i) q^{28} +(-5.03525 - 0.662903i) q^{29} +(2.63335 - 1.52037i) q^{31} +(5.56658 + 1.00656i) q^{32} +(3.20976 - 8.79490i) q^{34} +(-0.737557 + 0.305506i) q^{35} +(-2.21656 + 5.35125i) q^{37} +(-0.337543 - 7.88870i) q^{38} +(-0.454814 - 0.595944i) q^{40} +(-1.95155 + 7.28329i) q^{41} +(4.35237 + 5.67212i) q^{43} +(-2.27785 - 0.103430i) q^{44} +(1.15187 - 1.64200i) q^{46} +(-2.30774 - 1.33237i) q^{47} +(-1.79453 + 1.03607i) q^{49} +(0.613675 - 6.94466i) q^{50} +(6.59351 - 1.44970i) q^{52} +(4.56045 - 11.0099i) q^{53} +(0.213675 + 0.213675i) q^{55} +(-6.00824 - 6.03972i) q^{56} +(-3.32200 + 6.36794i) q^{58} +(-5.08348 + 0.669253i) q^{59} +(-1.61461 + 12.2642i) q^{61} +(-0.743041 - 4.23557i) q^{62} +(4.03616 - 6.90720i) q^{64} +(-0.774808 - 0.447335i) q^{65} +(4.48367 - 5.84323i) q^{67} +(-10.1278 - 8.52836i) q^{68} +(0.0482638 + 1.12797i) q^{70} +(-3.28684 - 3.28684i) q^{71} +(2.26326 - 2.26326i) q^{73} +(6.03447 + 5.53925i) q^{74} +(-10.6438 - 3.37638i) q^{76} +(2.72436 + 2.09048i) q^{77} +(7.66807 - 13.2815i) q^{79} +(-1.01223 + 0.315281i) q^{80} +(8.72967 + 6.12392i) q^{82} +(-1.17203 - 0.154301i) q^{83} +(0.229029 + 1.73965i) q^{85} +(9.64568 - 3.03203i) q^{86} +(-1.24182 + 2.97599i) q^{88} +(-7.53778 + 7.53778i) q^{89} +(-9.39309 - 3.89075i) q^{91} +(-1.62292 - 2.32638i) q^{92} +(-2.88896 + 2.41984i) q^{94} +(0.739916 + 1.28157i) q^{95} +(-0.177831 + 0.308013i) q^{97} +(0.506355 + 2.88638i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.484847 1.32850i 0.342839 0.939394i
\(3\) 0 0
\(4\) −1.52985 1.28824i −0.764923 0.644121i
\(5\) 0.0345958 + 0.262781i 0.0154717 + 0.117519i 0.997438 0.0715371i \(-0.0227904\pi\)
−0.981966 + 0.189056i \(0.939457\pi\)
\(6\) 0 0
\(7\) 0.779563 + 2.90937i 0.294647 + 1.09964i 0.941497 + 0.337021i \(0.109419\pi\)
−0.646850 + 0.762617i \(0.723914\pi\)
\(8\) −2.45318 + 1.40781i −0.867329 + 0.497735i
\(9\) 0 0
\(10\) 0.365879 + 0.0814479i 0.115701 + 0.0257561i
\(11\) 0.904502 0.694049i 0.272718 0.209264i −0.463343 0.886179i \(-0.653350\pi\)
0.736061 + 0.676915i \(0.236684\pi\)
\(12\) 0 0
\(13\) −2.05487 + 2.67796i −0.569919 + 0.742734i −0.986028 0.166582i \(-0.946727\pi\)
0.416108 + 0.909315i \(0.363394\pi\)
\(14\) 4.24308 + 0.374946i 1.13401 + 0.100209i
\(15\) 0 0
\(16\) 0.680862 + 3.94163i 0.170215 + 0.985407i
\(17\) 6.62015 1.60562 0.802812 0.596233i \(-0.203336\pi\)
0.802812 + 0.596233i \(0.203336\pi\)
\(18\) 0 0
\(19\) 5.15825 2.13662i 1.18338 0.490174i 0.297789 0.954632i \(-0.403751\pi\)
0.885595 + 0.464458i \(0.153751\pi\)
\(20\) 0.285599 0.446582i 0.0638620 0.0998588i
\(21\) 0 0
\(22\) −0.483502 1.53814i −0.103083 0.327933i
\(23\) 1.36994 + 0.367075i 0.285653 + 0.0765404i 0.398800 0.917038i \(-0.369427\pi\)
−0.113148 + 0.993578i \(0.536093\pi\)
\(24\) 0 0
\(25\) 4.76177 1.27591i 0.952354 0.255183i
\(26\) 2.56139 + 4.02831i 0.502329 + 0.790017i
\(27\) 0 0
\(28\) 2.55536 5.45516i 0.482918 1.03093i
\(29\) −5.03525 0.662903i −0.935022 0.123098i −0.352408 0.935847i \(-0.614637\pi\)
−0.582615 + 0.812749i \(0.697970\pi\)
\(30\) 0 0
\(31\) 2.63335 1.52037i 0.472964 0.273066i −0.244515 0.969645i \(-0.578629\pi\)
0.717480 + 0.696579i \(0.245296\pi\)
\(32\) 5.56658 + 1.00656i 0.984042 + 0.177936i
\(33\) 0 0
\(34\) 3.20976 8.79490i 0.550470 1.50831i
\(35\) −0.737557 + 0.305506i −0.124670 + 0.0516400i
\(36\) 0 0
\(37\) −2.21656 + 5.35125i −0.364401 + 0.879741i 0.630245 + 0.776396i \(0.282954\pi\)
−0.994646 + 0.103344i \(0.967046\pi\)
\(38\) −0.337543 7.88870i −0.0547567 1.27972i
\(39\) 0 0
\(40\) −0.454814 0.595944i −0.0719125 0.0942270i
\(41\) −1.95155 + 7.28329i −0.304781 + 1.13746i 0.628353 + 0.777929i \(0.283729\pi\)
−0.933134 + 0.359530i \(0.882937\pi\)
\(42\) 0 0
\(43\) 4.35237 + 5.67212i 0.663731 + 0.864991i 0.996965 0.0778532i \(-0.0248066\pi\)
−0.333234 + 0.942844i \(0.608140\pi\)
\(44\) −2.27785 0.103430i −0.343399 0.0155926i
\(45\) 0 0
\(46\) 1.15187 1.64200i 0.169834 0.242099i
\(47\) −2.30774 1.33237i −0.336618 0.194347i 0.322157 0.946686i \(-0.395592\pi\)
−0.658776 + 0.752339i \(0.728925\pi\)
\(48\) 0 0
\(49\) −1.79453 + 1.03607i −0.256362 + 0.148011i
\(50\) 0.613675 6.94466i 0.0867868 0.982123i
\(51\) 0 0
\(52\) 6.59351 1.44970i 0.914355 0.201037i
\(53\) 4.56045 11.0099i 0.626426 1.51233i −0.217608 0.976036i \(-0.569826\pi\)
0.844034 0.536290i \(-0.180174\pi\)
\(54\) 0 0
\(55\) 0.213675 + 0.213675i 0.0288119 + 0.0288119i
\(56\) −6.00824 6.03972i −0.802884 0.807092i
\(57\) 0 0
\(58\) −3.32200 + 6.36794i −0.436199 + 0.836152i
\(59\) −5.08348 + 0.669253i −0.661813 + 0.0871294i −0.453948 0.891028i \(-0.649985\pi\)
−0.207865 + 0.978157i \(0.566652\pi\)
\(60\) 0 0
\(61\) −1.61461 + 12.2642i −0.206730 + 1.57027i 0.502047 + 0.864840i \(0.332580\pi\)
−0.708778 + 0.705432i \(0.750753\pi\)
\(62\) −0.743041 4.23557i −0.0943663 0.537918i
\(63\) 0 0
\(64\) 4.03616 6.90720i 0.504520 0.863400i
\(65\) −0.774808 0.447335i −0.0961031 0.0554851i
\(66\) 0 0
\(67\) 4.48367 5.84323i 0.547767 0.713864i −0.434643 0.900603i \(-0.643125\pi\)
0.982410 + 0.186739i \(0.0597919\pi\)
\(68\) −10.1278 8.52836i −1.22818 1.03422i
\(69\) 0 0
\(70\) 0.0482638 + 1.12797i 0.00576863 + 0.134818i
\(71\) −3.28684 3.28684i −0.390076 0.390076i 0.484639 0.874714i \(-0.338951\pi\)
−0.874714 + 0.484639i \(0.838951\pi\)
\(72\) 0 0
\(73\) 2.26326 2.26326i 0.264894 0.264894i −0.562145 0.827039i \(-0.690024\pi\)
0.827039 + 0.562145i \(0.190024\pi\)
\(74\) 6.03447 + 5.53925i 0.701493 + 0.643925i
\(75\) 0 0
\(76\) −10.6438 3.37638i −1.22093 0.387298i
\(77\) 2.72436 + 2.09048i 0.310470 + 0.238232i
\(78\) 0 0
\(79\) 7.66807 13.2815i 0.862726 1.49428i −0.00656230 0.999978i \(-0.502089\pi\)
0.869288 0.494306i \(-0.164578\pi\)
\(80\) −1.01223 + 0.315281i −0.113171 + 0.0352495i
\(81\) 0 0
\(82\) 8.72967 + 6.12392i 0.964031 + 0.676274i
\(83\) −1.17203 0.154301i −0.128647 0.0169367i 0.0659276 0.997824i \(-0.478999\pi\)
−0.194575 + 0.980888i \(0.562333\pi\)
\(84\) 0 0
\(85\) 0.229029 + 1.73965i 0.0248417 + 0.188692i
\(86\) 9.64568 3.03203i 1.04012 0.326953i
\(87\) 0 0
\(88\) −1.24182 + 2.97599i −0.132378 + 0.317242i
\(89\) −7.53778 + 7.53778i −0.799003 + 0.799003i −0.982938 0.183935i \(-0.941116\pi\)
0.183935 + 0.982938i \(0.441116\pi\)
\(90\) 0 0
\(91\) −9.39309 3.89075i −0.984663 0.407861i
\(92\) −1.62292 2.32638i −0.169201 0.242542i
\(93\) 0 0
\(94\) −2.88896 + 2.41984i −0.297974 + 0.249588i
\(95\) 0.739916 + 1.28157i 0.0759138 + 0.131487i
\(96\) 0 0
\(97\) −0.177831 + 0.308013i −0.0180560 + 0.0312740i −0.874912 0.484282i \(-0.839081\pi\)
0.856856 + 0.515555i \(0.172414\pi\)
\(98\) 0.506355 + 2.88638i 0.0511496 + 0.291569i
\(99\) 0 0
\(100\) −8.92847 4.18237i −0.892847 0.418237i
\(101\) −6.60978 + 5.07186i −0.657698 + 0.504669i −0.882850 0.469654i \(-0.844379\pi\)
0.225153 + 0.974323i \(0.427712\pi\)
\(102\) 0 0
\(103\) −0.263483 0.0706001i −0.0259618 0.00695644i 0.245815 0.969317i \(-0.420944\pi\)
−0.271777 + 0.962360i \(0.587611\pi\)
\(104\) 1.27091 9.46239i 0.124623 0.927863i
\(105\) 0 0
\(106\) −12.4156 11.3967i −1.20591 1.10694i
\(107\) −6.64771 2.75357i −0.642659 0.266198i 0.0374621 0.999298i \(-0.488073\pi\)
−0.680121 + 0.733100i \(0.738073\pi\)
\(108\) 0 0
\(109\) 1.54546 + 3.73107i 0.148028 + 0.357372i 0.980449 0.196772i \(-0.0630459\pi\)
−0.832421 + 0.554144i \(0.813046\pi\)
\(110\) 0.387467 0.180268i 0.0369436 0.0171879i
\(111\) 0 0
\(112\) −10.9369 + 5.05363i −1.03344 + 0.477523i
\(113\) 8.65034 + 14.9828i 0.813756 + 1.40947i 0.910218 + 0.414129i \(0.135914\pi\)
−0.0964624 + 0.995337i \(0.530753\pi\)
\(114\) 0 0
\(115\) −0.0490661 + 0.372694i −0.00457543 + 0.0347539i
\(116\) 6.84918 + 7.50076i 0.635930 + 0.696428i
\(117\) 0 0
\(118\) −1.57561 + 7.07792i −0.145046 + 0.651575i
\(119\) 5.16083 + 19.2605i 0.473092 + 1.76560i
\(120\) 0 0
\(121\) −2.51059 + 9.36965i −0.228235 + 0.851786i
\(122\) 15.5102 + 8.09129i 1.40423 + 0.732551i
\(123\) 0 0
\(124\) −5.98723 1.06647i −0.537669 0.0957718i
\(125\) 1.00717 + 2.43153i 0.0900841 + 0.217482i
\(126\) 0 0
\(127\) 0.469475i 0.0416592i 0.999783 + 0.0208296i \(0.00663074\pi\)
−0.999783 + 0.0208296i \(0.993369\pi\)
\(128\) −7.21933 8.71099i −0.638104 0.769950i
\(129\) 0 0
\(130\) −0.969950 + 0.812446i −0.0850703 + 0.0712562i
\(131\) −7.31034 5.60942i −0.638707 0.490097i 0.237909 0.971287i \(-0.423538\pi\)
−0.876616 + 0.481190i \(0.840205\pi\)
\(132\) 0 0
\(133\) 10.2374 + 13.3416i 0.887695 + 1.15687i
\(134\) −5.58886 8.78964i −0.482804 0.759309i
\(135\) 0 0
\(136\) −16.2404 + 9.31990i −1.39260 + 0.799175i
\(137\) 20.4598 5.48217i 1.74799 0.468374i 0.763798 0.645455i \(-0.223332\pi\)
0.984196 + 0.177081i \(0.0566655\pi\)
\(138\) 0 0
\(139\) 6.59649 0.868444i 0.559507 0.0736605i 0.154531 0.987988i \(-0.450613\pi\)
0.404976 + 0.914327i \(0.367280\pi\)
\(140\) 1.52192 + 0.482775i 0.128625 + 0.0408019i
\(141\) 0 0
\(142\) −5.96019 + 2.77296i −0.500168 + 0.232702i
\(143\) 3.84841i 0.321820i
\(144\) 0 0
\(145\) 1.34610i 0.111788i
\(146\) −1.90941 4.10408i −0.158024 0.339656i
\(147\) 0 0
\(148\) 10.2847 5.33113i 0.845398 0.438216i
\(149\) −4.02528 + 0.529938i −0.329764 + 0.0434142i −0.293590 0.955931i \(-0.594850\pi\)
−0.0361734 + 0.999346i \(0.511517\pi\)
\(150\) 0 0
\(151\) −18.3805 + 4.92505i −1.49579 + 0.400795i −0.911687 0.410886i \(-0.865219\pi\)
−0.584101 + 0.811681i \(0.698553\pi\)
\(152\) −9.64617 + 12.5033i −0.782407 + 1.01415i
\(153\) 0 0
\(154\) 4.09811 2.60576i 0.330235 0.209979i
\(155\) 0.490627 + 0.639397i 0.0394081 + 0.0513576i
\(156\) 0 0
\(157\) −16.3433 12.5406i −1.30434 1.00085i −0.998815 0.0486661i \(-0.984503\pi\)
−0.305520 0.952186i \(-0.598830\pi\)
\(158\) −13.9267 16.6266i −1.10795 1.32274i
\(159\) 0 0
\(160\) −0.0719242 + 1.49761i −0.00568611 + 0.118397i
\(161\) 4.27182i 0.336667i
\(162\) 0 0
\(163\) −7.29151 17.6033i −0.571115 1.37879i −0.900607 0.434635i \(-0.856877\pi\)
0.329492 0.944159i \(-0.393123\pi\)
\(164\) 12.3682 8.62824i 0.965795 0.673752i
\(165\) 0 0
\(166\) −0.773246 + 1.48224i −0.0600155 + 0.115044i
\(167\) 0.626404 2.33777i 0.0484726 0.180902i −0.937445 0.348133i \(-0.886816\pi\)
0.985918 + 0.167231i \(0.0534825\pi\)
\(168\) 0 0
\(169\) 0.415664 + 1.55128i 0.0319742 + 0.119329i
\(170\) 2.42218 + 0.539198i 0.185772 + 0.0413546i
\(171\) 0 0
\(172\) 0.648607 14.2844i 0.0494559 1.08917i
\(173\) −2.78766 + 21.1744i −0.211942 + 1.60986i 0.472865 + 0.881135i \(0.343220\pi\)
−0.684807 + 0.728725i \(0.740113\pi\)
\(174\) 0 0
\(175\) 7.42420 + 12.8591i 0.561217 + 0.972057i
\(176\) 3.35152 + 3.09266i 0.252631 + 0.233118i
\(177\) 0 0
\(178\) 6.35930 + 13.6686i 0.476650 + 1.02451i
\(179\) −0.878974 2.12203i −0.0656976 0.158608i 0.887621 0.460575i \(-0.152357\pi\)
−0.953318 + 0.301967i \(0.902357\pi\)
\(180\) 0 0
\(181\) −10.5272 4.36050i −0.782478 0.324113i −0.0445631 0.999007i \(-0.514190\pi\)
−0.737915 + 0.674893i \(0.764190\pi\)
\(182\) −9.72308 + 10.5923i −0.720723 + 0.785157i
\(183\) 0 0
\(184\) −3.87748 + 1.02811i −0.285852 + 0.0757936i
\(185\) −1.48289 0.397340i −0.109024 0.0292130i
\(186\) 0 0
\(187\) 5.98794 4.59471i 0.437882 0.335999i
\(188\) 1.81407 + 5.01126i 0.132304 + 0.365483i
\(189\) 0 0
\(190\) 2.06132 0.361615i 0.149544 0.0262343i
\(191\) 4.80107 8.31569i 0.347393 0.601703i −0.638392 0.769711i \(-0.720400\pi\)
0.985786 + 0.168009i \(0.0537336\pi\)
\(192\) 0 0
\(193\) −13.3346 23.0963i −0.959848 1.66251i −0.722861 0.690993i \(-0.757173\pi\)
−0.236987 0.971513i \(-0.576160\pi\)
\(194\) 0.322975 + 0.385589i 0.0231883 + 0.0276836i
\(195\) 0 0
\(196\) 4.08008 + 0.726759i 0.291434 + 0.0519114i
\(197\) 1.38480 + 0.573602i 0.0986628 + 0.0408675i 0.431469 0.902128i \(-0.357995\pi\)
−0.332806 + 0.942995i \(0.607995\pi\)
\(198\) 0 0
\(199\) 6.42238 6.42238i 0.455271 0.455271i −0.441829 0.897099i \(-0.645670\pi\)
0.897099 + 0.441829i \(0.145670\pi\)
\(200\) −9.88523 + 9.83370i −0.698991 + 0.695347i
\(201\) 0 0
\(202\) 3.53326 + 11.2402i 0.248599 + 0.790857i
\(203\) −1.99666 15.1662i −0.140138 1.06446i
\(204\) 0 0
\(205\) −1.98142 0.260859i −0.138389 0.0182192i
\(206\) −0.221542 + 0.315808i −0.0154355 + 0.0220034i
\(207\) 0 0
\(208\) −11.9546 6.27622i −0.828904 0.435178i
\(209\) 3.18273 5.51266i 0.220154 0.381319i
\(210\) 0 0
\(211\) 8.22670 + 6.31257i 0.566349 + 0.434575i 0.851837 0.523807i \(-0.175489\pi\)
−0.285487 + 0.958382i \(0.592155\pi\)
\(212\) −21.1602 + 10.9685i −1.45329 + 0.753319i
\(213\) 0 0
\(214\) −6.88126 + 7.49645i −0.470393 + 0.512447i
\(215\) −1.33995 + 1.33995i −0.0913840 + 0.0913840i
\(216\) 0 0
\(217\) 6.47618 + 6.47618i 0.439632 + 0.439632i
\(218\) 5.70605 0.244152i 0.386463 0.0165360i
\(219\) 0 0
\(220\) −0.0516247 0.602155i −0.00348054 0.0405973i
\(221\) −13.6036 + 17.7285i −0.915076 + 1.19255i
\(222\) 0 0
\(223\) 18.1004 + 10.4503i 1.21209 + 0.699802i 0.963215 0.268733i \(-0.0866050\pi\)
0.248878 + 0.968535i \(0.419938\pi\)
\(224\) 1.41105 + 16.9799i 0.0942799 + 1.13452i
\(225\) 0 0
\(226\) 24.0988 4.22763i 1.60303 0.281218i
\(227\) 1.35199 10.2694i 0.0897349 0.681604i −0.886162 0.463375i \(-0.846638\pi\)
0.975897 0.218230i \(-0.0700282\pi\)
\(228\) 0 0
\(229\) 7.89688 1.03964i 0.521840 0.0687016i 0.134995 0.990846i \(-0.456898\pi\)
0.386845 + 0.922145i \(0.373565\pi\)
\(230\) 0.471336 + 0.245884i 0.0310790 + 0.0162131i
\(231\) 0 0
\(232\) 13.2856 5.46244i 0.872242 0.358627i
\(233\) −1.21008 1.21008i −0.0792748 0.0792748i 0.666358 0.745632i \(-0.267852\pi\)
−0.745632 + 0.666358i \(0.767852\pi\)
\(234\) 0 0
\(235\) 0.270284 0.652524i 0.0176314 0.0425660i
\(236\) 8.63911 + 5.52491i 0.562358 + 0.359641i
\(237\) 0 0
\(238\) 28.0898 + 2.48220i 1.82079 + 0.160897i
\(239\) −15.6470 + 9.03378i −1.01212 + 0.584347i −0.911811 0.410610i \(-0.865316\pi\)
−0.100307 + 0.994957i \(0.531983\pi\)
\(240\) 0 0
\(241\) −12.1405 7.00930i −0.782036 0.451509i 0.0551154 0.998480i \(-0.482447\pi\)
−0.837151 + 0.546971i \(0.815781\pi\)
\(242\) 11.2304 + 7.87817i 0.721915 + 0.506428i
\(243\) 0 0
\(244\) 18.2694 16.6824i 1.16958 1.06798i
\(245\) −0.334344 0.435725i −0.0213604 0.0278375i
\(246\) 0 0
\(247\) −4.87777 + 18.2041i −0.310365 + 1.15830i
\(248\) −4.31970 + 7.43699i −0.274301 + 0.472249i
\(249\) 0 0
\(250\) 3.71862 0.159113i 0.235186 0.0100632i
\(251\) 10.1807 24.5783i 0.642597 1.55137i −0.180567 0.983563i \(-0.557793\pi\)
0.823164 0.567804i \(-0.192207\pi\)
\(252\) 0 0
\(253\) 1.49388 0.618787i 0.0939196 0.0389028i
\(254\) 0.623699 + 0.227623i 0.0391344 + 0.0142824i
\(255\) 0 0
\(256\) −15.0729 + 5.36741i −0.942053 + 0.335463i
\(257\) −15.6830 + 9.05459i −0.978279 + 0.564810i −0.901750 0.432258i \(-0.857717\pi\)
−0.0765289 + 0.997067i \(0.524384\pi\)
\(258\) 0 0
\(259\) −17.2967 2.27716i −1.07477 0.141496i
\(260\) 0.609060 + 1.68250i 0.0377723 + 0.104344i
\(261\) 0 0
\(262\) −10.9965 + 6.99210i −0.679368 + 0.431974i
\(263\) 13.7483 3.68384i 0.847755 0.227155i 0.191310 0.981530i \(-0.438726\pi\)
0.656444 + 0.754374i \(0.272060\pi\)
\(264\) 0 0
\(265\) 3.05096 + 0.817503i 0.187419 + 0.0502188i
\(266\) 22.6880 7.13177i 1.39109 0.437277i
\(267\) 0 0
\(268\) −14.3868 + 3.16319i −0.878815 + 0.193223i
\(269\) 9.33715 3.86758i 0.569296 0.235810i −0.0794191 0.996841i \(-0.525307\pi\)
0.648715 + 0.761031i \(0.275307\pi\)
\(270\) 0 0
\(271\) −1.06895 −0.0649338 −0.0324669 0.999473i \(-0.510336\pi\)
−0.0324669 + 0.999473i \(0.510336\pi\)
\(272\) 4.50741 + 26.0942i 0.273302 + 1.58219i
\(273\) 0 0
\(274\) 2.63676 29.8389i 0.159292 1.80263i
\(275\) 3.42149 4.45897i 0.206323 0.268886i
\(276\) 0 0
\(277\) −13.4899 + 10.3512i −0.810530 + 0.621941i −0.928608 0.371063i \(-0.878993\pi\)
0.118078 + 0.993004i \(0.462327\pi\)
\(278\) 2.04456 9.18453i 0.122624 0.550851i
\(279\) 0 0
\(280\) 1.37926 1.78780i 0.0824268 0.106841i
\(281\) 4.45151 + 16.6133i 0.265555 + 0.991064i 0.961910 + 0.273367i \(0.0881373\pi\)
−0.696355 + 0.717698i \(0.745196\pi\)
\(282\) 0 0
\(283\) 0.845916 + 6.42537i 0.0502845 + 0.381949i 0.998020 + 0.0628925i \(0.0200325\pi\)
−0.947736 + 0.319056i \(0.896634\pi\)
\(284\) 0.794113 + 9.26260i 0.0471219 + 0.549634i
\(285\) 0 0
\(286\) 5.11263 + 1.86589i 0.302316 + 0.110332i
\(287\) −22.7111 −1.34060
\(288\) 0 0
\(289\) 26.8264 1.57803
\(290\) −1.78830 0.652653i −0.105013 0.0383251i
\(291\) 0 0
\(292\) −6.37806 + 0.546812i −0.373248 + 0.0319998i
\(293\) −3.47402 26.3878i −0.202954 1.54159i −0.725045 0.688701i \(-0.758181\pi\)
0.522091 0.852890i \(-0.325152\pi\)
\(294\) 0 0
\(295\) −0.351734 1.31269i −0.0204787 0.0764277i
\(296\) −2.09591 16.2481i −0.121823 0.944400i
\(297\) 0 0
\(298\) −1.24762 + 5.60454i −0.0722727 + 0.324662i
\(299\) −3.79807 + 2.91436i −0.219648 + 0.168542i
\(300\) 0 0
\(301\) −13.1094 + 17.0844i −0.755611 + 0.984731i
\(302\) −2.36880 + 26.8065i −0.136309 + 1.54254i
\(303\) 0 0
\(304\) 11.9338 + 18.8772i 0.684451 + 1.08268i
\(305\) −3.27866 −0.187736
\(306\) 0 0
\(307\) −5.20812 + 2.15728i −0.297243 + 0.123122i −0.526321 0.850286i \(-0.676429\pi\)
0.229078 + 0.973408i \(0.426429\pi\)
\(308\) −1.47482 6.70775i −0.0840354 0.382209i
\(309\) 0 0
\(310\) 1.08732 0.341790i 0.0617556 0.0194124i
\(311\) 19.6599 + 5.26787i 1.11481 + 0.298713i 0.768783 0.639510i \(-0.220863\pi\)
0.346030 + 0.938223i \(0.387529\pi\)
\(312\) 0 0
\(313\) −1.25379 + 0.335953i −0.0708686 + 0.0189892i −0.294079 0.955781i \(-0.595013\pi\)
0.223211 + 0.974770i \(0.428346\pi\)
\(314\) −24.5843 + 15.6318i −1.38737 + 0.882155i
\(315\) 0 0
\(316\) −28.8408 + 10.4403i −1.62242 + 0.587313i
\(317\) −23.3733 3.07716i −1.31278 0.172830i −0.558565 0.829461i \(-0.688648\pi\)
−0.754212 + 0.656631i \(0.771981\pi\)
\(318\) 0 0
\(319\) −5.01448 + 2.89511i −0.280757 + 0.162095i
\(320\) 1.95471 + 0.821666i 0.109272 + 0.0459325i
\(321\) 0 0
\(322\) 5.67514 + 2.07118i 0.316263 + 0.115422i
\(323\) 34.1484 14.1447i 1.90007 0.787035i
\(324\) 0 0
\(325\) −6.36799 + 15.3737i −0.353233 + 0.852779i
\(326\) −26.9213 + 1.15191i −1.49103 + 0.0637985i
\(327\) 0 0
\(328\) −5.46596 20.6146i −0.301807 1.13825i
\(329\) 2.07734 7.75273i 0.114527 0.427422i
\(330\) 0 0
\(331\) −22.0420 28.7257i −1.21154 1.57891i −0.684333 0.729170i \(-0.739906\pi\)
−0.527206 0.849738i \(-0.676760\pi\)
\(332\) 1.59425 + 1.74592i 0.0874960 + 0.0958197i
\(333\) 0 0
\(334\) −2.80203 1.96564i −0.153320 0.107555i
\(335\) 1.69060 + 0.976071i 0.0923676 + 0.0533285i
\(336\) 0 0
\(337\) −0.235650 + 0.136053i −0.0128367 + 0.00741126i −0.506405 0.862296i \(-0.669026\pi\)
0.493568 + 0.869707i \(0.335692\pi\)
\(338\) 2.26241 + 0.199922i 0.123059 + 0.0108743i
\(339\) 0 0
\(340\) 1.89071 2.95644i 0.102538 0.160336i
\(341\) 1.32667 3.20285i 0.0718429 0.173444i
\(342\) 0 0
\(343\) 10.4954 + 10.4954i 0.566697 + 0.566697i
\(344\) −18.6624 7.78742i −1.00621 0.419870i
\(345\) 0 0
\(346\) 26.7787 + 13.9698i 1.43963 + 0.751019i
\(347\) −20.9301 + 2.75551i −1.12359 + 0.147923i −0.669343 0.742953i \(-0.733424\pi\)
−0.454246 + 0.890877i \(0.650091\pi\)
\(348\) 0 0
\(349\) 3.12296 23.7212i 0.167168 1.26977i −0.677918 0.735137i \(-0.737118\pi\)
0.845086 0.534630i \(-0.179549\pi\)
\(350\) 20.6830 3.62839i 1.10555 0.193946i
\(351\) 0 0
\(352\) 5.73359 2.95305i 0.305601 0.157398i
\(353\) 11.5807 + 6.68611i 0.616378 + 0.355866i 0.775457 0.631400i \(-0.217519\pi\)
−0.159080 + 0.987266i \(0.550853\pi\)
\(354\) 0 0
\(355\) 0.750007 0.977429i 0.0398063 0.0518765i
\(356\) 21.2421 1.82116i 1.12583 0.0965212i
\(357\) 0 0
\(358\) −3.24529 + 0.138860i −0.171519 + 0.00733899i
\(359\) −9.45820 9.45820i −0.499185 0.499185i 0.411999 0.911184i \(-0.364831\pi\)
−0.911184 + 0.411999i \(0.864831\pi\)
\(360\) 0 0
\(361\) 8.60742 8.60742i 0.453022 0.453022i
\(362\) −10.8970 + 11.8712i −0.572734 + 0.623937i
\(363\) 0 0
\(364\) 9.35776 + 18.0528i 0.490480 + 0.946225i
\(365\) 0.673040 + 0.516442i 0.0352285 + 0.0270318i
\(366\) 0 0
\(367\) 17.9630 31.1128i 0.937661 1.62408i 0.167841 0.985814i \(-0.446320\pi\)
0.769819 0.638262i \(-0.220346\pi\)
\(368\) −0.514131 + 5.64973i −0.0268009 + 0.294512i
\(369\) 0 0
\(370\) −1.24684 + 1.77738i −0.0648203 + 0.0924015i
\(371\) 35.5870 + 4.68512i 1.84759 + 0.243239i
\(372\) 0 0
\(373\) −4.50258 34.2005i −0.233135 1.77083i −0.562663 0.826687i \(-0.690223\pi\)
0.329528 0.944146i \(-0.393110\pi\)
\(374\) −3.20086 10.1827i −0.165512 0.526537i
\(375\) 0 0
\(376\) 7.53702 + 0.0196978i 0.388692 + 0.00101584i
\(377\) 12.1220 12.1220i 0.624316 0.624316i
\(378\) 0 0
\(379\) −27.9266 11.5676i −1.43449 0.594187i −0.476038 0.879425i \(-0.657927\pi\)
−0.958457 + 0.285238i \(0.907927\pi\)
\(380\) 0.519018 2.91380i 0.0266251 0.149475i
\(381\) 0 0
\(382\) −8.71965 10.4101i −0.446136 0.532626i
\(383\) −13.9736 24.2030i −0.714017 1.23671i −0.963337 0.268293i \(-0.913541\pi\)
0.249320 0.968421i \(-0.419793\pi\)
\(384\) 0 0
\(385\) −0.455086 + 0.788232i −0.0231933 + 0.0401720i
\(386\) −37.1488 + 6.51696i −1.89082 + 0.331705i
\(387\) 0 0
\(388\) 0.668850 0.242122i 0.0339557 0.0122919i
\(389\) 18.0693 13.8651i 0.916151 0.702987i −0.0389586 0.999241i \(-0.512404\pi\)
0.955109 + 0.296254i \(0.0957374\pi\)
\(390\) 0 0
\(391\) 9.06922 + 2.43009i 0.458650 + 0.122895i
\(392\) 2.94372 5.06803i 0.148680 0.255974i
\(393\) 0 0
\(394\) 1.43345 1.56160i 0.0722161 0.0786723i
\(395\) 3.75541 + 1.55554i 0.188955 + 0.0782677i
\(396\) 0 0
\(397\) 4.54017 + 10.9609i 0.227864 + 0.550113i 0.995917 0.0902734i \(-0.0287741\pi\)
−0.768053 + 0.640387i \(0.778774\pi\)
\(398\) −5.41829 11.6460i −0.271594 0.583763i
\(399\) 0 0
\(400\) 8.27128 + 17.9004i 0.413564 + 0.895021i
\(401\) −11.6633 20.2014i −0.582437 1.00881i −0.995190 0.0979670i \(-0.968766\pi\)
0.412753 0.910843i \(-0.364567\pi\)
\(402\) 0 0
\(403\) −1.33972 + 10.1762i −0.0667363 + 0.506912i
\(404\) 16.6457 + 0.755828i 0.828156 + 0.0376039i
\(405\) 0 0
\(406\) −21.1164 4.70070i −1.04799 0.233292i
\(407\) 1.70915 + 6.37862i 0.0847193 + 0.316177i
\(408\) 0 0
\(409\) −0.194109 + 0.724424i −0.00959807 + 0.0358205i −0.970559 0.240864i \(-0.922569\pi\)
0.960961 + 0.276685i \(0.0892358\pi\)
\(410\) −1.30724 + 2.50585i −0.0645600 + 0.123755i
\(411\) 0 0
\(412\) 0.312139 + 0.447438i 0.0153780 + 0.0220437i
\(413\) −5.91000 14.2680i −0.290812 0.702083i
\(414\) 0 0
\(415\) 0.313326i 0.0153806i
\(416\) −14.1342 + 12.8388i −0.692984 + 0.629472i
\(417\) 0 0
\(418\) −5.78045 6.90107i −0.282731 0.337542i
\(419\) −0.850799 0.652841i −0.0415642 0.0318934i 0.587770 0.809028i \(-0.300006\pi\)
−0.629335 + 0.777134i \(0.716673\pi\)
\(420\) 0 0
\(421\) 11.9771 + 15.6089i 0.583729 + 0.760731i 0.988091 0.153868i \(-0.0491732\pi\)
−0.404362 + 0.914599i \(0.632507\pi\)
\(422\) 12.3750 7.86858i 0.602404 0.383036i
\(423\) 0 0
\(424\) 4.31222 + 33.4295i 0.209420 + 1.62348i
\(425\) 31.5237 8.44674i 1.52912 0.409727i
\(426\) 0 0
\(427\) −36.9398 + 4.86322i −1.78764 + 0.235348i
\(428\) 6.62271 + 12.7764i 0.320121 + 0.617571i
\(429\) 0 0
\(430\) 1.13046 + 2.42980i 0.0545156 + 0.117176i
\(431\) 1.14937i 0.0553631i 0.999617 + 0.0276815i \(0.00881243\pi\)
−0.999617 + 0.0276815i \(0.991188\pi\)
\(432\) 0 0
\(433\) 13.4381i 0.645792i −0.946434 0.322896i \(-0.895344\pi\)
0.946434 0.322896i \(-0.104656\pi\)
\(434\) 11.7436 5.46367i 0.563710 0.262265i
\(435\) 0 0
\(436\) 2.44221 7.69889i 0.116960 0.368710i
\(437\) 7.85080 1.03358i 0.375555 0.0494427i
\(438\) 0 0
\(439\) 18.5478 4.96986i 0.885237 0.237199i 0.212572 0.977145i \(-0.431816\pi\)
0.672665 + 0.739947i \(0.265149\pi\)
\(440\) −0.824995 0.223369i −0.0393301 0.0106487i
\(441\) 0 0
\(442\) 16.9568 + 26.6680i 0.806551 + 1.26847i
\(443\) −15.7477 20.5228i −0.748196 0.975068i −0.999973 0.00728264i \(-0.997682\pi\)
0.251778 0.967785i \(-0.418985\pi\)
\(444\) 0 0
\(445\) −2.24156 1.72001i −0.106260 0.0815363i
\(446\) 22.6591 18.9797i 1.07294 0.898713i
\(447\) 0 0
\(448\) 23.2420 + 6.35808i 1.09808 + 0.300391i
\(449\) 28.8086i 1.35956i −0.733414 0.679782i \(-0.762074\pi\)
0.733414 0.679782i \(-0.237926\pi\)
\(450\) 0 0
\(451\) 3.28978 + 7.94222i 0.154909 + 0.373985i
\(452\) 6.06782 34.0652i 0.285406 1.60229i
\(453\) 0 0
\(454\) −12.9874 6.77522i −0.609531 0.317977i
\(455\) 0.697453 2.60293i 0.0326971 0.122027i
\(456\) 0 0
\(457\) 2.55106 + 9.52070i 0.119334 + 0.445360i 0.999575 0.0291677i \(-0.00928569\pi\)
−0.880241 + 0.474527i \(0.842619\pi\)
\(458\) 2.44761 10.9951i 0.114369 0.513767i
\(459\) 0 0
\(460\) 0.555183 0.506955i 0.0258856 0.0236369i
\(461\) −2.43585 + 18.5021i −0.113449 + 0.861730i 0.836202 + 0.548421i \(0.184771\pi\)
−0.949651 + 0.313309i \(0.898562\pi\)
\(462\) 0 0
\(463\) −12.7222 22.0354i −0.591249 1.02407i −0.994065 0.108792i \(-0.965302\pi\)
0.402816 0.915281i \(-0.368032\pi\)
\(464\) −0.815392 20.2984i −0.0378536 0.942331i
\(465\) 0 0
\(466\) −2.19429 + 1.02089i −0.101649 + 0.0472918i
\(467\) −0.653601 1.57793i −0.0302451 0.0730181i 0.908035 0.418894i \(-0.137582\pi\)
−0.938280 + 0.345875i \(0.887582\pi\)
\(468\) 0 0
\(469\) 20.4954 + 8.48948i 0.946390 + 0.392008i
\(470\) −0.735835 0.675448i −0.0339415 0.0311561i
\(471\) 0 0
\(472\) 11.5285 8.79836i 0.530643 0.404977i
\(473\) 7.87347 + 2.10969i 0.362022 + 0.0970036i
\(474\) 0 0
\(475\) 21.8363 16.7556i 1.00192 0.768799i
\(476\) 16.9169 36.1140i 0.775384 1.65528i
\(477\) 0 0
\(478\) 4.41503 + 25.1671i 0.201939 + 1.15111i
\(479\) −3.28151 + 5.68375i −0.149936 + 0.259697i −0.931204 0.364499i \(-0.881240\pi\)
0.781267 + 0.624196i \(0.214574\pi\)
\(480\) 0 0
\(481\) −9.77571 16.9320i −0.445734 0.772034i
\(482\) −15.1982 + 12.7302i −0.692257 + 0.579846i
\(483\) 0 0
\(484\) 15.9112 11.0999i 0.723236 0.504540i
\(485\) −0.0870921 0.0360747i −0.00395465 0.00163807i
\(486\) 0 0
\(487\) −24.6314 + 24.6314i −1.11616 + 1.11616i −0.123856 + 0.992300i \(0.539526\pi\)
−0.992300 + 0.123856i \(0.960474\pi\)
\(488\) −13.3047 32.3594i −0.602276 1.46484i
\(489\) 0 0
\(490\) −0.740969 + 0.232917i −0.0334735 + 0.0105221i
\(491\) 3.63549 + 27.6143i 0.164067 + 1.24622i 0.853201 + 0.521582i \(0.174658\pi\)
−0.689134 + 0.724634i \(0.742009\pi\)
\(492\) 0 0
\(493\) −33.3341 4.38852i −1.50129 0.197649i
\(494\) 21.8192 + 15.3063i 0.981694 + 0.688665i
\(495\) 0 0
\(496\) 7.78567 + 9.34454i 0.349587 + 0.419582i
\(497\) 7.00032 12.1249i 0.314007 0.543877i
\(498\) 0 0
\(499\) 18.6348 + 14.2990i 0.834207 + 0.640110i 0.934941 0.354804i \(-0.115452\pi\)
−0.100734 + 0.994913i \(0.532119\pi\)
\(500\) 1.59158 5.01734i 0.0711775 0.224382i
\(501\) 0 0
\(502\) −27.7163 25.4417i −1.23704 1.13552i
\(503\) −20.8337 + 20.8337i −0.928930 + 0.928930i −0.997637 0.0687068i \(-0.978113\pi\)
0.0687068 + 0.997637i \(0.478113\pi\)
\(504\) 0 0
\(505\) −1.56146 1.56146i −0.0694840 0.0694840i
\(506\) −0.0977558 2.28465i −0.00434578 0.101565i
\(507\) 0 0
\(508\) 0.604797 0.718224i 0.0268335 0.0318661i
\(509\) 8.00983 10.4386i 0.355030 0.462684i −0.581360 0.813647i \(-0.697479\pi\)
0.936389 + 0.350963i \(0.114146\pi\)
\(510\) 0 0
\(511\) 8.34900 + 4.82030i 0.369338 + 0.213237i
\(512\) −0.177406 + 22.6267i −0.00784031 + 0.999969i
\(513\) 0 0
\(514\) 4.42520 + 25.2250i 0.195187 + 1.11263i
\(515\) 0.00943696 0.0716808i 0.000415842 0.00315863i
\(516\) 0 0
\(517\) −3.01209 + 0.396549i −0.132471 + 0.0174402i
\(518\) −11.4115 + 21.8747i −0.501392 + 0.961119i
\(519\) 0 0
\(520\) 2.53050 + 0.00661340i 0.110970 + 0.000290017i
\(521\) 11.1752 + 11.1752i 0.489592 + 0.489592i 0.908178 0.418585i \(-0.137474\pi\)
−0.418585 + 0.908178i \(0.637474\pi\)
\(522\) 0 0
\(523\) 4.41161 10.6506i 0.192906 0.465717i −0.797600 0.603187i \(-0.793897\pi\)
0.990506 + 0.137470i \(0.0438971\pi\)
\(524\) 3.95740 + 17.9990i 0.172880 + 0.786292i
\(525\) 0 0
\(526\) 1.77181 20.0507i 0.0772548 0.874254i
\(527\) 17.4332 10.0651i 0.759403 0.438441i
\(528\) 0 0
\(529\) −18.1766 10.4943i −0.790286 0.456272i
\(530\) 2.56531 3.65685i 0.111430 0.158844i
\(531\) 0 0
\(532\) 1.52562 33.5989i 0.0661438 1.45670i
\(533\) −15.4942 20.1924i −0.671128 0.874631i
\(534\) 0 0
\(535\) 0.493604 1.84215i 0.0213404 0.0796433i
\(536\) −2.77309 + 20.6466i −0.119779 + 0.891798i
\(537\) 0 0
\(538\) −0.610999 14.2796i −0.0263420 0.615639i
\(539\) −0.904073 + 2.18263i −0.0389412 + 0.0940123i
\(540\) 0 0
\(541\) −4.88193 + 2.02216i −0.209891 + 0.0869396i −0.485152 0.874430i \(-0.661236\pi\)
0.275261 + 0.961369i \(0.411236\pi\)
\(542\) −0.518275 + 1.42010i −0.0222618 + 0.0609985i
\(543\) 0 0
\(544\) 36.8516 + 6.66357i 1.58000 + 0.285698i
\(545\) −0.926988 + 0.535197i −0.0397078 + 0.0229253i
\(546\) 0 0
\(547\) −2.53143 0.333269i −0.108236 0.0142495i 0.0762136 0.997092i \(-0.475717\pi\)
−0.184450 + 0.982842i \(0.559050\pi\)
\(548\) −38.3627 17.9702i −1.63877 0.767651i
\(549\) 0 0
\(550\) −4.26486 6.70738i −0.181854 0.286004i
\(551\) −27.3895 + 7.33899i −1.16683 + 0.312651i
\(552\) 0 0
\(553\) 44.6185 + 11.9555i 1.89737 + 0.508399i
\(554\) 7.21103 + 22.9401i 0.306367 + 0.974632i
\(555\) 0 0
\(556\) −11.2104 7.16929i −0.475426 0.304046i
\(557\) −19.4433 + 8.05366i −0.823838 + 0.341245i −0.754460 0.656346i \(-0.772101\pi\)
−0.0693774 + 0.997590i \(0.522101\pi\)
\(558\) 0 0
\(559\) −24.1333 −1.02073
\(560\) −1.70637 2.69917i −0.0721071 0.114061i
\(561\) 0 0
\(562\) 24.2291 + 2.14104i 1.02204 + 0.0903144i
\(563\) −11.2281 + 14.6327i −0.473206 + 0.616694i −0.967583 0.252554i \(-0.918730\pi\)
0.494377 + 0.869248i \(0.335396\pi\)
\(564\) 0 0
\(565\) −3.63794 + 2.79149i −0.153049 + 0.117439i
\(566\) 8.94627 + 1.99152i 0.376040 + 0.0837098i
\(567\) 0 0
\(568\) 12.6904 + 3.43596i 0.532478 + 0.144170i
\(569\) −0.0592096 0.220973i −0.00248220 0.00926368i 0.964674 0.263448i \(-0.0848597\pi\)
−0.967156 + 0.254184i \(0.918193\pi\)
\(570\) 0 0
\(571\) 2.55267 + 19.3894i 0.106826 + 0.811422i 0.958046 + 0.286614i \(0.0925297\pi\)
−0.851220 + 0.524808i \(0.824137\pi\)
\(572\) 4.95768 5.88747i 0.207291 0.246168i
\(573\) 0 0
\(574\) −11.0114 + 30.1718i −0.459608 + 1.25935i
\(575\) 6.99170 0.291574
\(576\) 0 0
\(577\) 14.9051 0.620507 0.310254 0.950654i \(-0.399586\pi\)
0.310254 + 0.950654i \(0.399586\pi\)
\(578\) 13.0067 35.6390i 0.541008 1.48239i
\(579\) 0 0
\(580\) −1.73410 + 2.05933i −0.0720048 + 0.0855090i
\(581\) −0.464755 3.53016i −0.0192813 0.146456i
\(582\) 0 0
\(583\) −3.51647 13.1237i −0.145637 0.543526i
\(584\) −2.36594 + 8.73840i −0.0979034 + 0.361598i
\(585\) 0 0
\(586\) −36.7407 8.17879i −1.51774 0.337863i
\(587\) −21.3266 + 16.3645i −0.880243 + 0.675434i −0.946617 0.322360i \(-0.895524\pi\)
0.0663737 + 0.997795i \(0.478857\pi\)
\(588\) 0 0
\(589\) 10.3351 13.4689i 0.425849 0.554977i
\(590\) −1.91445 0.169173i −0.0788167 0.00696476i
\(591\) 0 0
\(592\) −22.6018 5.09340i −0.928929 0.209337i
\(593\) −11.8751 −0.487652 −0.243826 0.969819i \(-0.578403\pi\)
−0.243826 + 0.969819i \(0.578403\pi\)
\(594\) 0 0
\(595\) −4.88274 + 2.02250i −0.200173 + 0.0829143i
\(596\) 6.84075 + 4.37481i 0.280208 + 0.179199i
\(597\) 0 0
\(598\) 2.03026 + 6.45877i 0.0830234 + 0.264119i
\(599\) 40.3284 + 10.8060i 1.64777 + 0.441520i 0.958988 0.283445i \(-0.0914774\pi\)
0.688786 + 0.724965i \(0.258144\pi\)
\(600\) 0 0
\(601\) −8.99022 + 2.40892i −0.366719 + 0.0982620i −0.437472 0.899232i \(-0.644126\pi\)
0.0707537 + 0.997494i \(0.477460\pi\)
\(602\) 16.3407 + 25.6992i 0.665998 + 1.04742i
\(603\) 0 0
\(604\) 34.4641 + 16.1440i 1.40232 + 0.656891i
\(605\) −2.54902 0.335585i −0.103632 0.0136435i
\(606\) 0 0
\(607\) 35.1470 20.2921i 1.42657 0.823632i 0.429724 0.902960i \(-0.358611\pi\)
0.996849 + 0.0793280i \(0.0252774\pi\)
\(608\) 30.8645 6.70158i 1.25172 0.271785i
\(609\) 0 0
\(610\) −1.58965 + 4.35572i −0.0643630 + 0.176358i
\(611\) 8.31016 3.44218i 0.336193 0.139256i
\(612\) 0 0
\(613\) 11.7152 28.2829i 0.473171 1.14234i −0.489583 0.871957i \(-0.662851\pi\)
0.962754 0.270379i \(-0.0871489\pi\)
\(614\) 0.340806 + 7.96496i 0.0137538 + 0.321440i
\(615\) 0 0
\(616\) −9.62633 1.29293i −0.387856 0.0520938i
\(617\) 5.17000 19.2947i 0.208136 0.776776i −0.780334 0.625363i \(-0.784951\pi\)
0.988471 0.151413i \(-0.0483823\pi\)
\(618\) 0 0
\(619\) −6.37543 8.30863i −0.256250 0.333952i 0.647458 0.762101i \(-0.275832\pi\)
−0.903708 + 0.428150i \(0.859166\pi\)
\(620\) 0.0731150 1.61023i 0.00293637 0.0646682i
\(621\) 0 0
\(622\) 16.5304 23.5642i 0.662811 0.944839i
\(623\) −27.8064 16.0540i −1.11404 0.643191i
\(624\) 0 0
\(625\) 20.7423 11.9756i 0.829693 0.479023i
\(626\) −0.161583 + 1.82855i −0.00645816 + 0.0730837i
\(627\) 0 0
\(628\) 8.84732 + 40.2394i 0.353047 + 1.60572i
\(629\) −14.6740 + 35.4261i −0.585090 + 1.41253i
\(630\) 0 0
\(631\) 22.7060 + 22.7060i 0.903913 + 0.903913i 0.995772 0.0918593i \(-0.0292810\pi\)
−0.0918593 + 0.995772i \(0.529281\pi\)
\(632\) −0.113365 + 43.3770i −0.00450940 + 1.72545i
\(633\) 0 0
\(634\) −15.4205 + 29.5596i −0.612427 + 1.17396i
\(635\) −0.123369 + 0.0162418i −0.00489575 + 0.000644538i
\(636\) 0 0
\(637\) 0.912970 6.93470i 0.0361732 0.274763i
\(638\) 1.41491 + 8.06545i 0.0560169 + 0.319314i
\(639\) 0 0
\(640\) 2.03932 2.19846i 0.0806114 0.0869019i
\(641\) −27.5561 15.9095i −1.08840 0.628389i −0.155251 0.987875i \(-0.549619\pi\)
−0.933150 + 0.359486i \(0.882952\pi\)
\(642\) 0 0
\(643\) 21.8644 28.4942i 0.862247 1.12370i −0.128996 0.991645i \(-0.541175\pi\)
0.991242 0.132056i \(-0.0421580\pi\)
\(644\) 5.50314 6.53523i 0.216854 0.257524i
\(645\) 0 0
\(646\) −2.23459 52.2244i −0.0879186 2.05474i
\(647\) 24.1345 + 24.1345i 0.948824 + 0.948824i 0.998753 0.0499284i \(-0.0158993\pi\)
−0.0499284 + 0.998753i \(0.515899\pi\)
\(648\) 0 0
\(649\) −4.13353 + 4.13353i −0.162255 + 0.162255i
\(650\) 17.3365 + 15.9138i 0.679994 + 0.624190i
\(651\) 0 0
\(652\) −11.5224 + 36.3235i −0.451251 + 1.42254i
\(653\) 2.66142 + 2.04218i 0.104150 + 0.0799168i 0.659523 0.751684i \(-0.270758\pi\)
−0.555374 + 0.831601i \(0.687425\pi\)
\(654\) 0 0
\(655\) 1.22114 2.11508i 0.0477140 0.0826430i
\(656\) −30.0367 2.73337i −1.17274 0.106720i
\(657\) 0 0
\(658\) −9.29235 6.51864i −0.362253 0.254123i
\(659\) 31.3084 + 4.12183i 1.21960 + 0.160564i 0.712718 0.701451i \(-0.247464\pi\)
0.506884 + 0.862014i \(0.330797\pi\)
\(660\) 0 0
\(661\) 0.0570210 + 0.433117i 0.00221786 + 0.0168463i 0.992518 0.122098i \(-0.0389623\pi\)
−0.990300 + 0.138945i \(0.955629\pi\)
\(662\) −48.8492 + 15.3553i −1.89858 + 0.596802i
\(663\) 0 0
\(664\) 3.09243 1.27147i 0.120009 0.0493425i
\(665\) −3.15176 + 3.15176i −0.122220 + 0.122220i
\(666\) 0 0
\(667\) −6.65466 2.75645i −0.257670 0.106730i
\(668\) −3.96992 + 2.76947i −0.153601 + 0.107154i
\(669\) 0 0
\(670\) 2.11640 1.77273i 0.0817636 0.0684865i
\(671\) 7.05155 + 12.2136i 0.272222 + 0.471502i
\(672\) 0 0
\(673\) −4.03557 + 6.98981i −0.155560 + 0.269438i −0.933263 0.359194i \(-0.883051\pi\)
0.777703 + 0.628632i \(0.216385\pi\)
\(674\) 0.0664923 + 0.379027i 0.00256119 + 0.0145996i
\(675\) 0 0
\(676\) 1.36252 2.90870i 0.0524047 0.111873i
\(677\) −16.1027 + 12.3561i −0.618878 + 0.474882i −0.869985 0.493077i \(-0.835872\pi\)
0.251107 + 0.967959i \(0.419205\pi\)
\(678\) 0 0
\(679\) −1.03475 0.277261i −0.0397102 0.0106403i
\(680\) −3.01094 3.94524i −0.115464 0.151293i
\(681\) 0 0
\(682\) −3.61177 3.31537i −0.138302 0.126952i
\(683\) −2.59322 1.07415i −0.0992269 0.0411011i 0.332518 0.943097i \(-0.392102\pi\)
−0.431745 + 0.901996i \(0.642102\pi\)
\(684\) 0 0
\(685\) 2.14843 + 5.18677i 0.0820874 + 0.198176i
\(686\) 19.0318 8.85449i 0.726637 0.338066i
\(687\) 0 0
\(688\) −19.3940 + 21.0174i −0.739391 + 0.801280i
\(689\) 20.1130 + 34.8367i 0.766243 + 1.32717i
\(690\) 0 0
\(691\) −2.01546 + 15.3089i −0.0766717 + 0.582380i 0.909383 + 0.415959i \(0.136554\pi\)
−0.986055 + 0.166420i \(0.946779\pi\)
\(692\) 31.5425 28.8024i 1.19906 1.09490i
\(693\) 0 0
\(694\) −6.48722 + 29.1418i −0.246251 + 1.10621i
\(695\) 0.456421 + 1.70339i 0.0173130 + 0.0646132i
\(696\) 0 0
\(697\) −12.9196 + 48.2165i −0.489363 + 1.82633i
\(698\) −29.9996 15.6500i −1.13550 0.592362i
\(699\) 0 0
\(700\) 5.20775 29.2366i 0.196834 1.10504i
\(701\) 3.78858 + 9.14644i 0.143093 + 0.345456i 0.979136 0.203208i \(-0.0651366\pi\)
−0.836043 + 0.548664i \(0.815137\pi\)
\(702\) 0 0
\(703\) 32.3391i 1.21969i
\(704\) −1.14322 9.04887i −0.0430868 0.341042i
\(705\) 0 0
\(706\) 14.4974 12.1432i 0.545616 0.457017i
\(707\) −19.9087 15.2764i −0.748742 0.574530i
\(708\) 0 0
\(709\) 2.79341 + 3.64044i 0.104909 + 0.136720i 0.842857 0.538138i \(-0.180872\pi\)
−0.737948 + 0.674857i \(0.764205\pi\)
\(710\) −0.934879 1.47029i −0.0350854 0.0551790i
\(711\) 0 0
\(712\) 7.87977 29.1033i 0.295307 1.09069i
\(713\) 4.16563 1.11618i 0.156004 0.0418012i
\(714\) 0 0
\(715\) −1.01129 + 0.133139i −0.0378200 + 0.00497910i
\(716\) −1.38899 + 4.37871i −0.0519092 + 0.163640i
\(717\) 0 0
\(718\) −17.1510 + 7.97948i −0.640071 + 0.297792i
\(719\) 51.3863i 1.91639i 0.286124 + 0.958193i \(0.407633\pi\)
−0.286124 + 0.958193i \(0.592367\pi\)
\(720\) 0 0
\(721\) 0.821607i 0.0305983i
\(722\) −7.26171 15.6083i −0.270253 0.580880i
\(723\) 0 0
\(724\) 10.4876 + 20.2324i 0.389768 + 0.751933i
\(725\) −24.8225 + 3.26795i −0.921885 + 0.121368i
\(726\) 0 0
\(727\) −20.4427 + 5.47760i −0.758177 + 0.203153i −0.617142 0.786852i \(-0.711710\pi\)
−0.141035 + 0.990005i \(0.545043\pi\)
\(728\) 28.5203 3.67897i 1.05703 0.136352i
\(729\) 0 0
\(730\) 1.01242 0.643741i 0.0374712 0.0238259i
\(731\) 28.8134 + 37.5503i 1.06570 + 1.38885i
\(732\) 0 0
\(733\) 7.07162 + 5.42625i 0.261196 + 0.200423i 0.731055 0.682319i \(-0.239028\pi\)
−0.469858 + 0.882742i \(0.655695\pi\)
\(734\) −32.6242 38.9489i −1.20418 1.43763i
\(735\) 0 0
\(736\) 7.25641 + 3.42228i 0.267475 + 0.126147i
\(737\) 8.39710i 0.309311i
\(738\) 0 0
\(739\) 6.91091 + 16.6844i 0.254222 + 0.613746i 0.998536 0.0540833i \(-0.0172236\pi\)
−0.744315 + 0.667829i \(0.767224\pi\)
\(740\) 1.75673 + 2.51819i 0.0645786 + 0.0925706i
\(741\) 0 0
\(742\) 23.4785 45.0059i 0.861921 1.65222i
\(743\) −1.20425 + 4.49432i −0.0441796 + 0.164880i −0.984491 0.175434i \(-0.943867\pi\)
0.940312 + 0.340315i \(0.110534\pi\)
\(744\) 0 0
\(745\) −0.278515 1.03943i −0.0102040 0.0380819i
\(746\) −47.6185 10.6003i −1.74344 0.388105i
\(747\) 0 0
\(748\) −15.0797 0.684721i −0.551370 0.0250359i
\(749\) 2.82885 21.4872i 0.103364 0.785127i
\(750\) 0 0
\(751\) 12.6948 + 21.9881i 0.463241 + 0.802357i 0.999120 0.0419377i \(-0.0133531\pi\)
−0.535879 + 0.844295i \(0.680020\pi\)
\(752\) 3.68047 10.0034i 0.134213 0.364787i
\(753\) 0 0
\(754\) −10.2268 21.9815i −0.372440 0.800519i
\(755\) −1.93010 4.65967i −0.0702435 0.169583i
\(756\) 0 0
\(757\) −5.75348 2.38317i −0.209114 0.0866178i 0.275668 0.961253i \(-0.411101\pi\)
−0.484782 + 0.874635i \(0.661101\pi\)
\(758\) −28.9077 + 31.4921i −1.04998 + 1.14385i
\(759\) 0 0
\(760\) −3.61935 2.10227i −0.131288 0.0762572i
\(761\) 8.21213 + 2.20043i 0.297689 + 0.0797657i 0.404572 0.914506i \(-0.367420\pi\)
−0.106883 + 0.994272i \(0.534087\pi\)
\(762\) 0 0
\(763\) −9.65028 + 7.40492i −0.349363 + 0.268076i
\(764\) −18.0575 + 6.53680i −0.653299 + 0.236493i
\(765\) 0 0
\(766\) −38.9288 + 6.82924i −1.40655 + 0.246750i
\(767\) 8.65368 14.9886i 0.312466 0.541208i
\(768\) 0 0
\(769\) −6.57551 11.3891i −0.237119 0.410702i 0.722767 0.691091i \(-0.242870\pi\)
−0.959886 + 0.280389i \(0.909537\pi\)
\(770\) 0.826522 + 0.986756i 0.0297858 + 0.0355602i
\(771\) 0 0
\(772\) −9.35365 + 52.5120i −0.336645 + 1.88995i
\(773\) 29.2765 + 12.1267i 1.05300 + 0.436168i 0.840963 0.541093i \(-0.181989\pi\)
0.212040 + 0.977261i \(0.431989\pi\)
\(774\) 0 0
\(775\) 10.5996 10.5996i 0.380748 0.380748i
\(776\) 0.00262905 1.00596i 9.43775e−5 0.0361119i
\(777\) 0 0
\(778\) −9.65895 30.7276i −0.346290 1.10164i
\(779\) 5.49501 + 41.7388i 0.196879 + 1.49545i
\(780\) 0 0
\(781\) −5.25418 0.691726i −0.188009 0.0247519i
\(782\) 7.62557 10.8703i 0.272690 0.388720i
\(783\) 0 0
\(784\) −5.30565 6.36796i −0.189487 0.227427i
\(785\) 2.73003 4.72855i 0.0974390 0.168769i
\(786\) 0 0
\(787\) −4.75669 3.64994i −0.169558 0.130106i 0.520497 0.853864i \(-0.325747\pi\)
−0.690054 + 0.723757i \(0.742413\pi\)
\(788\) −1.37959 2.66148i −0.0491459 0.0948113i
\(789\) 0 0
\(790\) 3.88734 4.23487i 0.138305 0.150670i
\(791\) −36.8471 + 36.8471i −1.31013 + 1.31013i
\(792\) 0 0
\(793\) −29.5253 29.5253i −1.04847 1.04847i
\(794\) 16.7629 0.717255i 0.594894 0.0254544i
\(795\) 0 0
\(796\) −18.0988 + 1.55167i −0.641497 + 0.0549976i
\(797\) 25.3211 32.9991i 0.896919 1.16889i −0.0880434 0.996117i \(-0.528061\pi\)
0.984962 0.172771i \(-0.0552719\pi\)
\(798\) 0 0
\(799\) −15.2776 8.82052i −0.540482 0.312048i
\(800\) 27.7911 2.30947i 0.982563 0.0816522i
\(801\) 0 0
\(802\) −32.4926 + 5.70013i −1.14735 + 0.201279i
\(803\) 0.476310 3.61793i 0.0168086 0.127674i
\(804\) 0 0
\(805\) −1.12255 + 0.147787i −0.0395648 + 0.00520881i
\(806\) 12.8696 + 6.71372i 0.453311 + 0.236481i
\(807\) 0 0
\(808\) 9.07476 21.7475i 0.319249 0.765073i
\(809\) −27.0808 27.0808i −0.952111 0.952111i 0.0467934 0.998905i \(-0.485100\pi\)
−0.998905 + 0.0467934i \(0.985100\pi\)
\(810\) 0 0
\(811\) −20.6708 + 49.9036i −0.725848 + 1.75235i −0.0698911 + 0.997555i \(0.522265\pi\)
−0.655957 + 0.754798i \(0.727735\pi\)
\(812\) −16.4831 + 25.7741i −0.578444 + 0.904494i
\(813\) 0 0
\(814\) 9.30270 + 0.822048i 0.326060 + 0.0288128i
\(815\) 4.37355 2.52507i 0.153199 0.0884493i
\(816\) 0 0
\(817\) 34.5698 + 19.9589i 1.20944 + 0.698273i
\(818\) 0.868288 + 0.609109i 0.0303590 + 0.0212970i
\(819\) 0 0
\(820\) 2.69522 + 2.95163i 0.0941213 + 0.103075i
\(821\) −10.6012 13.8157i −0.369984 0.482172i 0.570843 0.821059i \(-0.306616\pi\)
−0.940827 + 0.338887i \(0.889950\pi\)
\(822\) 0 0
\(823\) −9.82579 + 36.6703i −0.342505 + 1.27825i 0.552994 + 0.833185i \(0.313485\pi\)
−0.895499 + 0.445063i \(0.853181\pi\)
\(824\) 0.745762 0.197739i 0.0259799 0.00688856i
\(825\) 0 0
\(826\) −21.8206 + 0.933661i −0.759234 + 0.0324862i
\(827\) 8.01205 19.3428i 0.278606 0.672615i −0.721191 0.692736i \(-0.756405\pi\)
0.999798 + 0.0201210i \(0.00640515\pi\)
\(828\) 0 0
\(829\) −19.1561 + 7.93471i −0.665318 + 0.275584i −0.689675 0.724119i \(-0.742246\pi\)
0.0243563 + 0.999703i \(0.492246\pi\)
\(830\) −0.416255 0.151915i −0.0144484 0.00527305i
\(831\) 0 0
\(832\) 10.2034 + 25.0021i 0.353741 + 0.866792i
\(833\) −11.8801 + 6.85897i −0.411621 + 0.237649i
\(834\) 0 0
\(835\) 0.635993 + 0.0837301i 0.0220094 + 0.00289760i
\(836\) −11.9707 + 4.33339i −0.414017 + 0.149873i
\(837\) 0 0
\(838\) −1.27981 + 0.813762i −0.0442103 + 0.0281109i
\(839\) −4.59959 + 1.23246i −0.158795 + 0.0425491i −0.337341 0.941383i \(-0.609527\pi\)
0.178546 + 0.983932i \(0.442861\pi\)
\(840\) 0 0
\(841\) −3.09755 0.829987i −0.106812 0.0286202i
\(842\) 26.5435 8.34373i 0.914751 0.287544i
\(843\) 0 0
\(844\) −4.45347 20.2553i −0.153295 0.697214i
\(845\) −0.393266 + 0.162896i −0.0135288 + 0.00560380i
\(846\) 0 0
\(847\) −29.2169 −1.00391
\(848\) 46.5019 + 10.4794i 1.59688 + 0.359863i
\(849\) 0 0
\(850\) 4.06263 45.9747i 0.139347 1.57692i
\(851\) −5.00087 + 6.51726i −0.171428 + 0.223409i
\(852\) 0 0
\(853\) 21.4402 16.4516i 0.734098 0.563293i −0.172642 0.984985i \(-0.555230\pi\)
0.906739 + 0.421692i \(0.138564\pi\)
\(854\) −11.4494 + 51.4326i −0.391789 + 1.75999i
\(855\) 0 0
\(856\) 20.1845 2.60369i 0.689893 0.0889925i
\(857\) 4.43416 + 16.5485i 0.151468 + 0.565286i 0.999382 + 0.0351522i \(0.0111916\pi\)
−0.847914 + 0.530134i \(0.822142\pi\)
\(858\) 0 0
\(859\) −2.95798 22.4681i −0.100925 0.766600i −0.964817 0.262923i \(-0.915313\pi\)
0.863892 0.503677i \(-0.168020\pi\)
\(860\) 3.77611 0.323738i 0.128764 0.0110394i
\(861\) 0 0
\(862\) 1.52694 + 0.557267i 0.0520078 + 0.0189806i
\(863\) 37.9392 1.29147 0.645733 0.763564i \(-0.276552\pi\)
0.645733 + 0.763564i \(0.276552\pi\)
\(864\) 0 0
\(865\) −5.66067 −0.192469
\(866\) −17.8525 6.51541i −0.606653 0.221402i
\(867\) 0 0
\(868\) −1.56467 18.2504i −0.0531084 0.619460i
\(869\) −2.28222 17.3352i −0.0774189 0.588055i
\(870\) 0 0
\(871\) 6.43458 + 24.0142i 0.218028 + 0.813690i
\(872\) −9.04391 6.97727i −0.306266 0.236280i
\(873\) 0 0
\(874\) 2.43333 10.9310i 0.0823085 0.369745i
\(875\) −6.28905 + 4.82576i −0.212609 + 0.163140i
\(876\) 0 0
\(877\) 8.94330 11.6551i 0.301994 0.393566i −0.617564 0.786521i \(-0.711880\pi\)
0.919558 + 0.392955i \(0.128547\pi\)
\(878\) 2.39035 27.0504i 0.0806705 0.912907i
\(879\) 0 0
\(880\) −0.696744 + 0.987710i −0.0234872 + 0.0332957i
\(881\) −39.5715 −1.33320 −0.666598 0.745417i \(-0.732250\pi\)
−0.666598 + 0.745417i \(0.732250\pi\)
\(882\) 0 0
\(883\) −7.71952 + 3.19753i −0.259782 + 0.107605i −0.508774 0.860900i \(-0.669901\pi\)
0.248991 + 0.968506i \(0.419901\pi\)
\(884\) 43.6500 9.59722i 1.46811 0.322790i
\(885\) 0 0
\(886\) −34.8999 + 10.9705i −1.17248 + 0.368560i
\(887\) −6.06787 1.62588i −0.203739 0.0545918i 0.155506 0.987835i \(-0.450299\pi\)
−0.359245 + 0.933243i \(0.616966\pi\)
\(888\) 0 0
\(889\) −1.36588 + 0.365985i −0.0458100 + 0.0122748i
\(890\) −3.37186 + 2.14398i −0.113025 + 0.0718664i
\(891\) 0 0
\(892\) −14.2283 39.3050i −0.476400 1.31603i
\(893\) −14.7507 1.94196i −0.493613 0.0649853i
\(894\) 0 0
\(895\) 0.527220 0.304391i 0.0176230 0.0101747i
\(896\) 19.7156 27.7945i 0.658651 0.928547i
\(897\) 0 0
\(898\) −38.2724 13.9678i −1.27717 0.466111i
\(899\) −14.2675 + 5.90977i −0.475846 + 0.197102i
\(900\) 0 0
\(901\) 30.1909 72.8872i 1.00580 2.42823i
\(902\) 12.1463 0.519718i 0.404428 0.0173047i
\(903\) 0 0
\(904\) −42.3138 24.5775i −1.40733 0.817436i
\(905\) 0.781660 2.91719i 0.0259832 0.0969708i
\(906\) 0 0
\(907\) 13.0875 + 17.0560i 0.434565 + 0.566336i 0.958380 0.285496i \(-0.0921584\pi\)
−0.523815 + 0.851832i \(0.675492\pi\)
\(908\) −15.2978 + 13.9689i −0.507676 + 0.463575i
\(909\) 0 0
\(910\) −3.11984 2.18859i −0.103422 0.0725511i
\(911\) −41.5522 23.9902i −1.37668 0.794829i −0.384926 0.922948i \(-0.625773\pi\)
−0.991759 + 0.128118i \(0.959106\pi\)
\(912\) 0 0
\(913\) −1.16720 + 0.673882i −0.0386286 + 0.0223022i
\(914\) 13.8852 + 1.22698i 0.459280 + 0.0405850i
\(915\) 0 0
\(916\) −13.4203 8.58260i −0.443420 0.283577i
\(917\) 10.6210 25.6414i 0.350736 0.846753i
\(918\) 0 0
\(919\) −19.6503 19.6503i −0.648203 0.648203i 0.304356 0.952558i \(-0.401559\pi\)
−0.952558 + 0.304356i \(0.901559\pi\)
\(920\) −0.404313 0.983359i −0.0133298 0.0324204i
\(921\) 0 0
\(922\) 23.3991 + 12.2067i 0.770609 + 0.402008i
\(923\) 15.5561 2.04799i 0.512034 0.0674106i
\(924\) 0 0
\(925\) −3.72703 + 28.3096i −0.122544 + 0.930814i
\(926\) −35.4425 + 6.21763i −1.16471 + 0.204324i
\(927\) 0 0
\(928\) −27.3619 8.75838i −0.898198 0.287508i
\(929\) −12.4296 7.17623i −0.407802 0.235445i 0.282043 0.959402i \(-0.408988\pi\)
−0.689845 + 0.723957i \(0.742321\pi\)
\(930\) 0 0
\(931\) −7.04296 + 9.17857i −0.230824 + 0.300815i
\(932\) 0.292360 + 3.41011i 0.00957655 + 0.111702i
\(933\) 0 0
\(934\) −2.41319 + 0.103256i −0.0789619 + 0.00337864i
\(935\) 1.41456 + 1.41456i 0.0462611 + 0.0462611i
\(936\) 0 0
\(937\) 18.7763 18.7763i 0.613394 0.613394i −0.330435 0.943829i \(-0.607195\pi\)
0.943829 + 0.330435i \(0.107195\pi\)
\(938\) 21.2154 23.1121i 0.692709 0.754638i
\(939\) 0 0
\(940\) −1.25410 + 0.650070i −0.0409043 + 0.0212030i
\(941\) 3.06173 + 2.34935i 0.0998096 + 0.0765866i 0.657461 0.753489i \(-0.271631\pi\)
−0.557651 + 0.830075i \(0.688297\pi\)
\(942\) 0 0
\(943\) −5.34702 + 9.26131i −0.174123 + 0.301590i
\(944\) −6.09910 19.5815i −0.198509 0.637325i
\(945\) 0 0
\(946\) 6.62016 9.43706i 0.215240 0.306825i
\(947\) −21.4607 2.82535i −0.697378 0.0918116i −0.226502 0.974011i \(-0.572729\pi\)
−0.470876 + 0.882199i \(0.656062\pi\)
\(948\) 0 0
\(949\) 1.41021 + 10.7116i 0.0457774 + 0.347714i
\(950\) −11.6726 37.1335i −0.378709 1.20477i
\(951\) 0 0
\(952\) −39.7755 39.9839i −1.28913 1.29589i
\(953\) −33.7540 + 33.7540i −1.09340 + 1.09340i −0.0982373 + 0.995163i \(0.531320\pi\)
−0.995163 + 0.0982373i \(0.968680\pi\)
\(954\) 0 0
\(955\) 2.35130 + 0.973941i 0.0760864 + 0.0315160i
\(956\) 35.5752 + 6.33679i 1.15058 + 0.204946i
\(957\) 0 0
\(958\) 5.95985 + 7.11526i 0.192554 + 0.229883i
\(959\) 31.8993 + 55.2513i 1.03008 + 1.78416i
\(960\) 0 0
\(961\) −10.8770 + 18.8395i −0.350870 + 0.607724i
\(962\) −27.2340 + 4.77763i −0.878059 + 0.154037i
\(963\) 0 0
\(964\) 9.54337 + 26.3630i 0.307371 + 0.849096i
\(965\) 5.60794 4.30312i 0.180526 0.138522i
\(966\) 0 0
\(967\) −50.2128 13.4545i −1.61474 0.432667i −0.665286 0.746588i \(-0.731691\pi\)
−0.949449 + 0.313921i \(0.898357\pi\)
\(968\) −7.03173 26.5198i −0.226008 0.852380i
\(969\) 0 0
\(970\) −0.0901518 + 0.0982115i −0.00289460 + 0.00315338i
\(971\) 22.5790 + 9.35251i 0.724593 + 0.300136i 0.714328 0.699811i \(-0.246732\pi\)
0.0102652 + 0.999947i \(0.496732\pi\)
\(972\) 0 0
\(973\) 7.66900 + 18.5146i 0.245857 + 0.593551i
\(974\) 20.7805 + 44.6654i 0.665849 + 1.43117i
\(975\) 0 0
\(976\) −49.4403 + 1.98603i −1.58255 + 0.0635712i
\(977\) −18.3789 31.8332i −0.587994 1.01844i −0.994495 0.104785i \(-0.966584\pi\)
0.406501 0.913650i \(-0.366749\pi\)
\(978\) 0 0
\(979\) −1.58635 + 12.0495i −0.0507000 + 0.385105i
\(980\) −0.0498252 + 1.09731i −0.00159161 + 0.0350522i
\(981\) 0 0
\(982\) 38.4484 + 8.55895i 1.22694 + 0.273127i
\(983\) −9.93099 37.0629i −0.316749 1.18212i −0.922350 0.386356i \(-0.873734\pi\)
0.605601 0.795769i \(-0.292933\pi\)
\(984\) 0 0
\(985\) −0.102824 + 0.383743i −0.00327623 + 0.0122271i
\(986\) −21.9921 + 42.1568i −0.700372 + 1.34254i
\(987\) 0 0
\(988\) 30.9135 21.5657i 0.983491 0.686097i
\(989\) 3.88040 + 9.36813i 0.123390 + 0.297889i
\(990\) 0 0
\(991\) 7.63952i 0.242677i −0.992611 0.121339i \(-0.961281\pi\)
0.992611 0.121339i \(-0.0387187\pi\)
\(992\) 16.1891 5.81263i 0.514005 0.184551i
\(993\) 0 0
\(994\) −12.7139 15.1787i −0.403261 0.481439i
\(995\) 1.90987 + 1.46549i 0.0605468 + 0.0464592i
\(996\) 0 0
\(997\) 32.1606 + 41.9125i 1.01854 + 1.32738i 0.943922 + 0.330169i \(0.107106\pi\)
0.0746143 + 0.997212i \(0.476227\pi\)
\(998\) 28.0312 17.8236i 0.887314 0.564195i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.683.28 368
3.2 odd 2 288.2.bf.a.11.19 368
9.4 even 3 288.2.bf.a.203.35 yes 368
9.5 odd 6 inner 864.2.bn.a.395.12 368
32.3 odd 8 inner 864.2.bn.a.35.12 368
96.35 even 8 288.2.bf.a.227.35 yes 368
288.67 odd 24 288.2.bf.a.131.19 yes 368
288.131 even 24 inner 864.2.bn.a.611.28 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.19 368 3.2 odd 2
288.2.bf.a.131.19 yes 368 288.67 odd 24
288.2.bf.a.203.35 yes 368 9.4 even 3
288.2.bf.a.227.35 yes 368 96.35 even 8
864.2.bn.a.35.12 368 32.3 odd 8 inner
864.2.bn.a.395.12 368 9.5 odd 6 inner
864.2.bn.a.611.28 368 288.131 even 24 inner
864.2.bn.a.683.28 368 1.1 even 1 trivial