Properties

Label 864.2.bn.a.35.12
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.12
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.908095 + 1.08414i) q^{2} +(-0.350728 - 1.96901i) q^{4} +(-0.210277 - 0.161351i) q^{5} +(-2.90937 + 0.779563i) q^{7} +(2.45318 + 1.40781i) q^{8} +(0.365879 - 0.0814479i) q^{10} +(-0.148813 + 1.13035i) q^{11} +(3.34662 - 0.440591i) q^{13} +(1.79683 - 3.86209i) q^{14} +(-3.75398 + 1.38117i) q^{16} -6.62015 q^{17} +(5.15825 + 2.13662i) q^{19} +(-0.243952 + 0.470627i) q^{20} +(-1.09032 - 1.18780i) q^{22} +(0.367075 - 1.36994i) q^{23} +(-1.27591 - 4.76177i) q^{25} +(-2.56139 + 4.02831i) q^{26} +(2.55536 + 5.45516i) q^{28} +(-3.09172 - 4.02920i) q^{29} +(-2.63335 + 1.52037i) q^{31} +(1.91159 - 5.32408i) q^{32} +(6.01173 - 7.17719i) q^{34} +(0.737557 + 0.305506i) q^{35} +(-2.21656 - 5.35125i) q^{37} +(-7.00058 + 3.65203i) q^{38} +(-0.288696 - 0.691853i) q^{40} +(-7.28329 - 1.95155i) q^{41} +(-7.08839 - 0.933204i) q^{43} +(2.27785 - 0.103430i) q^{44} +(1.15187 + 1.64200i) q^{46} +(-2.30774 - 1.33237i) q^{47} +(1.79453 - 1.03607i) q^{49} +(6.32109 + 2.94087i) q^{50} +(-2.04128 - 6.43500i) q^{52} +(-4.56045 - 11.0099i) q^{53} +(0.213675 - 0.213675i) q^{55} +(-8.23467 - 2.18342i) q^{56} +(7.17580 + 0.307039i) q^{58} +(-3.12133 + 4.06780i) q^{59} +(-9.81382 + 7.53041i) q^{61} +(0.743041 - 4.23557i) q^{62} +(4.03616 + 6.90720i) q^{64} +(-0.774808 - 0.447335i) q^{65} +(-7.30222 + 0.961355i) q^{67} +(2.32187 + 13.0351i) q^{68} +(-1.00098 + 0.522188i) q^{70} +(3.28684 - 3.28684i) q^{71} +(2.26326 + 2.26326i) q^{73} +(7.81437 + 2.45638i) q^{74} +(2.39788 - 10.9060i) q^{76} +(-0.448225 - 3.40460i) q^{77} +(7.66807 - 13.2815i) q^{79} +(1.01223 + 0.315281i) q^{80} +(8.72967 - 6.12392i) q^{82} +(-0.719644 - 0.937859i) q^{83} +(1.39207 + 1.06817i) q^{85} +(7.44866 - 6.83738i) q^{86} +(-1.95637 + 2.56344i) q^{88} +(7.53778 + 7.53778i) q^{89} +(-9.39309 + 3.89075i) q^{91} +(-2.82617 - 0.242297i) q^{92} +(3.54013 - 1.29199i) q^{94} +(-0.739916 - 1.28157i) q^{95} +(-0.177831 + 0.308013i) q^{97} +(-0.506355 + 2.88638i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.908095 + 1.08414i −0.642120 + 0.766604i
\(3\) 0 0
\(4\) −0.350728 1.96901i −0.175364 0.984504i
\(5\) −0.210277 0.161351i −0.0940388 0.0721585i 0.560672 0.828038i \(-0.310543\pi\)
−0.654711 + 0.755880i \(0.727210\pi\)
\(6\) 0 0
\(7\) −2.90937 + 0.779563i −1.09964 + 0.294647i −0.762617 0.646850i \(-0.776086\pi\)
−0.337021 + 0.941497i \(0.609419\pi\)
\(8\) 2.45318 + 1.40781i 0.867329 + 0.497735i
\(9\) 0 0
\(10\) 0.365879 0.0814479i 0.115701 0.0257561i
\(11\) −0.148813 + 1.13035i −0.0448688 + 0.340812i 0.954256 + 0.298990i \(0.0966497\pi\)
−0.999125 + 0.0418224i \(0.986684\pi\)
\(12\) 0 0
\(13\) 3.34662 0.440591i 0.928186 0.122198i 0.348750 0.937216i \(-0.386606\pi\)
0.579436 + 0.815018i \(0.303273\pi\)
\(14\) 1.79683 3.86209i 0.480222 1.03219i
\(15\) 0 0
\(16\) −3.75398 + 1.38117i −0.938495 + 0.345293i
\(17\) −6.62015 −1.60562 −0.802812 0.596233i \(-0.796664\pi\)
−0.802812 + 0.596233i \(0.796664\pi\)
\(18\) 0 0
\(19\) 5.15825 + 2.13662i 1.18338 + 0.490174i 0.885595 0.464458i \(-0.153751\pi\)
0.297789 + 0.954632i \(0.403751\pi\)
\(20\) −0.243952 + 0.470627i −0.0545493 + 0.105236i
\(21\) 0 0
\(22\) −1.09032 1.18780i −0.232457 0.253239i
\(23\) 0.367075 1.36994i 0.0765404 0.285653i −0.917038 0.398800i \(-0.869427\pi\)
0.993578 + 0.113148i \(0.0360933\pi\)
\(24\) 0 0
\(25\) −1.27591 4.76177i −0.255183 0.952354i
\(26\) −2.56139 + 4.02831i −0.502329 + 0.790017i
\(27\) 0 0
\(28\) 2.55536 + 5.45516i 0.482918 + 1.03093i
\(29\) −3.09172 4.02920i −0.574117 0.748204i 0.412554 0.910933i \(-0.364637\pi\)
−0.986671 + 0.162729i \(0.947970\pi\)
\(30\) 0 0
\(31\) −2.63335 + 1.52037i −0.472964 + 0.273066i −0.717480 0.696579i \(-0.754704\pi\)
0.244515 + 0.969645i \(0.421371\pi\)
\(32\) 1.91159 5.32408i 0.337924 0.941173i
\(33\) 0 0
\(34\) 6.01173 7.17719i 1.03100 1.23088i
\(35\) 0.737557 + 0.305506i 0.124670 + 0.0516400i
\(36\) 0 0
\(37\) −2.21656 5.35125i −0.364401 0.879741i −0.994646 0.103344i \(-0.967046\pi\)
0.630245 0.776396i \(-0.282954\pi\)
\(38\) −7.00058 + 3.65203i −1.13564 + 0.592437i
\(39\) 0 0
\(40\) −0.288696 0.691853i −0.0456468 0.109392i
\(41\) −7.28329 1.95155i −1.13746 0.304781i −0.359530 0.933134i \(-0.617063\pi\)
−0.777929 + 0.628353i \(0.783729\pi\)
\(42\) 0 0
\(43\) −7.08839 0.933204i −1.08097 0.142312i −0.431060 0.902323i \(-0.641860\pi\)
−0.649910 + 0.760011i \(0.725193\pi\)
\(44\) 2.27785 0.103430i 0.343399 0.0155926i
\(45\) 0 0
\(46\) 1.15187 + 1.64200i 0.169834 + 0.242099i
\(47\) −2.30774 1.33237i −0.336618 0.194347i 0.322157 0.946686i \(-0.395592\pi\)
−0.658776 + 0.752339i \(0.728925\pi\)
\(48\) 0 0
\(49\) 1.79453 1.03607i 0.256362 0.148011i
\(50\) 6.32109 + 2.94087i 0.893937 + 0.415902i
\(51\) 0 0
\(52\) −2.04128 6.43500i −0.283075 0.892373i
\(53\) −4.56045 11.0099i −0.626426 1.51233i −0.844034 0.536290i \(-0.819826\pi\)
0.217608 0.976036i \(-0.430174\pi\)
\(54\) 0 0
\(55\) 0.213675 0.213675i 0.0288119 0.0288119i
\(56\) −8.23467 2.18342i −1.10040 0.291772i
\(57\) 0 0
\(58\) 7.17580 + 0.307039i 0.942228 + 0.0403162i
\(59\) −3.12133 + 4.06780i −0.406363 + 0.529582i −0.951042 0.309062i \(-0.899985\pi\)
0.544679 + 0.838645i \(0.316652\pi\)
\(60\) 0 0
\(61\) −9.81382 + 7.53041i −1.25653 + 0.964170i −0.999997 0.00236571i \(-0.999247\pi\)
−0.256533 + 0.966535i \(0.582580\pi\)
\(62\) 0.743041 4.23557i 0.0943663 0.537918i
\(63\) 0 0
\(64\) 4.03616 + 6.90720i 0.504520 + 0.863400i
\(65\) −0.774808 0.447335i −0.0961031 0.0554851i
\(66\) 0 0
\(67\) −7.30222 + 0.961355i −0.892108 + 0.117448i −0.562624 0.826713i \(-0.690208\pi\)
−0.329484 + 0.944161i \(0.606875\pi\)
\(68\) 2.32187 + 13.0351i 0.281568 + 1.58074i
\(69\) 0 0
\(70\) −1.00098 + 0.522188i −0.119640 + 0.0624134i
\(71\) 3.28684 3.28684i 0.390076 0.390076i −0.484639 0.874714i \(-0.661049\pi\)
0.874714 + 0.484639i \(0.161049\pi\)
\(72\) 0 0
\(73\) 2.26326 + 2.26326i 0.264894 + 0.264894i 0.827039 0.562145i \(-0.190024\pi\)
−0.562145 + 0.827039i \(0.690024\pi\)
\(74\) 7.81437 + 2.45638i 0.908402 + 0.285548i
\(75\) 0 0
\(76\) 2.39788 10.9060i 0.275055 1.25101i
\(77\) −0.448225 3.40460i −0.0510799 0.387991i
\(78\) 0 0
\(79\) 7.66807 13.2815i 0.862726 1.49428i −0.00656230 0.999978i \(-0.502089\pi\)
0.869288 0.494306i \(-0.164578\pi\)
\(80\) 1.01223 + 0.315281i 0.113171 + 0.0352495i
\(81\) 0 0
\(82\) 8.72967 6.12392i 0.964031 0.676274i
\(83\) −0.719644 0.937859i −0.0789912 0.102943i 0.752186 0.658951i \(-0.228999\pi\)
−0.831177 + 0.556007i \(0.812333\pi\)
\(84\) 0 0
\(85\) 1.39207 + 1.06817i 0.150991 + 0.115859i
\(86\) 7.44866 6.83738i 0.803209 0.737294i
\(87\) 0 0
\(88\) −1.95637 + 2.56344i −0.208550 + 0.273264i
\(89\) 7.53778 + 7.53778i 0.799003 + 0.799003i 0.982938 0.183935i \(-0.0588836\pi\)
−0.183935 + 0.982938i \(0.558884\pi\)
\(90\) 0 0
\(91\) −9.39309 + 3.89075i −0.984663 + 0.407861i
\(92\) −2.82617 0.242297i −0.294648 0.0252612i
\(93\) 0 0
\(94\) 3.54013 1.29199i 0.365136 0.133259i
\(95\) −0.739916 1.28157i −0.0759138 0.131487i
\(96\) 0 0
\(97\) −0.177831 + 0.308013i −0.0180560 + 0.0312740i −0.874912 0.484282i \(-0.839081\pi\)
0.856856 + 0.515555i \(0.172414\pi\)
\(98\) −0.506355 + 2.88638i −0.0511496 + 0.291569i
\(99\) 0 0
\(100\) −8.92847 + 4.18237i −0.892847 + 0.418237i
\(101\) 1.08747 8.26017i 0.108207 0.821917i −0.848158 0.529744i \(-0.822288\pi\)
0.956365 0.292174i \(-0.0943785\pi\)
\(102\) 0 0
\(103\) 0.0706001 0.263483i 0.00695644 0.0259618i −0.962360 0.271777i \(-0.912389\pi\)
0.969317 + 0.245815i \(0.0790555\pi\)
\(104\) 8.83012 + 3.63055i 0.865865 + 0.356005i
\(105\) 0 0
\(106\) 16.0776 + 5.05386i 1.56160 + 0.490874i
\(107\) 6.64771 2.75357i 0.642659 0.266198i −0.0374621 0.999298i \(-0.511927\pi\)
0.680121 + 0.733100i \(0.261927\pi\)
\(108\) 0 0
\(109\) 1.54546 3.73107i 0.148028 0.357372i −0.832421 0.554144i \(-0.813046\pi\)
0.980449 + 0.196772i \(0.0630459\pi\)
\(110\) 0.0376168 + 0.425691i 0.00358662 + 0.0405880i
\(111\) 0 0
\(112\) 9.84501 6.94480i 0.930266 0.656222i
\(113\) −8.65034 14.9828i −0.813756 1.40947i −0.910218 0.414129i \(-0.864086\pi\)
0.0964624 0.995337i \(-0.469247\pi\)
\(114\) 0 0
\(115\) −0.298229 + 0.228839i −0.0278100 + 0.0213394i
\(116\) −6.84918 + 7.50076i −0.635930 + 0.696428i
\(117\) 0 0
\(118\) −1.57561 7.07792i −0.145046 0.651575i
\(119\) 19.2605 5.16083i 1.76560 0.473092i
\(120\) 0 0
\(121\) 9.36965 + 2.51059i 0.851786 + 0.228235i
\(122\) 0.747847 17.4779i 0.0677069 1.58237i
\(123\) 0 0
\(124\) 3.91721 + 4.65186i 0.351775 + 0.417749i
\(125\) −1.00717 + 2.43153i −0.0900841 + 0.217482i
\(126\) 0 0
\(127\) 0.469475i 0.0416592i −0.999783 0.0208296i \(-0.993369\pi\)
0.999783 0.0208296i \(-0.00663074\pi\)
\(128\) −11.1536 1.89662i −0.985848 0.167640i
\(129\) 0 0
\(130\) 1.18857 0.433779i 0.104245 0.0380449i
\(131\) 1.20273 + 9.13565i 0.105083 + 0.798185i 0.960114 + 0.279608i \(0.0902047\pi\)
−0.855031 + 0.518577i \(0.826462\pi\)
\(132\) 0 0
\(133\) −16.6729 2.19503i −1.44572 0.190333i
\(134\) 5.58886 8.78964i 0.482804 0.759309i
\(135\) 0 0
\(136\) −16.2404 9.31990i −1.39260 0.799175i
\(137\) 5.48217 + 20.4598i 0.468374 + 1.74799i 0.645455 + 0.763798i \(0.276668\pi\)
−0.177081 + 0.984196i \(0.556665\pi\)
\(138\) 0 0
\(139\) −4.05034 + 5.27850i −0.343545 + 0.447717i −0.932888 0.360166i \(-0.882720\pi\)
0.589343 + 0.807883i \(0.299387\pi\)
\(140\) 0.342862 1.55941i 0.0289772 0.131794i
\(141\) 0 0
\(142\) 0.578638 + 6.54816i 0.0485582 + 0.549509i
\(143\) 3.84841i 0.321820i
\(144\) 0 0
\(145\) 1.34610i 0.111788i
\(146\) −4.50894 + 0.398440i −0.373163 + 0.0329751i
\(147\) 0 0
\(148\) −9.75925 + 6.24126i −0.802205 + 0.513028i
\(149\) −2.47158 + 3.22103i −0.202480 + 0.263877i −0.883545 0.468346i \(-0.844850\pi\)
0.681066 + 0.732222i \(0.261517\pi\)
\(150\) 0 0
\(151\) 4.92505 + 18.3805i 0.400795 + 1.49579i 0.811681 + 0.584101i \(0.198553\pi\)
−0.410886 + 0.911687i \(0.634781\pi\)
\(152\) 9.64617 + 12.5033i 0.782407 + 1.01415i
\(153\) 0 0
\(154\) 4.09811 + 2.60576i 0.330235 + 0.209979i
\(155\) 0.799047 + 0.105197i 0.0641810 + 0.00844959i
\(156\) 0 0
\(157\) −2.68887 20.4240i −0.214595 1.63001i −0.671857 0.740681i \(-0.734503\pi\)
0.457262 0.889332i \(-0.348830\pi\)
\(158\) 7.43568 + 20.3741i 0.591551 + 1.62088i
\(159\) 0 0
\(160\) −1.26101 + 0.811095i −0.0996916 + 0.0641227i
\(161\) 4.27182i 0.336667i
\(162\) 0 0
\(163\) −7.29151 + 17.6033i −0.571115 + 1.37879i 0.329492 + 0.944159i \(0.393123\pi\)
−0.900607 + 0.434635i \(0.856877\pi\)
\(164\) −1.28817 + 15.0253i −0.100589 + 1.17328i
\(165\) 0 0
\(166\) 1.67028 + 0.0714681i 0.129639 + 0.00554700i
\(167\) 2.33777 + 0.626404i 0.180902 + 0.0484726i 0.348133 0.937445i \(-0.386816\pi\)
−0.167231 + 0.985918i \(0.553482\pi\)
\(168\) 0 0
\(169\) −1.55128 + 0.415664i −0.119329 + 0.0319742i
\(170\) −2.42218 + 0.539198i −0.185772 + 0.0413546i
\(171\) 0 0
\(172\) 0.648607 + 14.2844i 0.0494559 + 1.08917i
\(173\) 16.9437 13.0014i 1.28821 0.988477i 0.288691 0.957422i \(-0.406780\pi\)
0.999518 0.0310548i \(-0.00988664\pi\)
\(174\) 0 0
\(175\) 7.42420 + 12.8591i 0.561217 + 0.972057i
\(176\) −1.00256 4.44883i −0.0755708 0.335344i
\(177\) 0 0
\(178\) −15.0170 + 1.32700i −1.12558 + 0.0994632i
\(179\) 0.878974 2.12203i 0.0656976 0.158608i −0.887621 0.460575i \(-0.847643\pi\)
0.953318 + 0.301967i \(0.0976432\pi\)
\(180\) 0 0
\(181\) −10.5272 + 4.36050i −0.782478 + 0.324113i −0.737915 0.674893i \(-0.764190\pi\)
−0.0445631 + 0.999007i \(0.514190\pi\)
\(182\) 4.31170 13.7166i 0.319604 1.01674i
\(183\) 0 0
\(184\) 2.82911 2.84394i 0.208565 0.209658i
\(185\) −0.397340 + 1.48289i −0.0292130 + 0.109024i
\(186\) 0 0
\(187\) 0.985165 7.48307i 0.0720424 0.547216i
\(188\) −1.81407 + 5.01126i −0.132304 + 0.365483i
\(189\) 0 0
\(190\) 2.06132 + 0.361615i 0.149544 + 0.0262343i
\(191\) −4.80107 + 8.31569i −0.347393 + 0.601703i −0.985786 0.168009i \(-0.946266\pi\)
0.638392 + 0.769711i \(0.279600\pi\)
\(192\) 0 0
\(193\) −13.3346 23.0963i −0.959848 1.66251i −0.722861 0.690993i \(-0.757173\pi\)
−0.236987 0.971513i \(-0.576160\pi\)
\(194\) −0.172442 0.472499i −0.0123806 0.0339235i
\(195\) 0 0
\(196\) −2.66943 3.17007i −0.190674 0.226434i
\(197\) −1.38480 + 0.573602i −0.0986628 + 0.0408675i −0.431469 0.902128i \(-0.642005\pi\)
0.332806 + 0.942995i \(0.392005\pi\)
\(198\) 0 0
\(199\) 6.42238 + 6.42238i 0.455271 + 0.455271i 0.897099 0.441829i \(-0.145670\pi\)
−0.441829 + 0.897099i \(0.645670\pi\)
\(200\) 3.57362 13.4777i 0.252693 0.953018i
\(201\) 0 0
\(202\) 7.96767 + 8.67999i 0.560603 + 0.610722i
\(203\) 12.1360 + 9.31225i 0.851777 + 0.653592i
\(204\) 0 0
\(205\) 1.21662 + 1.58553i 0.0849726 + 0.110738i
\(206\) 0.221542 + 0.315808i 0.0154355 + 0.0220034i
\(207\) 0 0
\(208\) −11.9546 + 6.27622i −0.828904 + 0.435178i
\(209\) −3.18273 + 5.51266i −0.220154 + 0.381319i
\(210\) 0 0
\(211\) 1.35350 + 10.2808i 0.0931785 + 0.707761i 0.972727 + 0.231952i \(0.0745112\pi\)
−0.879549 + 0.475809i \(0.842155\pi\)
\(212\) −20.0791 + 12.8410i −1.37904 + 0.881926i
\(213\) 0 0
\(214\) −3.05149 + 9.70757i −0.208596 + 0.663596i
\(215\) 1.33995 + 1.33995i 0.0913840 + 0.0913840i
\(216\) 0 0
\(217\) 6.47618 6.47618i 0.439632 0.439632i
\(218\) 2.64159 + 5.06366i 0.178911 + 0.342955i
\(219\) 0 0
\(220\) −0.495669 0.345786i −0.0334180 0.0233129i
\(221\) −22.1552 + 2.91678i −1.49032 + 0.196204i
\(222\) 0 0
\(223\) −18.1004 10.4503i −1.21209 0.699802i −0.248878 0.968535i \(-0.580062\pi\)
−0.963215 + 0.268733i \(0.913395\pi\)
\(224\) −1.41105 + 16.9799i −0.0942799 + 1.13452i
\(225\) 0 0
\(226\) 24.0988 + 4.22763i 1.60303 + 0.281218i
\(227\) −8.21757 + 6.30556i −0.545419 + 0.418515i −0.844375 0.535752i \(-0.820028\pi\)
0.298956 + 0.954267i \(0.403362\pi\)
\(228\) 0 0
\(229\) −4.84880 + 6.31907i −0.320418 + 0.417576i −0.925596 0.378514i \(-0.876435\pi\)
0.605178 + 0.796090i \(0.293102\pi\)
\(230\) 0.0227261 0.531131i 0.00149851 0.0350217i
\(231\) 0 0
\(232\) −1.91219 14.2369i −0.125541 0.934697i
\(233\) 1.21008 1.21008i 0.0792748 0.0792748i −0.666358 0.745632i \(-0.732148\pi\)
0.745632 + 0.666358i \(0.232148\pi\)
\(234\) 0 0
\(235\) 0.270284 + 0.652524i 0.0176314 + 0.0425660i
\(236\) 9.10426 + 4.71924i 0.592637 + 0.307196i
\(237\) 0 0
\(238\) −11.8953 + 25.5676i −0.771056 + 1.65730i
\(239\) −15.6470 + 9.03378i −1.01212 + 0.584347i −0.911811 0.410610i \(-0.865316\pi\)
−0.100307 + 0.994957i \(0.531983\pi\)
\(240\) 0 0
\(241\) 12.1405 + 7.00930i 0.782036 + 0.451509i 0.837151 0.546971i \(-0.184219\pi\)
−0.0551154 + 0.998480i \(0.517553\pi\)
\(242\) −11.2304 + 7.87817i −0.721915 + 0.506428i
\(243\) 0 0
\(244\) 18.2694 + 16.6824i 1.16958 + 1.06798i
\(245\) −0.544521 0.0716876i −0.0347882 0.00457995i
\(246\) 0 0
\(247\) 18.2041 + 4.87777i 1.15830 + 0.310365i
\(248\) −8.60047 + 0.0224771i −0.546130 + 0.00142730i
\(249\) 0 0
\(250\) −1.72151 3.29997i −0.108878 0.208709i
\(251\) −10.1807 24.5783i −0.642597 1.55137i −0.823164 0.567804i \(-0.807793\pi\)
0.180567 0.983563i \(-0.442207\pi\)
\(252\) 0 0
\(253\) 1.49388 + 0.618787i 0.0939196 + 0.0389028i
\(254\) 0.508977 + 0.426328i 0.0319361 + 0.0267502i
\(255\) 0 0
\(256\) 12.1847 10.3698i 0.761546 0.648111i
\(257\) −15.6830 + 9.05459i −0.978279 + 0.564810i −0.901750 0.432258i \(-0.857717\pi\)
−0.0765289 + 0.997067i \(0.524384\pi\)
\(258\) 0 0
\(259\) 10.6204 + 13.8408i 0.659922 + 0.860027i
\(260\) −0.609060 + 1.68250i −0.0377723 + 0.104344i
\(261\) 0 0
\(262\) −10.9965 6.99210i −0.679368 0.431974i
\(263\) 3.68384 + 13.7483i 0.227155 + 0.847755i 0.981530 + 0.191310i \(0.0612737\pi\)
−0.754374 + 0.656444i \(0.772060\pi\)
\(264\) 0 0
\(265\) −0.817503 + 3.05096i −0.0502188 + 0.187419i
\(266\) 17.5203 16.0825i 1.07424 0.986081i
\(267\) 0 0
\(268\) 4.45400 + 14.0409i 0.272072 + 0.857687i
\(269\) −9.33715 3.86758i −0.569296 0.235810i 0.0794191 0.996841i \(-0.474693\pi\)
−0.648715 + 0.761031i \(0.724693\pi\)
\(270\) 0 0
\(271\) −1.06895 −0.0649338 −0.0324669 0.999473i \(-0.510336\pi\)
−0.0324669 + 0.999473i \(0.510336\pi\)
\(272\) 24.8519 9.14356i 1.50687 0.554410i
\(273\) 0 0
\(274\) −27.1596 12.6359i −1.64077 0.763365i
\(275\) 5.57233 0.733611i 0.336024 0.0442384i
\(276\) 0 0
\(277\) −2.21942 + 16.8582i −0.133352 + 1.01291i 0.785654 + 0.618666i \(0.212327\pi\)
−0.919006 + 0.394244i \(0.871007\pi\)
\(278\) −2.04456 9.18453i −0.122624 0.550851i
\(279\) 0 0
\(280\) 1.37926 + 1.78780i 0.0824268 + 0.106841i
\(281\) 16.6133 4.45151i 0.991064 0.265555i 0.273367 0.961910i \(-0.411863\pi\)
0.717698 + 0.696355i \(0.245196\pi\)
\(282\) 0 0
\(283\) 5.14158 + 3.94527i 0.305635 + 0.234522i 0.750179 0.661235i \(-0.229967\pi\)
−0.444544 + 0.895757i \(0.646634\pi\)
\(284\) −7.62459 5.31902i −0.452436 0.315626i
\(285\) 0 0
\(286\) −4.17222 3.49472i −0.246709 0.206647i
\(287\) 22.7111 1.34060
\(288\) 0 0
\(289\) 26.8264 1.57803
\(290\) −1.45936 1.22239i −0.0856968 0.0717811i
\(291\) 0 0
\(292\) 3.66258 5.25016i 0.214336 0.307242i
\(293\) 21.1155 + 16.2025i 1.23358 + 0.946559i 0.999670 0.0256991i \(-0.00818119\pi\)
0.233910 + 0.972258i \(0.424848\pi\)
\(294\) 0 0
\(295\) 1.31269 0.351734i 0.0764277 0.0204787i
\(296\) 2.09591 16.2481i 0.121823 0.944400i
\(297\) 0 0
\(298\) −1.24762 5.60454i −0.0722727 0.324662i
\(299\) 0.624876 4.74641i 0.0361375 0.274492i
\(300\) 0 0
\(301\) 21.3502 2.81081i 1.23061 0.162013i
\(302\) −24.3995 11.3518i −1.40404 0.653224i
\(303\) 0 0
\(304\) −22.3150 0.896399i −1.27985 0.0514120i
\(305\) 3.27866 0.187736
\(306\) 0 0
\(307\) −5.20812 2.15728i −0.297243 0.123122i 0.229078 0.973408i \(-0.426429\pi\)
−0.526321 + 0.850286i \(0.676429\pi\)
\(308\) −6.54649 + 2.07665i −0.373021 + 0.118328i
\(309\) 0 0
\(310\) −0.839659 + 0.770752i −0.0476894 + 0.0437758i
\(311\) 5.26787 19.6599i 0.298713 1.11481i −0.639510 0.768783i \(-0.720863\pi\)
0.938223 0.346030i \(-0.112471\pi\)
\(312\) 0 0
\(313\) 0.335953 + 1.25379i 0.0189892 + 0.0708686i 0.974770 0.223211i \(-0.0716537\pi\)
−0.955781 + 0.294079i \(0.904987\pi\)
\(314\) 24.5843 + 15.6318i 1.38737 + 0.882155i
\(315\) 0 0
\(316\) −28.8408 10.4403i −1.62242 0.587313i
\(317\) −14.3516 18.7033i −0.806064 1.05048i −0.997617 0.0690007i \(-0.978019\pi\)
0.191553 0.981482i \(-0.438648\pi\)
\(318\) 0 0
\(319\) 5.01448 2.89511i 0.280757 0.162095i
\(320\) 0.265774 2.10367i 0.0148572 0.117598i
\(321\) 0 0
\(322\) −4.63126 3.87922i −0.258090 0.216181i
\(323\) −34.1484 14.1447i −1.90007 0.787035i
\(324\) 0 0
\(325\) −6.36799 15.3737i −0.353233 0.852779i
\(326\) −12.4631 23.8905i −0.690265 1.32317i
\(327\) 0 0
\(328\) −15.1198 15.0410i −0.834851 0.830498i
\(329\) 7.75273 + 2.07734i 0.427422 + 0.114527i
\(330\) 0 0
\(331\) 35.8982 + 4.72609i 1.97314 + 0.259769i 0.999497 + 0.0317045i \(0.0100935\pi\)
0.973646 + 0.228065i \(0.0732398\pi\)
\(332\) −1.59425 + 1.74592i −0.0874960 + 0.0958197i
\(333\) 0 0
\(334\) −2.80203 + 1.96564i −0.153320 + 0.107555i
\(335\) 1.69060 + 0.976071i 0.0923676 + 0.0533285i
\(336\) 0 0
\(337\) 0.235650 0.136053i 0.0128367 0.00741126i −0.493568 0.869707i \(-0.664308\pi\)
0.506405 + 0.862296i \(0.330974\pi\)
\(338\) 0.958070 2.05927i 0.0521121 0.112009i
\(339\) 0 0
\(340\) 1.61500 3.11563i 0.0875856 0.168969i
\(341\) −1.32667 3.20285i −0.0718429 0.173444i
\(342\) 0 0
\(343\) 10.4954 10.4954i 0.566697 0.566697i
\(344\) −16.0753 12.2684i −0.866723 0.661468i
\(345\) 0 0
\(346\) −1.29117 + 30.1759i −0.0694138 + 1.62227i
\(347\) −12.8514 + 16.7483i −0.689900 + 0.899095i −0.998644 0.0520501i \(-0.983424\pi\)
0.308745 + 0.951145i \(0.400091\pi\)
\(348\) 0 0
\(349\) 18.9817 14.5652i 1.01607 0.779656i 0.0404601 0.999181i \(-0.487118\pi\)
0.975607 + 0.219526i \(0.0704510\pi\)
\(350\) −20.6830 3.62839i −1.10555 0.193946i
\(351\) 0 0
\(352\) 5.73359 + 2.95305i 0.305601 + 0.157398i
\(353\) 11.5807 + 6.68611i 0.616378 + 0.355866i 0.775457 0.631400i \(-0.217519\pi\)
−0.159080 + 0.987266i \(0.550853\pi\)
\(354\) 0 0
\(355\) −1.22148 + 0.160811i −0.0648295 + 0.00853497i
\(356\) 12.1982 17.4857i 0.646506 0.926738i
\(357\) 0 0
\(358\) 1.50239 + 2.87994i 0.0794038 + 0.152209i
\(359\) 9.45820 9.45820i 0.499185 0.499185i −0.411999 0.911184i \(-0.635169\pi\)
0.911184 + 0.411999i \(0.135169\pi\)
\(360\) 0 0
\(361\) 8.60742 + 8.60742i 0.453022 + 0.453022i
\(362\) 4.83227 15.3727i 0.253978 0.807971i
\(363\) 0 0
\(364\) 10.9553 + 17.1305i 0.574215 + 0.897881i
\(365\) −0.110732 0.841091i −0.00579596 0.0440247i
\(366\) 0 0
\(367\) 17.9630 31.1128i 0.937661 1.62408i 0.167841 0.985814i \(-0.446320\pi\)
0.769819 0.638262i \(-0.220346\pi\)
\(368\) 0.514131 + 5.64973i 0.0268009 + 0.294512i
\(369\) 0 0
\(370\) −1.24684 1.77738i −0.0648203 0.0924015i
\(371\) 21.8509 + 28.4767i 1.13444 + 1.47844i
\(372\) 0 0
\(373\) −27.3672 20.9996i −1.41702 1.08732i −0.982418 0.186693i \(-0.940223\pi\)
−0.434600 0.900623i \(-0.643110\pi\)
\(374\) 7.21809 + 7.86339i 0.373238 + 0.406606i
\(375\) 0 0
\(376\) −3.78557 6.51740i −0.195226 0.336109i
\(377\) −12.1220 12.1220i −0.624316 0.624316i
\(378\) 0 0
\(379\) −27.9266 + 11.5676i −1.43449 + 0.594187i −0.958457 0.285238i \(-0.907927\pi\)
−0.476038 + 0.879425i \(0.657927\pi\)
\(380\) −2.26392 + 1.90638i −0.116137 + 0.0977954i
\(381\) 0 0
\(382\) −4.65557 12.7565i −0.238200 0.652678i
\(383\) 13.9736 + 24.2030i 0.714017 + 1.23671i 0.963337 + 0.268293i \(0.0864595\pi\)
−0.249320 + 0.968421i \(0.580207\pi\)
\(384\) 0 0
\(385\) −0.455086 + 0.788232i −0.0231933 + 0.0401720i
\(386\) 37.1488 + 6.51696i 1.89082 + 0.331705i
\(387\) 0 0
\(388\) 0.668850 + 0.242122i 0.0339557 + 0.0122919i
\(389\) −2.97285 + 22.5810i −0.150729 + 1.14490i 0.734118 + 0.679022i \(0.237596\pi\)
−0.884847 + 0.465881i \(0.845737\pi\)
\(390\) 0 0
\(391\) −2.43009 + 9.06922i −0.122895 + 0.458650i
\(392\) 5.86090 0.0153173i 0.296020 0.000773640i
\(393\) 0 0
\(394\) 0.635662 2.02220i 0.0320242 0.101877i
\(395\) −3.75541 + 1.55554i −0.188955 + 0.0782677i
\(396\) 0 0
\(397\) 4.54017 10.9609i 0.227864 0.550113i −0.768053 0.640387i \(-0.778774\pi\)
0.995917 + 0.0902734i \(0.0287741\pi\)
\(398\) −12.7949 + 1.13064i −0.641351 + 0.0566739i
\(399\) 0 0
\(400\) 11.3666 + 16.1133i 0.568328 + 0.805667i
\(401\) 11.6633 + 20.2014i 0.582437 + 1.00881i 0.995190 + 0.0979670i \(0.0312340\pi\)
−0.412753 + 0.910843i \(0.635433\pi\)
\(402\) 0 0
\(403\) −8.14298 + 6.24833i −0.405631 + 0.311251i
\(404\) −16.6457 + 0.755828i −0.828156 + 0.0376039i
\(405\) 0 0
\(406\) −21.1164 + 4.70070i −1.04799 + 0.233292i
\(407\) 6.37862 1.70915i 0.316177 0.0847193i
\(408\) 0 0
\(409\) 0.724424 + 0.194109i 0.0358205 + 0.00959807i 0.276685 0.960961i \(-0.410764\pi\)
−0.240864 + 0.970559i \(0.577431\pi\)
\(410\) −2.82375 0.120823i −0.139455 0.00596703i
\(411\) 0 0
\(412\) −0.543562 0.0466013i −0.0267794 0.00229588i
\(413\) 5.91000 14.2680i 0.290812 0.702083i
\(414\) 0 0
\(415\) 0.313326i 0.0153806i
\(416\) 4.05161 18.6599i 0.198647 0.914878i
\(417\) 0 0
\(418\) −3.08628 8.45655i −0.150955 0.413624i
\(419\) 0.139977 + 1.06323i 0.00683834 + 0.0519424i 0.994524 0.104510i \(-0.0333275\pi\)
−0.987685 + 0.156453i \(0.949994\pi\)
\(420\) 0 0
\(421\) −19.5063 2.56805i −0.950677 0.125159i −0.360792 0.932646i \(-0.617493\pi\)
−0.589885 + 0.807487i \(0.700827\pi\)
\(422\) −12.3750 7.86858i −0.602404 0.383036i
\(423\) 0 0
\(424\) 4.31222 33.4295i 0.209420 1.62348i
\(425\) 8.44674 + 31.5237i 0.409727 + 1.52912i
\(426\) 0 0
\(427\) 22.6816 29.5592i 1.09764 1.43047i
\(428\) −7.75334 12.1236i −0.374772 0.586018i
\(429\) 0 0
\(430\) −2.66950 + 0.235895i −0.128735 + 0.0113759i
\(431\) 1.14937i 0.0553631i 0.999617 + 0.0276815i \(0.00881243\pi\)
−0.999617 + 0.0276815i \(0.991188\pi\)
\(432\) 0 0
\(433\) 13.4381i 0.645792i 0.946434 + 0.322896i \(0.104656\pi\)
−0.946434 + 0.322896i \(0.895344\pi\)
\(434\) 1.14011 + 12.9021i 0.0547271 + 0.619320i
\(435\) 0 0
\(436\) −7.88854 1.73443i −0.377792 0.0830643i
\(437\) 4.82051 6.28221i 0.230596 0.300519i
\(438\) 0 0
\(439\) −4.96986 18.5478i −0.237199 0.885237i −0.977145 0.212572i \(-0.931816\pi\)
0.739947 0.672665i \(-0.234851\pi\)
\(440\) 0.824995 0.223369i 0.0393301 0.0106487i
\(441\) 0 0
\(442\) 16.9568 26.6680i 0.806551 1.26847i
\(443\) −25.6471 3.37651i −1.21853 0.160423i −0.506294 0.862361i \(-0.668985\pi\)
−0.712238 + 0.701938i \(0.752318\pi\)
\(444\) 0 0
\(445\) −0.368792 2.80125i −0.0174824 0.132792i
\(446\) 27.7665 10.1336i 1.31478 0.479838i
\(447\) 0 0
\(448\) −17.1273 16.9492i −0.809188 0.800772i
\(449\) 28.8086i 1.35956i −0.733414 0.679782i \(-0.762074\pi\)
0.733414 0.679782i \(-0.237926\pi\)
\(450\) 0 0
\(451\) 3.28978 7.94222i 0.154909 0.373985i
\(452\) −26.4674 + 22.2875i −1.24492 + 1.04831i
\(453\) 0 0
\(454\) 0.626207 14.6351i 0.0293894 0.686857i
\(455\) 2.60293 + 0.697453i 0.122027 + 0.0326971i
\(456\) 0 0
\(457\) −9.52070 + 2.55106i −0.445360 + 0.119334i −0.474527 0.880241i \(-0.657381\pi\)
0.0291677 + 0.999575i \(0.490714\pi\)
\(458\) −2.44761 10.9951i −0.114369 0.513767i
\(459\) 0 0
\(460\) 0.555183 + 0.506955i 0.0258856 + 0.0236369i
\(461\) 14.8054 11.3606i 0.689555 0.529115i −0.203492 0.979077i \(-0.565229\pi\)
0.893048 + 0.449962i \(0.148562\pi\)
\(462\) 0 0
\(463\) −12.7222 22.0354i −0.591249 1.02407i −0.994065 0.108792i \(-0.965302\pi\)
0.402816 0.915281i \(-0.368032\pi\)
\(464\) 17.1713 + 10.8554i 0.797155 + 0.503947i
\(465\) 0 0
\(466\) 0.213031 + 2.41076i 0.00986845 + 0.111676i
\(467\) 0.653601 1.57793i 0.0302451 0.0730181i −0.908035 0.418894i \(-0.862418\pi\)
0.938280 + 0.345875i \(0.112418\pi\)
\(468\) 0 0
\(469\) 20.4954 8.48948i 0.946390 0.392008i
\(470\) −0.952873 0.299527i −0.0439527 0.0138162i
\(471\) 0 0
\(472\) −13.3839 + 5.58480i −0.616042 + 0.257061i
\(473\) 2.10969 7.87347i 0.0970036 0.362022i
\(474\) 0 0
\(475\) 3.59261 27.2886i 0.164840 1.25209i
\(476\) −16.9169 36.1140i −0.775384 1.65528i
\(477\) 0 0
\(478\) 4.41503 25.1671i 0.201939 1.15111i
\(479\) 3.28151 5.68375i 0.149936 0.259697i −0.781267 0.624196i \(-0.785426\pi\)
0.931204 + 0.364499i \(0.118760\pi\)
\(480\) 0 0
\(481\) −9.77571 16.9320i −0.445734 0.772034i
\(482\) −18.6238 + 6.79688i −0.848289 + 0.309589i
\(483\) 0 0
\(484\) 1.65718 19.3294i 0.0753262 0.878611i
\(485\) 0.0870921 0.0360747i 0.00395465 0.00163807i
\(486\) 0 0
\(487\) −24.6314 24.6314i −1.11616 1.11616i −0.992300 0.123856i \(-0.960474\pi\)
−0.123856 0.992300i \(-0.539526\pi\)
\(488\) −34.6764 + 4.65746i −1.56973 + 0.210833i
\(489\) 0 0
\(490\) 0.572196 0.525239i 0.0258492 0.0237279i
\(491\) −22.0969 16.9556i −0.997221 0.765195i −0.0251026 0.999685i \(-0.507991\pi\)
−0.972118 + 0.234490i \(0.924658\pi\)
\(492\) 0 0
\(493\) 20.4676 + 26.6739i 0.921816 + 1.20133i
\(494\) −21.8192 + 15.3063i −0.981694 + 0.688665i
\(495\) 0 0
\(496\) 7.78567 9.34454i 0.349587 0.419582i
\(497\) −7.00032 + 12.1249i −0.314007 + 0.543877i
\(498\) 0 0
\(499\) 3.06588 + 23.2877i 0.137248 + 1.04250i 0.911987 + 0.410219i \(0.134548\pi\)
−0.774740 + 0.632281i \(0.782119\pi\)
\(500\) 5.14094 + 1.13032i 0.229910 + 0.0505496i
\(501\) 0 0
\(502\) 35.8913 + 11.2821i 1.60191 + 0.503546i
\(503\) 20.8337 + 20.8337i 0.928930 + 0.928930i 0.997637 0.0687068i \(-0.0218873\pi\)
−0.0687068 + 0.997637i \(0.521887\pi\)
\(504\) 0 0
\(505\) −1.56146 + 1.56146i −0.0694840 + 0.0694840i
\(506\) −2.02744 + 1.05766i −0.0901307 + 0.0470189i
\(507\) 0 0
\(508\) −0.924399 + 0.164658i −0.0410136 + 0.00730551i
\(509\) 13.0450 1.71741i 0.578211 0.0761229i 0.164252 0.986418i \(-0.447479\pi\)
0.413959 + 0.910296i \(0.364146\pi\)
\(510\) 0 0
\(511\) −8.34900 4.82030i −0.369338 0.213237i
\(512\) 0.177406 + 22.6267i 0.00784031 + 0.999969i
\(513\) 0 0
\(514\) 4.42520 25.2250i 0.195187 1.11263i
\(515\) −0.0573589 + 0.0440131i −0.00252754 + 0.00193945i
\(516\) 0 0
\(517\) 1.84947 2.41027i 0.0813394 0.106004i
\(518\) −24.6498 1.05472i −1.08305 0.0463417i
\(519\) 0 0
\(520\) −1.27098 2.18817i −0.0557361 0.0959577i
\(521\) −11.1752 + 11.1752i −0.489592 + 0.489592i −0.908178 0.418585i \(-0.862526\pi\)
0.418585 + 0.908178i \(0.362526\pi\)
\(522\) 0 0
\(523\) 4.41161 + 10.6506i 0.192906 + 0.465717i 0.990506 0.137470i \(-0.0438971\pi\)
−0.797600 + 0.603187i \(0.793897\pi\)
\(524\) 17.5663 5.57231i 0.767389 0.243427i
\(525\) 0 0
\(526\) −18.2504 8.49093i −0.795753 0.370222i
\(527\) 17.4332 10.0651i 0.759403 0.438441i
\(528\) 0 0
\(529\) 18.1766 + 10.4943i 0.790286 + 0.456272i
\(530\) −2.56531 3.65685i −0.111430 0.158844i
\(531\) 0 0
\(532\) 1.52562 + 33.5989i 0.0661438 + 1.45670i
\(533\) −25.2342 3.32215i −1.09302 0.143898i
\(534\) 0 0
\(535\) −1.84215 0.493604i −0.0796433 0.0213404i
\(536\) −19.2670 7.92174i −0.832209 0.342167i
\(537\) 0 0
\(538\) 12.6720 6.61067i 0.546330 0.285006i
\(539\) 0.904073 + 2.18263i 0.0389412 + 0.0940123i
\(540\) 0 0
\(541\) −4.88193 2.02216i −0.209891 0.0869396i 0.275261 0.961369i \(-0.411236\pi\)
−0.485152 + 0.874430i \(0.661236\pi\)
\(542\) 0.970704 1.15889i 0.0416953 0.0497785i
\(543\) 0 0
\(544\) −12.6550 + 35.2462i −0.542578 + 1.51117i
\(545\) −0.926988 + 0.535197i −0.0397078 + 0.0229253i
\(546\) 0 0
\(547\) 1.55433 + 2.02565i 0.0664585 + 0.0866104i 0.825400 0.564549i \(-0.190950\pi\)
−0.758941 + 0.651159i \(0.774283\pi\)
\(548\) 38.3627 17.9702i 1.63877 0.767651i
\(549\) 0 0
\(550\) −4.26486 + 6.70738i −0.181854 + 0.286004i
\(551\) −7.33899 27.3895i −0.312651 1.16683i
\(552\) 0 0
\(553\) −11.9555 + 44.6185i −0.508399 + 1.89737i
\(554\) −16.2612 17.7150i −0.690873 0.752638i
\(555\) 0 0
\(556\) 11.8140 + 6.12383i 0.501024 + 0.259708i
\(557\) 19.4433 + 8.05366i 0.823838 + 0.341245i 0.754460 0.656346i \(-0.227899\pi\)
0.0693774 + 0.997590i \(0.477899\pi\)
\(558\) 0 0
\(559\) −24.1333 −1.02073
\(560\) −3.19073 0.128172i −0.134833 0.00541627i
\(561\) 0 0
\(562\) −10.2604 + 22.0535i −0.432807 + 0.930272i
\(563\) −18.2863 + 2.40744i −0.770676 + 0.101461i −0.505602 0.862767i \(-0.668730\pi\)
−0.265074 + 0.964228i \(0.585396\pi\)
\(564\) 0 0
\(565\) −0.598530 + 4.54629i −0.0251804 + 0.191264i
\(566\) −8.94627 + 1.99152i −0.376040 + 0.0837098i
\(567\) 0 0
\(568\) 12.6904 3.43596i 0.532478 0.144170i
\(569\) −0.220973 + 0.0592096i −0.00926368 + 0.00248220i −0.263448 0.964674i \(-0.584860\pi\)
0.254184 + 0.967156i \(0.418193\pi\)
\(570\) 0 0
\(571\) 15.5154 + 11.9054i 0.649299 + 0.498225i 0.880108 0.474774i \(-0.157470\pi\)
−0.230808 + 0.972999i \(0.574137\pi\)
\(572\) 7.57754 1.34974i 0.316833 0.0564356i
\(573\) 0 0
\(574\) −20.6239 + 24.6221i −0.860823 + 1.02771i
\(575\) −6.99170 −0.291574
\(576\) 0 0
\(577\) 14.9051 0.620507 0.310254 0.950654i \(-0.399586\pi\)
0.310254 + 0.950654i \(0.399586\pi\)
\(578\) −24.3610 + 29.0837i −1.01328 + 1.20972i
\(579\) 0 0
\(580\) 2.65048 0.472115i 0.110055 0.0196035i
\(581\) 2.82483 + 2.16757i 0.117194 + 0.0899259i
\(582\) 0 0
\(583\) 13.1237 3.51647i 0.543526 0.145637i
\(584\) 2.36594 + 8.73840i 0.0979034 + 0.361598i
\(585\) 0 0
\(586\) −36.7407 + 8.17879i −1.51774 + 0.337863i
\(587\) 3.50875 26.6516i 0.144822 1.10003i −0.752481 0.658614i \(-0.771143\pi\)
0.897303 0.441416i \(-0.145524\pi\)
\(588\) 0 0
\(589\) −16.8320 + 2.21597i −0.693549 + 0.0913074i
\(590\) −0.810717 + 1.74255i −0.0333767 + 0.0717396i
\(591\) 0 0
\(592\) 15.7119 + 17.0271i 0.645756 + 0.699808i
\(593\) 11.8751 0.487652 0.243826 0.969819i \(-0.421597\pi\)
0.243826 + 0.969819i \(0.421597\pi\)
\(594\) 0 0
\(595\) −4.88274 2.02250i −0.200173 0.0829143i
\(596\) 7.20908 + 3.73686i 0.295295 + 0.153068i
\(597\) 0 0
\(598\) 4.57833 + 4.98764i 0.187222 + 0.203960i
\(599\) 10.8060 40.3284i 0.441520 1.64777i −0.283445 0.958988i \(-0.591477\pi\)
0.724965 0.688786i \(-0.241856\pi\)
\(600\) 0 0
\(601\) 2.40892 + 8.99022i 0.0982620 + 0.366719i 0.997494 0.0707537i \(-0.0225404\pi\)
−0.899232 + 0.437472i \(0.855874\pi\)
\(602\) −16.3407 + 25.6992i −0.665998 + 1.04742i
\(603\) 0 0
\(604\) 34.4641 16.1440i 1.40232 0.656891i
\(605\) −1.56514 2.03972i −0.0636318 0.0829266i
\(606\) 0 0
\(607\) −35.1470 + 20.2921i −1.42657 + 0.823632i −0.996849 0.0793280i \(-0.974723\pi\)
−0.429724 + 0.902960i \(0.641389\pi\)
\(608\) 21.2360 23.3786i 0.861233 0.948129i
\(609\) 0 0
\(610\) −2.97734 + 3.55453i −0.120549 + 0.143919i
\(611\) −8.31016 3.44218i −0.336193 0.139256i
\(612\) 0 0
\(613\) 11.7152 + 28.2829i 0.473171 + 1.14234i 0.962754 + 0.270379i \(0.0871489\pi\)
−0.489583 + 0.871957i \(0.662851\pi\)
\(614\) 7.06826 3.68733i 0.285252 0.148809i
\(615\) 0 0
\(616\) 3.69345 8.98311i 0.148813 0.361940i
\(617\) 19.2947 + 5.17000i 0.776776 + 0.208136i 0.625363 0.780334i \(-0.284951\pi\)
0.151413 + 0.988471i \(0.451618\pi\)
\(618\) 0 0
\(619\) 10.3832 + 1.36697i 0.417336 + 0.0549433i 0.336270 0.941765i \(-0.390834\pi\)
0.0810655 + 0.996709i \(0.474168\pi\)
\(620\) −0.0731150 1.61023i −0.00293637 0.0646682i
\(621\) 0 0
\(622\) 16.5304 + 23.5642i 0.662811 + 0.944839i
\(623\) −27.8064 16.0540i −1.11404 0.643191i
\(624\) 0 0
\(625\) −20.7423 + 11.9756i −0.829693 + 0.479023i
\(626\) −1.66437 0.774342i −0.0665215 0.0309489i
\(627\) 0 0
\(628\) −39.2720 + 12.4577i −1.56712 + 0.497115i
\(629\) 14.6740 + 35.4261i 0.585090 + 1.41253i
\(630\) 0 0
\(631\) 22.7060 22.7060i 0.903913 0.903913i −0.0918593 0.995772i \(-0.529281\pi\)
0.995772 + 0.0918593i \(0.0292810\pi\)
\(632\) 37.5089 21.7867i 1.49202 0.866628i
\(633\) 0 0
\(634\) 33.3096 + 1.42526i 1.32289 + 0.0566042i
\(635\) −0.0757504 + 0.0987198i −0.00300606 + 0.00391758i
\(636\) 0 0
\(637\) 5.54914 4.25800i 0.219865 0.168708i
\(638\) −1.41491 + 8.06545i −0.0560169 + 0.319314i
\(639\) 0 0
\(640\) 2.03932 + 2.19846i 0.0806114 + 0.0869019i
\(641\) −27.5561 15.9095i −1.08840 0.628389i −0.155251 0.987875i \(-0.549619\pi\)
−0.933150 + 0.359486i \(0.882952\pi\)
\(642\) 0 0
\(643\) −35.6089 + 4.68800i −1.40428 + 0.184877i −0.794292 0.607536i \(-0.792158\pi\)
−0.609985 + 0.792413i \(0.708825\pi\)
\(644\) 8.41125 1.49825i 0.331450 0.0590392i
\(645\) 0 0
\(646\) 46.3449 24.1770i 1.82342 0.951231i
\(647\) −24.1345 + 24.1345i −0.948824 + 0.948824i −0.998753 0.0499284i \(-0.984101\pi\)
0.0499284 + 0.998753i \(0.484101\pi\)
\(648\) 0 0
\(649\) −4.13353 4.13353i −0.162255 0.162255i
\(650\) 22.4500 + 7.05696i 0.880562 + 0.276797i
\(651\) 0 0
\(652\) 37.2183 + 8.18309i 1.45758 + 0.320474i
\(653\) −0.437870 3.32595i −0.0171352 0.130155i 0.980739 0.195322i \(-0.0625752\pi\)
−0.997874 + 0.0651674i \(0.979242\pi\)
\(654\) 0 0
\(655\) 1.22114 2.11508i 0.0477140 0.0826430i
\(656\) 30.0367 2.73337i 1.17274 0.106720i
\(657\) 0 0
\(658\) −9.29235 + 6.51864i −0.362253 + 0.254123i
\(659\) 19.2238 + 25.0530i 0.748853 + 0.975924i 0.999968 + 0.00796717i \(0.00253606\pi\)
−0.251115 + 0.967957i \(0.580797\pi\)
\(660\) 0 0
\(661\) 0.346580 + 0.265940i 0.0134804 + 0.0103439i 0.615480 0.788153i \(-0.288962\pi\)
−0.601999 + 0.798497i \(0.705629\pi\)
\(662\) −37.7227 + 34.6270i −1.46613 + 1.34582i
\(663\) 0 0
\(664\) −0.445091 3.31385i −0.0172729 0.128603i
\(665\) 3.15176 + 3.15176i 0.122220 + 0.122220i
\(666\) 0 0
\(667\) −6.65466 + 2.75645i −0.257670 + 0.106730i
\(668\) 0.413473 4.82279i 0.0159978 0.186599i
\(669\) 0 0
\(670\) −2.59343 + 0.946490i −0.100193 + 0.0365661i
\(671\) −7.05155 12.2136i −0.272222 0.471502i
\(672\) 0 0
\(673\) −4.03557 + 6.98981i −0.155560 + 0.269438i −0.933263 0.359194i \(-0.883051\pi\)
0.777703 + 0.628632i \(0.216385\pi\)
\(674\) −0.0664923 + 0.379027i −0.00256119 + 0.0145996i
\(675\) 0 0
\(676\) 1.36252 + 2.90870i 0.0524047 + 0.111873i
\(677\) 2.64930 20.1234i 0.101821 0.773405i −0.862010 0.506891i \(-0.830795\pi\)
0.963831 0.266514i \(-0.0858719\pi\)
\(678\) 0 0
\(679\) 0.277261 1.03475i 0.0106403 0.0397102i
\(680\) 1.91121 + 4.58017i 0.0732915 + 0.175642i
\(681\) 0 0
\(682\) 4.67709 + 1.47020i 0.179095 + 0.0562969i
\(683\) 2.59322 1.07415i 0.0992269 0.0411011i −0.332518 0.943097i \(-0.607898\pi\)
0.431745 + 0.901996i \(0.357898\pi\)
\(684\) 0 0
\(685\) 2.14843 5.18677i 0.0820874 0.198176i
\(686\) 1.84768 + 20.9093i 0.0705447 + 0.798319i
\(687\) 0 0
\(688\) 27.8986 6.28704i 1.06362 0.239691i
\(689\) −20.1130 34.8367i −0.766243 1.32717i
\(690\) 0 0
\(691\) −12.2502 + 9.39991i −0.466020 + 0.357589i −0.814923 0.579569i \(-0.803221\pi\)
0.348903 + 0.937159i \(0.386554\pi\)
\(692\) −31.5425 28.8024i −1.19906 1.09490i
\(693\) 0 0
\(694\) −6.48722 29.1418i −0.246251 1.10621i
\(695\) 1.70339 0.456421i 0.0646132 0.0173130i
\(696\) 0 0
\(697\) 48.2165 + 12.9196i 1.82633 + 0.489363i
\(698\) −1.44647 + 33.8054i −0.0547497 + 1.27955i
\(699\) 0 0
\(700\) 22.7158 19.1284i 0.858576 0.722984i
\(701\) −3.78858 + 9.14644i −0.143093 + 0.345456i −0.979136 0.203208i \(-0.934863\pi\)
0.836043 + 0.548664i \(0.184863\pi\)
\(702\) 0 0
\(703\) 32.3391i 1.21969i
\(704\) −8.40816 + 3.53438i −0.316895 + 0.133207i
\(705\) 0 0
\(706\) −17.7651 + 6.48348i −0.668597 + 0.244009i
\(707\) 3.27547 + 24.8796i 0.123187 + 0.935695i
\(708\) 0 0
\(709\) −4.54942 0.598942i −0.170857 0.0224937i 0.0446123 0.999004i \(-0.485795\pi\)
−0.215469 + 0.976511i \(0.569128\pi\)
\(710\) 0.934879 1.47029i 0.0350854 0.0551790i
\(711\) 0 0
\(712\) 7.87977 + 29.1033i 0.295307 + 1.09069i
\(713\) 1.11618 + 4.16563i 0.0418012 + 0.156004i
\(714\) 0 0
\(715\) 0.620946 0.809232i 0.0232220 0.0302636i
\(716\) −4.48657 0.986451i −0.167671 0.0368654i
\(717\) 0 0
\(718\) 1.66509 + 18.8430i 0.0621406 + 0.703214i
\(719\) 51.3863i 1.91639i 0.286124 + 0.958193i \(0.407633\pi\)
−0.286124 + 0.958193i \(0.592367\pi\)
\(720\) 0 0
\(721\) 0.821607i 0.0305983i
\(722\) −17.1480 + 1.51531i −0.638183 + 0.0563940i
\(723\) 0 0
\(724\) 12.2780 + 19.1987i 0.456309 + 0.713515i
\(725\) −15.2414 + 19.8630i −0.566051 + 0.737692i
\(726\) 0 0
\(727\) 5.47760 + 20.4427i 0.203153 + 0.758177i 0.990005 + 0.141035i \(0.0450429\pi\)
−0.786852 + 0.617142i \(0.788290\pi\)
\(728\) −28.5203 3.67897i −1.05703 0.136352i
\(729\) 0 0
\(730\) 1.01242 + 0.643741i 0.0374712 + 0.0238259i
\(731\) 46.9262 + 6.17796i 1.73563 + 0.228500i
\(732\) 0 0
\(733\) 1.16346 + 8.83733i 0.0429732 + 0.326414i 0.999406 + 0.0344615i \(0.0109716\pi\)
−0.956433 + 0.291953i \(0.905695\pi\)
\(734\) 17.4186 + 47.7278i 0.642933 + 1.76167i
\(735\) 0 0
\(736\) −6.59198 4.57310i −0.242984 0.168567i
\(737\) 8.39710i 0.309311i
\(738\) 0 0
\(739\) 6.91091 16.6844i 0.254222 0.613746i −0.744315 0.667829i \(-0.767224\pi\)
0.998536 + 0.0540833i \(0.0172236\pi\)
\(740\) 3.05918 + 0.262274i 0.112458 + 0.00964137i
\(741\) 0 0
\(742\) −50.7155 2.17002i −1.86182 0.0796641i
\(743\) −4.49432 1.20425i −0.164880 0.0441796i 0.175434 0.984491i \(-0.443867\pi\)
−0.340315 + 0.940312i \(0.610534\pi\)
\(744\) 0 0
\(745\) 1.03943 0.278515i 0.0380819 0.0102040i
\(746\) 47.6185 10.6003i 1.74344 0.388105i
\(747\) 0 0
\(748\) −15.0797 + 0.684721i −0.551370 + 0.0250359i
\(749\) −17.1941 + 13.1935i −0.628258 + 0.482079i
\(750\) 0 0
\(751\) 12.6948 + 21.9881i 0.463241 + 0.802357i 0.999120 0.0419377i \(-0.0133531\pi\)
−0.535879 + 0.844295i \(0.680020\pi\)
\(752\) 10.5034 + 1.81432i 0.383021 + 0.0661616i
\(753\) 0 0
\(754\) 24.1500 2.13405i 0.879490 0.0777175i
\(755\) 1.93010 4.65967i 0.0702435 0.169583i
\(756\) 0 0
\(757\) −5.75348 + 2.38317i −0.209114 + 0.0866178i −0.484782 0.874635i \(-0.661101\pi\)
0.275668 + 0.961253i \(0.411101\pi\)
\(758\) 12.8191 40.7809i 0.465611 1.48123i
\(759\) 0 0
\(760\) −0.0109389 4.18559i −0.000396796 0.151827i
\(761\) 2.20043 8.21213i 0.0797657 0.297689i −0.914506 0.404572i \(-0.867420\pi\)
0.994272 + 0.106883i \(0.0340870\pi\)
\(762\) 0 0
\(763\) −1.58771 + 12.0598i −0.0574789 + 0.436596i
\(764\) 18.0575 + 6.53680i 0.653299 + 0.236493i
\(765\) 0 0
\(766\) −38.9288 6.82924i −1.40655 0.246750i
\(767\) −8.65368 + 14.9886i −0.312466 + 0.541208i
\(768\) 0 0
\(769\) −6.57551 11.3891i −0.237119 0.410702i 0.722767 0.691091i \(-0.242870\pi\)
−0.959886 + 0.280389i \(0.909537\pi\)
\(770\) −0.441294 1.20917i −0.0159031 0.0435754i
\(771\) 0 0
\(772\) −40.7999 + 34.3565i −1.46842 + 1.23652i
\(773\) −29.2765 + 12.1267i −1.05300 + 0.436168i −0.840963 0.541093i \(-0.818011\pi\)
−0.212040 + 0.977261i \(0.568011\pi\)
\(774\) 0 0
\(775\) 10.5996 + 10.5996i 0.380748 + 0.380748i
\(776\) −0.869874 + 0.505258i −0.0312267 + 0.0181377i
\(777\) 0 0
\(778\) −21.7814 23.7287i −0.780901 0.850715i
\(779\) −33.3993 25.6282i −1.19665 0.918226i
\(780\) 0 0
\(781\) 3.22614 + 4.20439i 0.115440 + 0.150445i
\(782\) −7.62557 10.8703i −0.272690 0.388720i
\(783\) 0 0
\(784\) −5.30565 + 6.36796i −0.189487 + 0.227427i
\(785\) −2.73003 + 4.72855i −0.0974390 + 0.168769i
\(786\) 0 0
\(787\) −0.782593 5.94438i −0.0278964 0.211894i 0.971820 0.235726i \(-0.0757468\pi\)
−0.999716 + 0.0238316i \(0.992413\pi\)
\(788\) 1.61511 + 2.52550i 0.0575360 + 0.0899672i
\(789\) 0 0
\(790\) 1.72384 5.48397i 0.0613314 0.195111i
\(791\) 36.8471 + 36.8471i 1.31013 + 1.31013i
\(792\) 0 0
\(793\) −29.5253 + 29.5253i −1.04847 + 1.04847i
\(794\) 7.76030 + 14.8757i 0.275403 + 0.527921i
\(795\) 0 0
\(796\) 10.3932 14.8982i 0.368378 0.528054i
\(797\) 41.2386 5.42916i 1.46075 0.192311i 0.642105 0.766617i \(-0.278061\pi\)
0.818641 + 0.574306i \(0.194728\pi\)
\(798\) 0 0
\(799\) 15.2776 + 8.82052i 0.540482 + 0.312048i
\(800\) −27.7911 2.30947i −0.982563 0.0816522i
\(801\) 0 0
\(802\) −32.4926 5.70013i −1.14735 0.201279i
\(803\) −2.89507 + 2.22146i −0.102165 + 0.0783937i
\(804\) 0 0
\(805\) 0.689264 0.898267i 0.0242934 0.0316597i
\(806\) 0.620523 14.5022i 0.0218570 0.510819i
\(807\) 0 0
\(808\) 14.2965 18.7327i 0.502948 0.659014i
\(809\) 27.0808 27.0808i 0.952111 0.952111i −0.0467934 0.998905i \(-0.514900\pi\)
0.998905 + 0.0467934i \(0.0149002\pi\)
\(810\) 0 0
\(811\) −20.6708 49.9036i −0.725848 1.75235i −0.655957 0.754798i \(-0.727735\pi\)
−0.0698911 0.997555i \(-0.522265\pi\)
\(812\) 14.0795 27.1619i 0.494093 0.953194i
\(813\) 0 0
\(814\) −3.93944 + 8.46740i −0.138077 + 0.296782i
\(815\) 4.37355 2.52507i 0.153199 0.0884493i
\(816\) 0 0
\(817\) −34.5698 19.9589i −1.20944 0.698273i
\(818\) −0.868288 + 0.609109i −0.0303590 + 0.0212970i
\(819\) 0 0
\(820\) 2.69522 2.95163i 0.0941213 0.103075i
\(821\) −17.2654 2.27303i −0.602565 0.0793292i −0.176929 0.984224i \(-0.556616\pi\)
−0.425636 + 0.904894i \(0.639950\pi\)
\(822\) 0 0
\(823\) 36.6703 + 9.82579i 1.27825 + 0.342505i 0.833185 0.552994i \(-0.186515\pi\)
0.445063 + 0.895499i \(0.353181\pi\)
\(824\) 0.544128 0.546980i 0.0189556 0.0190549i
\(825\) 0 0
\(826\) 10.1017 + 19.3640i 0.351483 + 0.673759i
\(827\) −8.01205 19.3428i −0.278606 0.672615i 0.721191 0.692736i \(-0.243595\pi\)
−0.999798 + 0.0201210i \(0.993595\pi\)
\(828\) 0 0
\(829\) −19.1561 7.93471i −0.665318 0.275584i 0.0243563 0.999703i \(-0.492246\pi\)
−0.689675 + 0.724119i \(0.742246\pi\)
\(830\) −0.339690 0.284530i −0.0117908 0.00987617i
\(831\) 0 0
\(832\) 16.5507 + 21.3375i 0.573794 + 0.739744i
\(833\) −11.8801 + 6.85897i −0.411621 + 0.237649i
\(834\) 0 0
\(835\) −0.390509 0.508921i −0.0135141 0.0176119i
\(836\) 11.9707 + 4.33339i 0.414017 + 0.149873i
\(837\) 0 0
\(838\) −1.27981 0.813762i −0.0442103 0.0281109i
\(839\) −1.23246 4.59959i −0.0425491 0.158795i 0.941383 0.337341i \(-0.109527\pi\)
−0.983932 + 0.178546i \(0.942861\pi\)
\(840\) 0 0
\(841\) 0.829987 3.09755i 0.0286202 0.106812i
\(842\) 20.4977 18.8155i 0.706396 0.648425i
\(843\) 0 0
\(844\) 19.7683 6.27081i 0.680453 0.215850i
\(845\) 0.393266 + 0.162896i 0.0135288 + 0.00560380i
\(846\) 0 0
\(847\) −29.2169 −1.00391
\(848\) 32.3264 + 35.0322i 1.11009 + 1.20301i
\(849\) 0 0
\(850\) −41.8466 19.4690i −1.43533 0.667782i
\(851\) −8.14455 + 1.07225i −0.279192 + 0.0367563i
\(852\) 0 0
\(853\) 3.52744 26.7935i 0.120777 0.917394i −0.818565 0.574413i \(-0.805230\pi\)
0.939343 0.342980i \(-0.111436\pi\)
\(854\) 11.4494 + 51.4326i 0.391789 + 1.75999i
\(855\) 0 0
\(856\) 20.1845 + 2.60369i 0.689893 + 0.0889925i
\(857\) 16.5485 4.43416i 0.565286 0.151468i 0.0351522 0.999382i \(-0.488808\pi\)
0.530134 + 0.847914i \(0.322142\pi\)
\(858\) 0 0
\(859\) −17.9789 13.7957i −0.613433 0.470704i 0.254710 0.967017i \(-0.418020\pi\)
−0.868143 + 0.496314i \(0.834687\pi\)
\(860\) 2.16842 3.10833i 0.0739425 0.105993i
\(861\) 0 0
\(862\) −1.24608 1.04373i −0.0424416 0.0355497i
\(863\) −37.9392 −1.29147 −0.645733 0.763564i \(-0.723448\pi\)
−0.645733 + 0.763564i \(0.723448\pi\)
\(864\) 0 0
\(865\) −5.66067 −0.192469
\(866\) −14.5688 12.2030i −0.495067 0.414676i
\(867\) 0 0
\(868\) −15.0230 10.4803i −0.509914 0.355723i
\(869\) 13.8716 + 10.6440i 0.470561 + 0.361074i
\(870\) 0 0
\(871\) −24.0142 + 6.43458i −0.813690 + 0.218028i
\(872\) 9.04391 6.97727i 0.306266 0.236280i
\(873\) 0 0
\(874\) 2.43333 + 10.9310i 0.0823085 + 0.369745i
\(875\) 1.03470 7.85936i 0.0349794 0.265695i
\(876\) 0 0
\(877\) −14.5653 + 1.91756i −0.491835 + 0.0647513i −0.372365 0.928086i \(-0.621453\pi\)
−0.119470 + 0.992838i \(0.538120\pi\)
\(878\) 24.6215 + 11.4551i 0.830936 + 0.386591i
\(879\) 0 0
\(880\) −0.507010 + 1.09725i −0.0170913 + 0.0369884i
\(881\) 39.5715 1.33320 0.666598 0.745417i \(-0.267750\pi\)
0.666598 + 0.745417i \(0.267750\pi\)
\(882\) 0 0
\(883\) −7.71952 3.19753i −0.259782 0.107605i 0.248991 0.968506i \(-0.419901\pi\)
−0.508774 + 0.860900i \(0.669901\pi\)
\(884\) 13.5136 + 42.6007i 0.454511 + 1.43282i
\(885\) 0 0
\(886\) 26.9506 24.7389i 0.905424 0.831121i
\(887\) −1.62588 + 6.06787i −0.0545918 + 0.203739i −0.987835 0.155506i \(-0.950299\pi\)
0.933243 + 0.359245i \(0.116966\pi\)
\(888\) 0 0
\(889\) 0.365985 + 1.36588i 0.0122748 + 0.0458100i
\(890\) 3.37186 + 2.14398i 0.113025 + 0.0718664i
\(891\) 0 0
\(892\) −14.2283 + 39.3050i −0.476400 + 1.31603i
\(893\) −9.05713 11.8035i −0.303085 0.394988i
\(894\) 0 0
\(895\) −0.527220 + 0.304391i −0.0176230 + 0.0101747i
\(896\) 33.9285 3.17695i 1.13347 0.106135i
\(897\) 0 0
\(898\) 31.2327 + 26.1610i 1.04225 + 0.873003i
\(899\) 14.2675 + 5.90977i 0.475846 + 0.197102i
\(900\) 0 0
\(901\) 30.1909 + 72.8872i 1.00580 + 2.42823i
\(902\) 5.62307 + 10.7789i 0.187228 + 0.358897i
\(903\) 0 0
\(904\) −0.127886 48.9335i −0.00425344 1.62751i
\(905\) 2.91719 + 0.781660i 0.0969708 + 0.0259832i
\(906\) 0 0
\(907\) −21.3147 2.80614i −0.707744 0.0931762i −0.231943 0.972729i \(-0.574508\pi\)
−0.475801 + 0.879553i \(0.657842\pi\)
\(908\) 15.2978 + 13.9689i 0.507676 + 0.463575i
\(909\) 0 0
\(910\) −3.11984 + 2.18859i −0.103422 + 0.0725511i
\(911\) −41.5522 23.9902i −1.37668 0.794829i −0.384926 0.922948i \(-0.625773\pi\)
−0.991759 + 0.128118i \(0.959106\pi\)
\(912\) 0 0
\(913\) 1.16720 0.673882i 0.0386286 0.0223022i
\(914\) 5.87998 12.6384i 0.194493 0.418041i
\(915\) 0 0
\(916\) 14.1429 + 7.33104i 0.467295 + 0.242224i
\(917\) −10.6210 25.6414i −0.350736 0.846753i
\(918\) 0 0
\(919\) −19.6503 + 19.6503i −0.648203 + 0.648203i −0.952558 0.304356i \(-0.901559\pi\)
0.304356 + 0.952558i \(0.401559\pi\)
\(920\) −1.05377 + 0.141534i −0.0347418 + 0.00466625i
\(921\) 0 0
\(922\) −1.12822 + 26.3676i −0.0371560 + 0.868371i
\(923\) 9.55165 12.4479i 0.314396 0.409729i
\(924\) 0 0
\(925\) −22.6533 + 17.3825i −0.744836 + 0.571533i
\(926\) 35.4425 + 6.21763i 1.16471 + 0.204324i
\(927\) 0 0
\(928\) −27.3619 + 8.75838i −0.898198 + 0.287508i
\(929\) −12.4296 7.17623i −0.407802 0.235445i 0.282043 0.959402i \(-0.408988\pi\)
−0.689845 + 0.723957i \(0.742321\pi\)
\(930\) 0 0
\(931\) 11.4704 1.51010i 0.375926 0.0494916i
\(932\) −2.80706 1.95824i −0.0919482 0.0641444i
\(933\) 0 0
\(934\) 1.11717 + 2.14151i 0.0365550 + 0.0700724i
\(935\) −1.41456 + 1.41456i −0.0462611 + 0.0462611i
\(936\) 0 0
\(937\) 18.7763 + 18.7763i 0.613394 + 0.613394i 0.943829 0.330435i \(-0.107195\pi\)
−0.330435 + 0.943829i \(0.607195\pi\)
\(938\) −9.40798 + 29.9292i −0.307181 + 0.977222i
\(939\) 0 0
\(940\) 1.19003 0.761050i 0.0388145 0.0248227i
\(941\) −0.503730 3.82621i −0.0164211 0.124731i 0.981271 0.192633i \(-0.0617027\pi\)
−0.997692 + 0.0679022i \(0.978369\pi\)
\(942\) 0 0
\(943\) −5.34702 + 9.26131i −0.174123 + 0.301590i
\(944\) 6.09910 19.5815i 0.198509 0.637325i
\(945\) 0 0
\(946\) 6.62016 + 9.43706i 0.215240 + 0.306825i
\(947\) −13.1772 17.1728i −0.428200 0.558042i 0.528569 0.848891i \(-0.322729\pi\)
−0.956769 + 0.290849i \(0.906062\pi\)
\(948\) 0 0
\(949\) 8.57144 + 6.57709i 0.278241 + 0.213502i
\(950\) 26.3223 + 28.6755i 0.854007 + 0.930356i
\(951\) 0 0
\(952\) 54.5148 + 14.4546i 1.76684 + 0.468476i
\(953\) 33.7540 + 33.7540i 1.09340 + 1.09340i 0.995163 + 0.0982373i \(0.0313204\pi\)
0.0982373 + 0.995163i \(0.468680\pi\)
\(954\) 0 0
\(955\) 2.35130 0.973941i 0.0760864 0.0315160i
\(956\) 23.2754 + 27.6406i 0.752780 + 0.893961i
\(957\) 0 0
\(958\) 3.18207 + 8.71901i 0.102808 + 0.281698i
\(959\) −31.8993 55.2513i −1.03008 1.78416i
\(960\) 0 0
\(961\) −10.8770 + 18.8395i −0.350870 + 0.607724i
\(962\) 27.2340 + 4.77763i 0.878059 + 0.154037i
\(963\) 0 0
\(964\) 9.54337 26.3630i 0.307371 0.849096i
\(965\) −0.922644 + 7.00818i −0.0297010 + 0.225601i
\(966\) 0 0
\(967\) 13.4545 50.2128i 0.432667 1.61474i −0.313921 0.949449i \(-0.601643\pi\)
0.746588 0.665286i \(-0.231691\pi\)
\(968\) 19.4510 + 19.3496i 0.625178 + 0.621919i
\(969\) 0 0
\(970\) −0.0399777 + 0.127179i −0.00128361 + 0.00408349i
\(971\) −22.5790 + 9.35251i −0.724593 + 0.300136i −0.714328 0.699811i \(-0.753268\pi\)
−0.0102652 + 0.999947i \(0.503268\pi\)
\(972\) 0 0
\(973\) 7.66900 18.5146i 0.245857 0.593551i
\(974\) 49.0716 4.33629i 1.57236 0.138944i
\(975\) 0 0
\(976\) 26.4401 41.8235i 0.846327 1.33874i
\(977\) 18.3789 + 31.8332i 0.587994 + 1.01844i 0.994495 + 0.104785i \(0.0334155\pi\)
−0.406501 + 0.913650i \(0.633251\pi\)
\(978\) 0 0
\(979\) −9.64203 + 7.39859i −0.308161 + 0.236460i
\(980\) 0.0498252 + 1.09731i 0.00159161 + 0.0350522i
\(981\) 0 0
\(982\) 38.4484 8.55895i 1.22694 0.273127i
\(983\) −37.0629 + 9.93099i −1.18212 + 0.316749i −0.795769 0.605601i \(-0.792933\pi\)
−0.386356 + 0.922350i \(0.626266\pi\)
\(984\) 0 0
\(985\) 0.383743 + 0.102824i 0.0122271 + 0.00327623i
\(986\) −47.5049 2.03265i −1.51286 0.0647327i
\(987\) 0 0
\(988\) 3.21969 37.5548i 0.102432 1.19478i
\(989\) −3.88040 + 9.36813i −0.123390 + 0.297889i
\(990\) 0 0
\(991\) 7.63952i 0.242677i 0.992611 + 0.121339i \(0.0387187\pi\)
−0.992611 + 0.121339i \(0.961281\pi\)
\(992\) 3.06068 + 16.9265i 0.0971766 + 0.537417i
\(993\) 0 0
\(994\) −6.78817 18.5999i −0.215308 0.589954i
\(995\) −0.314220 2.38674i −0.00996145 0.0756647i
\(996\) 0 0
\(997\) −52.3776 6.89564i −1.65881 0.218387i −0.757896 0.652375i \(-0.773773\pi\)
−0.900918 + 0.433988i \(0.857106\pi\)
\(998\) −28.0312 17.8236i −0.887314 0.564195i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.12 368
3.2 odd 2 288.2.bf.a.227.35 yes 368
9.4 even 3 288.2.bf.a.131.19 yes 368
9.5 odd 6 inner 864.2.bn.a.611.28 368
32.11 odd 8 inner 864.2.bn.a.683.28 368
96.11 even 8 288.2.bf.a.11.19 368
288.139 odd 24 288.2.bf.a.203.35 yes 368
288.203 even 24 inner 864.2.bn.a.395.12 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.19 368 96.11 even 8
288.2.bf.a.131.19 yes 368 9.4 even 3
288.2.bf.a.203.35 yes 368 288.139 odd 24
288.2.bf.a.227.35 yes 368 3.2 odd 2
864.2.bn.a.35.12 368 1.1 even 1 trivial
864.2.bn.a.395.12 368 288.203 even 24 inner
864.2.bn.a.611.28 368 9.5 odd 6 inner
864.2.bn.a.683.28 368 32.11 odd 8 inner