Properties

Label 864.2.bn.a.683.25
Level $864$
Weight $2$
Character 864.683
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 683.25
Character \(\chi\) \(=\) 864.683
Dual form 864.2.bn.a.611.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.259191 - 1.39026i) q^{2} +(-1.86564 - 0.720686i) q^{4} +(0.173739 + 1.31968i) q^{5} +(0.0444224 + 0.165787i) q^{7} +(-1.48550 + 2.40693i) q^{8} +(1.87973 + 0.100507i) q^{10} +(0.877753 - 0.673524i) q^{11} +(2.54859 - 3.32139i) q^{13} +(0.242000 - 0.0187881i) q^{14} +(2.96122 + 2.68908i) q^{16} -1.67770 q^{17} +(3.90182 - 1.61619i) q^{19} +(0.626942 - 2.58726i) q^{20} +(-0.708866 - 1.39488i) q^{22} +(-1.65427 - 0.443260i) q^{23} +(3.11825 - 0.835534i) q^{25} +(-3.95702 - 4.40408i) q^{26} +(0.0366040 - 0.341313i) q^{28} +(6.46737 + 0.851445i) q^{29} +(3.09485 - 1.78681i) q^{31} +(4.50604 - 3.41988i) q^{32} +(-0.434846 + 2.33244i) q^{34} +(-0.211068 + 0.0874271i) q^{35} +(3.58091 - 8.64508i) q^{37} +(-1.23560 - 5.84344i) q^{38} +(-3.43447 - 1.54221i) q^{40} +(0.790091 - 2.94866i) q^{41} +(-5.37283 - 7.00201i) q^{43} +(-2.12297 + 0.623968i) q^{44} +(-1.04502 + 2.18497i) q^{46} +(0.598230 + 0.345388i) q^{47} +(6.03667 - 3.48527i) q^{49} +(-0.353383 - 4.55174i) q^{50} +(-7.14844 + 4.35979i) q^{52} +(-4.43574 + 10.7088i) q^{53} +(1.04134 + 1.04134i) q^{55} +(-0.465026 - 0.139354i) q^{56} +(2.86002 - 8.77063i) q^{58} +(-3.24657 + 0.427420i) q^{59} +(-1.28507 + 9.76104i) q^{61} +(-1.68197 - 4.76576i) q^{62} +(-3.58659 - 7.15097i) q^{64} +(4.82597 + 2.78628i) q^{65} +(-5.81460 + 7.57774i) q^{67} +(3.12999 + 1.20910i) q^{68} +(0.0668394 + 0.316099i) q^{70} +(-0.107240 - 0.107240i) q^{71} +(3.93478 - 3.93478i) q^{73} +(-11.0908 - 7.21912i) q^{74} +(-8.44415 + 0.203233i) q^{76} +(0.150653 + 0.115600i) q^{77} +(0.777341 - 1.34639i) q^{79} +(-3.03425 + 4.37507i) q^{80} +(-3.89461 - 1.86270i) q^{82} +(-4.82345 - 0.635020i) q^{83} +(-0.291483 - 2.21403i) q^{85} +(-11.1272 + 5.65476i) q^{86} +(0.317221 + 3.11321i) q^{88} +(10.7307 - 10.7307i) q^{89} +(0.663857 + 0.274979i) q^{91} +(2.76682 + 2.01917i) q^{92} +(0.635235 - 0.742173i) q^{94} +(2.81075 + 4.86836i) q^{95} +(-6.90201 + 11.9546i) q^{97} +(-3.28078 - 9.29588i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.259191 1.39026i 0.183276 0.983061i
\(3\) 0 0
\(4\) −1.86564 0.720686i −0.932820 0.360343i
\(5\) 0.173739 + 1.31968i 0.0776986 + 0.590180i 0.985361 + 0.170479i \(0.0545315\pi\)
−0.907663 + 0.419700i \(0.862135\pi\)
\(6\) 0 0
\(7\) 0.0444224 + 0.165787i 0.0167901 + 0.0626615i 0.973813 0.227352i \(-0.0730068\pi\)
−0.957023 + 0.290014i \(0.906340\pi\)
\(8\) −1.48550 + 2.40693i −0.525203 + 0.850977i
\(9\) 0 0
\(10\) 1.87973 + 0.100507i 0.594423 + 0.0317833i
\(11\) 0.877753 0.673524i 0.264653 0.203075i −0.467907 0.883777i \(-0.654992\pi\)
0.732560 + 0.680702i \(0.238325\pi\)
\(12\) 0 0
\(13\) 2.54859 3.32139i 0.706853 0.921189i −0.292532 0.956256i \(-0.594498\pi\)
0.999385 + 0.0350670i \(0.0111645\pi\)
\(14\) 0.242000 0.0187881i 0.0646773 0.00502134i
\(15\) 0 0
\(16\) 2.96122 + 2.68908i 0.740306 + 0.672271i
\(17\) −1.67770 −0.406902 −0.203451 0.979085i \(-0.565216\pi\)
−0.203451 + 0.979085i \(0.565216\pi\)
\(18\) 0 0
\(19\) 3.90182 1.61619i 0.895139 0.370779i 0.112790 0.993619i \(-0.464021\pi\)
0.782349 + 0.622840i \(0.214021\pi\)
\(20\) 0.626942 2.58726i 0.140188 0.578529i
\(21\) 0 0
\(22\) −0.708866 1.39488i −0.151131 0.297389i
\(23\) −1.65427 0.443260i −0.344939 0.0924261i 0.0821905 0.996617i \(-0.473808\pi\)
−0.427129 + 0.904191i \(0.640475\pi\)
\(24\) 0 0
\(25\) 3.11825 0.835534i 0.623651 0.167107i
\(26\) −3.95702 4.40408i −0.776036 0.863712i
\(27\) 0 0
\(28\) 0.0366040 0.341313i 0.00691751 0.0645020i
\(29\) 6.46737 + 0.851445i 1.20096 + 0.158109i 0.704343 0.709860i \(-0.251242\pi\)
0.496618 + 0.867969i \(0.334575\pi\)
\(30\) 0 0
\(31\) 3.09485 1.78681i 0.555851 0.320920i −0.195628 0.980678i \(-0.562674\pi\)
0.751478 + 0.659758i \(0.229341\pi\)
\(32\) 4.50604 3.41988i 0.796564 0.604555i
\(33\) 0 0
\(34\) −0.434846 + 2.33244i −0.0745755 + 0.400010i
\(35\) −0.211068 + 0.0874271i −0.0356769 + 0.0147779i
\(36\) 0 0
\(37\) 3.58091 8.64508i 0.588698 1.42124i −0.296050 0.955173i \(-0.595669\pi\)
0.884748 0.466070i \(-0.154331\pi\)
\(38\) −1.23560 5.84344i −0.200441 0.947931i
\(39\) 0 0
\(40\) −3.43447 1.54221i −0.543037 0.243844i
\(41\) 0.790091 2.94866i 0.123391 0.460503i −0.876386 0.481610i \(-0.840052\pi\)
0.999777 + 0.0211066i \(0.00671894\pi\)
\(42\) 0 0
\(43\) −5.37283 7.00201i −0.819349 1.06780i −0.996498 0.0836124i \(-0.973354\pi\)
0.177149 0.984184i \(-0.443312\pi\)
\(44\) −2.12297 + 0.623968i −0.320050 + 0.0940667i
\(45\) 0 0
\(46\) −1.04502 + 2.18497i −0.154080 + 0.322157i
\(47\) 0.598230 + 0.345388i 0.0872608 + 0.0503801i 0.542995 0.839736i \(-0.317290\pi\)
−0.455735 + 0.890116i \(0.650623\pi\)
\(48\) 0 0
\(49\) 6.03667 3.48527i 0.862381 0.497896i
\(50\) −0.353383 4.55174i −0.0499760 0.643714i
\(51\) 0 0
\(52\) −7.14844 + 4.35979i −0.991311 + 0.604593i
\(53\) −4.43574 + 10.7088i −0.609296 + 1.47097i 0.254471 + 0.967080i \(0.418099\pi\)
−0.863768 + 0.503891i \(0.831901\pi\)
\(54\) 0 0
\(55\) 1.04134 + 1.04134i 0.140414 + 0.140414i
\(56\) −0.465026 0.139354i −0.0621417 0.0186220i
\(57\) 0 0
\(58\) 2.86002 8.77063i 0.375539 1.15164i
\(59\) −3.24657 + 0.427420i −0.422668 + 0.0556453i −0.338860 0.940837i \(-0.610041\pi\)
−0.0838076 + 0.996482i \(0.526708\pi\)
\(60\) 0 0
\(61\) −1.28507 + 9.76104i −0.164536 + 1.24977i 0.687459 + 0.726223i \(0.258726\pi\)
−0.851995 + 0.523550i \(0.824607\pi\)
\(62\) −1.68197 4.76576i −0.213610 0.605252i
\(63\) 0 0
\(64\) −3.58659 7.15097i −0.448323 0.893871i
\(65\) 4.82597 + 2.78628i 0.598588 + 0.345595i
\(66\) 0 0
\(67\) −5.81460 + 7.57774i −0.710367 + 0.925768i −0.999503 0.0315197i \(-0.989965\pi\)
0.289136 + 0.957288i \(0.406632\pi\)
\(68\) 3.12999 + 1.20910i 0.379567 + 0.146625i
\(69\) 0 0
\(70\) 0.0668394 + 0.316099i 0.00798883 + 0.0377811i
\(71\) −0.107240 0.107240i −0.0127271 0.0127271i 0.700715 0.713442i \(-0.252865\pi\)
−0.713442 + 0.700715i \(0.752865\pi\)
\(72\) 0 0
\(73\) 3.93478 3.93478i 0.460532 0.460532i −0.438298 0.898830i \(-0.644419\pi\)
0.898830 + 0.438298i \(0.144419\pi\)
\(74\) −11.0908 7.21912i −1.28927 0.839206i
\(75\) 0 0
\(76\) −8.44415 + 0.203233i −0.968611 + 0.0233124i
\(77\) 0.150653 + 0.115600i 0.0171685 + 0.0131739i
\(78\) 0 0
\(79\) 0.777341 1.34639i 0.0874576 0.151481i −0.818978 0.573825i \(-0.805459\pi\)
0.906436 + 0.422344i \(0.138792\pi\)
\(80\) −3.03425 + 4.37507i −0.339240 + 0.489148i
\(81\) 0 0
\(82\) −3.89461 1.86270i −0.430088 0.205701i
\(83\) −4.82345 0.635020i −0.529443 0.0697025i −0.138934 0.990302i \(-0.544368\pi\)
−0.390509 + 0.920599i \(0.627701\pi\)
\(84\) 0 0
\(85\) −0.291483 2.21403i −0.0316158 0.240146i
\(86\) −11.1272 + 5.65476i −1.19988 + 0.609769i
\(87\) 0 0
\(88\) 0.317221 + 3.11321i 0.0338159 + 0.331869i
\(89\) 10.7307 10.7307i 1.13745 1.13745i 0.148546 0.988905i \(-0.452541\pi\)
0.988905 0.148546i \(-0.0474594\pi\)
\(90\) 0 0
\(91\) 0.663857 + 0.274979i 0.0695912 + 0.0288256i
\(92\) 2.76682 + 2.01917i 0.288461 + 0.210513i
\(93\) 0 0
\(94\) 0.635235 0.742173i 0.0655195 0.0765493i
\(95\) 2.81075 + 4.86836i 0.288377 + 0.499484i
\(96\) 0 0
\(97\) −6.90201 + 11.9546i −0.700793 + 1.21381i 0.267396 + 0.963587i \(0.413837\pi\)
−0.968189 + 0.250222i \(0.919496\pi\)
\(98\) −3.28078 9.29588i −0.331408 0.939026i
\(99\) 0 0
\(100\) −6.41970 0.688479i −0.641970 0.0688479i
\(101\) 2.41616 1.85399i 0.240417 0.184479i −0.481524 0.876433i \(-0.659917\pi\)
0.721941 + 0.691954i \(0.243250\pi\)
\(102\) 0 0
\(103\) −0.0714267 0.0191387i −0.00703788 0.00188579i 0.255298 0.966862i \(-0.417826\pi\)
−0.262336 + 0.964977i \(0.584493\pi\)
\(104\) 4.20841 + 11.0682i 0.412669 + 1.08533i
\(105\) 0 0
\(106\) 13.7383 + 8.94247i 1.33439 + 0.868569i
\(107\) 10.4670 + 4.33555i 1.01188 + 0.419134i 0.826140 0.563465i \(-0.190532\pi\)
0.185739 + 0.982599i \(0.440532\pi\)
\(108\) 0 0
\(109\) 4.40564 + 10.6362i 0.421984 + 1.01876i 0.981762 + 0.190116i \(0.0608866\pi\)
−0.559778 + 0.828643i \(0.689113\pi\)
\(110\) 1.71763 1.17782i 0.163770 0.112301i
\(111\) 0 0
\(112\) −0.314269 + 0.610386i −0.0296957 + 0.0576761i
\(113\) −2.75339 4.76900i −0.259017 0.448630i 0.706962 0.707251i \(-0.250065\pi\)
−0.965979 + 0.258621i \(0.916732\pi\)
\(114\) 0 0
\(115\) 0.297550 2.26012i 0.0277467 0.210757i
\(116\) −11.4522 6.24944i −1.06331 0.580246i
\(117\) 0 0
\(118\) −0.247260 + 4.62436i −0.0227622 + 0.425707i
\(119\) −0.0745275 0.278141i −0.00683193 0.0254971i
\(120\) 0 0
\(121\) −2.53019 + 9.44281i −0.230018 + 0.858437i
\(122\) 13.2373 + 4.31655i 1.19845 + 0.390802i
\(123\) 0 0
\(124\) −7.06159 + 1.10313i −0.634150 + 0.0990640i
\(125\) 4.19129 + 10.1187i 0.374881 + 0.905042i
\(126\) 0 0
\(127\) 10.3560i 0.918945i −0.888192 0.459473i \(-0.848038\pi\)
0.888192 0.459473i \(-0.151962\pi\)
\(128\) −10.8713 + 3.13281i −0.960897 + 0.276904i
\(129\) 0 0
\(130\) 5.12450 5.98717i 0.449448 0.525110i
\(131\) −12.5469 9.62756i −1.09623 0.841163i −0.107997 0.994151i \(-0.534444\pi\)
−0.988228 + 0.152988i \(0.951110\pi\)
\(132\) 0 0
\(133\) 0.441270 + 0.575075i 0.0382630 + 0.0498653i
\(134\) 9.02793 + 10.0479i 0.779894 + 0.868006i
\(135\) 0 0
\(136\) 2.49222 4.03810i 0.213706 0.346265i
\(137\) 13.6981 3.67040i 1.17031 0.313584i 0.379234 0.925301i \(-0.376188\pi\)
0.791077 + 0.611717i \(0.209521\pi\)
\(138\) 0 0
\(139\) −22.2942 + 2.93509i −1.89097 + 0.248951i −0.984765 0.173891i \(-0.944366\pi\)
−0.906203 + 0.422842i \(0.861032\pi\)
\(140\) 0.456784 0.0109938i 0.0386053 0.000929148i
\(141\) 0 0
\(142\) −0.176887 + 0.121296i −0.0148441 + 0.0101789i
\(143\) 4.63190i 0.387339i
\(144\) 0 0
\(145\) 8.68280i 0.721067i
\(146\) −4.45051 6.49023i −0.368326 0.537135i
\(147\) 0 0
\(148\) −12.9111 + 13.5479i −1.06128 + 1.11363i
\(149\) −14.4913 + 1.90781i −1.18717 + 0.156294i −0.698132 0.715969i \(-0.745985\pi\)
−0.489038 + 0.872263i \(0.662652\pi\)
\(150\) 0 0
\(151\) 22.3710 5.99430i 1.82053 0.487809i 0.823673 0.567065i \(-0.191921\pi\)
0.996854 + 0.0792562i \(0.0252545\pi\)
\(152\) −1.90611 + 11.7922i −0.154606 + 0.956476i
\(153\) 0 0
\(154\) 0.199762 0.179484i 0.0160973 0.0144633i
\(155\) 2.89572 + 3.77377i 0.232590 + 0.303117i
\(156\) 0 0
\(157\) 10.1020 + 7.75154i 0.806227 + 0.618640i 0.927434 0.373987i \(-0.122010\pi\)
−0.121206 + 0.992627i \(0.538676\pi\)
\(158\) −1.67036 1.42968i −0.132886 0.113739i
\(159\) 0 0
\(160\) 5.29603 + 5.35238i 0.418688 + 0.423143i
\(161\) 0.293946i 0.0231662i
\(162\) 0 0
\(163\) 0.0659393 + 0.159192i 0.00516477 + 0.0124689i 0.926441 0.376440i \(-0.122852\pi\)
−0.921276 + 0.388909i \(0.872852\pi\)
\(164\) −3.59908 + 4.93173i −0.281041 + 0.385103i
\(165\) 0 0
\(166\) −2.13304 + 6.54126i −0.165556 + 0.507700i
\(167\) −3.69073 + 13.7740i −0.285598 + 1.06586i 0.662804 + 0.748793i \(0.269366\pi\)
−0.948402 + 0.317072i \(0.897300\pi\)
\(168\) 0 0
\(169\) −1.17167 4.37274i −0.0901285 0.336364i
\(170\) −3.15363 0.168622i −0.241872 0.0129327i
\(171\) 0 0
\(172\) 4.97751 + 16.9354i 0.379532 + 1.29131i
\(173\) −0.461232 + 3.50340i −0.0350668 + 0.266359i 0.964926 + 0.262523i \(0.0845544\pi\)
−0.999993 + 0.00383618i \(0.998779\pi\)
\(174\) 0 0
\(175\) 0.277041 + 0.479849i 0.0209423 + 0.0362731i
\(176\) 4.41038 + 0.365897i 0.332445 + 0.0275806i
\(177\) 0 0
\(178\) −12.1371 17.6998i −0.909717 1.32665i
\(179\) −8.74430 21.1106i −0.653580 1.57788i −0.807546 0.589805i \(-0.799205\pi\)
0.153966 0.988076i \(-0.450795\pi\)
\(180\) 0 0
\(181\) 13.6633 + 5.65954i 1.01559 + 0.420670i 0.827490 0.561480i \(-0.189768\pi\)
0.188098 + 0.982150i \(0.439768\pi\)
\(182\) 0.554358 0.851661i 0.0410917 0.0631293i
\(183\) 0 0
\(184\) 3.52431 3.32324i 0.259815 0.244993i
\(185\) 12.0309 + 3.22367i 0.884530 + 0.237009i
\(186\) 0 0
\(187\) −1.47261 + 1.12997i −0.107688 + 0.0826318i
\(188\) −0.867165 1.07551i −0.0632445 0.0784394i
\(189\) 0 0
\(190\) 7.49681 2.64583i 0.543876 0.191949i
\(191\) −10.9654 + 18.9927i −0.793431 + 1.37426i 0.130400 + 0.991461i \(0.458374\pi\)
−0.923831 + 0.382801i \(0.874960\pi\)
\(192\) 0 0
\(193\) −6.84398 11.8541i −0.492641 0.853278i 0.507324 0.861756i \(-0.330635\pi\)
−0.999964 + 0.00847726i \(0.997302\pi\)
\(194\) 14.8311 + 12.6941i 1.06481 + 0.911384i
\(195\) 0 0
\(196\) −13.7740 + 2.15172i −0.983859 + 0.153694i
\(197\) 16.7997 + 6.95868i 1.19693 + 0.495785i 0.890006 0.455948i \(-0.150700\pi\)
0.306926 + 0.951734i \(0.400700\pi\)
\(198\) 0 0
\(199\) 3.67634 3.67634i 0.260609 0.260609i −0.564693 0.825301i \(-0.691005\pi\)
0.825301 + 0.564693i \(0.191005\pi\)
\(200\) −2.62109 + 8.74659i −0.185339 + 0.618478i
\(201\) 0 0
\(202\) −1.95127 3.83963i −0.137291 0.270155i
\(203\) 0.146138 + 1.11003i 0.0102569 + 0.0779086i
\(204\) 0 0
\(205\) 4.02856 + 0.530370i 0.281367 + 0.0370427i
\(206\) −0.0451210 + 0.0943410i −0.00314373 + 0.00657305i
\(207\) 0 0
\(208\) 16.4785 2.98200i 1.14258 0.206765i
\(209\) 2.33630 4.04658i 0.161605 0.279908i
\(210\) 0 0
\(211\) −4.84408 3.71699i −0.333480 0.255888i 0.428424 0.903578i \(-0.359069\pi\)
−0.761905 + 0.647689i \(0.775735\pi\)
\(212\) 15.9932 16.7820i 1.09842 1.15259i
\(213\) 0 0
\(214\) 8.74049 13.4280i 0.597487 0.917921i
\(215\) 8.30695 8.30695i 0.566529 0.566529i
\(216\) 0 0
\(217\) 0.433710 + 0.433710i 0.0294421 + 0.0294421i
\(218\) 15.9289 3.36818i 1.07884 0.228122i
\(219\) 0 0
\(220\) −1.19228 2.69324i −0.0803837 0.181578i
\(221\) −4.27578 + 5.57231i −0.287620 + 0.374834i
\(222\) 0 0
\(223\) −9.14774 5.28145i −0.612578 0.353672i 0.161396 0.986890i \(-0.448400\pi\)
−0.773974 + 0.633218i \(0.781734\pi\)
\(224\) 0.767139 + 0.595123i 0.0512567 + 0.0397633i
\(225\) 0 0
\(226\) −7.34380 + 2.59183i −0.488503 + 0.172406i
\(227\) −2.88471 + 21.9116i −0.191465 + 1.45432i 0.578211 + 0.815887i \(0.303751\pi\)
−0.769676 + 0.638435i \(0.779582\pi\)
\(228\) 0 0
\(229\) 1.03165 0.135820i 0.0681735 0.00897521i −0.0963623 0.995346i \(-0.530721\pi\)
0.164536 + 0.986371i \(0.447387\pi\)
\(230\) −3.06503 0.999476i −0.202102 0.0659035i
\(231\) 0 0
\(232\) −11.6566 + 14.3017i −0.765296 + 0.938950i
\(233\) −14.9180 14.9180i −0.977311 0.977311i 0.0224377 0.999748i \(-0.492857\pi\)
−0.999748 + 0.0224377i \(0.992857\pi\)
\(234\) 0 0
\(235\) −0.351866 + 0.849481i −0.0229532 + 0.0554140i
\(236\) 6.36497 + 1.54235i 0.414324 + 0.100399i
\(237\) 0 0
\(238\) −0.406004 + 0.0315209i −0.0263173 + 0.00204320i
\(239\) 11.0919 6.40393i 0.717477 0.414236i −0.0963462 0.995348i \(-0.530716\pi\)
0.813823 + 0.581112i \(0.197382\pi\)
\(240\) 0 0
\(241\) 5.66423 + 3.27024i 0.364865 + 0.210655i 0.671213 0.741265i \(-0.265774\pi\)
−0.306348 + 0.951920i \(0.599107\pi\)
\(242\) 12.4721 + 5.96512i 0.801740 + 0.383452i
\(243\) 0 0
\(244\) 9.43212 17.2845i 0.603830 1.10652i
\(245\) 5.64825 + 7.36095i 0.360854 + 0.470274i
\(246\) 0 0
\(247\) 4.57617 17.0785i 0.291174 1.08668i
\(248\) −0.296669 + 10.1034i −0.0188385 + 0.641564i
\(249\) 0 0
\(250\) 15.1539 3.20431i 0.958419 0.202658i
\(251\) −3.69201 + 8.91330i −0.233038 + 0.562603i −0.996532 0.0832121i \(-0.973482\pi\)
0.763494 + 0.645815i \(0.223482\pi\)
\(252\) 0 0
\(253\) −1.75059 + 0.725116i −0.110058 + 0.0455877i
\(254\) −14.3975 2.68418i −0.903380 0.168421i
\(255\) 0 0
\(256\) 1.53767 + 15.9259i 0.0961045 + 0.995371i
\(257\) −0.809834 + 0.467558i −0.0505160 + 0.0291654i −0.525045 0.851074i \(-0.675952\pi\)
0.474529 + 0.880240i \(0.342618\pi\)
\(258\) 0 0
\(259\) 1.59231 + 0.209632i 0.0989414 + 0.0130259i
\(260\) −6.99549 8.67620i −0.433842 0.538075i
\(261\) 0 0
\(262\) −16.6368 + 14.9480i −1.02783 + 0.923492i
\(263\) −6.76551 + 1.81281i −0.417179 + 0.111783i −0.461302 0.887243i \(-0.652617\pi\)
0.0441227 + 0.999026i \(0.485951\pi\)
\(264\) 0 0
\(265\) −14.9029 3.99322i −0.915478 0.245302i
\(266\) 0.913876 0.464425i 0.0560333 0.0284758i
\(267\) 0 0
\(268\) 16.3091 9.94683i 0.996239 0.607599i
\(269\) 25.5646 10.5892i 1.55870 0.645634i 0.573836 0.818970i \(-0.305455\pi\)
0.984863 + 0.173336i \(0.0554548\pi\)
\(270\) 0 0
\(271\) −24.4270 −1.48383 −0.741917 0.670492i \(-0.766083\pi\)
−0.741917 + 0.670492i \(0.766083\pi\)
\(272\) −4.96805 4.51148i −0.301232 0.273549i
\(273\) 0 0
\(274\) −1.55237 19.9953i −0.0937822 1.20796i
\(275\) 2.17431 2.83361i 0.131116 0.170873i
\(276\) 0 0
\(277\) −20.3161 + 15.5891i −1.22068 + 0.936658i −0.999258 0.0385209i \(-0.987735\pi\)
−0.221419 + 0.975179i \(0.571069\pi\)
\(278\) −1.69793 + 31.7554i −0.101835 + 1.90456i
\(279\) 0 0
\(280\) 0.103110 0.637897i 0.00616201 0.0381216i
\(281\) 2.17463 + 8.11585i 0.129728 + 0.484151i 0.999964 0.00848391i \(-0.00270054\pi\)
−0.870236 + 0.492635i \(0.836034\pi\)
\(282\) 0 0
\(283\) 2.46841 + 18.7494i 0.146732 + 1.11454i 0.893375 + 0.449312i \(0.148331\pi\)
−0.746643 + 0.665224i \(0.768336\pi\)
\(284\) 0.122785 + 0.277358i 0.00728595 + 0.0164582i
\(285\) 0 0
\(286\) −6.43955 1.20055i −0.380778 0.0709900i
\(287\) 0.523946 0.0309276
\(288\) 0 0
\(289\) −14.1853 −0.834430
\(290\) 12.0713 + 2.25051i 0.708853 + 0.132154i
\(291\) 0 0
\(292\) −10.1766 + 4.50514i −0.595542 + 0.263644i
\(293\) −3.14809 23.9121i −0.183913 1.39696i −0.795581 0.605847i \(-0.792835\pi\)
0.611668 0.791115i \(-0.290499\pi\)
\(294\) 0 0
\(295\) −1.12812 4.21019i −0.0656814 0.245126i
\(296\) 15.4886 + 21.4612i 0.900259 + 1.24741i
\(297\) 0 0
\(298\) −1.10366 + 20.6411i −0.0639333 + 1.19571i
\(299\) −5.68830 + 4.36479i −0.328963 + 0.252422i
\(300\) 0 0
\(301\) 0.922166 1.20179i 0.0531527 0.0692700i
\(302\) −2.53525 32.6552i −0.145887 1.87909i
\(303\) 0 0
\(304\) 15.9002 + 5.70643i 0.911940 + 0.327286i
\(305\) −13.1047 −0.750375
\(306\) 0 0
\(307\) −0.622170 + 0.257711i −0.0355091 + 0.0147083i −0.400367 0.916355i \(-0.631117\pi\)
0.364858 + 0.931063i \(0.381117\pi\)
\(308\) −0.197753 0.324242i −0.0112680 0.0184754i
\(309\) 0 0
\(310\) 5.99706 3.04767i 0.340610 0.173096i
\(311\) 16.3916 + 4.39213i 0.929485 + 0.249055i 0.691635 0.722247i \(-0.256891\pi\)
0.237850 + 0.971302i \(0.423557\pi\)
\(312\) 0 0
\(313\) −2.49387 + 0.668229i −0.140962 + 0.0377706i −0.328610 0.944466i \(-0.606580\pi\)
0.187648 + 0.982236i \(0.439913\pi\)
\(314\) 13.3950 12.0353i 0.755923 0.679189i
\(315\) 0 0
\(316\) −2.42056 + 1.95167i −0.136167 + 0.109790i
\(317\) −13.1996 1.73775i −0.741361 0.0976020i −0.249620 0.968344i \(-0.580306\pi\)
−0.491740 + 0.870742i \(0.663639\pi\)
\(318\) 0 0
\(319\) 6.25023 3.60857i 0.349945 0.202041i
\(320\) 8.81387 5.97556i 0.492711 0.334044i
\(321\) 0 0
\(322\) −0.408661 0.0761884i −0.0227738 0.00424581i
\(323\) −6.54609 + 2.71148i −0.364234 + 0.150871i
\(324\) 0 0
\(325\) 5.17203 12.4864i 0.286893 0.692620i
\(326\) 0.238409 0.0504116i 0.0132042 0.00279204i
\(327\) 0 0
\(328\) 5.92353 + 6.28192i 0.327072 + 0.346861i
\(329\) −0.0306859 + 0.114522i −0.00169177 + 0.00631377i
\(330\) 0 0
\(331\) 5.84491 + 7.61723i 0.321265 + 0.418681i 0.925869 0.377846i \(-0.123335\pi\)
−0.604603 + 0.796527i \(0.706668\pi\)
\(332\) 8.54117 + 4.66091i 0.468758 + 0.255801i
\(333\) 0 0
\(334\) 18.1928 + 8.70118i 0.995468 + 0.476108i
\(335\) −11.0104 6.35688i −0.601564 0.347313i
\(336\) 0 0
\(337\) −0.454491 + 0.262401i −0.0247577 + 0.0142939i −0.512328 0.858790i \(-0.671217\pi\)
0.487570 + 0.873084i \(0.337883\pi\)
\(338\) −6.38292 + 0.495550i −0.347185 + 0.0269544i
\(339\) 0 0
\(340\) −1.05182 + 4.34065i −0.0570430 + 0.235405i
\(341\) 1.51305 3.65283i 0.0819364 0.197812i
\(342\) 0 0
\(343\) 1.69552 + 1.69552i 0.0915497 + 0.0915497i
\(344\) 24.8347 2.53053i 1.33899 0.136437i
\(345\) 0 0
\(346\) 4.75109 + 1.54928i 0.255420 + 0.0832900i
\(347\) −35.6249 + 4.69010i −1.91244 + 0.251778i −0.990704 0.136033i \(-0.956565\pi\)
−0.921739 + 0.387811i \(0.873231\pi\)
\(348\) 0 0
\(349\) −3.77349 + 28.6625i −0.201990 + 1.53427i 0.527073 + 0.849820i \(0.323290\pi\)
−0.729063 + 0.684447i \(0.760044\pi\)
\(350\) 0.738920 0.260786i 0.0394969 0.0139396i
\(351\) 0 0
\(352\) 1.65183 6.03674i 0.0880426 0.321759i
\(353\) 1.05732 + 0.610443i 0.0562754 + 0.0324906i 0.527874 0.849323i \(-0.322989\pi\)
−0.471598 + 0.881813i \(0.656323\pi\)
\(354\) 0 0
\(355\) 0.122891 0.160155i 0.00652238 0.00850013i
\(356\) −27.7531 + 12.2861i −1.47091 + 0.651165i
\(357\) 0 0
\(358\) −31.6157 + 6.68515i −1.67094 + 0.353321i
\(359\) −6.44282 6.44282i −0.340039 0.340039i 0.516343 0.856382i \(-0.327293\pi\)
−0.856382 + 0.516343i \(0.827293\pi\)
\(360\) 0 0
\(361\) −0.822894 + 0.822894i −0.0433102 + 0.0433102i
\(362\) 11.4096 17.5287i 0.599678 0.921287i
\(363\) 0 0
\(364\) −1.04034 0.991444i −0.0545289 0.0519658i
\(365\) 5.87629 + 4.50903i 0.307579 + 0.236014i
\(366\) 0 0
\(367\) −0.917382 + 1.58895i −0.0478869 + 0.0829426i −0.888975 0.457955i \(-0.848582\pi\)
0.841088 + 0.540898i \(0.181915\pi\)
\(368\) −3.70669 5.76105i −0.193225 0.300316i
\(369\) 0 0
\(370\) 7.60004 15.8905i 0.395107 0.826109i
\(371\) −1.97243 0.259675i −0.102403 0.0134817i
\(372\) 0 0
\(373\) −1.58151 12.0128i −0.0818876 0.621998i −0.982348 0.187061i \(-0.940104\pi\)
0.900461 0.434937i \(-0.143229\pi\)
\(374\) 1.18927 + 2.34019i 0.0614955 + 0.121008i
\(375\) 0 0
\(376\) −1.71999 + 0.926822i −0.0887019 + 0.0477972i
\(377\) 19.3107 19.3107i 0.994551 0.994551i
\(378\) 0 0
\(379\) −28.0488 11.6182i −1.44077 0.596786i −0.480784 0.876839i \(-0.659648\pi\)
−0.959985 + 0.280053i \(0.909648\pi\)
\(380\) −1.73528 11.1083i −0.0890182 0.569843i
\(381\) 0 0
\(382\) 23.5626 + 20.1675i 1.20557 + 1.03186i
\(383\) −1.29677 2.24608i −0.0662620 0.114769i 0.830991 0.556286i \(-0.187774\pi\)
−0.897253 + 0.441517i \(0.854441\pi\)
\(384\) 0 0
\(385\) −0.126381 + 0.218899i −0.00644098 + 0.0111561i
\(386\) −18.2542 + 6.44242i −0.929114 + 0.327910i
\(387\) 0 0
\(388\) 21.4922 17.3288i 1.09110 0.879739i
\(389\) −27.4948 + 21.0975i −1.39404 + 1.06969i −0.406274 + 0.913751i \(0.633172\pi\)
−0.987767 + 0.155934i \(0.950161\pi\)
\(390\) 0 0
\(391\) 2.77537 + 0.743658i 0.140356 + 0.0376084i
\(392\) −0.578669 + 19.7072i −0.0292272 + 0.995363i
\(393\) 0 0
\(394\) 14.0287 21.5524i 0.706757 1.08579i
\(395\) 1.91187 + 0.791921i 0.0961964 + 0.0398458i
\(396\) 0 0
\(397\) 7.92586 + 19.1347i 0.397788 + 0.960344i 0.988190 + 0.153235i \(0.0489691\pi\)
−0.590402 + 0.807109i \(0.701031\pi\)
\(398\) −4.15818 6.06394i −0.208431 0.303958i
\(399\) 0 0
\(400\) 11.4807 + 5.91104i 0.574033 + 0.295552i
\(401\) −9.24072 16.0054i −0.461460 0.799271i 0.537574 0.843216i \(-0.319341\pi\)
−0.999034 + 0.0439449i \(0.986007\pi\)
\(402\) 0 0
\(403\) 1.95281 14.8331i 0.0972763 0.738887i
\(404\) −5.84383 + 1.71758i −0.290741 + 0.0854526i
\(405\) 0 0
\(406\) 1.58110 + 0.0845401i 0.0784688 + 0.00419565i
\(407\) −2.67951 10.0001i −0.132819 0.495686i
\(408\) 0 0
\(409\) 6.21012 23.1765i 0.307071 1.14600i −0.624078 0.781362i \(-0.714525\pi\)
0.931148 0.364641i \(-0.118808\pi\)
\(410\) 1.78152 5.46328i 0.0879830 0.269812i
\(411\) 0 0
\(412\) 0.119463 + 0.0871822i 0.00588554 + 0.00429516i
\(413\) −0.215081 0.519252i −0.0105834 0.0255507i
\(414\) 0 0
\(415\) 6.47575i 0.317882i
\(416\) 0.125320 23.6822i 0.00614432 1.16112i
\(417\) 0 0
\(418\) −5.02025 4.29689i −0.245548 0.210168i
\(419\) −26.6138 20.4215i −1.30017 0.997653i −0.999028 0.0440730i \(-0.985967\pi\)
−0.301139 0.953580i \(-0.597367\pi\)
\(420\) 0 0
\(421\) −2.04942 2.67086i −0.0998826 0.130170i 0.740738 0.671794i \(-0.234476\pi\)
−0.840620 + 0.541625i \(0.817809\pi\)
\(422\) −6.42313 + 5.77111i −0.312673 + 0.280933i
\(423\) 0 0
\(424\) −19.1861 26.5845i −0.931758 1.29106i
\(425\) −5.23150 + 1.40178i −0.253765 + 0.0679962i
\(426\) 0 0
\(427\) −1.67534 + 0.220562i −0.0810752 + 0.0106738i
\(428\) −16.4030 15.6320i −0.792868 0.755600i
\(429\) 0 0
\(430\) −9.39572 13.7019i −0.453102 0.660764i
\(431\) 20.6971i 0.996944i 0.866906 + 0.498472i \(0.166105\pi\)
−0.866906 + 0.498472i \(0.833895\pi\)
\(432\) 0 0
\(433\) 2.00407i 0.0963096i 0.998840 + 0.0481548i \(0.0153341\pi\)
−0.998840 + 0.0481548i \(0.984666\pi\)
\(434\) 0.715382 0.490555i 0.0343395 0.0235474i
\(435\) 0 0
\(436\) −0.554003 23.0183i −0.0265319 1.10238i
\(437\) −7.17105 + 0.944086i −0.343038 + 0.0451618i
\(438\) 0 0
\(439\) 14.8118 3.96881i 0.706928 0.189421i 0.112597 0.993641i \(-0.464083\pi\)
0.594332 + 0.804220i \(0.297417\pi\)
\(440\) −4.05333 + 0.959517i −0.193235 + 0.0457432i
\(441\) 0 0
\(442\) 6.63870 + 7.38874i 0.315771 + 0.351446i
\(443\) 3.23155 + 4.21144i 0.153536 + 0.200091i 0.863788 0.503856i \(-0.168086\pi\)
−0.710252 + 0.703947i \(0.751419\pi\)
\(444\) 0 0
\(445\) 16.0255 + 12.2968i 0.759679 + 0.582922i
\(446\) −9.71360 + 11.3488i −0.459952 + 0.537382i
\(447\) 0 0
\(448\) 1.02621 0.912272i 0.0484839 0.0431008i
\(449\) 12.3646i 0.583520i 0.956492 + 0.291760i \(0.0942408\pi\)
−0.956492 + 0.291760i \(0.905759\pi\)
\(450\) 0 0
\(451\) −1.29249 3.12034i −0.0608609 0.146931i
\(452\) 1.69987 + 10.8816i 0.0799551 + 0.511826i
\(453\) 0 0
\(454\) 29.7151 + 9.68979i 1.39460 + 0.454764i
\(455\) −0.247546 + 0.923855i −0.0116051 + 0.0433110i
\(456\) 0 0
\(457\) −6.36361 23.7493i −0.297677 1.11095i −0.939068 0.343731i \(-0.888309\pi\)
0.641391 0.767214i \(-0.278358\pi\)
\(458\) 0.0785710 1.46947i 0.00367138 0.0686636i
\(459\) 0 0
\(460\) −2.18396 + 4.00213i −0.101828 + 0.186600i
\(461\) 2.35475 17.8861i 0.109672 0.833038i −0.844872 0.534968i \(-0.820324\pi\)
0.954544 0.298070i \(-0.0963429\pi\)
\(462\) 0 0
\(463\) 11.6229 + 20.1315i 0.540164 + 0.935592i 0.998894 + 0.0470159i \(0.0149711\pi\)
−0.458730 + 0.888576i \(0.651696\pi\)
\(464\) 16.8617 + 19.9126i 0.782785 + 0.924420i
\(465\) 0 0
\(466\) −24.6065 + 16.8733i −1.13987 + 0.781639i
\(467\) −12.3974 29.9300i −0.573683 1.38499i −0.898398 0.439181i \(-0.855269\pi\)
0.324715 0.945812i \(-0.394731\pi\)
\(468\) 0 0
\(469\) −1.51459 0.627362i −0.0699371 0.0289689i
\(470\) 1.08980 + 0.709364i 0.0502686 + 0.0327205i
\(471\) 0 0
\(472\) 3.79401 8.44920i 0.174634 0.388906i
\(473\) −9.43204 2.52731i −0.433686 0.116206i
\(474\) 0 0
\(475\) 10.8165 8.29978i 0.496294 0.380820i
\(476\) −0.0614106 + 0.572621i −0.00281475 + 0.0262460i
\(477\) 0 0
\(478\) −6.02818 17.0805i −0.275723 0.781244i
\(479\) 21.1446 36.6236i 0.966123 1.67337i 0.259554 0.965729i \(-0.416424\pi\)
0.706568 0.707645i \(-0.250242\pi\)
\(480\) 0 0
\(481\) −19.5874 33.9264i −0.893110 1.54691i
\(482\) 6.01461 7.02713i 0.273958 0.320077i
\(483\) 0 0
\(484\) 11.5257 15.7934i 0.523897 0.717882i
\(485\) −16.9755 7.03146i −0.770816 0.319282i
\(486\) 0 0
\(487\) −8.93552 + 8.93552i −0.404907 + 0.404907i −0.879958 0.475051i \(-0.842430\pi\)
0.475051 + 0.879958i \(0.342430\pi\)
\(488\) −21.5851 17.5931i −0.977114 0.796401i
\(489\) 0 0
\(490\) 11.6976 5.94464i 0.528444 0.268552i
\(491\) 0.845170 + 6.41971i 0.0381420 + 0.289717i 0.999876 + 0.0157332i \(0.00500824\pi\)
−0.961734 + 0.273984i \(0.911658\pi\)
\(492\) 0 0
\(493\) −10.8503 1.42847i −0.488674 0.0643351i
\(494\) −22.5574 10.7887i −1.01491 0.485404i
\(495\) 0 0
\(496\) 13.9694 + 3.03115i 0.627245 + 0.136103i
\(497\) 0.0130151 0.0225429i 0.000583808 0.00101119i
\(498\) 0 0
\(499\) 26.2915 + 20.1742i 1.17697 + 0.903119i 0.996754 0.0805085i \(-0.0256544\pi\)
0.180214 + 0.983627i \(0.442321\pi\)
\(500\) −0.527049 21.8984i −0.0235703 0.979327i
\(501\) 0 0
\(502\) 11.4349 + 7.44310i 0.510363 + 0.332202i
\(503\) 14.8092 14.8092i 0.660309 0.660309i −0.295144 0.955453i \(-0.595368\pi\)
0.955453 + 0.295144i \(0.0953676\pi\)
\(504\) 0 0
\(505\) 2.86645 + 2.86645i 0.127556 + 0.127556i
\(506\) 0.554363 + 2.62171i 0.0246444 + 0.116549i
\(507\) 0 0
\(508\) −7.46342 + 19.3205i −0.331136 + 0.857211i
\(509\) 1.73239 2.25769i 0.0767867 0.100070i −0.753381 0.657585i \(-0.771578\pi\)
0.830167 + 0.557514i \(0.188245\pi\)
\(510\) 0 0
\(511\) 0.827127 + 0.477542i 0.0365899 + 0.0211252i
\(512\) 22.5397 + 1.99011i 0.996125 + 0.0879511i
\(513\) 0 0
\(514\) 0.440124 + 1.24707i 0.0194130 + 0.0550057i
\(515\) 0.0128474 0.0975856i 0.000566124 0.00430014i
\(516\) 0 0
\(517\) 0.757726 0.0997565i 0.0333247 0.00438728i
\(518\) 0.704156 2.15939i 0.0309388 0.0948782i
\(519\) 0 0
\(520\) −13.8753 + 7.47675i −0.608474 + 0.327877i
\(521\) −17.3570 17.3570i −0.760426 0.760426i 0.215973 0.976399i \(-0.430708\pi\)
−0.976399 + 0.215973i \(0.930708\pi\)
\(522\) 0 0
\(523\) −11.8890 + 28.7025i −0.519868 + 1.25507i 0.418115 + 0.908394i \(0.362691\pi\)
−0.937984 + 0.346679i \(0.887309\pi\)
\(524\) 16.4695 + 27.0039i 0.719473 + 1.17967i
\(525\) 0 0
\(526\) 0.766717 + 9.87567i 0.0334304 + 0.430600i
\(527\) −5.19223 + 2.99773i −0.226177 + 0.130583i
\(528\) 0 0
\(529\) −17.3785 10.0335i −0.755585 0.436237i
\(530\) −9.41432 + 19.6839i −0.408932 + 0.855014i
\(531\) 0 0
\(532\) −0.408803 1.39090i −0.0177238 0.0603031i
\(533\) −7.78004 10.1391i −0.336991 0.439175i
\(534\) 0 0
\(535\) −3.90303 + 14.5663i −0.168743 + 0.629756i
\(536\) −9.60147 25.2520i −0.414721 1.09072i
\(537\) 0 0
\(538\) −8.09560 38.2860i −0.349026 1.65063i
\(539\) 2.95129 7.12505i 0.127121 0.306898i
\(540\) 0 0
\(541\) −21.3742 + 8.85350i −0.918950 + 0.380642i −0.791476 0.611200i \(-0.790687\pi\)
−0.127474 + 0.991842i \(0.540687\pi\)
\(542\) −6.33126 + 33.9598i −0.271951 + 1.45870i
\(543\) 0 0
\(544\) −7.55980 + 5.73754i −0.324124 + 0.245995i
\(545\) −13.2709 + 7.66197i −0.568463 + 0.328203i
\(546\) 0 0
\(547\) −26.1850 3.44731i −1.11959 0.147397i −0.452064 0.891985i \(-0.649312\pi\)
−0.667523 + 0.744589i \(0.732646\pi\)
\(548\) −28.2010 3.02441i −1.20469 0.129196i
\(549\) 0 0
\(550\) −3.37589 3.75730i −0.143949 0.160212i
\(551\) 26.6106 7.13029i 1.13365 0.303761i
\(552\) 0 0
\(553\) 0.257745 + 0.0690627i 0.0109604 + 0.00293684i
\(554\) 16.4071 + 32.2852i 0.697072 + 1.37167i
\(555\) 0 0
\(556\) 43.7082 + 10.5913i 1.85364 + 0.449171i
\(557\) −4.58647 + 1.89978i −0.194335 + 0.0804962i −0.477728 0.878508i \(-0.658540\pi\)
0.283394 + 0.959004i \(0.408540\pi\)
\(558\) 0 0
\(559\) −36.9496 −1.56280
\(560\) −0.860117 0.308687i −0.0363466 0.0130444i
\(561\) 0 0
\(562\) 11.8468 0.919747i 0.499726 0.0387972i
\(563\) 15.6318 20.3717i 0.658801 0.858566i −0.337777 0.941226i \(-0.609675\pi\)
0.996578 + 0.0826601i \(0.0263416\pi\)
\(564\) 0 0
\(565\) 5.81520 4.46216i 0.244647 0.187724i
\(566\) 26.7063 + 1.42796i 1.12255 + 0.0600217i
\(567\) 0 0
\(568\) 0.417424 0.0988141i 0.0175147 0.00414615i
\(569\) −1.71882 6.41471i −0.0720566 0.268919i 0.920493 0.390759i \(-0.127787\pi\)
−0.992550 + 0.121840i \(0.961121\pi\)
\(570\) 0 0
\(571\) 1.62885 + 12.3724i 0.0681654 + 0.517767i 0.991131 + 0.132886i \(0.0424244\pi\)
−0.922966 + 0.384882i \(0.874242\pi\)
\(572\) −3.33815 + 8.64146i −0.139575 + 0.361318i
\(573\) 0 0
\(574\) 0.135802 0.728421i 0.00566828 0.0304037i
\(575\) −5.52879 −0.230566
\(576\) 0 0
\(577\) 4.77050 0.198599 0.0992993 0.995058i \(-0.468340\pi\)
0.0992993 + 0.995058i \(0.468340\pi\)
\(578\) −3.67671 + 19.7213i −0.152931 + 0.820296i
\(579\) 0 0
\(580\) 6.25758 16.1990i 0.259832 0.672626i
\(581\) −0.108992 0.827873i −0.00452173 0.0343460i
\(582\) 0 0
\(583\) 3.31916 + 12.3873i 0.137466 + 0.513029i
\(584\) 3.62562 + 15.3158i 0.150029 + 0.633774i
\(585\) 0 0
\(586\) −34.0600 1.82116i −1.40701 0.0752313i
\(587\) 15.6570 12.0140i 0.646232 0.495872i −0.232868 0.972508i \(-0.574811\pi\)
0.879100 + 0.476637i \(0.158144\pi\)
\(588\) 0 0
\(589\) 9.18771 11.9737i 0.378573 0.493366i
\(590\) −6.14565 + 0.477129i −0.253012 + 0.0196431i
\(591\) 0 0
\(592\) 33.8512 15.9706i 1.39128 0.656389i
\(593\) −15.1394 −0.621700 −0.310850 0.950459i \(-0.600614\pi\)
−0.310850 + 0.950459i \(0.600614\pi\)
\(594\) 0 0
\(595\) 0.354109 0.146677i 0.0145170 0.00601315i
\(596\) 28.4104 + 6.88437i 1.16374 + 0.281995i
\(597\) 0 0
\(598\) 4.59382 + 9.03953i 0.187855 + 0.369654i
\(599\) 45.1048 + 12.0858i 1.84293 + 0.493812i 0.999085 0.0427730i \(-0.0136192\pi\)
0.843846 + 0.536585i \(0.180286\pi\)
\(600\) 0 0
\(601\) 39.8381 10.6746i 1.62503 0.435426i 0.672557 0.740045i \(-0.265196\pi\)
0.952474 + 0.304619i \(0.0985292\pi\)
\(602\) −1.43178 1.59354i −0.0583550 0.0649479i
\(603\) 0 0
\(604\) −46.0563 4.93929i −1.87400 0.200977i
\(605\) −12.9011 1.69846i −0.524504 0.0690523i
\(606\) 0 0
\(607\) −10.2159 + 5.89815i −0.414651 + 0.239399i −0.692786 0.721143i \(-0.743617\pi\)
0.278135 + 0.960542i \(0.410284\pi\)
\(608\) 12.0546 20.6264i 0.488879 0.836509i
\(609\) 0 0
\(610\) −3.39664 + 18.2190i −0.137526 + 0.737665i
\(611\) 2.67182 1.10670i 0.108090 0.0447724i
\(612\) 0 0
\(613\) 9.99410 24.1279i 0.403658 0.974516i −0.583113 0.812391i \(-0.698165\pi\)
0.986770 0.162125i \(-0.0518347\pi\)
\(614\) 0.197024 + 0.931773i 0.00795125 + 0.0376033i
\(615\) 0 0
\(616\) −0.502036 + 0.190887i −0.0202276 + 0.00769106i
\(617\) −0.938379 + 3.50208i −0.0377777 + 0.140988i −0.982239 0.187635i \(-0.939918\pi\)
0.944461 + 0.328623i \(0.106585\pi\)
\(618\) 0 0
\(619\) 29.8563 + 38.9094i 1.20002 + 1.56390i 0.734035 + 0.679111i \(0.237635\pi\)
0.465989 + 0.884791i \(0.345699\pi\)
\(620\) −2.68266 9.12740i −0.107738 0.366565i
\(621\) 0 0
\(622\) 10.3548 21.6502i 0.415188 0.868095i
\(623\) 2.25569 + 1.30232i 0.0903723 + 0.0521765i
\(624\) 0 0
\(625\) 1.35351 0.781451i 0.0541405 0.0312581i
\(626\) 0.282623 + 3.64032i 0.0112959 + 0.145496i
\(627\) 0 0
\(628\) −13.2603 21.7420i −0.529142 0.867598i
\(629\) −6.00770 + 14.5039i −0.239543 + 0.578307i
\(630\) 0 0
\(631\) 22.5852 + 22.5852i 0.899104 + 0.899104i 0.995357 0.0962531i \(-0.0306858\pi\)
−0.0962531 + 0.995357i \(0.530686\pi\)
\(632\) 2.08593 + 3.87107i 0.0829739 + 0.153983i
\(633\) 0 0
\(634\) −5.83714 + 17.9004i −0.231822 + 0.710915i
\(635\) 13.6666 1.79924i 0.542343 0.0714008i
\(636\) 0 0
\(637\) 3.80906 28.9327i 0.150920 1.14635i
\(638\) −3.39684 9.62474i −0.134482 0.381047i
\(639\) 0 0
\(640\) −6.02309 13.8024i −0.238084 0.545587i
\(641\) 40.3410 + 23.2909i 1.59337 + 0.919935i 0.992723 + 0.120424i \(0.0384255\pi\)
0.600652 + 0.799511i \(0.294908\pi\)
\(642\) 0 0
\(643\) 5.47177 7.13095i 0.215786 0.281217i −0.672901 0.739733i \(-0.734952\pi\)
0.888686 + 0.458515i \(0.151619\pi\)
\(644\) −0.211843 + 0.548398i −0.00834779 + 0.0216099i
\(645\) 0 0
\(646\) 2.07297 + 9.80355i 0.0815598 + 0.385716i
\(647\) 26.5185 + 26.5185i 1.04255 + 1.04255i 0.999054 + 0.0434948i \(0.0138492\pi\)
0.0434948 + 0.999054i \(0.486151\pi\)
\(648\) 0 0
\(649\) −2.56181 + 2.56181i −0.100560 + 0.100560i
\(650\) −16.0188 10.4268i −0.628308 0.408974i
\(651\) 0 0
\(652\) −0.00829178 0.344516i −0.000324731 0.0134923i
\(653\) −0.0661667 0.0507715i −0.00258930 0.00198684i 0.607466 0.794346i \(-0.292186\pi\)
−0.610055 + 0.792359i \(0.708853\pi\)
\(654\) 0 0
\(655\) 10.5254 18.2306i 0.411262 0.712327i
\(656\) 10.2688 6.60701i 0.400930 0.257961i
\(657\) 0 0
\(658\) 0.151261 + 0.0723444i 0.00589677 + 0.00282028i
\(659\) 25.0738 + 3.30103i 0.976738 + 0.128590i 0.601962 0.798525i \(-0.294386\pi\)
0.374777 + 0.927115i \(0.377719\pi\)
\(660\) 0 0
\(661\) 3.99309 + 30.3305i 0.155313 + 1.17972i 0.874543 + 0.484948i \(0.161161\pi\)
−0.719230 + 0.694772i \(0.755505\pi\)
\(662\) 12.1049 6.15161i 0.470469 0.239089i
\(663\) 0 0
\(664\) 8.69368 10.6664i 0.337380 0.413936i
\(665\) −0.682249 + 0.682249i −0.0264565 + 0.0264565i
\(666\) 0 0
\(667\) −10.3214 4.27525i −0.399644 0.165538i
\(668\) 16.8123 23.0375i 0.650488 0.891347i
\(669\) 0 0
\(670\) −11.6915 + 13.6597i −0.451683 + 0.527720i
\(671\) 5.44632 + 9.43331i 0.210253 + 0.364169i
\(672\) 0 0
\(673\) −14.0254 + 24.2927i −0.540640 + 0.936415i 0.458228 + 0.888835i \(0.348484\pi\)
−0.998867 + 0.0475804i \(0.984849\pi\)
\(674\) 0.247005 + 0.699873i 0.00951426 + 0.0269581i
\(675\) 0 0
\(676\) −0.965456 + 9.00236i −0.0371329 + 0.346244i
\(677\) −28.7439 + 22.0560i −1.10472 + 0.847679i −0.989337 0.145642i \(-0.953475\pi\)
−0.115380 + 0.993321i \(0.536809\pi\)
\(678\) 0 0
\(679\) −2.28852 0.613207i −0.0878254 0.0235327i
\(680\) 5.76201 + 2.58736i 0.220963 + 0.0992209i
\(681\) 0 0
\(682\) −4.68621 3.05032i −0.179444 0.116803i
\(683\) −2.07795 0.860717i −0.0795107 0.0329344i 0.342574 0.939491i \(-0.388701\pi\)
−0.422084 + 0.906557i \(0.638701\pi\)
\(684\) 0 0
\(685\) 7.22367 + 17.4395i 0.276002 + 0.666328i
\(686\) 2.79668 1.91775i 0.106778 0.0732201i
\(687\) 0 0
\(688\) 2.91884 35.1825i 0.111280 1.34132i
\(689\) 24.2633 + 42.0253i 0.924359 + 1.60104i
\(690\) 0 0
\(691\) 4.92842 37.4350i 0.187486 1.42410i −0.596149 0.802874i \(-0.703303\pi\)
0.783634 0.621222i \(-0.213364\pi\)
\(692\) 3.38535 6.20368i 0.128692 0.235829i
\(693\) 0 0
\(694\) −2.71320 + 50.7434i −0.102992 + 1.92619i
\(695\) −7.74676 28.9113i −0.293851 1.09667i
\(696\) 0 0
\(697\) −1.32554 + 4.94697i −0.0502083 + 0.187380i
\(698\) 38.8702 + 12.6752i 1.47126 + 0.479763i
\(699\) 0 0
\(700\) −0.171038 1.09488i −0.00646462 0.0413827i
\(701\) 17.1061 + 41.2978i 0.646089 + 1.55980i 0.818334 + 0.574743i \(0.194898\pi\)
−0.172245 + 0.985054i \(0.555102\pi\)
\(702\) 0 0
\(703\) 39.5190i 1.49049i
\(704\) −7.96449 3.86114i −0.300173 0.145522i
\(705\) 0 0
\(706\) 1.12272 1.31172i 0.0422542 0.0493674i
\(707\) 0.414698 + 0.318209i 0.0155963 + 0.0119675i
\(708\) 0 0
\(709\) −12.8537 16.7512i −0.482730 0.629106i 0.486966 0.873421i \(-0.338104\pi\)
−0.969696 + 0.244315i \(0.921437\pi\)
\(710\) −0.190804 0.212361i −0.00716076 0.00796977i
\(711\) 0 0
\(712\) 9.88756 + 41.7684i 0.370552 + 1.56534i
\(713\) −5.91173 + 1.58404i −0.221396 + 0.0593228i
\(714\) 0 0
\(715\) 6.11264 0.804744i 0.228600 0.0300957i
\(716\) 1.09958 + 45.6867i 0.0410934 + 1.70739i
\(717\) 0 0
\(718\) −10.6271 + 7.28727i −0.396600 + 0.271958i
\(719\) 24.2360i 0.903851i 0.892056 + 0.451926i \(0.149263\pi\)
−0.892056 + 0.451926i \(0.850737\pi\)
\(720\) 0 0
\(721\) 0.0126918i 0.000472666i
\(722\) 0.930748 + 1.35732i 0.0346389 + 0.0505143i
\(723\) 0 0
\(724\) −21.4121 20.4056i −0.795775 0.758370i
\(725\) 20.8783 2.74868i 0.775401 0.102084i
\(726\) 0 0
\(727\) −5.52453 + 1.48029i −0.204893 + 0.0549010i −0.359806 0.933027i \(-0.617157\pi\)
0.154912 + 0.987928i \(0.450490\pi\)
\(728\) −1.64801 + 1.18938i −0.0610794 + 0.0440812i
\(729\) 0 0
\(730\) 7.79181 7.00086i 0.288388 0.259113i
\(731\) 9.01401 + 11.7473i 0.333395 + 0.434489i
\(732\) 0 0
\(733\) −14.8205 11.3722i −0.547408 0.420041i 0.297682 0.954665i \(-0.403787\pi\)
−0.845090 + 0.534624i \(0.820453\pi\)
\(734\) 1.97128 + 1.68724i 0.0727612 + 0.0622772i
\(735\) 0 0
\(736\) −8.97010 + 3.66005i −0.330642 + 0.134911i
\(737\) 10.5677i 0.389265i
\(738\) 0 0
\(739\) 12.0562 + 29.1063i 0.443496 + 1.07069i 0.974714 + 0.223458i \(0.0717346\pi\)
−0.531218 + 0.847235i \(0.678265\pi\)
\(740\) −20.1221 14.6847i −0.739702 0.539821i
\(741\) 0 0
\(742\) −0.872252 + 2.67488i −0.0320214 + 0.0981979i
\(743\) −2.55767 + 9.54537i −0.0938319 + 0.350186i −0.996840 0.0794385i \(-0.974687\pi\)
0.903008 + 0.429624i \(0.141354\pi\)
\(744\) 0 0
\(745\) −5.03540 18.7924i −0.184483 0.688500i
\(746\) −17.1108 0.914898i −0.626470 0.0334968i
\(747\) 0 0
\(748\) 3.56171 1.04683i 0.130229 0.0382760i
\(749\) −0.253810 + 1.92788i −0.00927401 + 0.0704431i
\(750\) 0 0
\(751\) 3.85776 + 6.68183i 0.140772 + 0.243823i 0.927787 0.373109i \(-0.121708\pi\)
−0.787016 + 0.616933i \(0.788375\pi\)
\(752\) 0.842714 + 2.63146i 0.0307306 + 0.0959595i
\(753\) 0 0
\(754\) −21.8417 31.8520i −0.795428 1.15998i
\(755\) 11.7973 + 28.4812i 0.429347 + 1.03654i
\(756\) 0 0
\(757\) −8.34229 3.45549i −0.303206 0.125592i 0.225893 0.974152i \(-0.427470\pi\)
−0.529099 + 0.848560i \(0.677470\pi\)
\(758\) −23.4223 + 35.9837i −0.850736 + 1.30699i
\(759\) 0 0
\(760\) −15.8932 0.466677i −0.576506 0.0169282i
\(761\) 18.5256 + 4.96391i 0.671551 + 0.179942i 0.578454 0.815715i \(-0.303656\pi\)
0.0930979 + 0.995657i \(0.470323\pi\)
\(762\) 0 0
\(763\) −1.56762 + 1.20288i −0.0567518 + 0.0435472i
\(764\) 34.1453 27.5309i 1.23533 0.996032i
\(765\) 0 0
\(766\) −3.45874 + 1.22069i −0.124969 + 0.0441052i
\(767\) −6.85457 + 11.8725i −0.247504 + 0.428690i
\(768\) 0 0
\(769\) −3.01344 5.21944i −0.108668 0.188218i 0.806563 0.591148i \(-0.201325\pi\)
−0.915231 + 0.402930i \(0.867992\pi\)
\(770\) 0.271569 + 0.232439i 0.00978666 + 0.00837652i
\(771\) 0 0
\(772\) 4.22530 + 27.0479i 0.152072 + 0.973475i
\(773\) −24.7943 10.2701i −0.891790 0.369391i −0.110732 0.993850i \(-0.535320\pi\)
−0.781058 + 0.624459i \(0.785320\pi\)
\(774\) 0 0
\(775\) 8.15758 8.15758i 0.293029 0.293029i
\(776\) −18.5210 34.3712i −0.664865 1.23385i
\(777\) 0 0
\(778\) 22.2046 + 43.6932i 0.796072 + 1.56648i
\(779\) −1.68279 12.7821i −0.0602923 0.457965i
\(780\) 0 0
\(781\) −0.166359 0.0219016i −0.00595280 0.000783701i
\(782\) 1.75323 3.66573i 0.0626953 0.131086i
\(783\) 0 0
\(784\) 27.2481 + 5.91243i 0.973146 + 0.211158i
\(785\) −8.47445 + 14.6782i −0.302466 + 0.523886i
\(786\) 0 0
\(787\) 11.6629 + 8.94929i 0.415739 + 0.319008i 0.795363 0.606133i \(-0.207280\pi\)
−0.379624 + 0.925141i \(0.623947\pi\)
\(788\) −26.3272 25.0897i −0.937869 0.893785i
\(789\) 0 0
\(790\) 1.59651 2.45273i 0.0568014 0.0872642i
\(791\) 0.668325 0.668325i 0.0237629 0.0237629i
\(792\) 0 0
\(793\) 29.1451 + 29.1451i 1.03497 + 1.03497i
\(794\) 28.6565 6.05944i 1.01698 0.215042i
\(795\) 0 0
\(796\) −9.50821 + 4.20923i −0.337009 + 0.149192i
\(797\) −3.11638 + 4.06134i −0.110388 + 0.143860i −0.845280 0.534324i \(-0.820566\pi\)
0.734892 + 0.678184i \(0.237233\pi\)
\(798\) 0 0
\(799\) −1.00365 0.579458i −0.0355066 0.0204998i
\(800\) 11.1936 14.4290i 0.395752 0.510142i
\(801\) 0 0
\(802\) −24.6468 + 8.69853i −0.870308 + 0.307156i
\(803\) 0.803599 6.10394i 0.0283584 0.215403i
\(804\) 0 0
\(805\) 0.387915 0.0510700i 0.0136722 0.00179998i
\(806\) −20.1156 6.55951i −0.708543 0.231049i
\(807\) 0 0
\(808\) 0.873203 + 8.56962i 0.0307192 + 0.301478i
\(809\) −25.1234 25.1234i −0.883292 0.883292i 0.110576 0.993868i \(-0.464731\pi\)
−0.993868 + 0.110576i \(0.964731\pi\)
\(810\) 0 0
\(811\) 9.44355 22.7987i 0.331608 0.800572i −0.666857 0.745186i \(-0.732361\pi\)
0.998465 0.0553866i \(-0.0176391\pi\)
\(812\) 0.527341 2.17623i 0.0185060 0.0763707i
\(813\) 0 0
\(814\) −14.5972 + 1.13328i −0.511632 + 0.0397215i
\(815\) −0.198626 + 0.114677i −0.00695757 + 0.00401695i
\(816\) 0 0
\(817\) −32.2804 18.6371i −1.12935 0.652029i
\(818\) −30.6117 14.6408i −1.07031 0.511904i
\(819\) 0 0
\(820\) −7.13361 3.89281i −0.249117 0.135943i
\(821\) −9.15110 11.9259i −0.319375 0.416218i 0.605884 0.795553i \(-0.292820\pi\)
−0.925259 + 0.379335i \(0.876153\pi\)
\(822\) 0 0
\(823\) −2.05496 + 7.66921i −0.0716314 + 0.267332i −0.992448 0.122663i \(-0.960857\pi\)
0.920817 + 0.389995i \(0.127523\pi\)
\(824\) 0.152170 0.143488i 0.00530108 0.00499865i
\(825\) 0 0
\(826\) −0.777641 + 0.164433i −0.0270576 + 0.00572135i
\(827\) −8.68350 + 20.9638i −0.301955 + 0.728983i 0.697963 + 0.716134i \(0.254090\pi\)
−0.999917 + 0.0128492i \(0.995910\pi\)
\(828\) 0 0
\(829\) 12.1233 5.02164i 0.421060 0.174409i −0.162085 0.986777i \(-0.551822\pi\)
0.583145 + 0.812368i \(0.301822\pi\)
\(830\) −9.00297 1.67846i −0.312498 0.0582602i
\(831\) 0 0
\(832\) −32.8919 6.31246i −1.14032 0.218845i
\(833\) −10.1277 + 5.84724i −0.350905 + 0.202595i
\(834\) 0 0
\(835\) −18.8185 2.47751i −0.651242 0.0857377i
\(836\) −7.27500 + 5.86573i −0.251611 + 0.202870i
\(837\) 0 0
\(838\) −35.2892 + 31.7069i −1.21904 + 1.09530i
\(839\) 13.2373 3.54691i 0.457001 0.122453i −0.0229725 0.999736i \(-0.507313\pi\)
0.479973 + 0.877283i \(0.340646\pi\)
\(840\) 0 0
\(841\) 13.0901 + 3.50747i 0.451382 + 0.120947i
\(842\) −4.24437 + 2.15696i −0.146271 + 0.0743338i
\(843\) 0 0
\(844\) 6.35852 + 10.4256i 0.218869 + 0.358865i
\(845\) 5.56705 2.30595i 0.191512 0.0793271i
\(846\) 0 0
\(847\) −1.67789 −0.0576529
\(848\) −41.9321 + 19.7831i −1.43996 + 0.679356i
\(849\) 0 0
\(850\) 0.592872 + 7.63647i 0.0203353 + 0.261929i
\(851\) −9.75581 + 12.7140i −0.334425 + 0.435831i
\(852\) 0 0
\(853\) −6.40539 + 4.91503i −0.219316 + 0.168287i −0.712576 0.701595i \(-0.752472\pi\)
0.493260 + 0.869882i \(0.335805\pi\)
\(854\) −0.127594 + 2.38632i −0.00436619 + 0.0816581i
\(855\) 0 0
\(856\) −25.9840 + 18.7527i −0.888115 + 0.640955i
\(857\) −5.49593 20.5111i −0.187737 0.700645i −0.994028 0.109126i \(-0.965195\pi\)
0.806291 0.591520i \(-0.201472\pi\)
\(858\) 0 0
\(859\) 3.90378 + 29.6522i 0.133195 + 1.01172i 0.919281 + 0.393602i \(0.128771\pi\)
−0.786086 + 0.618117i \(0.787896\pi\)
\(860\) −21.4845 + 9.51107i −0.732615 + 0.324325i
\(861\) 0 0
\(862\) 28.7743 + 5.36451i 0.980057 + 0.182716i
\(863\) −50.2980 −1.71216 −0.856082 0.516840i \(-0.827108\pi\)
−0.856082 + 0.516840i \(0.827108\pi\)
\(864\) 0 0
\(865\) −4.70351 −0.159924
\(866\) 2.78618 + 0.519438i 0.0946782 + 0.0176512i
\(867\) 0 0
\(868\) −0.496577 1.12171i −0.0168549 0.0380735i
\(869\) −0.224515 1.70536i −0.00761614 0.0578503i
\(870\) 0 0
\(871\) 10.3496 + 38.6252i 0.350682 + 1.30876i
\(872\) −32.1450 5.19595i −1.08857 0.175957i
\(873\) 0 0
\(874\) −0.546150 + 10.2143i −0.0184738 + 0.345504i
\(875\) −1.49135 + 1.14436i −0.0504170 + 0.0386863i
\(876\) 0 0
\(877\) −14.9730 + 19.5132i −0.505604 + 0.658916i −0.974513 0.224331i \(-0.927980\pi\)
0.468909 + 0.883246i \(0.344647\pi\)
\(878\) −1.67858 21.6209i −0.0566494 0.729670i
\(879\) 0 0
\(880\) 0.283389 + 5.88387i 0.00955305 + 0.198345i
\(881\) 14.3584 0.483747 0.241873 0.970308i \(-0.422238\pi\)
0.241873 + 0.970308i \(0.422238\pi\)
\(882\) 0 0
\(883\) 38.1415 15.7987i 1.28357 0.531670i 0.366504 0.930417i \(-0.380555\pi\)
0.917061 + 0.398746i \(0.130555\pi\)
\(884\) 11.9930 7.31442i 0.403367 0.246011i
\(885\) 0 0
\(886\) 6.69258 3.40112i 0.224842 0.114263i
\(887\) 10.4313 + 2.79505i 0.350248 + 0.0938486i 0.429654 0.902994i \(-0.358636\pi\)
−0.0794060 + 0.996842i \(0.525302\pi\)
\(888\) 0 0
\(889\) 1.71688 0.460038i 0.0575825 0.0154292i
\(890\) 21.2493 19.0923i 0.712280 0.639976i
\(891\) 0 0
\(892\) 13.2601 + 16.4459i 0.443981 + 0.550650i
\(893\) 2.89240 + 0.380791i 0.0967904 + 0.0127427i
\(894\) 0 0
\(895\) 26.3401 15.2074i 0.880451 0.508329i
\(896\) −1.00231 1.66315i −0.0334848 0.0555620i
\(897\) 0 0
\(898\) 17.1899 + 3.20479i 0.573636 + 0.106945i
\(899\) 21.5369 8.92087i 0.718295 0.297528i
\(900\) 0 0
\(901\) 7.44185 17.9662i 0.247924 0.598542i
\(902\) −4.67308 + 0.988126i −0.155597 + 0.0329010i
\(903\) 0 0
\(904\) 15.5688 + 0.457152i 0.517810 + 0.0152047i
\(905\) −5.09493 + 19.0145i −0.169361 + 0.632065i
\(906\) 0 0
\(907\) 23.6581 + 30.8319i 0.785556 + 1.02376i 0.998905 + 0.0467802i \(0.0148960\pi\)
−0.213350 + 0.976976i \(0.568437\pi\)
\(908\) 21.1732 38.8001i 0.702658 1.28763i
\(909\) 0 0
\(910\) 1.22024 + 0.583609i 0.0404504 + 0.0193464i
\(911\) 15.1765 + 8.76218i 0.502821 + 0.290304i 0.729878 0.683578i \(-0.239577\pi\)
−0.227057 + 0.973882i \(0.572910\pi\)
\(912\) 0 0
\(913\) −4.66150 + 2.69132i −0.154273 + 0.0890697i
\(914\) −34.6671 + 2.69144i −1.14668 + 0.0890251i
\(915\) 0 0
\(916\) −2.02257 0.490107i −0.0668277 0.0161936i
\(917\) 1.03876 2.50778i 0.0343028 0.0828143i
\(918\) 0 0
\(919\) 9.98940 + 9.98940i 0.329520 + 0.329520i 0.852404 0.522884i \(-0.175144\pi\)
−0.522884 + 0.852404i \(0.675144\pi\)
\(920\) 4.99793 + 4.07359i 0.164777 + 0.134302i
\(921\) 0 0
\(922\) −24.2560 7.90963i −0.798827 0.260490i
\(923\) −0.629499 + 0.0828751i −0.0207202 + 0.00272787i
\(924\) 0 0
\(925\) 3.94293 29.9495i 0.129643 0.984735i
\(926\) 31.0006 10.9410i 1.01874 0.359543i
\(927\) 0 0
\(928\) 32.0541 18.2810i 1.05223 0.600102i
\(929\) −29.8614 17.2405i −0.979720 0.565642i −0.0775347 0.996990i \(-0.524705\pi\)
−0.902186 + 0.431348i \(0.858038\pi\)
\(930\) 0 0
\(931\) 17.9211 23.3553i 0.587341 0.765438i
\(932\) 17.0804 + 38.5828i 0.559487 + 1.26382i
\(933\) 0 0
\(934\) −44.8237 + 9.47800i −1.46668 + 0.310130i
\(935\) −1.74705 1.74705i −0.0571348 0.0571348i
\(936\) 0 0
\(937\) 15.4659 15.4659i 0.505248 0.505248i −0.407816 0.913064i \(-0.633710\pi\)
0.913064 + 0.407816i \(0.133710\pi\)
\(938\) −1.26476 + 1.94306i −0.0412960 + 0.0634432i
\(939\) 0 0
\(940\) 1.26867 1.33124i 0.0413793 0.0434202i
\(941\) 20.1018 + 15.4247i 0.655301 + 0.502830i 0.882070 0.471119i \(-0.156150\pi\)
−0.226769 + 0.973949i \(0.572816\pi\)
\(942\) 0 0
\(943\) −2.61404 + 4.52766i −0.0851250 + 0.147441i
\(944\) −10.7632 7.46462i −0.350312 0.242953i
\(945\) 0 0
\(946\) −5.95832 + 12.4579i −0.193722 + 0.405042i
\(947\) −42.1317 5.54675i −1.36910 0.180245i −0.590129 0.807309i \(-0.700923\pi\)
−0.778968 + 0.627064i \(0.784256\pi\)
\(948\) 0 0
\(949\) −3.04080 23.0971i −0.0987084 0.749765i
\(950\) −8.73531 17.1890i −0.283411 0.557683i
\(951\) 0 0
\(952\) 0.780174 + 0.233795i 0.0252856 + 0.00757734i
\(953\) −11.7909 + 11.7909i −0.381943 + 0.381943i −0.871802 0.489859i \(-0.837048\pi\)
0.489859 + 0.871802i \(0.337048\pi\)
\(954\) 0 0
\(955\) −26.9694 11.1711i −0.872710 0.361488i
\(956\) −25.3088 + 3.95362i −0.818544 + 0.127869i
\(957\) 0 0
\(958\) −45.4357 38.8890i −1.46796 1.25645i
\(959\) 1.21701 + 2.10792i 0.0392992 + 0.0680682i
\(960\) 0 0
\(961\) −9.11462 + 15.7870i −0.294020 + 0.509258i
\(962\) −52.2434 + 18.4382i −1.68440 + 0.594470i
\(963\) 0 0
\(964\) −8.21059 10.1832i −0.264445 0.327980i
\(965\) 14.4546 11.0914i 0.465310 0.357045i
\(966\) 0 0
\(967\) −21.1540 5.66820i −0.680267 0.182277i −0.0978919 0.995197i \(-0.531210\pi\)
−0.582375 + 0.812920i \(0.697877\pi\)
\(968\) −18.9695 20.1173i −0.609704 0.646593i
\(969\) 0 0
\(970\) −14.1754 + 21.7778i −0.455146 + 0.699242i
\(971\) 52.9107 + 21.9163i 1.69798 + 0.703328i 0.999919 0.0127064i \(-0.00404470\pi\)
0.698065 + 0.716035i \(0.254045\pi\)
\(972\) 0 0
\(973\) −1.47696 3.56569i −0.0473491 0.114311i
\(974\) 10.1067 + 14.7387i 0.323839 + 0.472258i
\(975\) 0 0
\(976\) −30.0536 + 25.4490i −0.961993 + 0.814602i
\(977\) 10.6302 + 18.4121i 0.340091 + 0.589054i 0.984449 0.175669i \(-0.0562089\pi\)
−0.644359 + 0.764723i \(0.722876\pi\)
\(978\) 0 0
\(979\) 2.19153 16.6463i 0.0700415 0.532018i
\(980\) −5.23267 17.8035i −0.167152 0.568712i
\(981\) 0 0
\(982\) 9.14412 + 0.488927i 0.291800 + 0.0156023i
\(983\) −2.72427 10.1671i −0.0868908 0.324281i 0.908775 0.417287i \(-0.137019\pi\)
−0.995666 + 0.0930062i \(0.970352\pi\)
\(984\) 0 0
\(985\) −6.26447 + 23.3793i −0.199602 + 0.744927i
\(986\) −4.79826 + 14.7145i −0.152808 + 0.468605i
\(987\) 0 0
\(988\) −20.8457 + 28.5643i −0.663190 + 0.908752i
\(989\) 5.78439 + 13.9648i 0.183933 + 0.444054i
\(990\) 0 0
\(991\) 28.2543i 0.897526i 0.893651 + 0.448763i \(0.148135\pi\)
−0.893651 + 0.448763i \(0.851865\pi\)
\(992\) 7.83484 18.6354i 0.248756 0.591676i
\(993\) 0 0
\(994\) −0.0279670 0.0239373i −0.000887059 0.000759245i
\(995\) 5.49032 + 4.21287i 0.174055 + 0.133557i
\(996\) 0 0
\(997\) 14.8684 + 19.3768i 0.470886 + 0.613670i 0.967059 0.254554i \(-0.0819285\pi\)
−0.496173 + 0.868224i \(0.665262\pi\)
\(998\) 34.8618 31.3230i 1.10353 0.991511i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.683.25 368
3.2 odd 2 288.2.bf.a.11.22 368
9.4 even 3 288.2.bf.a.203.37 yes 368
9.5 odd 6 inner 864.2.bn.a.395.10 368
32.3 odd 8 inner 864.2.bn.a.35.10 368
96.35 even 8 288.2.bf.a.227.37 yes 368
288.67 odd 24 288.2.bf.a.131.22 yes 368
288.131 even 24 inner 864.2.bn.a.611.25 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.22 368 3.2 odd 2
288.2.bf.a.131.22 yes 368 288.67 odd 24
288.2.bf.a.203.37 yes 368 9.4 even 3
288.2.bf.a.227.37 yes 368 96.35 even 8
864.2.bn.a.35.10 368 32.3 odd 8 inner
864.2.bn.a.395.10 368 9.5 odd 6 inner
864.2.bn.a.611.25 368 288.131 even 24 inner
864.2.bn.a.683.25 368 1.1 even 1 trivial