Properties

Label 864.2.bn.a.35.10
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.10
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07440 + 0.919596i) q^{2} +(0.308687 - 1.97603i) q^{4} +(-1.05601 - 0.810304i) q^{5} +(-0.165787 + 0.0444224i) q^{7} +(1.48550 + 2.40693i) q^{8} +(1.87973 - 0.100507i) q^{10} +(-0.144412 + 1.09692i) q^{11} +(-4.15071 + 0.546451i) q^{13} +(0.137271 - 0.200184i) q^{14} +(-3.80942 - 1.21995i) q^{16} +1.67770 q^{17} +(3.90182 + 1.61619i) q^{19} +(-1.92716 + 1.83658i) q^{20} +(-0.853565 - 1.31133i) q^{22} +(-0.443260 + 1.65427i) q^{23} +(-0.835534 - 3.11825i) q^{25} +(3.95702 - 4.40408i) q^{26} +(0.0366040 + 0.341313i) q^{28} +(3.97106 + 5.17518i) q^{29} +(-3.09485 + 1.78681i) q^{31} +(5.21472 - 2.19241i) q^{32} +(-1.80253 + 1.54281i) q^{34} +(0.211068 + 0.0874271i) q^{35} +(3.58091 + 8.64508i) q^{37} +(-5.67837 + 1.85166i) q^{38} +(0.381642 - 3.74544i) q^{40} +(2.94866 + 0.790091i) q^{41} +(8.75033 + 1.15200i) q^{43} +(2.12297 + 0.623968i) q^{44} +(-1.04502 - 2.18497i) q^{46} +(0.598230 + 0.345388i) q^{47} +(-6.03667 + 3.48527i) q^{49} +(3.76523 + 2.58191i) q^{50} +(-0.201463 + 8.37063i) q^{52} +(4.43574 + 10.7088i) q^{53} +(1.04134 - 1.04134i) q^{55} +(-0.353197 - 0.333047i) q^{56} +(-9.02560 - 1.90847i) q^{58} +(-1.99344 + 2.59791i) q^{59} +(-7.81078 + 5.99342i) q^{61} +(1.68197 - 4.76576i) q^{62} +(-3.58659 + 7.15097i) q^{64} +(4.82597 + 2.78628i) q^{65} +(9.46982 - 1.24673i) q^{67} +(0.517885 - 3.31520i) q^{68} +(-0.307169 + 0.100165i) q^{70} +(0.107240 - 0.107240i) q^{71} +(3.93478 + 3.93478i) q^{73} +(-11.7973 - 5.99532i) q^{74} +(4.39808 - 7.21123i) q^{76} +(-0.0247862 - 0.188270i) q^{77} +(0.777341 - 1.34639i) q^{79} +(3.03425 + 4.37507i) q^{80} +(-3.89461 + 1.86270i) q^{82} +(-2.96167 - 3.85972i) q^{83} +(-1.77167 - 1.35945i) q^{85} +(-10.4608 + 6.80905i) q^{86} +(-2.85473 + 1.28188i) q^{88} +(-10.7307 - 10.7307i) q^{89} +(0.663857 - 0.274979i) q^{91} +(3.13206 + 1.38655i) q^{92} +(-0.960358 + 0.179043i) q^{94} +(-2.81075 - 4.86836i) q^{95} +(-6.90201 + 11.9546i) q^{97} +(3.28078 - 9.29588i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07440 + 0.919596i −0.759718 + 0.650252i
\(3\) 0 0
\(4\) 0.308687 1.97603i 0.154344 0.988017i
\(5\) −1.05601 0.810304i −0.472261 0.362379i 0.345041 0.938587i \(-0.387865\pi\)
−0.817303 + 0.576209i \(0.804532\pi\)
\(6\) 0 0
\(7\) −0.165787 + 0.0444224i −0.0626615 + 0.0167901i −0.290014 0.957023i \(-0.593660\pi\)
0.227352 + 0.973813i \(0.426993\pi\)
\(8\) 1.48550 + 2.40693i 0.525203 + 0.850977i
\(9\) 0 0
\(10\) 1.87973 0.100507i 0.594423 0.0317833i
\(11\) −0.144412 + 1.09692i −0.0435419 + 0.330733i 0.955786 + 0.294064i \(0.0950080\pi\)
−0.999327 + 0.0366690i \(0.988325\pi\)
\(12\) 0 0
\(13\) −4.15071 + 0.546451i −1.15120 + 0.151558i −0.681876 0.731468i \(-0.738836\pi\)
−0.469324 + 0.883026i \(0.655502\pi\)
\(14\) 0.137271 0.200184i 0.0366873 0.0535015i
\(15\) 0 0
\(16\) −3.80942 1.21995i −0.952356 0.304988i
\(17\) 1.67770 0.406902 0.203451 0.979085i \(-0.434784\pi\)
0.203451 + 0.979085i \(0.434784\pi\)
\(18\) 0 0
\(19\) 3.90182 + 1.61619i 0.895139 + 0.370779i 0.782349 0.622840i \(-0.214021\pi\)
0.112790 + 0.993619i \(0.464021\pi\)
\(20\) −1.92716 + 1.83658i −0.430927 + 0.410671i
\(21\) 0 0
\(22\) −0.853565 1.31133i −0.181981 0.279577i
\(23\) −0.443260 + 1.65427i −0.0924261 + 0.344939i −0.996617 0.0821905i \(-0.973808\pi\)
0.904191 + 0.427129i \(0.140475\pi\)
\(24\) 0 0
\(25\) −0.835534 3.11825i −0.167107 0.623651i
\(26\) 3.95702 4.40408i 0.776036 0.863712i
\(27\) 0 0
\(28\) 0.0366040 + 0.341313i 0.00691751 + 0.0645020i
\(29\) 3.97106 + 5.17518i 0.737407 + 0.961008i 0.999992 0.00390119i \(-0.00124179\pi\)
−0.262585 + 0.964909i \(0.584575\pi\)
\(30\) 0 0
\(31\) −3.09485 + 1.78681i −0.555851 + 0.320920i −0.751478 0.659758i \(-0.770659\pi\)
0.195628 + 0.980678i \(0.437326\pi\)
\(32\) 5.21472 2.19241i 0.921842 0.387567i
\(33\) 0 0
\(34\) −1.80253 + 1.54281i −0.309131 + 0.264589i
\(35\) 0.211068 + 0.0874271i 0.0356769 + 0.0147779i
\(36\) 0 0
\(37\) 3.58091 + 8.64508i 0.588698 + 1.42124i 0.884748 + 0.466070i \(0.154331\pi\)
−0.296050 + 0.955173i \(0.595669\pi\)
\(38\) −5.67837 + 1.85166i −0.921153 + 0.300379i
\(39\) 0 0
\(40\) 0.381642 3.74544i 0.0603429 0.592206i
\(41\) 2.94866 + 0.790091i 0.460503 + 0.123391i 0.481610 0.876386i \(-0.340052\pi\)
−0.0211066 + 0.999777i \(0.506719\pi\)
\(42\) 0 0
\(43\) 8.75033 + 1.15200i 1.33441 + 0.175679i 0.763754 0.645508i \(-0.223354\pi\)
0.570660 + 0.821187i \(0.306688\pi\)
\(44\) 2.12297 + 0.623968i 0.320050 + 0.0940667i
\(45\) 0 0
\(46\) −1.04502 2.18497i −0.154080 0.322157i
\(47\) 0.598230 + 0.345388i 0.0872608 + 0.0503801i 0.542995 0.839736i \(-0.317290\pi\)
−0.455735 + 0.890116i \(0.650623\pi\)
\(48\) 0 0
\(49\) −6.03667 + 3.48527i −0.862381 + 0.497896i
\(50\) 3.76523 + 2.58191i 0.532485 + 0.365137i
\(51\) 0 0
\(52\) −0.201463 + 8.37063i −0.0279380 + 1.16080i
\(53\) 4.43574 + 10.7088i 0.609296 + 1.47097i 0.863768 + 0.503891i \(0.168099\pi\)
−0.254471 + 0.967080i \(0.581901\pi\)
\(54\) 0 0
\(55\) 1.04134 1.04134i 0.140414 0.140414i
\(56\) −0.353197 0.333047i −0.0471980 0.0445052i
\(57\) 0 0
\(58\) −9.02560 1.90847i −1.18512 0.250594i
\(59\) −1.99344 + 2.59791i −0.259524 + 0.338219i −0.904882 0.425661i \(-0.860041\pi\)
0.645358 + 0.763880i \(0.276708\pi\)
\(60\) 0 0
\(61\) −7.81078 + 5.99342i −1.00007 + 0.767379i −0.972657 0.232245i \(-0.925393\pi\)
−0.0274104 + 0.999624i \(0.508726\pi\)
\(62\) 1.68197 4.76576i 0.213610 0.605252i
\(63\) 0 0
\(64\) −3.58659 + 7.15097i −0.448323 + 0.893871i
\(65\) 4.82597 + 2.78628i 0.598588 + 0.345595i
\(66\) 0 0
\(67\) 9.46982 1.24673i 1.15692 0.152312i 0.472455 0.881355i \(-0.343368\pi\)
0.684468 + 0.729043i \(0.260035\pi\)
\(68\) 0.517885 3.31520i 0.0628027 0.402027i
\(69\) 0 0
\(70\) −0.307169 + 0.100165i −0.0367138 + 0.0119720i
\(71\) 0.107240 0.107240i 0.0127271 0.0127271i −0.700715 0.713442i \(-0.747135\pi\)
0.713442 + 0.700715i \(0.247135\pi\)
\(72\) 0 0
\(73\) 3.93478 + 3.93478i 0.460532 + 0.460532i 0.898830 0.438298i \(-0.144419\pi\)
−0.438298 + 0.898830i \(0.644419\pi\)
\(74\) −11.7973 5.99532i −1.37141 0.696942i
\(75\) 0 0
\(76\) 4.39808 7.21123i 0.504495 0.827185i
\(77\) −0.0247862 0.188270i −0.00282465 0.0214553i
\(78\) 0 0
\(79\) 0.777341 1.34639i 0.0874576 0.151481i −0.818978 0.573825i \(-0.805459\pi\)
0.906436 + 0.422344i \(0.138792\pi\)
\(80\) 3.03425 + 4.37507i 0.339240 + 0.489148i
\(81\) 0 0
\(82\) −3.89461 + 1.86270i −0.430088 + 0.205701i
\(83\) −2.96167 3.85972i −0.325085 0.423660i 0.602008 0.798490i \(-0.294368\pi\)
−0.927093 + 0.374831i \(0.877701\pi\)
\(84\) 0 0
\(85\) −1.77167 1.35945i −0.192164 0.147453i
\(86\) −10.4608 + 6.80905i −1.12801 + 0.734239i
\(87\) 0 0
\(88\) −2.85473 + 1.28188i −0.304315 + 0.136649i
\(89\) −10.7307 10.7307i −1.13745 1.13745i −0.988905 0.148546i \(-0.952541\pi\)
−0.148546 0.988905i \(-0.547459\pi\)
\(90\) 0 0
\(91\) 0.663857 0.274979i 0.0695912 0.0288256i
\(92\) 3.13206 + 1.38655i 0.326540 + 0.144558i
\(93\) 0 0
\(94\) −0.960358 + 0.179043i −0.0990534 + 0.0184669i
\(95\) −2.81075 4.86836i −0.288377 0.499484i
\(96\) 0 0
\(97\) −6.90201 + 11.9546i −0.700793 + 1.21381i 0.267396 + 0.963587i \(0.413837\pi\)
−0.968189 + 0.250222i \(0.919496\pi\)
\(98\) 3.28078 9.29588i 0.331408 0.939026i
\(99\) 0 0
\(100\) −6.41970 + 0.688479i −0.641970 + 0.0688479i
\(101\) −0.397518 + 3.01945i −0.0395545 + 0.300447i 0.960221 + 0.279242i \(0.0900833\pi\)
−0.999775 + 0.0212041i \(0.993250\pi\)
\(102\) 0 0
\(103\) 0.0191387 0.0714267i 0.00188579 0.00703788i −0.964977 0.262336i \(-0.915507\pi\)
0.966862 + 0.255298i \(0.0821737\pi\)
\(104\) −7.48114 9.17870i −0.733586 0.900045i
\(105\) 0 0
\(106\) −14.6136 7.42652i −1.41940 0.721327i
\(107\) −10.4670 + 4.33555i −1.01188 + 0.419134i −0.826140 0.563465i \(-0.809468\pi\)
−0.185739 + 0.982599i \(0.559468\pi\)
\(108\) 0 0
\(109\) 4.40564 10.6362i 0.421984 1.01876i −0.559778 0.828643i \(-0.689113\pi\)
0.981762 0.190116i \(-0.0608866\pi\)
\(110\) −0.161207 + 2.07643i −0.0153705 + 0.197980i
\(111\) 0 0
\(112\) 0.685745 + 0.0330280i 0.0647968 + 0.00312085i
\(113\) 2.75339 + 4.76900i 0.259017 + 0.448630i 0.965979 0.258621i \(-0.0832682\pi\)
−0.706962 + 0.707251i \(0.749935\pi\)
\(114\) 0 0
\(115\) 1.80855 1.38775i 0.168648 0.129408i
\(116\) 11.4522 6.24944i 1.06331 0.580246i
\(117\) 0 0
\(118\) −0.247260 4.62436i −0.0227622 0.425707i
\(119\) −0.278141 + 0.0745275i −0.0254971 + 0.00683193i
\(120\) 0 0
\(121\) 9.44281 + 2.53019i 0.858437 + 0.230018i
\(122\) 2.88040 13.6221i 0.260780 1.23329i
\(123\) 0 0
\(124\) 2.57546 + 6.66709i 0.231283 + 0.598722i
\(125\) −4.19129 + 10.1187i −0.374881 + 0.905042i
\(126\) 0 0
\(127\) 10.3560i 0.918945i 0.888192 + 0.459473i \(0.151962\pi\)
−0.888192 + 0.459473i \(0.848038\pi\)
\(128\) −2.72256 10.9812i −0.240643 0.970614i
\(129\) 0 0
\(130\) −7.74729 + 1.44436i −0.679483 + 0.126679i
\(131\) 2.06427 + 15.6797i 0.180356 + 1.36994i 0.806961 + 0.590604i \(0.201110\pi\)
−0.626605 + 0.779337i \(0.715556\pi\)
\(132\) 0 0
\(133\) −0.718664 0.0946140i −0.0623161 0.00820407i
\(134\) −9.02793 + 10.0479i −0.779894 + 0.868006i
\(135\) 0 0
\(136\) 2.49222 + 4.03810i 0.213706 + 0.346265i
\(137\) 3.67040 + 13.6981i 0.313584 + 1.17031i 0.925301 + 0.379234i \(0.123812\pi\)
−0.611717 + 0.791077i \(0.709521\pi\)
\(138\) 0 0
\(139\) 13.6890 17.8398i 1.16108 1.51315i 0.341788 0.939777i \(-0.388968\pi\)
0.819294 0.573374i \(-0.194366\pi\)
\(140\) 0.237913 0.390089i 0.0201073 0.0329686i
\(141\) 0 0
\(142\) −0.0166016 + 0.213837i −0.00139318 + 0.0179448i
\(143\) 4.63190i 0.387339i
\(144\) 0 0
\(145\) 8.68280i 0.721067i
\(146\) −7.84596 0.609136i −0.649336 0.0504124i
\(147\) 0 0
\(148\) 18.1884 4.40738i 1.49507 0.362284i
\(149\) −8.89784 + 11.5959i −0.728939 + 0.949972i −0.999920 0.0126123i \(-0.995985\pi\)
0.270981 + 0.962585i \(0.412652\pi\)
\(150\) 0 0
\(151\) −5.99430 22.3710i −0.487809 1.82053i −0.567065 0.823673i \(-0.691921\pi\)
0.0792562 0.996854i \(-0.474745\pi\)
\(152\) 1.90611 + 11.7922i 0.154606 + 0.956476i
\(153\) 0 0
\(154\) 0.199762 + 0.179484i 0.0160973 + 0.0144633i
\(155\) 4.71604 + 0.620878i 0.378801 + 0.0498702i
\(156\) 0 0
\(157\) 1.66203 + 12.6244i 0.132644 + 1.00753i 0.920244 + 0.391346i \(0.127990\pi\)
−0.787599 + 0.616188i \(0.788676\pi\)
\(158\) 0.402960 + 2.16141i 0.0320578 + 0.171952i
\(159\) 0 0
\(160\) −7.28331 1.91031i −0.575796 0.151023i
\(161\) 0.293946i 0.0231662i
\(162\) 0 0
\(163\) 0.0659393 0.159192i 0.00516477 0.0124689i −0.921276 0.388909i \(-0.872852\pi\)
0.926441 + 0.376440i \(0.122852\pi\)
\(164\) 2.47146 5.58276i 0.192989 0.435940i
\(165\) 0 0
\(166\) 6.73141 + 1.42336i 0.522459 + 0.110474i
\(167\) −13.7740 3.69073i −1.06586 0.285598i −0.317072 0.948402i \(-0.602700\pi\)
−0.748793 + 0.662804i \(0.769366\pi\)
\(168\) 0 0
\(169\) 4.37274 1.17167i 0.336364 0.0901285i
\(170\) 3.15363 0.168622i 0.241872 0.0129327i
\(171\) 0 0
\(172\) 4.97751 16.9354i 0.379532 1.29131i
\(173\) 2.80342 2.15114i 0.213140 0.163548i −0.496674 0.867937i \(-0.665446\pi\)
0.709814 + 0.704389i \(0.248779\pi\)
\(174\) 0 0
\(175\) 0.277041 + 0.479849i 0.0209423 + 0.0362731i
\(176\) 1.88832 4.00245i 0.142337 0.301696i
\(177\) 0 0
\(178\) 21.3970 + 1.66120i 1.60377 + 0.124512i
\(179\) 8.74430 21.1106i 0.653580 1.57788i −0.153966 0.988076i \(-0.549205\pi\)
0.807546 0.589805i \(-0.200795\pi\)
\(180\) 0 0
\(181\) 13.6633 5.65954i 1.01559 0.420670i 0.188098 0.982150i \(-0.439768\pi\)
0.827490 + 0.561480i \(0.189768\pi\)
\(182\) −0.460382 + 0.905919i −0.0341257 + 0.0671511i
\(183\) 0 0
\(184\) −4.64016 + 1.39052i −0.342077 + 0.102510i
\(185\) 3.22367 12.0309i 0.237009 0.884530i
\(186\) 0 0
\(187\) −0.242280 + 1.84030i −0.0177173 + 0.134576i
\(188\) 0.867165 1.07551i 0.0632445 0.0784394i
\(189\) 0 0
\(190\) 7.49681 + 2.64583i 0.543876 + 0.191949i
\(191\) 10.9654 18.9927i 0.793431 1.37426i −0.130400 0.991461i \(-0.541626\pi\)
0.923831 0.382801i \(-0.125040\pi\)
\(192\) 0 0
\(193\) −6.84398 11.8541i −0.492641 0.853278i 0.507324 0.861756i \(-0.330635\pi\)
−0.999964 + 0.00847726i \(0.997302\pi\)
\(194\) −3.57788 19.1912i −0.256877 1.37784i
\(195\) 0 0
\(196\) 5.02357 + 13.0045i 0.358827 + 0.928894i
\(197\) −16.7997 + 6.95868i −1.19693 + 0.495785i −0.890006 0.455948i \(-0.849300\pi\)
−0.306926 + 0.951734i \(0.599300\pi\)
\(198\) 0 0
\(199\) 3.67634 + 3.67634i 0.260609 + 0.260609i 0.825301 0.564693i \(-0.191005\pi\)
−0.564693 + 0.825301i \(0.691005\pi\)
\(200\) 6.26422 6.64323i 0.442948 0.469747i
\(201\) 0 0
\(202\) −2.34958 3.60967i −0.165316 0.253975i
\(203\) −0.888242 0.681572i −0.0623424 0.0478370i
\(204\) 0 0
\(205\) −2.47359 3.22365i −0.172763 0.225150i
\(206\) 0.0451210 + 0.0943410i 0.00314373 + 0.00657305i
\(207\) 0 0
\(208\) 16.4785 + 2.98200i 1.14258 + 0.206765i
\(209\) −2.33630 + 4.04658i −0.161605 + 0.279908i
\(210\) 0 0
\(211\) −0.796970 6.05359i −0.0548657 0.416746i −0.996733 0.0807624i \(-0.974265\pi\)
0.941868 0.335984i \(-0.109069\pi\)
\(212\) 22.5303 5.45950i 1.54739 0.374960i
\(213\) 0 0
\(214\) 7.25878 14.2835i 0.496200 0.976400i
\(215\) −8.30695 8.30695i −0.566529 0.566529i
\(216\) 0 0
\(217\) 0.433710 0.433710i 0.0294421 0.0294421i
\(218\) 5.04753 + 15.4789i 0.341862 + 1.04837i
\(219\) 0 0
\(220\) −1.73627 2.37917i −0.117059 0.160403i
\(221\) −6.96365 + 0.916782i −0.468426 + 0.0616694i
\(222\) 0 0
\(223\) 9.14774 + 5.28145i 0.612578 + 0.353672i 0.773974 0.633218i \(-0.218266\pi\)
−0.161396 + 0.986890i \(0.551600\pi\)
\(224\) −0.767139 + 0.595123i −0.0512567 + 0.0397633i
\(225\) 0 0
\(226\) −7.34380 2.59183i −0.488503 0.172406i
\(227\) 17.5336 13.4540i 1.16375 0.892975i 0.168063 0.985776i \(-0.446249\pi\)
0.995685 + 0.0928016i \(0.0295822\pi\)
\(228\) 0 0
\(229\) −0.633449 + 0.825527i −0.0418595 + 0.0545523i −0.813814 0.581125i \(-0.802613\pi\)
0.771955 + 0.635678i \(0.219279\pi\)
\(230\) −0.666943 + 3.15413i −0.0439769 + 0.207977i
\(231\) 0 0
\(232\) −6.55728 + 17.2458i −0.430507 + 1.13224i
\(233\) 14.9180 14.9180i 0.977311 0.977311i −0.0224377 0.999748i \(-0.507143\pi\)
0.999748 + 0.0224377i \(0.00714273\pi\)
\(234\) 0 0
\(235\) −0.351866 0.849481i −0.0229532 0.0554140i
\(236\) 4.51820 + 4.74105i 0.294110 + 0.308616i
\(237\) 0 0
\(238\) 0.230300 0.335850i 0.0149281 0.0217699i
\(239\) 11.0919 6.40393i 0.717477 0.414236i −0.0963462 0.995348i \(-0.530716\pi\)
0.813823 + 0.581112i \(0.197382\pi\)
\(240\) 0 0
\(241\) −5.66423 3.27024i −0.364865 0.210655i 0.306348 0.951920i \(-0.400893\pi\)
−0.671213 + 0.741265i \(0.734226\pi\)
\(242\) −12.4721 + 5.96512i −0.801740 + 0.383452i
\(243\) 0 0
\(244\) 9.43212 + 17.2845i 0.603830 + 1.10652i
\(245\) 9.19890 + 1.21106i 0.587696 + 0.0773716i
\(246\) 0 0
\(247\) −17.0785 4.57617i −1.08668 0.291174i
\(248\) −8.89811 4.79476i −0.565030 0.304468i
\(249\) 0 0
\(250\) −4.80195 14.7258i −0.303702 0.931344i
\(251\) 3.69201 + 8.91330i 0.233038 + 0.562603i 0.996532 0.0832121i \(-0.0265179\pi\)
−0.763494 + 0.645815i \(0.776518\pi\)
\(252\) 0 0
\(253\) −1.75059 0.725116i −0.110058 0.0455877i
\(254\) −9.52333 11.1265i −0.597547 0.698140i
\(255\) 0 0
\(256\) 13.0234 + 9.29463i 0.813965 + 0.580915i
\(257\) −0.809834 + 0.467558i −0.0505160 + 0.0291654i −0.525045 0.851074i \(-0.675952\pi\)
0.474529 + 0.880240i \(0.342618\pi\)
\(258\) 0 0
\(259\) −0.977702 1.27417i −0.0607515 0.0791729i
\(260\) 6.99549 8.67620i 0.433842 0.538075i
\(261\) 0 0
\(262\) −16.6368 14.9480i −1.02783 0.923492i
\(263\) −1.81281 6.76551i −0.111783 0.417179i 0.887243 0.461302i \(-0.152617\pi\)
−0.999026 + 0.0441227i \(0.985951\pi\)
\(264\) 0 0
\(265\) 3.99322 14.9029i 0.245302 0.915478i
\(266\) 0.859142 0.559227i 0.0526774 0.0342884i
\(267\) 0 0
\(268\) 0.459638 19.0975i 0.0280768 1.16657i
\(269\) −25.5646 10.5892i −1.55870 0.645634i −0.573836 0.818970i \(-0.694545\pi\)
−0.984863 + 0.173336i \(0.944545\pi\)
\(270\) 0 0
\(271\) −24.4270 −1.48383 −0.741917 0.670492i \(-0.766083\pi\)
−0.741917 + 0.670492i \(0.766083\pi\)
\(272\) −6.39108 2.04672i −0.387516 0.124100i
\(273\) 0 0
\(274\) −16.5402 11.3420i −0.999232 0.685197i
\(275\) 3.54113 0.466199i 0.213538 0.0281129i
\(276\) 0 0
\(277\) −3.34250 + 25.3888i −0.200831 + 1.52547i 0.532989 + 0.846122i \(0.321069\pi\)
−0.733820 + 0.679344i \(0.762265\pi\)
\(278\) 1.69793 + 31.7554i 0.101835 + 1.90456i
\(279\) 0 0
\(280\) 0.103110 + 0.637897i 0.00616201 + 0.0381216i
\(281\) 8.11585 2.17463i 0.484151 0.129728i −0.00848391 0.999964i \(-0.502701\pi\)
0.492635 + 0.870236i \(0.336034\pi\)
\(282\) 0 0
\(283\) 15.0033 + 11.5124i 0.891851 + 0.684341i 0.949423 0.314000i \(-0.101669\pi\)
−0.0575719 + 0.998341i \(0.518336\pi\)
\(284\) −0.178807 0.245014i −0.0106102 0.0145389i
\(285\) 0 0
\(286\) 4.25948 + 4.97654i 0.251868 + 0.294269i
\(287\) −0.523946 −0.0309276
\(288\) 0 0
\(289\) −14.1853 −0.834430
\(290\) 7.98467 + 9.32883i 0.468876 + 0.547808i
\(291\) 0 0
\(292\) 8.98988 6.56065i 0.526093 0.383933i
\(293\) 19.1345 + 14.6824i 1.11785 + 0.857754i 0.990959 0.134163i \(-0.0428345\pi\)
0.126888 + 0.991917i \(0.459501\pi\)
\(294\) 0 0
\(295\) 4.21019 1.12812i 0.245126 0.0656814i
\(296\) −15.4886 + 21.4612i −0.900259 + 1.24741i
\(297\) 0 0
\(298\) −1.10366 20.6411i −0.0639333 1.19571i
\(299\) 0.935866 7.10861i 0.0541225 0.411101i
\(300\) 0 0
\(301\) −1.50186 + 0.197724i −0.0865659 + 0.0113966i
\(302\) 27.0126 + 18.5232i 1.55440 + 1.06589i
\(303\) 0 0
\(304\) −12.8920 10.9168i −0.739408 0.626120i
\(305\) 13.1047 0.750375
\(306\) 0 0
\(307\) −0.622170 0.257711i −0.0355091 0.0147083i 0.364858 0.931063i \(-0.381117\pi\)
−0.400367 + 0.916355i \(0.631117\pi\)
\(308\) −0.379678 0.00913806i −0.0216342 0.000520690i
\(309\) 0 0
\(310\) −5.63789 + 3.66978i −0.320211 + 0.208429i
\(311\) 4.39213 16.3916i 0.249055 0.929485i −0.722247 0.691635i \(-0.756891\pi\)
0.971302 0.237850i \(-0.0764426\pi\)
\(312\) 0 0
\(313\) 0.668229 + 2.49387i 0.0377706 + 0.140962i 0.982236 0.187648i \(-0.0600865\pi\)
−0.944466 + 0.328610i \(0.893420\pi\)
\(314\) −13.3950 12.0353i −0.755923 0.679189i
\(315\) 0 0
\(316\) −2.42056 1.95167i −0.136167 0.109790i
\(317\) −8.10471 10.5623i −0.455206 0.593236i 0.508214 0.861231i \(-0.330306\pi\)
−0.963420 + 0.267994i \(0.913639\pi\)
\(318\) 0 0
\(319\) −6.25023 + 3.60857i −0.349945 + 0.202041i
\(320\) 9.58192 4.64526i 0.535646 0.259678i
\(321\) 0 0
\(322\) 0.270312 + 0.315817i 0.0150639 + 0.0175998i
\(323\) 6.54609 + 2.71148i 0.364234 + 0.150871i
\(324\) 0 0
\(325\) 5.17203 + 12.4864i 0.286893 + 0.692620i
\(326\) 0.0755465 + 0.231674i 0.00418413 + 0.0128312i
\(327\) 0 0
\(328\) 2.47854 + 8.27088i 0.136854 + 0.456683i
\(329\) −0.114522 0.0306859i −0.00631377 0.00169177i
\(330\) 0 0
\(331\) −9.51917 1.25322i −0.523221 0.0688833i −0.135710 0.990749i \(-0.543332\pi\)
−0.387511 + 0.921865i \(0.626665\pi\)
\(332\) −8.54117 + 4.66091i −0.468758 + 0.255801i
\(333\) 0 0
\(334\) 18.1928 8.70118i 0.995468 0.476108i
\(335\) −11.0104 6.35688i −0.601564 0.347313i
\(336\) 0 0
\(337\) 0.454491 0.262401i 0.0247577 0.0142939i −0.487570 0.873084i \(-0.662117\pi\)
0.512328 + 0.858790i \(0.328783\pi\)
\(338\) −3.62062 + 5.28000i −0.196936 + 0.287194i
\(339\) 0 0
\(340\) −3.23321 + 3.08123i −0.175345 + 0.167103i
\(341\) −1.51305 3.65283i −0.0819364 0.197812i
\(342\) 0 0
\(343\) 1.69552 1.69552i 0.0915497 0.0915497i
\(344\) 10.2258 + 22.7727i 0.551339 + 1.22782i
\(345\) 0 0
\(346\) −1.03383 + 4.88921i −0.0555788 + 0.262845i
\(347\) −21.8742 + 28.5070i −1.17427 + 1.53034i −0.377544 + 0.925992i \(0.623231\pi\)
−0.796724 + 0.604344i \(0.793435\pi\)
\(348\) 0 0
\(349\) −22.9357 + 17.5992i −1.22772 + 0.942062i −0.999502 0.0315480i \(-0.989956\pi\)
−0.228217 + 0.973610i \(0.573290\pi\)
\(350\) −0.738920 0.260786i −0.0394969 0.0139396i
\(351\) 0 0
\(352\) 1.65183 + 6.03674i 0.0880426 + 0.321759i
\(353\) 1.05732 + 0.610443i 0.0562754 + 0.0324906i 0.527874 0.849323i \(-0.322989\pi\)
−0.471598 + 0.881813i \(0.656323\pi\)
\(354\) 0 0
\(355\) −0.200144 + 0.0263494i −0.0106225 + 0.00139848i
\(356\) −24.5167 + 17.8918i −1.29938 + 0.948264i
\(357\) 0 0
\(358\) 10.0183 + 30.7225i 0.529485 + 1.62374i
\(359\) 6.44282 6.44282i 0.340039 0.340039i −0.516343 0.856382i \(-0.672707\pi\)
0.856382 + 0.516343i \(0.172707\pi\)
\(360\) 0 0
\(361\) −0.822894 0.822894i −0.0433102 0.0433102i
\(362\) −9.47545 + 18.6454i −0.498019 + 0.979980i
\(363\) 0 0
\(364\) −0.338443 1.39669i −0.0177392 0.0732063i
\(365\) −0.966794 7.34353i −0.0506043 0.384378i
\(366\) 0 0
\(367\) −0.917382 + 1.58895i −0.0478869 + 0.0829426i −0.888975 0.457955i \(-0.848582\pi\)
0.841088 + 0.540898i \(0.181915\pi\)
\(368\) 3.70669 5.76105i 0.193225 0.300316i
\(369\) 0 0
\(370\) 7.60004 + 15.8905i 0.395107 + 0.826109i
\(371\) −1.21110 1.57833i −0.0628771 0.0819430i
\(372\) 0 0
\(373\) −9.61261 7.37602i −0.497722 0.381916i 0.329175 0.944269i \(-0.393229\pi\)
−0.826897 + 0.562353i \(0.809896\pi\)
\(374\) −1.43203 2.20003i −0.0740484 0.113761i
\(375\) 0 0
\(376\) 0.0573458 + 1.95297i 0.00295738 + 0.100717i
\(377\) −19.3107 19.3107i −0.994551 0.994551i
\(378\) 0 0
\(379\) −28.0488 + 11.6182i −1.44077 + 0.596786i −0.959985 0.280053i \(-0.909648\pi\)
−0.480784 + 0.876839i \(0.659648\pi\)
\(380\) −10.4877 + 4.05134i −0.538008 + 0.207829i
\(381\) 0 0
\(382\) 5.68429 + 30.4896i 0.290834 + 1.55998i
\(383\) 1.29677 + 2.24608i 0.0662620 + 0.114769i 0.897253 0.441517i \(-0.145559\pi\)
−0.830991 + 0.556286i \(0.812226\pi\)
\(384\) 0 0
\(385\) −0.126381 + 0.218899i −0.00644098 + 0.0111561i
\(386\) 18.2542 + 6.44242i 0.929114 + 0.327910i
\(387\) 0 0
\(388\) 21.4922 + 17.3288i 1.09110 + 0.879739i
\(389\) 4.52357 34.3599i 0.229354 1.74212i −0.358841 0.933399i \(-0.616828\pi\)
0.588195 0.808719i \(-0.299839\pi\)
\(390\) 0 0
\(391\) −0.743658 + 2.77537i −0.0376084 + 0.140356i
\(392\) −17.3562 9.35244i −0.876623 0.472370i
\(393\) 0 0
\(394\) 11.6505 22.9254i 0.586945 1.15497i
\(395\) −1.91187 + 0.791921i −0.0961964 + 0.0398458i
\(396\) 0 0
\(397\) 7.92586 19.1347i 0.397788 0.960344i −0.590402 0.807109i \(-0.701031\pi\)
0.988190 0.153235i \(-0.0489691\pi\)
\(398\) −7.33061 0.569126i −0.367451 0.0285277i
\(399\) 0 0
\(400\) −0.621219 + 12.8981i −0.0310609 + 0.644903i
\(401\) 9.24072 + 16.0054i 0.461460 + 0.799271i 0.999034 0.0439449i \(-0.0139926\pi\)
−0.537574 + 0.843216i \(0.680659\pi\)
\(402\) 0 0
\(403\) 11.8694 9.10771i 0.591257 0.453687i
\(404\) 5.84383 + 1.71758i 0.290741 + 0.0854526i
\(405\) 0 0
\(406\) 1.58110 0.0845401i 0.0784688 0.00419565i
\(407\) −10.0001 + 2.67951i −0.495686 + 0.132819i
\(408\) 0 0
\(409\) −23.1765 6.21012i −1.14600 0.307071i −0.364641 0.931148i \(-0.618808\pi\)
−0.781362 + 0.624078i \(0.785475\pi\)
\(410\) 5.62210 + 1.18880i 0.277656 + 0.0587104i
\(411\) 0 0
\(412\) −0.135234 0.0598673i −0.00666249 0.00294945i
\(413\) 0.215081 0.519252i 0.0105834 0.0255507i
\(414\) 0 0
\(415\) 6.47575i 0.317882i
\(416\) −20.4468 + 11.9496i −1.00248 + 0.585880i
\(417\) 0 0
\(418\) −1.21110 6.49611i −0.0592366 0.317735i
\(419\) 4.37862 + 33.2589i 0.213910 + 1.62480i 0.675255 + 0.737584i \(0.264033\pi\)
−0.461346 + 0.887220i \(0.652633\pi\)
\(420\) 0 0
\(421\) 3.33774 + 0.439422i 0.162672 + 0.0214161i 0.211422 0.977395i \(-0.432191\pi\)
−0.0487505 + 0.998811i \(0.515524\pi\)
\(422\) 6.42313 + 5.77111i 0.312673 + 0.280933i
\(423\) 0 0
\(424\) −19.1861 + 26.5845i −0.931758 + 1.29106i
\(425\) −1.40178 5.23150i −0.0679962 0.253765i
\(426\) 0 0
\(427\) 1.02868 1.34060i 0.0497813 0.0648763i
\(428\) 5.33619 + 22.0214i 0.257935 + 1.06444i
\(429\) 0 0
\(430\) 16.5641 + 1.28598i 0.798790 + 0.0620156i
\(431\) 20.6971i 0.996944i 0.866906 + 0.498472i \(0.166105\pi\)
−0.866906 + 0.498472i \(0.833895\pi\)
\(432\) 0 0
\(433\) 2.00407i 0.0963096i −0.998840 0.0481548i \(-0.984666\pi\)
0.998840 0.0481548i \(-0.0153341\pi\)
\(434\) −0.0671417 + 0.864817i −0.00322290 + 0.0415125i
\(435\) 0 0
\(436\) −19.6575 11.9889i −0.941421 0.574166i
\(437\) −4.40313 + 5.73827i −0.210630 + 0.274498i
\(438\) 0 0
\(439\) −3.96881 14.8118i −0.189421 0.706928i −0.993641 0.112597i \(-0.964083\pi\)
0.804220 0.594332i \(-0.202583\pi\)
\(440\) 4.05333 + 0.959517i 0.193235 + 0.0457432i
\(441\) 0 0
\(442\) 6.63870 7.38874i 0.315771 0.351446i
\(443\) 5.26299 + 0.692885i 0.250052 + 0.0329200i 0.254510 0.967070i \(-0.418086\pi\)
−0.00445816 + 0.999990i \(0.501419\pi\)
\(444\) 0 0
\(445\) 2.63658 + 20.0268i 0.124986 + 0.949363i
\(446\) −14.6852 + 2.73781i −0.695363 + 0.129639i
\(447\) 0 0
\(448\) 0.276945 1.34486i 0.0130844 0.0635387i
\(449\) 12.3646i 0.583520i 0.956492 + 0.291760i \(0.0942408\pi\)
−0.956492 + 0.291760i \(0.905759\pi\)
\(450\) 0 0
\(451\) −1.29249 + 3.12034i −0.0608609 + 0.146931i
\(452\) 10.2737 3.96866i 0.483232 0.186670i
\(453\) 0 0
\(454\) −6.46593 + 30.5789i −0.303461 + 1.43514i
\(455\) −0.923855 0.247546i −0.0433110 0.0116051i
\(456\) 0 0
\(457\) 23.7493 6.36361i 1.11095 0.297677i 0.343731 0.939068i \(-0.388309\pi\)
0.767214 + 0.641391i \(0.221642\pi\)
\(458\) −0.0785710 1.46947i −0.00367138 0.0686636i
\(459\) 0 0
\(460\) −2.18396 4.00213i −0.101828 0.186600i
\(461\) −14.3124 + 10.9823i −0.666596 + 0.511497i −0.885732 0.464197i \(-0.846343\pi\)
0.219136 + 0.975694i \(0.429676\pi\)
\(462\) 0 0
\(463\) 11.6229 + 20.1315i 0.540164 + 0.935592i 0.998894 + 0.0470159i \(0.0149711\pi\)
−0.458730 + 0.888576i \(0.651696\pi\)
\(464\) −8.81397 24.5590i −0.409178 1.14012i
\(465\) 0 0
\(466\) −2.30942 + 29.7465i −0.106982 + 1.37798i
\(467\) 12.3974 29.9300i 0.573683 1.38499i −0.324715 0.945812i \(-0.605269\pi\)
0.898398 0.439181i \(-0.144731\pi\)
\(468\) 0 0
\(469\) −1.51459 + 0.627362i −0.0699371 + 0.0289689i
\(470\) 1.15923 + 0.589110i 0.0534711 + 0.0271736i
\(471\) 0 0
\(472\) −9.21423 0.938885i −0.424119 0.0432157i
\(473\) −2.52731 + 9.43204i −0.116206 + 0.433686i
\(474\) 0 0
\(475\) 1.77958 13.5172i 0.0816527 0.620214i
\(476\) 0.0614106 + 0.572621i 0.00281475 + 0.0262460i
\(477\) 0 0
\(478\) −6.02818 + 17.0805i −0.275723 + 0.781244i
\(479\) −21.1446 + 36.6236i −0.966123 + 1.67337i −0.259554 + 0.965729i \(0.583576\pi\)
−0.706568 + 0.707645i \(0.749758\pi\)
\(480\) 0 0
\(481\) −19.5874 33.9264i −0.893110 1.54691i
\(482\) 9.09297 1.69524i 0.414174 0.0772160i
\(483\) 0 0
\(484\) 7.91462 17.8783i 0.359755 0.812649i
\(485\) 16.9755 7.03146i 0.770816 0.319282i
\(486\) 0 0
\(487\) −8.93552 8.93552i −0.404907 0.404907i 0.475051 0.879958i \(-0.342430\pi\)
−0.879958 + 0.475051i \(0.842430\pi\)
\(488\) −26.0286 9.89675i −1.17826 0.448005i
\(489\) 0 0
\(490\) −10.9970 + 7.15810i −0.496794 + 0.323370i
\(491\) −5.13704 3.94179i −0.231832 0.177891i 0.486313 0.873785i \(-0.338342\pi\)
−0.718144 + 0.695894i \(0.755008\pi\)
\(492\) 0 0
\(493\) 6.66225 + 8.68242i 0.300053 + 0.391036i
\(494\) 22.5574 10.7887i 1.01491 0.485404i
\(495\) 0 0
\(496\) 13.9694 3.03115i 0.627245 0.136103i
\(497\) −0.0130151 + 0.0225429i −0.000583808 + 0.00101119i
\(498\) 0 0
\(499\) 4.32559 + 32.8562i 0.193640 + 1.47084i 0.761740 + 0.647883i \(0.224346\pi\)
−0.568099 + 0.822960i \(0.692321\pi\)
\(500\) 18.7011 + 11.4056i 0.836337 + 0.510076i
\(501\) 0 0
\(502\) −12.1633 6.18133i −0.542877 0.275886i
\(503\) −14.8092 14.8092i −0.660309 0.660309i 0.295144 0.955453i \(-0.404632\pi\)
−0.955453 + 0.295144i \(0.904632\pi\)
\(504\) 0 0
\(505\) 2.86645 2.86645i 0.127556 0.127556i
\(506\) 2.54765 0.830764i 0.113257 0.0369319i
\(507\) 0 0
\(508\) 20.4638 + 3.19676i 0.907934 + 0.141833i
\(509\) 2.82141 0.371446i 0.125057 0.0164640i −0.0677379 0.997703i \(-0.521578\pi\)
0.192795 + 0.981239i \(0.438245\pi\)
\(510\) 0 0
\(511\) −0.827127 0.477542i −0.0365899 0.0211252i
\(512\) −22.5397 + 1.99011i −0.996125 + 0.0879511i
\(513\) 0 0
\(514\) 0.440124 1.24707i 0.0194130 0.0550057i
\(515\) −0.0780879 + 0.0599190i −0.00344097 + 0.00264035i
\(516\) 0 0
\(517\) −0.465254 + 0.606331i −0.0204619 + 0.0266664i
\(518\) 2.22217 + 0.469878i 0.0976363 + 0.0206453i
\(519\) 0 0
\(520\) 0.462613 + 15.7548i 0.0202869 + 0.690892i
\(521\) 17.3570 17.3570i 0.760426 0.760426i −0.215973 0.976399i \(-0.569292\pi\)
0.976399 + 0.215973i \(0.0692925\pi\)
\(522\) 0 0
\(523\) −11.8890 28.7025i −0.519868 1.25507i −0.937984 0.346679i \(-0.887309\pi\)
0.418115 0.908394i \(-0.362691\pi\)
\(524\) 31.6208 + 0.761047i 1.38136 + 0.0332465i
\(525\) 0 0
\(526\) 8.16922 + 5.60183i 0.356195 + 0.244251i
\(527\) −5.19223 + 2.99773i −0.226177 + 0.130583i
\(528\) 0 0
\(529\) 17.3785 + 10.0335i 0.755585 + 0.436237i
\(530\) 9.41432 + 19.6839i 0.408932 + 0.855014i
\(531\) 0 0
\(532\) −0.408803 + 1.39090i −0.0177238 + 0.0603031i
\(533\) −12.6708 1.66814i −0.548832 0.0722551i
\(534\) 0 0
\(535\) 14.5663 + 3.90303i 0.629756 + 0.168743i
\(536\) 17.0682 + 20.9411i 0.737233 + 0.904520i
\(537\) 0 0
\(538\) 37.2044 12.1320i 1.60400 0.523048i
\(539\) −2.95129 7.12505i −0.127121 0.306898i
\(540\) 0 0
\(541\) −21.3742 8.85350i −0.918950 0.380642i −0.127474 0.991842i \(-0.540687\pi\)
−0.791476 + 0.611200i \(0.790687\pi\)
\(542\) 26.2444 22.4629i 1.12730 0.964866i
\(543\) 0 0
\(544\) 8.74875 3.67821i 0.375100 0.157702i
\(545\) −13.2709 + 7.66197i −0.568463 + 0.328203i
\(546\) 0 0
\(547\) 16.0779 + 20.9532i 0.687443 + 0.895893i 0.998514 0.0544935i \(-0.0173544\pi\)
−0.311071 + 0.950387i \(0.600688\pi\)
\(548\) 28.2010 3.02441i 1.20469 0.129196i
\(549\) 0 0
\(550\) −3.37589 + 3.75730i −0.143949 + 0.160212i
\(551\) 7.13029 + 26.6106i 0.303761 + 1.13365i
\(552\) 0 0
\(553\) −0.0690627 + 0.257745i −0.00293684 + 0.0109604i
\(554\) −19.7562 30.3516i −0.839363 1.28952i
\(555\) 0 0
\(556\) −31.0264 32.5568i −1.31581 1.38071i
\(557\) 4.58647 + 1.89978i 0.194335 + 0.0804962i 0.477728 0.878508i \(-0.341460\pi\)
−0.283394 + 0.959004i \(0.591460\pi\)
\(558\) 0 0
\(559\) −36.9496 −1.56280
\(560\) −0.697389 0.590539i −0.0294701 0.0249548i
\(561\) 0 0
\(562\) −6.71991 + 9.79973i −0.283462 + 0.413377i
\(563\) 25.4583 3.35165i 1.07294 0.141255i 0.426703 0.904392i \(-0.359675\pi\)
0.646237 + 0.763136i \(0.276342\pi\)
\(564\) 0 0
\(565\) 0.956743 7.26719i 0.0402505 0.305733i
\(566\) −26.7063 + 1.42796i −1.12255 + 0.0600217i
\(567\) 0 0
\(568\) 0.417424 + 0.0988141i 0.0175147 + 0.00414615i
\(569\) −6.41471 + 1.71882i −0.268919 + 0.0720566i −0.390759 0.920493i \(-0.627787\pi\)
0.121840 + 0.992550i \(0.461121\pi\)
\(570\) 0 0
\(571\) 9.90036 + 7.59681i 0.414317 + 0.317917i 0.794800 0.606871i \(-0.207576\pi\)
−0.380483 + 0.924788i \(0.624242\pi\)
\(572\) −9.15280 1.42981i −0.382698 0.0597833i
\(573\) 0 0
\(574\) 0.562930 0.481819i 0.0234962 0.0201107i
\(575\) 5.52879 0.230566
\(576\) 0 0
\(577\) 4.77050 0.198599 0.0992993 0.995058i \(-0.468340\pi\)
0.0992993 + 0.995058i \(0.468340\pi\)
\(578\) 15.2408 13.0448i 0.633932 0.542590i
\(579\) 0 0
\(580\) −17.1575 2.68027i −0.712427 0.111292i
\(581\) 0.662463 + 0.508326i 0.0274836 + 0.0210889i
\(582\) 0 0
\(583\) −12.3873 + 3.31916i −0.513029 + 0.137466i
\(584\) −3.62562 + 15.3158i −0.150029 + 0.633774i
\(585\) 0 0
\(586\) −34.0600 + 1.82116i −1.40701 + 0.0752313i
\(587\) −2.57596 + 19.5663i −0.106321 + 0.807589i 0.852330 + 0.523005i \(0.175189\pi\)
−0.958651 + 0.284585i \(0.908144\pi\)
\(588\) 0 0
\(589\) −14.9633 + 1.96996i −0.616554 + 0.0811709i
\(590\) −3.48603 + 5.08372i −0.143518 + 0.209293i
\(591\) 0 0
\(592\) −3.09462 37.3013i −0.127188 1.53308i
\(593\) 15.1394 0.621700 0.310850 0.950459i \(-0.399386\pi\)
0.310850 + 0.950459i \(0.399386\pi\)
\(594\) 0 0
\(595\) 0.354109 + 0.146677i 0.0145170 + 0.00601315i
\(596\) 20.1672 + 21.1619i 0.826082 + 0.866827i
\(597\) 0 0
\(598\) 5.53155 + 8.49813i 0.226202 + 0.347514i
\(599\) 12.0858 45.1048i 0.493812 1.84293i −0.0427730 0.999085i \(-0.513619\pi\)
0.536585 0.843846i \(-0.319714\pi\)
\(600\) 0 0
\(601\) −10.6746 39.8381i −0.435426 1.62503i −0.740045 0.672557i \(-0.765196\pi\)
0.304619 0.952474i \(-0.401471\pi\)
\(602\) 1.43178 1.59354i 0.0583550 0.0649479i
\(603\) 0 0
\(604\) −46.0563 + 4.93929i −1.87400 + 0.200977i
\(605\) −7.92146 10.3234i −0.322053 0.419708i
\(606\) 0 0
\(607\) 10.2159 5.89815i 0.414651 0.239399i −0.278135 0.960542i \(-0.589716\pi\)
0.692786 + 0.721143i \(0.256383\pi\)
\(608\) 23.8903 0.126421i 0.968878 0.00512705i
\(609\) 0 0
\(610\) −14.0798 + 12.0511i −0.570074 + 0.487933i
\(611\) −2.67182 1.10670i −0.108090 0.0447724i
\(612\) 0 0
\(613\) 9.99410 + 24.1279i 0.403658 + 0.974516i 0.986770 + 0.162125i \(0.0518347\pi\)
−0.583113 + 0.812391i \(0.698165\pi\)
\(614\) 0.905451 0.295259i 0.0365410 0.0119157i
\(615\) 0 0
\(616\) 0.416331 0.339333i 0.0167745 0.0136721i
\(617\) −3.50208 0.938379i −0.140988 0.0377777i 0.187635 0.982239i \(-0.439918\pi\)
−0.328623 + 0.944461i \(0.606585\pi\)
\(618\) 0 0
\(619\) −48.6247 6.40156i −1.95439 0.257300i −0.955145 0.296137i \(-0.904301\pi\)
−0.999246 + 0.0388370i \(0.987635\pi\)
\(620\) 2.68266 9.12740i 0.107738 0.366565i
\(621\) 0 0
\(622\) 10.3548 + 21.6502i 0.415188 + 0.868095i
\(623\) 2.25569 + 1.30232i 0.0903723 + 0.0521765i
\(624\) 0 0
\(625\) −1.35351 + 0.781451i −0.0541405 + 0.0312581i
\(626\) −3.01130 2.06492i −0.120356 0.0825307i
\(627\) 0 0
\(628\) 25.4592 + 0.612750i 1.01593 + 0.0244514i
\(629\) 6.00770 + 14.5039i 0.239543 + 0.578307i
\(630\) 0 0
\(631\) 22.5852 22.5852i 0.899104 0.899104i −0.0962531 0.995357i \(-0.530686\pi\)
0.995357 + 0.0962531i \(0.0306858\pi\)
\(632\) 4.39541 0.129064i 0.174840 0.00513389i
\(633\) 0 0
\(634\) 18.4208 + 3.89508i 0.731582 + 0.154693i
\(635\) 8.39150 10.9360i 0.333006 0.433982i
\(636\) 0 0
\(637\) 23.1519 17.7651i 0.917312 0.703878i
\(638\) 3.39684 9.62474i 0.134482 0.381047i
\(639\) 0 0
\(640\) −6.02309 + 13.8024i −0.238084 + 0.545587i
\(641\) 40.3410 + 23.2909i 1.59337 + 0.919935i 0.992723 + 0.120424i \(0.0384255\pi\)
0.600652 + 0.799511i \(0.294908\pi\)
\(642\) 0 0
\(643\) −8.91147 + 1.17322i −0.351434 + 0.0462672i −0.304177 0.952616i \(-0.598381\pi\)
−0.0472573 + 0.998883i \(0.515048\pi\)
\(644\) −0.580848 0.0907374i −0.0228886 0.00357555i
\(645\) 0 0
\(646\) −9.52661 + 3.10653i −0.374819 + 0.122225i
\(647\) −26.5185 + 26.5185i −1.04255 + 1.04255i −0.0434948 + 0.999054i \(0.513849\pi\)
−0.999054 + 0.0434948i \(0.986151\pi\)
\(648\) 0 0
\(649\) −2.56181 2.56181i −0.100560 0.100560i
\(650\) −17.0393 8.65924i −0.668336 0.339643i
\(651\) 0 0
\(652\) −0.294214 0.179439i −0.0115223 0.00702737i
\(653\) 0.0108861 + 0.0826878i 0.000426004 + 0.00323582i 0.991657 0.128908i \(-0.0411472\pi\)
−0.991231 + 0.132144i \(0.957814\pi\)
\(654\) 0 0
\(655\) 10.5254 18.2306i 0.411262 0.712327i
\(656\) −10.2688 6.60701i −0.400930 0.257961i
\(657\) 0 0
\(658\) 0.151261 0.0723444i 0.00589677 0.00282028i
\(659\) 15.3957 + 20.0641i 0.599731 + 0.781585i 0.990294 0.138991i \(-0.0443860\pi\)
−0.390562 + 0.920577i \(0.627719\pi\)
\(660\) 0 0
\(661\) 24.2705 + 18.6234i 0.944011 + 0.724365i 0.961305 0.275485i \(-0.0888385\pi\)
−0.0172941 + 0.999850i \(0.505505\pi\)
\(662\) 11.3799 7.40732i 0.442292 0.287894i
\(663\) 0 0
\(664\) 4.89051 12.8621i 0.189789 0.499148i
\(665\) 0.682249 + 0.682249i 0.0264565 + 0.0264565i
\(666\) 0 0
\(667\) −10.3214 + 4.27525i −0.399644 + 0.165538i
\(668\) −11.5449 + 26.0786i −0.446685 + 1.00901i
\(669\) 0 0
\(670\) 17.6754 3.29530i 0.682860 0.127308i
\(671\) −5.44632 9.43331i −0.210253 0.364169i
\(672\) 0 0
\(673\) −14.0254 + 24.2927i −0.540640 + 0.936415i 0.458228 + 0.888835i \(0.348484\pi\)
−0.998867 + 0.0475804i \(0.984849\pi\)
\(674\) −0.247005 + 0.699873i −0.00951426 + 0.0269581i
\(675\) 0 0
\(676\) −0.965456 9.00236i −0.0371329 0.346244i
\(677\) 4.72908 35.9209i 0.181753 1.38055i −0.620798 0.783970i \(-0.713191\pi\)
0.802552 0.596583i \(-0.203475\pi\)
\(678\) 0 0
\(679\) 0.613207 2.28852i 0.0235327 0.0878254i
\(680\) 0.640282 6.28373i 0.0245537 0.240970i
\(681\) 0 0
\(682\) 4.98476 + 2.53322i 0.190876 + 0.0970020i
\(683\) 2.07795 0.860717i 0.0795107 0.0329344i −0.342574 0.939491i \(-0.611299\pi\)
0.422084 + 0.906557i \(0.361299\pi\)
\(684\) 0 0
\(685\) 7.22367 17.4395i 0.276002 0.666328i
\(686\) −0.262481 + 3.38087i −0.0100216 + 0.129082i
\(687\) 0 0
\(688\) −31.9283 15.0635i −1.21726 0.574289i
\(689\) −24.2633 42.0253i −0.924359 1.60104i
\(690\) 0 0
\(691\) 29.9555 22.9857i 1.13956 0.874416i 0.146177 0.989258i \(-0.453303\pi\)
0.993384 + 0.114843i \(0.0366364\pi\)
\(692\) −3.38535 6.20368i −0.128692 0.235829i
\(693\) 0 0
\(694\) −2.71320 50.7434i −0.102992 1.92619i
\(695\) −28.9113 + 7.74676i −1.09667 + 0.293851i
\(696\) 0 0
\(697\) 4.94697 + 1.32554i 0.187380 + 0.0502083i
\(698\) 8.45807 40.0002i 0.320143 1.51403i
\(699\) 0 0
\(700\) 1.03372 0.399319i 0.0390708 0.0150928i
\(701\) −17.1061 + 41.2978i −0.646089 + 1.55980i 0.172245 + 0.985054i \(0.444898\pi\)
−0.818334 + 0.574743i \(0.805102\pi\)
\(702\) 0 0
\(703\) 39.5190i 1.49049i
\(704\) −7.32609 4.96688i −0.276112 0.187196i
\(705\) 0 0
\(706\) −1.69735 + 0.316443i −0.0638805 + 0.0119095i
\(707\) −0.0682280 0.518243i −0.00256598 0.0194905i
\(708\) 0 0
\(709\) 20.9338 + 2.75599i 0.786186 + 0.103503i 0.512922 0.858435i \(-0.328563\pi\)
0.273265 + 0.961939i \(0.411896\pi\)
\(710\) 0.190804 0.212361i 0.00716076 0.00796977i
\(711\) 0 0
\(712\) 9.88756 41.7684i 0.370552 1.56534i
\(713\) −1.58404 5.91173i −0.0593228 0.221396i
\(714\) 0 0
\(715\) −3.75325 + 4.89133i −0.140364 + 0.182925i
\(716\) −39.0160 23.7956i −1.45810 0.889284i
\(717\) 0 0
\(718\) −0.997400 + 12.8470i −0.0372226 + 0.479445i
\(719\) 24.2360i 0.903851i 0.892056 + 0.451926i \(0.149263\pi\)
−0.892056 + 0.451926i \(0.850737\pi\)
\(720\) 0 0
\(721\) 0.0126918i 0.000472666i
\(722\) 1.64085 + 0.127391i 0.0610661 + 0.00474098i
\(723\) 0 0
\(724\) −6.96575 28.7463i −0.258880 1.06835i
\(725\) 12.8196 16.7068i 0.476108 0.620475i
\(726\) 0 0
\(727\) 1.48029 + 5.52453i 0.0549010 + 0.204893i 0.987928 0.154912i \(-0.0495096\pi\)
−0.933027 + 0.359806i \(0.882843\pi\)
\(728\) 1.64801 + 1.18938i 0.0610794 + 0.0440812i
\(729\) 0 0
\(730\) 7.79181 + 7.00086i 0.288388 + 0.259113i
\(731\) 14.6805 + 1.93272i 0.542976 + 0.0714842i
\(732\) 0 0
\(733\) −2.43834 18.5210i −0.0900622 0.684090i −0.975605 0.219533i \(-0.929547\pi\)
0.885543 0.464557i \(-0.153787\pi\)
\(734\) −0.475555 2.55080i −0.0175531 0.0941516i
\(735\) 0 0
\(736\) 1.31536 + 9.59836i 0.0484847 + 0.353800i
\(737\) 10.5677i 0.389265i
\(738\) 0 0
\(739\) 12.0562 29.1063i 0.443496 1.07069i −0.531218 0.847235i \(-0.678265\pi\)
0.974714 0.223458i \(-0.0717346\pi\)
\(740\) −22.7784 10.0839i −0.837350 0.370690i
\(741\) 0 0
\(742\) 2.75264 + 0.582047i 0.101053 + 0.0213676i
\(743\) −9.54537 2.55767i −0.350186 0.0938319i 0.0794385 0.996840i \(-0.474687\pi\)
−0.429624 + 0.903008i \(0.641354\pi\)
\(744\) 0 0
\(745\) 18.7924 5.03540i 0.688500 0.184483i
\(746\) 17.1108 0.914898i 0.626470 0.0334968i
\(747\) 0 0
\(748\) 3.56171 + 1.04683i 0.130229 + 0.0382760i
\(749\) 1.54268 1.18374i 0.0563685 0.0432531i
\(750\) 0 0
\(751\) 3.85776 + 6.68183i 0.140772 + 0.243823i 0.927787 0.373109i \(-0.121708\pi\)
−0.787016 + 0.616933i \(0.788375\pi\)
\(752\) −1.85755 2.04554i −0.0677381 0.0745933i
\(753\) 0 0
\(754\) 38.5055 + 2.98945i 1.40229 + 0.108869i
\(755\) −11.7973 + 28.4812i −0.429347 + 1.03654i
\(756\) 0 0
\(757\) −8.34229 + 3.45549i −0.303206 + 0.125592i −0.529099 0.848560i \(-0.677470\pi\)
0.225893 + 0.974152i \(0.427470\pi\)
\(758\) 19.4517 38.2762i 0.706517 1.39025i
\(759\) 0 0
\(760\) 7.54243 13.9972i 0.273593 0.507733i
\(761\) 4.96391 18.5256i 0.179942 0.671551i −0.815715 0.578454i \(-0.803656\pi\)
0.995657 0.0930979i \(-0.0296769\pi\)
\(762\) 0 0
\(763\) −0.257913 + 1.95904i −0.00933707 + 0.0709221i
\(764\) −34.1453 27.5309i −1.23533 0.996032i
\(765\) 0 0
\(766\) −3.45874 1.22069i −0.124969 0.0441052i
\(767\) 6.85457 11.8725i 0.247504 0.428690i
\(768\) 0 0
\(769\) −3.01344 5.21944i −0.108668 0.188218i 0.806563 0.591148i \(-0.201325\pi\)
−0.915231 + 0.402930i \(0.867992\pi\)
\(770\) −0.0655138 0.351405i −0.00236095 0.0126638i
\(771\) 0 0
\(772\) −25.5368 + 9.86473i −0.919090 + 0.355039i
\(773\) 24.7943 10.2701i 0.891790 0.369391i 0.110732 0.993850i \(-0.464680\pi\)
0.781058 + 0.624459i \(0.214680\pi\)
\(774\) 0 0
\(775\) 8.15758 + 8.15758i 0.293029 + 0.293029i
\(776\) −39.0268 + 1.14596i −1.40098 + 0.0411376i
\(777\) 0 0
\(778\) 26.7371 + 41.0763i 0.958572 + 1.47266i
\(779\) 10.2282 + 7.84837i 0.366463 + 0.281197i
\(780\) 0 0
\(781\) 0.102147 + 0.133121i 0.00365511 + 0.00476343i
\(782\) −1.75323 3.66573i −0.0626953 0.131086i
\(783\) 0 0
\(784\) 27.2481 5.91243i 0.973146 0.211158i
\(785\) 8.47445 14.6782i 0.302466 0.523886i
\(786\) 0 0
\(787\) 1.91884 + 14.5750i 0.0683993 + 0.519544i 0.991008 + 0.133806i \(0.0427199\pi\)
−0.922608 + 0.385738i \(0.873947\pi\)
\(788\) 8.56473 + 35.3449i 0.305106 + 1.25911i
\(789\) 0 0
\(790\) 1.32587 2.60899i 0.0471723 0.0928236i
\(791\) −0.668325 0.668325i −0.0237629 0.0237629i
\(792\) 0 0
\(793\) 29.1451 29.1451i 1.03497 1.03497i
\(794\) 9.08063 + 27.8470i 0.322260 + 0.988253i
\(795\) 0 0
\(796\) 8.39941 6.12973i 0.297709 0.217263i
\(797\) −5.07542 + 0.668191i −0.179780 + 0.0236686i −0.219879 0.975527i \(-0.570566\pi\)
0.0400984 + 0.999196i \(0.487233\pi\)
\(798\) 0 0
\(799\) 1.00365 + 0.579458i 0.0355066 + 0.0204998i
\(800\) −11.1936 14.4290i −0.395752 0.510142i
\(801\) 0 0
\(802\) −24.6468 8.69853i −0.870308 0.307156i
\(803\) −4.88437 + 3.74791i −0.172366 + 0.132261i
\(804\) 0 0
\(805\) −0.238186 + 0.310410i −0.00839494 + 0.0109405i
\(806\) −4.37711 + 20.7004i −0.154177 + 0.729141i
\(807\) 0 0
\(808\) −7.85811 + 3.52859i −0.276447 + 0.124135i
\(809\) 25.1234 25.1234i 0.883292 0.883292i −0.110576 0.993868i \(-0.535269\pi\)
0.993868 + 0.110576i \(0.0352695\pi\)
\(810\) 0 0
\(811\) 9.44355 + 22.7987i 0.331608 + 0.800572i 0.998465 + 0.0553866i \(0.0176391\pi\)
−0.666857 + 0.745186i \(0.732361\pi\)
\(812\) −1.62100 + 1.54481i −0.0568859 + 0.0542120i
\(813\) 0 0
\(814\) 8.28005 12.0749i 0.290216 0.423225i
\(815\) −0.198626 + 0.114677i −0.00695757 + 0.00401695i
\(816\) 0 0
\(817\) 32.2804 + 18.6371i 1.12935 + 0.652029i
\(818\) 30.6117 14.6408i 1.07031 0.511904i
\(819\) 0 0
\(820\) −7.13361 + 3.89281i −0.249117 + 0.135943i
\(821\) −14.9037 1.96211i −0.520143 0.0684782i −0.134116 0.990966i \(-0.542820\pi\)
−0.386027 + 0.922487i \(0.626153\pi\)
\(822\) 0 0
\(823\) 7.66921 + 2.05496i 0.267332 + 0.0716314i 0.389995 0.920817i \(-0.372477\pi\)
−0.122663 + 0.992448i \(0.539143\pi\)
\(824\) 0.200349 0.0600387i 0.00697950 0.00209155i
\(825\) 0 0
\(826\) 0.246418 + 0.755674i 0.00857397 + 0.0262932i
\(827\) 8.68350 + 20.9638i 0.301955 + 0.728983i 0.999917 + 0.0128492i \(0.00409015\pi\)
−0.697963 + 0.716134i \(0.745910\pi\)
\(828\) 0 0
\(829\) 12.1233 + 5.02164i 0.421060 + 0.174409i 0.583145 0.812368i \(-0.301822\pi\)
−0.162085 + 0.986777i \(0.551822\pi\)
\(830\) −5.95507 6.95757i −0.206704 0.241501i
\(831\) 0 0
\(832\) 10.9792 31.6415i 0.380636 1.09697i
\(833\) −10.1277 + 5.84724i −0.350905 + 0.202595i
\(834\) 0 0
\(835\) 11.5549 + 15.0586i 0.399872 + 0.521124i
\(836\) 7.27500 + 5.86573i 0.251611 + 0.202870i
\(837\) 0 0
\(838\) −35.2892 31.7069i −1.21904 1.09530i
\(839\) 3.54691 + 13.2373i 0.122453 + 0.457001i 0.999736 0.0229725i \(-0.00731301\pi\)
−0.877283 + 0.479973i \(0.840646\pi\)
\(840\) 0 0
\(841\) −3.50747 + 13.0901i −0.120947 + 0.451382i
\(842\) −3.99017 + 2.59726i −0.137510 + 0.0895073i
\(843\) 0 0
\(844\) −12.2081 0.293824i −0.420221 0.0101138i
\(845\) −5.56705 2.30595i −0.191512 0.0793271i
\(846\) 0 0
\(847\) −1.67789 −0.0576529
\(848\) −3.83337 46.2059i −0.131638 1.58672i
\(849\) 0 0
\(850\) 6.31694 + 4.33168i 0.216669 + 0.148575i
\(851\) −15.8886 + 2.09177i −0.544653 + 0.0717049i
\(852\) 0 0
\(853\) −1.05384 + 8.00474i −0.0360829 + 0.274077i 0.963887 + 0.266312i \(0.0858051\pi\)
−0.999970 + 0.00776524i \(0.997528\pi\)
\(854\) 0.127594 + 2.38632i 0.00436619 + 0.0816581i
\(855\) 0 0
\(856\) −25.9840 18.7527i −0.888115 0.640955i
\(857\) −20.5111 + 5.49593i −0.700645 + 0.187737i −0.591520 0.806291i \(-0.701472\pi\)
−0.109126 + 0.994028i \(0.534805\pi\)
\(858\) 0 0
\(859\) 23.7276 + 18.2069i 0.809577 + 0.621210i 0.928348 0.371712i \(-0.121229\pi\)
−0.118772 + 0.992922i \(0.537896\pi\)
\(860\) −18.9791 + 13.8506i −0.647181 + 0.472301i
\(861\) 0 0
\(862\) −19.0330 22.2370i −0.648265 0.757396i
\(863\) 50.2980 1.71216 0.856082 0.516840i \(-0.172892\pi\)
0.856082 + 0.516840i \(0.172892\pi\)
\(864\) 0 0
\(865\) −4.70351 −0.159924
\(866\) 1.84294 + 2.15318i 0.0626255 + 0.0731681i
\(867\) 0 0
\(868\) −0.723145 0.990906i −0.0245451 0.0336335i
\(869\) 1.36463 + 1.04711i 0.0462918 + 0.0355209i
\(870\) 0 0
\(871\) −38.6252 + 10.3496i −1.30876 + 0.350682i
\(872\) 32.1450 5.19595i 1.08857 0.175957i
\(873\) 0 0
\(874\) −0.546150 10.2143i −0.0184738 0.345504i
\(875\) 0.245365 1.86373i 0.00829483 0.0630055i
\(876\) 0 0
\(877\) 24.3855 3.21041i 0.823439 0.108408i 0.292980 0.956118i \(-0.405353\pi\)
0.530459 + 0.847711i \(0.322020\pi\)
\(878\) 17.8850 + 12.2641i 0.603588 + 0.413895i
\(879\) 0 0
\(880\) −5.23728 + 2.69651i −0.176549 + 0.0908995i
\(881\) −14.3584 −0.483747 −0.241873 0.970308i \(-0.577762\pi\)
−0.241873 + 0.970308i \(0.577762\pi\)
\(882\) 0 0
\(883\) 38.1415 + 15.7987i 1.28357 + 0.531670i 0.917061 0.398746i \(-0.130555\pi\)
0.366504 + 0.930417i \(0.380555\pi\)
\(884\) −0.337996 + 14.0434i −0.0113680 + 0.472331i
\(885\) 0 0
\(886\) −6.29175 + 4.09538i −0.211375 + 0.137587i
\(887\) 2.79505 10.4313i 0.0938486 0.350248i −0.902994 0.429654i \(-0.858636\pi\)
0.996842 + 0.0794060i \(0.0253023\pi\)
\(888\) 0 0
\(889\) −0.460038 1.71688i −0.0154292 0.0575825i
\(890\) −21.2493 19.0923i −0.712280 0.639976i
\(891\) 0 0
\(892\) 13.2601 16.4459i 0.443981 0.550650i
\(893\) 1.77597 + 2.31449i 0.0594307 + 0.0774516i
\(894\) 0 0
\(895\) −26.3401 + 15.2074i −0.880451 + 0.508329i
\(896\) 0.939177 + 1.69960i 0.0313757 + 0.0567797i
\(897\) 0 0
\(898\) −11.3704 13.2845i −0.379435 0.443310i
\(899\) −21.5369 8.92087i −0.718295 0.297528i
\(900\) 0 0
\(901\) 7.44185 + 17.9662i 0.247924 + 0.598542i
\(902\) −1.48080 4.54107i −0.0493052 0.151201i
\(903\) 0 0
\(904\) −7.38849 + 13.7115i −0.245738 + 0.456039i
\(905\) −19.0145 5.09493i −0.632065 0.169361i
\(906\) 0 0
\(907\) −38.5303 5.07261i −1.27938 0.168433i −0.539965 0.841687i \(-0.681563\pi\)
−0.739411 + 0.673254i \(0.764896\pi\)
\(908\) −21.1732 38.8001i −0.702658 1.28763i
\(909\) 0 0
\(910\) 1.22024 0.583609i 0.0404504 0.0193464i
\(911\) 15.1765 + 8.76218i 0.502821 + 0.290304i 0.729878 0.683578i \(-0.239577\pi\)
−0.227057 + 0.973882i \(0.572910\pi\)
\(912\) 0 0
\(913\) 4.66150 2.69132i 0.154273 0.0890697i
\(914\) −19.6644 + 28.6768i −0.650440 + 0.948546i
\(915\) 0 0
\(916\) 1.43573 + 1.50655i 0.0474379 + 0.0497777i
\(917\) −1.03876 2.50778i −0.0343028 0.0828143i
\(918\) 0 0
\(919\) 9.98940 9.98940i 0.329520 0.329520i −0.522884 0.852404i \(-0.675144\pi\)
0.852404 + 0.522884i \(0.175144\pi\)
\(920\) 6.02679 + 2.29154i 0.198698 + 0.0755499i
\(921\) 0 0
\(922\) 5.27804 24.9611i 0.173823 0.822050i
\(923\) −0.386521 + 0.503724i −0.0127225 + 0.0165803i
\(924\) 0 0
\(925\) 23.9656 18.3894i 0.787984 0.604641i
\(926\) −31.0006 10.9410i −1.01874 0.359543i
\(927\) 0 0
\(928\) 32.0541 + 18.2810i 1.05223 + 0.600102i
\(929\) −29.8614 17.2405i −0.979720 0.565642i −0.0775347 0.996990i \(-0.524705\pi\)
−0.902186 + 0.431348i \(0.858038\pi\)
\(930\) 0 0
\(931\) −29.1868 + 3.84252i −0.956560 + 0.125933i
\(932\) −24.8735 34.0835i −0.814758 1.11644i
\(933\) 0 0
\(934\) 14.2037 + 43.5575i 0.464758 + 1.42524i
\(935\) 1.74705 1.74705i 0.0571348 0.0571348i
\(936\) 0 0
\(937\) 15.4659 + 15.4659i 0.505248 + 0.505248i 0.913064 0.407816i \(-0.133710\pi\)
−0.407816 + 0.913064i \(0.633710\pi\)
\(938\) 1.05036 2.06685i 0.0342954 0.0674850i
\(939\) 0 0
\(940\) −1.78722 + 0.433077i −0.0582927 + 0.0141254i
\(941\) −3.30725 25.1210i −0.107813 0.818922i −0.956849 0.290586i \(-0.906150\pi\)
0.849036 0.528336i \(-0.177184\pi\)
\(942\) 0 0
\(943\) −2.61404 + 4.52766i −0.0851250 + 0.147441i
\(944\) 10.7632 7.46462i 0.350312 0.242953i
\(945\) 0 0
\(946\) −5.95832 12.4579i −0.193722 0.405042i
\(947\) −25.8695 33.7138i −0.840645 1.09555i −0.994215 0.107412i \(-0.965744\pi\)
0.153569 0.988138i \(-0.450923\pi\)
\(948\) 0 0
\(949\) −18.4823 14.1820i −0.599961 0.460366i
\(950\) 10.5184 + 16.1595i 0.341262 + 0.524283i
\(951\) 0 0
\(952\) −0.592560 0.558753i −0.0192050 0.0181093i
\(953\) 11.7909 + 11.7909i 0.381943 + 0.381943i 0.871802 0.489859i \(-0.162952\pi\)
−0.489859 + 0.871802i \(0.662952\pi\)
\(954\) 0 0
\(955\) −26.9694 + 11.1711i −0.872710 + 0.361488i
\(956\) −9.23045 23.8948i −0.298534 0.772814i
\(957\) 0 0
\(958\) −10.9610 58.7930i −0.354134 1.89952i
\(959\) −1.21701 2.10792i −0.0392992 0.0680682i
\(960\) 0 0
\(961\) −9.11462 + 15.7870i −0.294020 + 0.509258i
\(962\) 52.2434 + 18.4382i 1.68440 + 0.594470i
\(963\) 0 0
\(964\) −8.21059 + 10.1832i −0.264445 + 0.327980i
\(965\) −2.37814 + 18.0638i −0.0765550 + 0.581493i
\(966\) 0 0
\(967\) 5.66820 21.1540i 0.182277 0.680267i −0.812920 0.582375i \(-0.802123\pi\)
0.995197 0.0978919i \(-0.0312099\pi\)
\(968\) 7.93729 + 26.4867i 0.255114 + 0.851316i
\(969\) 0 0
\(970\) −11.7724 + 23.1652i −0.377989 + 0.743789i
\(971\) −52.9107 + 21.9163i −1.69798 + 0.703328i −0.999919 0.0127064i \(-0.995955\pi\)
−0.698065 + 0.716035i \(0.745955\pi\)
\(972\) 0 0
\(973\) −1.47696 + 3.56569i −0.0473491 + 0.114311i
\(974\) 17.8174 + 1.38329i 0.570907 + 0.0443235i
\(975\) 0 0
\(976\) 37.0663 13.3027i 1.18646 0.425809i
\(977\) −10.6302 18.4121i −0.340091 0.589054i 0.644359 0.764723i \(-0.277124\pi\)
−0.984449 + 0.175669i \(0.943791\pi\)
\(978\) 0 0
\(979\) 13.3203 10.2211i 0.425720 0.326667i
\(980\) 5.23267 17.8035i 0.167152 0.568712i
\(981\) 0 0
\(982\) 9.14412 0.488927i 0.291800 0.0156023i
\(983\) −10.1671 + 2.72427i −0.324281 + 0.0868908i −0.417287 0.908775i \(-0.637019\pi\)
0.0930062 + 0.995666i \(0.470352\pi\)
\(984\) 0 0
\(985\) 23.3793 + 6.26447i 0.744927 + 0.199602i
\(986\) −15.1423 3.20184i −0.482228 0.101967i
\(987\) 0 0
\(988\) −14.3146 + 32.3351i −0.455407 + 1.02872i
\(989\) −5.78439 + 13.9648i −0.183933 + 0.444054i
\(990\) 0 0
\(991\) 28.2543i 0.897526i −0.893651 0.448763i \(-0.851865\pi\)
0.893651 0.448763i \(-0.148135\pi\)
\(992\) −12.2213 + 16.1029i −0.388028 + 0.511267i
\(993\) 0 0
\(994\) −0.00674682 0.0361888i −0.000213996 0.00114784i
\(995\) −0.903293 6.86119i −0.0286363 0.217514i
\(996\) 0 0
\(997\) −24.2150 3.18796i −0.766897 0.100964i −0.263079 0.964774i \(-0.584738\pi\)
−0.503817 + 0.863810i \(0.668071\pi\)
\(998\) −34.8618 31.3230i −1.10353 0.991511i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.10 368
3.2 odd 2 288.2.bf.a.227.37 yes 368
9.4 even 3 288.2.bf.a.131.22 yes 368
9.5 odd 6 inner 864.2.bn.a.611.25 368
32.11 odd 8 inner 864.2.bn.a.683.25 368
96.11 even 8 288.2.bf.a.11.22 368
288.139 odd 24 288.2.bf.a.203.37 yes 368
288.203 even 24 inner 864.2.bn.a.395.10 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.22 368 96.11 even 8
288.2.bf.a.131.22 yes 368 9.4 even 3
288.2.bf.a.203.37 yes 368 288.139 odd 24
288.2.bf.a.227.37 yes 368 3.2 odd 2
864.2.bn.a.35.10 368 1.1 even 1 trivial
864.2.bn.a.395.10 368 288.203 even 24 inner
864.2.bn.a.611.25 368 9.5 odd 6 inner
864.2.bn.a.683.25 368 32.11 odd 8 inner