Properties

Label 864.2.bn.a.611.39
Level $864$
Weight $2$
Character 864.611
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 611.39
Character \(\chi\) \(=\) 864.611
Dual form 864.2.bn.a.683.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26591 + 0.630463i) q^{2} +(1.20503 + 1.59621i) q^{4} +(-0.00886053 + 0.0673024i) q^{5} +(0.666754 - 2.48836i) q^{7} +(0.519104 + 2.78038i) q^{8} +(-0.0536483 + 0.0796122i) q^{10} +(-0.332332 - 0.255007i) q^{11} +(3.75972 + 4.89976i) q^{13} +(2.41287 - 2.72966i) q^{14} +(-1.09579 + 3.84698i) q^{16} -3.64897 q^{17} +(3.97733 + 1.64746i) q^{19} +(-0.118106 + 0.0669583i) q^{20} +(-0.259928 - 0.532338i) q^{22} +(8.77221 - 2.35051i) q^{23} +(4.82518 + 1.29290i) q^{25} +(1.67033 + 8.57300i) q^{26} +(4.77541 - 1.93427i) q^{28} +(-7.27433 + 0.957684i) q^{29} +(1.77380 + 1.02410i) q^{31} +(-3.81255 + 4.17905i) q^{32} +(-4.61925 - 2.30054i) q^{34} +(0.161565 + 0.0669223i) q^{35} +(-3.36655 - 8.12758i) q^{37} +(3.99625 + 4.59309i) q^{38} +(-0.191726 + 0.0103013i) q^{40} +(-1.45472 - 5.42911i) q^{41} +(-2.16028 + 2.81533i) q^{43} +(0.00657510 - 0.837765i) q^{44} +(12.5867 + 2.55503i) q^{46} +(-2.05961 + 1.18912i) q^{47} +(0.314804 + 0.181752i) q^{49} +(5.29309 + 4.67879i) q^{50} +(-3.29048 + 11.9057i) q^{52} +(0.0730018 + 0.176242i) q^{53} +(0.0201073 - 0.0201073i) q^{55} +(7.26471 + 0.562114i) q^{56} +(-9.81240 - 3.37386i) q^{58} +(-5.21160 - 0.686120i) q^{59} +(0.357730 + 2.71723i) q^{61} +(1.59980 + 2.41473i) q^{62} +(-7.46106 + 2.88662i) q^{64} +(-0.363079 + 0.209624i) q^{65} +(-0.969906 - 1.26401i) q^{67} +(-4.39712 - 5.82453i) q^{68} +(0.162334 + 0.186578i) q^{70} +(-7.18803 + 7.18803i) q^{71} +(-6.62149 - 6.62149i) q^{73} +(0.862401 - 12.4112i) q^{74} +(2.16311 + 8.33390i) q^{76} +(-0.856134 + 0.656935i) q^{77} +(-4.97251 - 8.61265i) q^{79} +(-0.249202 - 0.107836i) q^{80} +(1.58131 - 7.78988i) q^{82} +(4.26191 - 0.561091i) q^{83} +(0.0323318 - 0.245584i) q^{85} +(-4.50967 + 2.20197i) q^{86} +(0.536503 - 1.05639i) q^{88} +(-2.46723 - 2.46723i) q^{89} +(14.6992 - 6.08860i) q^{91} +(14.3227 + 11.1699i) q^{92} +(-3.35696 + 0.206801i) q^{94} +(-0.146119 + 0.253086i) q^{95} +(-7.74713 - 13.4184i) q^{97} +(0.283924 + 0.428554i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26591 + 0.630463i 0.895130 + 0.445805i
\(3\) 0 0
\(4\) 1.20503 + 1.59621i 0.602516 + 0.798107i
\(5\) −0.00886053 + 0.0673024i −0.00396255 + 0.0300986i −0.993312 0.115462i \(-0.963165\pi\)
0.989349 + 0.145560i \(0.0464985\pi\)
\(6\) 0 0
\(7\) 0.666754 2.48836i 0.252009 0.940512i −0.717721 0.696331i \(-0.754814\pi\)
0.969730 0.244180i \(-0.0785189\pi\)
\(8\) 0.519104 + 2.78038i 0.183531 + 0.983014i
\(9\) 0 0
\(10\) −0.0536483 + 0.0796122i −0.0169651 + 0.0251756i
\(11\) −0.332332 0.255007i −0.100202 0.0768876i 0.557445 0.830214i \(-0.311782\pi\)
−0.657647 + 0.753326i \(0.728448\pi\)
\(12\) 0 0
\(13\) 3.75972 + 4.89976i 1.04276 + 1.35895i 0.930920 + 0.365223i \(0.119007\pi\)
0.111838 + 0.993726i \(0.464326\pi\)
\(14\) 2.41287 2.72966i 0.644866 0.729533i
\(15\) 0 0
\(16\) −1.09579 + 3.84698i −0.273948 + 0.961744i
\(17\) −3.64897 −0.885004 −0.442502 0.896767i \(-0.645909\pi\)
−0.442502 + 0.896767i \(0.645909\pi\)
\(18\) 0 0
\(19\) 3.97733 + 1.64746i 0.912461 + 0.377954i 0.788998 0.614395i \(-0.210600\pi\)
0.123463 + 0.992349i \(0.460600\pi\)
\(20\) −0.118106 + 0.0669583i −0.0264094 + 0.0149723i
\(21\) 0 0
\(22\) −0.259928 0.532338i −0.0554169 0.113495i
\(23\) 8.77221 2.35051i 1.82913 0.490114i 0.831293 0.555834i \(-0.187601\pi\)
0.997838 + 0.0657198i \(0.0209344\pi\)
\(24\) 0 0
\(25\) 4.82518 + 1.29290i 0.965036 + 0.258581i
\(26\) 1.67033 + 8.57300i 0.327579 + 1.68130i
\(27\) 0 0
\(28\) 4.77541 1.93427i 0.902468 0.365543i
\(29\) −7.27433 + 0.957684i −1.35081 + 0.177837i −0.770959 0.636885i \(-0.780222\pi\)
−0.579851 + 0.814723i \(0.696889\pi\)
\(30\) 0 0
\(31\) 1.77380 + 1.02410i 0.318584 + 0.183935i 0.650761 0.759282i \(-0.274450\pi\)
−0.332177 + 0.943217i \(0.607783\pi\)
\(32\) −3.81255 + 4.17905i −0.673969 + 0.738759i
\(33\) 0 0
\(34\) −4.61925 2.30054i −0.792194 0.394539i
\(35\) 0.161565 + 0.0669223i 0.0273094 + 0.0113119i
\(36\) 0 0
\(37\) −3.36655 8.12758i −0.553458 1.33617i −0.914866 0.403758i \(-0.867704\pi\)
0.361408 0.932408i \(-0.382296\pi\)
\(38\) 3.99625 + 4.59309i 0.648278 + 0.745097i
\(39\) 0 0
\(40\) −0.191726 + 0.0103013i −0.0303145 + 0.00162877i
\(41\) −1.45472 5.42911i −0.227190 0.847884i −0.981515 0.191383i \(-0.938703\pi\)
0.754326 0.656501i \(-0.227964\pi\)
\(42\) 0 0
\(43\) −2.16028 + 2.81533i −0.329440 + 0.429334i −0.928479 0.371386i \(-0.878883\pi\)
0.599039 + 0.800720i \(0.295549\pi\)
\(44\) 0.00657510 0.837765i 0.000991233 0.126298i
\(45\) 0 0
\(46\) 12.5867 + 2.55503i 1.85581 + 0.376719i
\(47\) −2.05961 + 1.18912i −0.300425 + 0.173450i −0.642634 0.766173i \(-0.722158\pi\)
0.342209 + 0.939624i \(0.388825\pi\)
\(48\) 0 0
\(49\) 0.314804 + 0.181752i 0.0449720 + 0.0259646i
\(50\) 5.29309 + 4.67879i 0.748556 + 0.661681i
\(51\) 0 0
\(52\) −3.29048 + 11.9057i −0.456307 + 1.65102i
\(53\) 0.0730018 + 0.176242i 0.0100276 + 0.0242087i 0.928814 0.370546i \(-0.120829\pi\)
−0.918786 + 0.394755i \(0.870829\pi\)
\(54\) 0 0
\(55\) 0.0201073 0.0201073i 0.00271126 0.00271126i
\(56\) 7.26471 + 0.562114i 0.970788 + 0.0751157i
\(57\) 0 0
\(58\) −9.81240 3.37386i −1.28843 0.443009i
\(59\) −5.21160 0.686120i −0.678493 0.0893252i −0.216599 0.976261i \(-0.569496\pi\)
−0.461893 + 0.886935i \(0.652830\pi\)
\(60\) 0 0
\(61\) 0.357730 + 2.71723i 0.0458026 + 0.347905i 0.998967 + 0.0454512i \(0.0144725\pi\)
−0.953164 + 0.302454i \(0.902194\pi\)
\(62\) 1.59980 + 2.41473i 0.203175 + 0.306672i
\(63\) 0 0
\(64\) −7.46106 + 2.88662i −0.932633 + 0.360827i
\(65\) −0.363079 + 0.209624i −0.0450344 + 0.0260006i
\(66\) 0 0
\(67\) −0.969906 1.26401i −0.118493 0.154423i 0.730341 0.683083i \(-0.239361\pi\)
−0.848834 + 0.528660i \(0.822695\pi\)
\(68\) −4.39712 5.82453i −0.533230 0.706328i
\(69\) 0 0
\(70\) 0.162334 + 0.186578i 0.0194026 + 0.0223003i
\(71\) −7.18803 + 7.18803i −0.853063 + 0.853063i −0.990509 0.137446i \(-0.956111\pi\)
0.137446 + 0.990509i \(0.456111\pi\)
\(72\) 0 0
\(73\) −6.62149 6.62149i −0.774986 0.774986i 0.203987 0.978974i \(-0.434610\pi\)
−0.978974 + 0.203987i \(0.934610\pi\)
\(74\) 0.862401 12.4112i 0.100252 1.44278i
\(75\) 0 0
\(76\) 2.16311 + 8.33390i 0.248125 + 0.955964i
\(77\) −0.856134 + 0.656935i −0.0975655 + 0.0748647i
\(78\) 0 0
\(79\) −4.97251 8.61265i −0.559452 0.968999i −0.997542 0.0700678i \(-0.977678\pi\)
0.438091 0.898931i \(-0.355655\pi\)
\(80\) −0.249202 0.107836i −0.0278616 0.0120564i
\(81\) 0 0
\(82\) 1.58131 7.78988i 0.174626 0.860249i
\(83\) 4.26191 0.561091i 0.467805 0.0615877i 0.107061 0.994252i \(-0.465856\pi\)
0.360744 + 0.932665i \(0.382523\pi\)
\(84\) 0 0
\(85\) 0.0323318 0.245584i 0.00350687 0.0266373i
\(86\) −4.50967 + 2.20197i −0.486291 + 0.237444i
\(87\) 0 0
\(88\) 0.536503 1.05639i 0.0571915 0.112611i
\(89\) −2.46723 2.46723i −0.261526 0.261526i 0.564148 0.825674i \(-0.309205\pi\)
−0.825674 + 0.564148i \(0.809205\pi\)
\(90\) 0 0
\(91\) 14.6992 6.08860i 1.54089 0.638259i
\(92\) 14.3227 + 11.1699i 1.49324 + 1.16454i
\(93\) 0 0
\(94\) −3.35696 + 0.206801i −0.346244 + 0.0213299i
\(95\) −0.146119 + 0.253086i −0.0149915 + 0.0259661i
\(96\) 0 0
\(97\) −7.74713 13.4184i −0.786602 1.36243i −0.928038 0.372486i \(-0.878505\pi\)
0.141436 0.989947i \(-0.454828\pi\)
\(98\) 0.283924 + 0.428554i 0.0286807 + 0.0432905i
\(99\) 0 0
\(100\) 3.75075 + 9.26000i 0.375075 + 0.926000i
\(101\) 3.40929 + 2.61604i 0.339237 + 0.260306i 0.764304 0.644856i \(-0.223083\pi\)
−0.425067 + 0.905162i \(0.639749\pi\)
\(102\) 0 0
\(103\) −1.69436 + 0.454001i −0.166950 + 0.0447341i −0.341326 0.939945i \(-0.610876\pi\)
0.174376 + 0.984679i \(0.444209\pi\)
\(104\) −11.6715 + 12.9969i −1.14449 + 1.27446i
\(105\) 0 0
\(106\) −0.0187007 + 0.269131i −0.00181637 + 0.0261403i
\(107\) 6.52327 2.70203i 0.630628 0.261215i −0.0443917 0.999014i \(-0.514135\pi\)
0.675020 + 0.737799i \(0.264135\pi\)
\(108\) 0 0
\(109\) −2.14998 + 5.19051i −0.205931 + 0.497161i −0.992775 0.119991i \(-0.961713\pi\)
0.786844 + 0.617152i \(0.211713\pi\)
\(110\) 0.0381308 0.0127770i 0.00363563 0.00121824i
\(111\) 0 0
\(112\) 8.84204 + 5.29171i 0.835494 + 0.500020i
\(113\) 6.18560 10.7138i 0.581893 1.00787i −0.413362 0.910567i \(-0.635646\pi\)
0.995255 0.0973009i \(-0.0310209\pi\)
\(114\) 0 0
\(115\) 0.0804683 + 0.611217i 0.00750371 + 0.0569963i
\(116\) −10.2945 10.4573i −0.955818 0.970940i
\(117\) 0 0
\(118\) −6.16482 4.15428i −0.567518 0.382433i
\(119\) −2.43296 + 9.07994i −0.223029 + 0.832357i
\(120\) 0 0
\(121\) −2.80159 10.4557i −0.254690 0.950517i
\(122\) −1.26026 + 3.66529i −0.114098 + 0.331840i
\(123\) 0 0
\(124\) 0.502799 + 4.06544i 0.0451527 + 0.365087i
\(125\) −0.259658 + 0.626870i −0.0232245 + 0.0560689i
\(126\) 0 0
\(127\) 6.09879i 0.541180i −0.962695 0.270590i \(-0.912781\pi\)
0.962695 0.270590i \(-0.0872188\pi\)
\(128\) −11.2649 1.04974i −0.995686 0.0927850i
\(129\) 0 0
\(130\) −0.591783 + 0.0364559i −0.0519028 + 0.00319740i
\(131\) 10.9721 8.41920i 0.958638 0.735589i −0.00577685 0.999983i \(-0.501839\pi\)
0.964415 + 0.264395i \(0.0851722\pi\)
\(132\) 0 0
\(133\) 6.75138 8.79856i 0.585419 0.762932i
\(134\) −0.430900 2.21160i −0.0372241 0.191053i
\(135\) 0 0
\(136\) −1.89419 10.1455i −0.162426 0.869972i
\(137\) −19.6939 5.27697i −1.68256 0.450842i −0.714110 0.700033i \(-0.753169\pi\)
−0.968454 + 0.249191i \(0.919835\pi\)
\(138\) 0 0
\(139\) 22.2105 + 2.92407i 1.88387 + 0.248017i 0.982668 0.185374i \(-0.0593498\pi\)
0.901206 + 0.433391i \(0.142683\pi\)
\(140\) 0.0878686 + 0.338535i 0.00742625 + 0.0286115i
\(141\) 0 0
\(142\) −13.6312 + 4.56758i −1.14390 + 0.383303i
\(143\) 2.58710i 0.216345i
\(144\) 0 0
\(145\) 0.498066i 0.0413621i
\(146\) −4.20757 12.5568i −0.348221 1.03921i
\(147\) 0 0
\(148\) 8.91654 15.1677i 0.732935 1.24678i
\(149\) −9.26048 1.21916i −0.758648 0.0998779i −0.258729 0.965950i \(-0.583304\pi\)
−0.499919 + 0.866072i \(0.666637\pi\)
\(150\) 0 0
\(151\) −4.46253 1.19573i −0.363155 0.0973071i 0.0726273 0.997359i \(-0.476862\pi\)
−0.435782 + 0.900052i \(0.643528\pi\)
\(152\) −2.51593 + 11.9137i −0.204069 + 0.966328i
\(153\) 0 0
\(154\) −1.49796 + 0.291856i −0.120709 + 0.0235185i
\(155\) −0.0846415 + 0.110307i −0.00679857 + 0.00886007i
\(156\) 0 0
\(157\) −3.89270 + 2.98697i −0.310671 + 0.238386i −0.752314 0.658804i \(-0.771062\pi\)
0.441643 + 0.897191i \(0.354396\pi\)
\(158\) −0.864777 14.0378i −0.0687979 1.11679i
\(159\) 0 0
\(160\) −0.247479 0.293622i −0.0195649 0.0232129i
\(161\) 23.3956i 1.84383i
\(162\) 0 0
\(163\) −2.68046 + 6.47120i −0.209950 + 0.506863i −0.993415 0.114572i \(-0.963450\pi\)
0.783465 + 0.621436i \(0.213450\pi\)
\(164\) 6.91302 8.86430i 0.539816 0.692186i
\(165\) 0 0
\(166\) 5.74892 + 1.97669i 0.446203 + 0.153421i
\(167\) 5.28563 + 19.7262i 0.409014 + 1.52646i 0.796530 + 0.604599i \(0.206667\pi\)
−0.387516 + 0.921863i \(0.626667\pi\)
\(168\) 0 0
\(169\) −6.50753 + 24.2864i −0.500579 + 1.86819i
\(170\) 0.195761 0.290502i 0.0150142 0.0222805i
\(171\) 0 0
\(172\) −7.09708 0.0557006i −0.541147 0.00424713i
\(173\) 1.17706 + 8.94067i 0.0894903 + 0.679747i 0.976115 + 0.217256i \(0.0697107\pi\)
−0.886624 + 0.462490i \(0.846956\pi\)
\(174\) 0 0
\(175\) 6.43441 11.1447i 0.486396 0.842462i
\(176\) 1.34517 0.999039i 0.101396 0.0753054i
\(177\) 0 0
\(178\) −1.56778 4.67878i −0.117510 0.350690i
\(179\) 3.79147 9.15342i 0.283388 0.684159i −0.716522 0.697564i \(-0.754267\pi\)
0.999910 + 0.0134054i \(0.00426720\pi\)
\(180\) 0 0
\(181\) −19.1915 + 7.94937i −1.42649 + 0.590872i −0.956482 0.291790i \(-0.905749\pi\)
−0.470009 + 0.882662i \(0.655749\pi\)
\(182\) 22.4464 + 1.55970i 1.66384 + 0.115613i
\(183\) 0 0
\(184\) 11.0890 + 23.1699i 0.817491 + 1.70811i
\(185\) 0.576835 0.154563i 0.0424098 0.0113637i
\(186\) 0 0
\(187\) 1.21267 + 0.930513i 0.0886791 + 0.0680459i
\(188\) −4.37998 1.85465i −0.319443 0.135264i
\(189\) 0 0
\(190\) −0.344535 + 0.228260i −0.0249952 + 0.0165597i
\(191\) −4.73817 8.20675i −0.342842 0.593820i 0.642117 0.766606i \(-0.278056\pi\)
−0.984959 + 0.172787i \(0.944723\pi\)
\(192\) 0 0
\(193\) −8.97329 + 15.5422i −0.645912 + 1.11875i 0.338178 + 0.941082i \(0.390189\pi\)
−0.984090 + 0.177670i \(0.943144\pi\)
\(194\) −1.34731 21.8707i −0.0967314 1.57023i
\(195\) 0 0
\(196\) 0.0892340 + 0.721512i 0.00637386 + 0.0515366i
\(197\) 4.82042 1.99668i 0.343441 0.142258i −0.204295 0.978909i \(-0.565490\pi\)
0.547735 + 0.836652i \(0.315490\pi\)
\(198\) 0 0
\(199\) −14.2378 14.2378i −1.00929 1.00929i −0.999956 0.00933576i \(-0.997028\pi\)
−0.00933576 0.999956i \(-0.502972\pi\)
\(200\) −1.09000 + 14.0870i −0.0770743 + 0.996101i
\(201\) 0 0
\(202\) 2.66652 + 5.46109i 0.187616 + 0.384241i
\(203\) −2.46713 + 18.7397i −0.173158 + 1.31527i
\(204\) 0 0
\(205\) 0.378282 0.0498017i 0.0264203 0.00347830i
\(206\) −2.43113 0.493506i −0.169385 0.0343842i
\(207\) 0 0
\(208\) −22.9691 + 9.09444i −1.59262 + 0.630586i
\(209\) −0.901678 1.56175i −0.0623704 0.108029i
\(210\) 0 0
\(211\) 5.21165 3.99904i 0.358785 0.275305i −0.413602 0.910458i \(-0.635729\pi\)
0.772387 + 0.635153i \(0.219063\pi\)
\(212\) −0.193350 + 0.328904i −0.0132793 + 0.0225892i
\(213\) 0 0
\(214\) 9.96137 + 0.692171i 0.680945 + 0.0473158i
\(215\) −0.170337 0.170337i −0.0116169 0.0116169i
\(216\) 0 0
\(217\) 3.73103 3.73103i 0.253279 0.253279i
\(218\) −5.99410 + 5.21521i −0.405971 + 0.353219i
\(219\) 0 0
\(220\) 0.0563254 + 0.00786556i 0.00379745 + 0.000530296i
\(221\) −13.7191 17.8791i −0.922846 1.20268i
\(222\) 0 0
\(223\) −2.03938 + 1.17744i −0.136567 + 0.0788471i −0.566727 0.823906i \(-0.691791\pi\)
0.430160 + 0.902753i \(0.358457\pi\)
\(224\) 7.85696 + 12.2734i 0.524965 + 0.820050i
\(225\) 0 0
\(226\) 14.5850 9.66283i 0.970182 0.642762i
\(227\) −2.07726 15.7783i −0.137872 1.04725i −0.910828 0.412786i \(-0.864556\pi\)
0.772956 0.634460i \(-0.218777\pi\)
\(228\) 0 0
\(229\) −15.3299 2.01822i −1.01303 0.133368i −0.394307 0.918979i \(-0.629015\pi\)
−0.618720 + 0.785611i \(0.712349\pi\)
\(230\) −0.283485 + 0.824476i −0.0186924 + 0.0543643i
\(231\) 0 0
\(232\) −6.43886 19.7283i −0.422732 1.29523i
\(233\) 5.49432 5.49432i 0.359945 0.359945i −0.503848 0.863793i \(-0.668083\pi\)
0.863793 + 0.503848i \(0.168083\pi\)
\(234\) 0 0
\(235\) −0.0617812 0.149153i −0.00403016 0.00972966i
\(236\) −5.18495 9.14562i −0.337512 0.595329i
\(237\) 0 0
\(238\) −8.80447 + 9.96045i −0.570709 + 0.645640i
\(239\) 17.3751 + 10.0315i 1.12390 + 0.648883i 0.942393 0.334507i \(-0.108570\pi\)
0.181506 + 0.983390i \(0.441903\pi\)
\(240\) 0 0
\(241\) 9.35807 5.40288i 0.602806 0.348030i −0.167339 0.985899i \(-0.553517\pi\)
0.770145 + 0.637869i \(0.220184\pi\)
\(242\) 3.04537 15.0022i 0.195764 0.964379i
\(243\) 0 0
\(244\) −3.90620 + 3.84536i −0.250069 + 0.246174i
\(245\) −0.0150217 + 0.0195767i −0.000959701 + 0.00125071i
\(246\) 0 0
\(247\) 6.88146 + 25.6819i 0.437857 + 1.63410i
\(248\) −1.92662 + 5.46346i −0.122340 + 0.346930i
\(249\) 0 0
\(250\) −0.723920 + 0.629853i −0.0457847 + 0.0398354i
\(251\) −3.41749 8.25055i −0.215710 0.520770i 0.778572 0.627555i \(-0.215944\pi\)
−0.994282 + 0.106785i \(0.965944\pi\)
\(252\) 0 0
\(253\) −3.51468 1.45583i −0.220966 0.0915272i
\(254\) 3.84506 7.72050i 0.241261 0.484427i
\(255\) 0 0
\(256\) −13.5985 8.43098i −0.849905 0.526936i
\(257\) 23.7599 + 13.7178i 1.48210 + 0.855692i 0.999794 0.0203099i \(-0.00646527\pi\)
0.482308 + 0.876002i \(0.339799\pi\)
\(258\) 0 0
\(259\) −22.4690 + 2.95810i −1.39616 + 0.183807i
\(260\) −0.772126 0.326948i −0.0478852 0.0202764i
\(261\) 0 0
\(262\) 19.1976 3.74040i 1.18603 0.231082i
\(263\) −21.9440 5.87988i −1.35313 0.362569i −0.491838 0.870686i \(-0.663675\pi\)
−0.861288 + 0.508117i \(0.830342\pi\)
\(264\) 0 0
\(265\) −0.0125083 + 0.00335160i −0.000768381 + 0.000205887i
\(266\) 14.0938 6.88166i 0.864145 0.421941i
\(267\) 0 0
\(268\) 0.848855 3.07135i 0.0518521 0.187612i
\(269\) 26.9125 + 11.1475i 1.64088 + 0.679677i 0.996387 0.0849297i \(-0.0270666\pi\)
0.644498 + 0.764606i \(0.277067\pi\)
\(270\) 0 0
\(271\) 4.68410 0.284539 0.142269 0.989828i \(-0.454560\pi\)
0.142269 + 0.989828i \(0.454560\pi\)
\(272\) 3.99851 14.0375i 0.242445 0.851148i
\(273\) 0 0
\(274\) −21.6037 19.0964i −1.30513 1.15366i
\(275\) −1.27386 1.66013i −0.0768168 0.100110i
\(276\) 0 0
\(277\) −9.86942 7.57307i −0.592996 0.455022i 0.268152 0.963377i \(-0.413587\pi\)
−0.861148 + 0.508355i \(0.830254\pi\)
\(278\) 26.2729 + 17.7045i 1.57575 + 1.06185i
\(279\) 0 0
\(280\) −0.102201 + 0.483952i −0.00610767 + 0.0289216i
\(281\) −3.14266 + 11.7286i −0.187475 + 0.699668i 0.806612 + 0.591082i \(0.201299\pi\)
−0.994087 + 0.108586i \(0.965368\pi\)
\(282\) 0 0
\(283\) −1.06070 + 8.05683i −0.0630522 + 0.478929i 0.930565 + 0.366126i \(0.119316\pi\)
−0.993617 + 0.112803i \(0.964017\pi\)
\(284\) −20.1355 2.81182i −1.19482 0.166851i
\(285\) 0 0
\(286\) 1.63107 3.27503i 0.0964474 0.193657i
\(287\) −14.4795 −0.854699
\(288\) 0 0
\(289\) −3.68505 −0.216767
\(290\) 0.314012 0.630504i 0.0184394 0.0370245i
\(291\) 0 0
\(292\) 2.59020 18.5484i 0.151580 1.08546i
\(293\) −1.06313 + 8.07531i −0.0621090 + 0.471764i 0.931921 + 0.362660i \(0.118131\pi\)
−0.994030 + 0.109104i \(0.965202\pi\)
\(294\) 0 0
\(295\) 0.0923551 0.344674i 0.00537712 0.0200677i
\(296\) 20.8502 13.5794i 1.21189 0.789285i
\(297\) 0 0
\(298\) −10.9542 7.38173i −0.634562 0.427612i
\(299\) 44.4979 + 34.1445i 2.57338 + 1.97463i
\(300\) 0 0
\(301\) 5.56519 + 7.25269i 0.320772 + 0.418038i
\(302\) −4.89527 4.32714i −0.281691 0.248999i
\(303\) 0 0
\(304\) −10.6961 + 13.4954i −0.613462 + 0.774015i
\(305\) −0.186046 −0.0106529
\(306\) 0 0
\(307\) 30.9448 + 12.8178i 1.76611 + 0.731549i 0.995555 + 0.0941803i \(0.0300230\pi\)
0.770559 + 0.637368i \(0.219977\pi\)
\(308\) −2.08028 0.574944i −0.118535 0.0327605i
\(309\) 0 0
\(310\) −0.176693 + 0.0862748i −0.0100355 + 0.00490008i
\(311\) −15.3848 + 4.12235i −0.872393 + 0.233757i −0.667122 0.744948i \(-0.732474\pi\)
−0.205270 + 0.978705i \(0.565807\pi\)
\(312\) 0 0
\(313\) 26.6925 + 7.15224i 1.50875 + 0.404268i 0.916020 0.401132i \(-0.131383\pi\)
0.592730 + 0.805401i \(0.298050\pi\)
\(314\) −6.81096 + 1.32702i −0.384365 + 0.0748882i
\(315\) 0 0
\(316\) 7.75558 18.3157i 0.436285 1.03034i
\(317\) 0.823543 0.108422i 0.0462548 0.00608956i −0.107363 0.994220i \(-0.534241\pi\)
0.153618 + 0.988130i \(0.450907\pi\)
\(318\) 0 0
\(319\) 2.66171 + 1.53674i 0.149027 + 0.0860409i
\(320\) −0.128167 0.527724i −0.00716477 0.0295007i
\(321\) 0 0
\(322\) 14.7501 29.6166i 0.821989 1.65047i
\(323\) −14.5131 6.01153i −0.807532 0.334491i
\(324\) 0 0
\(325\) 11.8064 + 28.5032i 0.654901 + 1.58107i
\(326\) −7.47305 + 6.50199i −0.413894 + 0.360112i
\(327\) 0 0
\(328\) 14.3398 6.86296i 0.791785 0.378944i
\(329\) 1.58570 + 5.91790i 0.0874222 + 0.326264i
\(330\) 0 0
\(331\) 9.14211 11.9142i 0.502496 0.654866i −0.471384 0.881928i \(-0.656245\pi\)
0.973880 + 0.227062i \(0.0729121\pi\)
\(332\) 6.03136 + 6.12678i 0.331014 + 0.336251i
\(333\) 0 0
\(334\) −5.74556 + 28.3039i −0.314383 + 1.54872i
\(335\) 0.0936646 0.0540773i 0.00511744 0.00295456i
\(336\) 0 0
\(337\) −17.1129 9.88013i −0.932198 0.538205i −0.0446921 0.999001i \(-0.514231\pi\)
−0.887506 + 0.460796i \(0.847564\pi\)
\(338\) −23.5496 + 26.6416i −1.28093 + 1.44911i
\(339\) 0 0
\(340\) 0.430966 0.244329i 0.0233724 0.0132506i
\(341\) −0.328337 0.792675i −0.0177804 0.0429258i
\(342\) 0 0
\(343\) 13.4134 13.4134i 0.724256 0.724256i
\(344\) −8.94911 4.54496i −0.482504 0.245048i
\(345\) 0 0
\(346\) −4.14671 + 12.0601i −0.222929 + 0.648357i
\(347\) 11.6853 + 1.53839i 0.627298 + 0.0825853i 0.437471 0.899232i \(-0.355874\pi\)
0.189826 + 0.981818i \(0.439207\pi\)
\(348\) 0 0
\(349\) 2.27090 + 17.2492i 0.121558 + 0.923327i 0.938178 + 0.346152i \(0.112512\pi\)
−0.816620 + 0.577176i \(0.804155\pi\)
\(350\) 15.1717 10.0515i 0.810961 0.537276i
\(351\) 0 0
\(352\) 2.33272 0.416606i 0.124334 0.0222052i
\(353\) 10.1154 5.84016i 0.538391 0.310840i −0.206036 0.978544i \(-0.566056\pi\)
0.744427 + 0.667704i \(0.232723\pi\)
\(354\) 0 0
\(355\) −0.420082 0.547462i −0.0222957 0.0290563i
\(356\) 0.965133 6.91133i 0.0511520 0.366300i
\(357\) 0 0
\(358\) 10.5705 9.19698i 0.558670 0.486076i
\(359\) 5.22831 5.22831i 0.275939 0.275939i −0.555546 0.831486i \(-0.687491\pi\)
0.831486 + 0.555546i \(0.187491\pi\)
\(360\) 0 0
\(361\) −0.330044 0.330044i −0.0173707 0.0173707i
\(362\) −29.3064 2.03637i −1.54031 0.107029i
\(363\) 0 0
\(364\) 27.4317 + 16.1261i 1.43781 + 0.845235i
\(365\) 0.504312 0.386972i 0.0263969 0.0202550i
\(366\) 0 0
\(367\) −0.612755 1.06132i −0.0319855 0.0554006i 0.849590 0.527444i \(-0.176850\pi\)
−0.881575 + 0.472044i \(0.843516\pi\)
\(368\) −0.570175 + 36.3221i −0.0297224 + 1.89342i
\(369\) 0 0
\(370\) 0.827665 + 0.168012i 0.0430282 + 0.00873452i
\(371\) 0.487228 0.0641447i 0.0252956 0.00333023i
\(372\) 0 0
\(373\) 2.19784 16.6943i 0.113800 0.864396i −0.835382 0.549669i \(-0.814754\pi\)
0.949182 0.314727i \(-0.101913\pi\)
\(374\) 0.948469 + 1.94248i 0.0490442 + 0.100443i
\(375\) 0 0
\(376\) −4.37535 5.10923i −0.225641 0.263488i
\(377\) −32.0419 32.0419i −1.65024 1.65024i
\(378\) 0 0
\(379\) 10.2546 4.24759i 0.526742 0.218184i −0.103433 0.994636i \(-0.532983\pi\)
0.630176 + 0.776453i \(0.282983\pi\)
\(380\) −0.580058 + 0.0717395i −0.0297564 + 0.00368016i
\(381\) 0 0
\(382\) −0.824021 13.3762i −0.0421606 0.684387i
\(383\) −2.90214 + 5.02665i −0.148292 + 0.256850i −0.930596 0.366047i \(-0.880711\pi\)
0.782304 + 0.622897i \(0.214044\pi\)
\(384\) 0 0
\(385\) −0.0366275 0.0634407i −0.00186671 0.00323324i
\(386\) −21.1581 + 14.0176i −1.07692 + 0.713478i
\(387\) 0 0
\(388\) 12.0831 28.5357i 0.613427 1.44868i
\(389\) −3.23589 2.48298i −0.164066 0.125892i 0.523465 0.852047i \(-0.324639\pi\)
−0.687531 + 0.726155i \(0.741306\pi\)
\(390\) 0 0
\(391\) −32.0095 + 8.57692i −1.61879 + 0.433753i
\(392\) −0.341925 + 0.969625i −0.0172698 + 0.0489734i
\(393\) 0 0
\(394\) 7.36103 + 0.511485i 0.370843 + 0.0257682i
\(395\) 0.623711 0.258350i 0.0313823 0.0129990i
\(396\) 0 0
\(397\) −10.8114 + 26.1011i −0.542610 + 1.30998i 0.380266 + 0.924877i \(0.375833\pi\)
−0.922875 + 0.385099i \(0.874167\pi\)
\(398\) −9.04731 27.0001i −0.453501 1.35340i
\(399\) 0 0
\(400\) −10.2612 + 17.1456i −0.513058 + 0.857280i
\(401\) −13.2637 + 22.9733i −0.662355 + 1.14723i 0.317640 + 0.948211i \(0.397110\pi\)
−0.979995 + 0.199022i \(0.936224\pi\)
\(402\) 0 0
\(403\) 1.65113 + 12.5415i 0.0822484 + 0.624739i
\(404\) −0.0674519 + 8.59437i −0.00335586 + 0.427586i
\(405\) 0 0
\(406\) −14.9378 + 22.1672i −0.741352 + 1.10014i
\(407\) −0.953779 + 3.55955i −0.0472771 + 0.176440i
\(408\) 0 0
\(409\) −7.12609 26.5949i −0.352362 1.31503i −0.883771 0.467919i \(-0.845004\pi\)
0.531409 0.847116i \(-0.321663\pi\)
\(410\) 0.510267 + 0.175448i 0.0252003 + 0.00866477i
\(411\) 0 0
\(412\) −2.76644 2.15747i −0.136293 0.106291i
\(413\) −5.18217 + 12.5109i −0.254998 + 0.615619i
\(414\) 0 0
\(415\) 0.291808i 0.0143243i
\(416\) −34.8105 2.96850i −1.70672 0.145543i
\(417\) 0 0
\(418\) −0.156812 2.54550i −0.00766992 0.124505i
\(419\) 4.67711 3.58887i 0.228492 0.175328i −0.488170 0.872748i \(-0.662336\pi\)
0.716662 + 0.697420i \(0.245669\pi\)
\(420\) 0 0
\(421\) −22.3387 + 29.1124i −1.08872 + 1.41885i −0.189221 + 0.981935i \(0.560596\pi\)
−0.899502 + 0.436917i \(0.856070\pi\)
\(422\) 9.11870 1.77665i 0.443892 0.0864861i
\(423\) 0 0
\(424\) −0.452125 + 0.294461i −0.0219571 + 0.0143003i
\(425\) −17.6069 4.71776i −0.854061 0.228845i
\(426\) 0 0
\(427\) 6.99996 + 0.921562i 0.338752 + 0.0445975i
\(428\) 12.1738 + 7.15650i 0.588441 + 0.345922i
\(429\) 0 0
\(430\) −0.108240 0.323023i −0.00521978 0.0155775i
\(431\) 5.39534i 0.259884i −0.991522 0.129942i \(-0.958521\pi\)
0.991522 0.129942i \(-0.0414792\pi\)
\(432\) 0 0
\(433\) 1.07138i 0.0514873i 0.999669 + 0.0257436i \(0.00819536\pi\)
−0.999669 + 0.0257436i \(0.991805\pi\)
\(434\) 7.07540 2.37085i 0.339630 0.113805i
\(435\) 0 0
\(436\) −10.8760 + 2.82291i −0.520864 + 0.135193i
\(437\) 38.7623 + 5.10315i 1.85425 + 0.244117i
\(438\) 0 0
\(439\) −6.10948 1.63703i −0.291589 0.0781312i 0.110059 0.993925i \(-0.464896\pi\)
−0.401649 + 0.915794i \(0.631563\pi\)
\(440\) 0.0663436 + 0.0454681i 0.00316281 + 0.00216761i
\(441\) 0 0
\(442\) −6.09498 31.2826i −0.289909 1.48796i
\(443\) −12.2735 + 15.9952i −0.583133 + 0.759954i −0.988005 0.154419i \(-0.950649\pi\)
0.404872 + 0.914373i \(0.367316\pi\)
\(444\) 0 0
\(445\) 0.187912 0.144190i 0.00890787 0.00683525i
\(446\) −3.32400 + 0.204770i −0.157396 + 0.00969614i
\(447\) 0 0
\(448\) 2.20825 + 20.4905i 0.104330 + 0.968084i
\(449\) 2.03680i 0.0961223i −0.998844 0.0480612i \(-0.984696\pi\)
0.998844 0.0480612i \(-0.0153042\pi\)
\(450\) 0 0
\(451\) −0.901011 + 2.17523i −0.0424269 + 0.102428i
\(452\) 24.5553 3.03691i 1.15499 0.142844i
\(453\) 0 0
\(454\) 7.31805 21.2835i 0.343453 0.998885i
\(455\) 0.279535 + 1.04324i 0.0131048 + 0.0489078i
\(456\) 0 0
\(457\) −2.86574 + 10.6951i −0.134054 + 0.500295i 0.865946 + 0.500137i \(0.166717\pi\)
−1.00000 0.000158032i \(0.999950\pi\)
\(458\) −18.1338 12.2198i −0.847335 0.570994i
\(459\) 0 0
\(460\) −0.878666 + 0.864981i −0.0409680 + 0.0403300i
\(461\) 3.77317 + 28.6601i 0.175734 + 1.33483i 0.821023 + 0.570895i \(0.193404\pi\)
−0.645289 + 0.763939i \(0.723263\pi\)
\(462\) 0 0
\(463\) −3.25725 + 5.64172i −0.151377 + 0.262193i −0.931734 0.363142i \(-0.881704\pi\)
0.780357 + 0.625334i \(0.215037\pi\)
\(464\) 4.28697 29.0336i 0.199018 1.34785i
\(465\) 0 0
\(466\) 10.4193 3.49132i 0.482663 0.161732i
\(467\) −8.14793 + 19.6708i −0.377041 + 0.910258i 0.615476 + 0.788156i \(0.288964\pi\)
−0.992517 + 0.122103i \(0.961036\pi\)
\(468\) 0 0
\(469\) −3.79199 + 1.57069i −0.175098 + 0.0725279i
\(470\) 0.0158263 0.227764i 0.000730013 0.0105060i
\(471\) 0 0
\(472\) −0.797685 14.8464i −0.0367164 0.683362i
\(473\) 1.43586 0.384738i 0.0660210 0.0176903i
\(474\) 0 0
\(475\) 17.0613 + 13.0916i 0.782826 + 0.600683i
\(476\) −17.4253 + 7.05810i −0.798688 + 0.323507i
\(477\) 0 0
\(478\) 15.6707 + 23.6533i 0.716761 + 1.08187i
\(479\) −0.238327 0.412794i −0.0108894 0.0188611i 0.860529 0.509401i \(-0.170133\pi\)
−0.871419 + 0.490540i \(0.836800\pi\)
\(480\) 0 0
\(481\) 27.1659 47.0527i 1.23866 2.14542i
\(482\) 15.2527 0.939622i 0.694744 0.0427986i
\(483\) 0 0
\(484\) 13.3135 17.0714i 0.605159 0.775972i
\(485\) 0.971735 0.402506i 0.0441242 0.0182769i
\(486\) 0 0
\(487\) 19.6952 + 19.6952i 0.892476 + 0.892476i 0.994756 0.102280i \(-0.0326138\pi\)
−0.102280 + 0.994756i \(0.532614\pi\)
\(488\) −7.36923 + 2.40515i −0.333589 + 0.108876i
\(489\) 0 0
\(490\) −0.0313584 + 0.0153116i −0.00141663 + 0.000691706i
\(491\) 3.97996 30.2308i 0.179613 1.36430i −0.629664 0.776868i \(-0.716807\pi\)
0.809277 0.587428i \(-0.199859\pi\)
\(492\) 0 0
\(493\) 26.5438 3.49456i 1.19547 0.157387i
\(494\) −7.48024 + 36.8494i −0.336552 + 1.65793i
\(495\) 0 0
\(496\) −5.88342 + 5.70157i −0.264173 + 0.256008i
\(497\) 13.0938 + 22.6791i 0.587336 + 1.01730i
\(498\) 0 0
\(499\) −26.8949 + 20.6372i −1.20398 + 0.923846i −0.998497 0.0548147i \(-0.982543\pi\)
−0.205483 + 0.978661i \(0.565877\pi\)
\(500\) −1.31351 + 0.340929i −0.0587421 + 0.0152468i
\(501\) 0 0
\(502\) 0.875448 12.5990i 0.0390732 0.562321i
\(503\) 24.6072 + 24.6072i 1.09718 + 1.09718i 0.994739 + 0.102441i \(0.0326652\pi\)
0.102441 + 0.994739i \(0.467335\pi\)
\(504\) 0 0
\(505\) −0.206274 + 0.206274i −0.00917908 + 0.00917908i
\(506\) −3.53141 4.05882i −0.156990 0.180437i
\(507\) 0 0
\(508\) 9.73498 7.34925i 0.431920 0.326070i
\(509\) 11.3991 + 14.8556i 0.505258 + 0.658465i 0.974443 0.224635i \(-0.0721189\pi\)
−0.469185 + 0.883100i \(0.655452\pi\)
\(510\) 0 0
\(511\) −20.8915 + 12.0617i −0.924188 + 0.533580i
\(512\) −11.8990 19.2462i −0.525865 0.850568i
\(513\) 0 0
\(514\) 21.4292 + 32.3452i 0.945203 + 1.42668i
\(515\) −0.0155425 0.118057i −0.000684884 0.00520221i
\(516\) 0 0
\(517\) 0.987708 + 0.130034i 0.0434393 + 0.00571890i
\(518\) −30.3086 10.4212i −1.33168 0.457881i
\(519\) 0 0
\(520\) −0.771310 0.900682i −0.0338242 0.0394975i
\(521\) −26.8438 + 26.8438i −1.17605 + 1.17605i −0.195305 + 0.980743i \(0.562570\pi\)
−0.980743 + 0.195305i \(0.937430\pi\)
\(522\) 0 0
\(523\) −8.96802 21.6507i −0.392144 0.946720i −0.989472 0.144723i \(-0.953771\pi\)
0.597328 0.801997i \(-0.296229\pi\)
\(524\) 26.6606 + 7.36842i 1.16467 + 0.321891i
\(525\) 0 0
\(526\) −24.0720 21.2783i −1.04959 0.927777i
\(527\) −6.47254 3.73692i −0.281948 0.162783i
\(528\) 0 0
\(529\) 51.5081 29.7382i 2.23948 1.29297i
\(530\) −0.0179474 0.00364324i −0.000779587 0.000158252i
\(531\) 0 0
\(532\) 22.1800 + 0.174077i 0.961625 + 0.00754720i
\(533\) 21.1320 27.5397i 0.915327 1.19288i
\(534\) 0 0
\(535\) 0.124053 + 0.462973i 0.00536329 + 0.0200161i
\(536\) 3.01094 3.35286i 0.130053 0.144822i
\(537\) 0 0
\(538\) 27.0406 + 31.0791i 1.16580 + 1.33991i
\(539\) −0.0582714 0.140680i −0.00250993 0.00605950i
\(540\) 0 0
\(541\) −8.00916 3.31750i −0.344341 0.142631i 0.203809 0.979011i \(-0.434668\pi\)
−0.548150 + 0.836380i \(0.684668\pi\)
\(542\) 5.92963 + 2.95315i 0.254699 + 0.126849i
\(543\) 0 0
\(544\) 13.9119 15.2492i 0.596466 0.653805i
\(545\) −0.330284 0.190689i −0.0141478 0.00816824i
\(546\) 0 0
\(547\) −45.1314 + 5.94166i −1.92968 + 0.254047i −0.994874 0.101119i \(-0.967758\pi\)
−0.934803 + 0.355166i \(0.884424\pi\)
\(548\) −15.3086 37.7946i −0.653953 1.61451i
\(549\) 0 0
\(550\) −0.565939 2.90469i −0.0241317 0.123856i
\(551\) −30.5101 8.17516i −1.29978 0.348274i
\(552\) 0 0
\(553\) −24.7468 + 6.63089i −1.05234 + 0.281974i
\(554\) −7.71921 15.8091i −0.327958 0.671664i
\(555\) 0 0
\(556\) 22.0970 + 38.9764i 0.937121 + 1.65297i
\(557\) 19.9105 + 8.24722i 0.843637 + 0.349446i 0.762286 0.647240i \(-0.224077\pi\)
0.0813502 + 0.996686i \(0.474077\pi\)
\(558\) 0 0
\(559\) −21.9165 −0.926970
\(560\) −0.434490 + 0.548203i −0.0183606 + 0.0231658i
\(561\) 0 0
\(562\) −11.3727 + 12.8659i −0.479730 + 0.542717i
\(563\) 4.05452 + 5.28396i 0.170878 + 0.222692i 0.870940 0.491390i \(-0.163511\pi\)
−0.700062 + 0.714082i \(0.746844\pi\)
\(564\) 0 0
\(565\) 0.666255 + 0.511236i 0.0280296 + 0.0215078i
\(566\) −6.42228 + 9.53045i −0.269949 + 0.400595i
\(567\) 0 0
\(568\) −23.7168 16.2542i −0.995136 0.682009i
\(569\) −1.77871 + 6.63825i −0.0745676 + 0.278290i −0.993135 0.116975i \(-0.962680\pi\)
0.918567 + 0.395265i \(0.129347\pi\)
\(570\) 0 0
\(571\) 4.59351 34.8912i 0.192233 1.46015i −0.574669 0.818386i \(-0.694869\pi\)
0.766901 0.641765i \(-0.221798\pi\)
\(572\) 4.12957 3.11755i 0.172666 0.130351i
\(573\) 0 0
\(574\) −18.3297 9.12880i −0.765067 0.381029i
\(575\) 45.3664 1.89191
\(576\) 0 0
\(577\) 27.6999 1.15316 0.576580 0.817041i \(-0.304387\pi\)
0.576580 + 0.817041i \(0.304387\pi\)
\(578\) −4.66492 2.32328i −0.194035 0.0966359i
\(579\) 0 0
\(580\) 0.795019 0.600185i 0.0330114 0.0249213i
\(581\) 1.44545 10.9793i 0.0599673 0.455497i
\(582\) 0 0
\(583\) 0.0206822 0.0771869i 0.000856567 0.00319675i
\(584\) 14.9730 21.8475i 0.619588 0.904056i
\(585\) 0 0
\(586\) −6.43701 + 9.55231i −0.265910 + 0.394602i
\(587\) 5.48578 + 4.20938i 0.226422 + 0.173740i 0.715743 0.698364i \(-0.246088\pi\)
−0.489320 + 0.872104i \(0.662755\pi\)
\(588\) 0 0
\(589\) 5.36781 + 6.99546i 0.221177 + 0.288243i
\(590\) 0.334217 0.378098i 0.0137595 0.0155660i
\(591\) 0 0
\(592\) 34.9557 4.04492i 1.43667 0.166245i
\(593\) −0.448752 −0.0184280 −0.00921401 0.999958i \(-0.502933\pi\)
−0.00921401 + 0.999958i \(0.502933\pi\)
\(594\) 0 0
\(595\) −0.589545 0.244197i −0.0241690 0.0100111i
\(596\) −9.21313 16.2508i −0.377384 0.665660i
\(597\) 0 0
\(598\) 34.8034 + 71.2780i 1.42322 + 2.91477i
\(599\) −17.6744 + 4.73585i −0.722157 + 0.193501i −0.601134 0.799148i \(-0.705284\pi\)
−0.121023 + 0.992650i \(0.538618\pi\)
\(600\) 0 0
\(601\) −4.76933 1.27794i −0.194545 0.0521282i 0.160231 0.987080i \(-0.448776\pi\)
−0.354776 + 0.934951i \(0.615443\pi\)
\(602\) 2.47244 + 12.6899i 0.100769 + 0.517200i
\(603\) 0 0
\(604\) −3.46885 8.56404i −0.141145 0.348466i
\(605\) 0.728517 0.0959110i 0.0296184 0.00389934i
\(606\) 0 0
\(607\) 11.1380 + 6.43050i 0.452075 + 0.261006i 0.708706 0.705504i \(-0.249279\pi\)
−0.256631 + 0.966509i \(0.582612\pi\)
\(608\) −22.0486 + 10.3404i −0.894188 + 0.419360i
\(609\) 0 0
\(610\) −0.235516 0.117295i −0.00953577 0.00474913i
\(611\) −13.5699 5.62085i −0.548981 0.227395i
\(612\) 0 0
\(613\) 1.29501 + 3.12642i 0.0523048 + 0.126275i 0.947872 0.318651i \(-0.103230\pi\)
−0.895567 + 0.444926i \(0.853230\pi\)
\(614\) 31.0921 + 35.7356i 1.25477 + 1.44217i
\(615\) 0 0
\(616\) −2.27095 2.03936i −0.0914993 0.0821683i
\(617\) −3.73222 13.9289i −0.150254 0.560755i −0.999465 0.0327016i \(-0.989589\pi\)
0.849211 0.528053i \(-0.177078\pi\)
\(618\) 0 0
\(619\) −2.66294 + 3.47042i −0.107033 + 0.139488i −0.843798 0.536661i \(-0.819686\pi\)
0.736765 + 0.676148i \(0.236352\pi\)
\(620\) −0.278069 0.00218239i −0.0111675 8.76469e-5i
\(621\) 0 0
\(622\) −22.0747 4.48105i −0.885115 0.179674i
\(623\) −7.78440 + 4.49433i −0.311875 + 0.180061i
\(624\) 0 0
\(625\) 21.5908 + 12.4654i 0.863632 + 0.498618i
\(626\) 29.2810 + 25.8827i 1.17030 + 1.03448i
\(627\) 0 0
\(628\) −9.45868 2.61418i −0.377442 0.104317i
\(629\) 12.2844 + 29.6573i 0.489813 + 1.18251i
\(630\) 0 0
\(631\) −10.5738 + 10.5738i −0.420937 + 0.420937i −0.885526 0.464589i \(-0.846202\pi\)
0.464589 + 0.885526i \(0.346202\pi\)
\(632\) 21.3652 18.2964i 0.849862 0.727790i
\(633\) 0 0
\(634\) 1.11088 + 0.381962i 0.0441188 + 0.0151697i
\(635\) 0.410464 + 0.0540386i 0.0162887 + 0.00214445i
\(636\) 0 0
\(637\) 0.293033 + 2.22580i 0.0116104 + 0.0881895i
\(638\) 2.40062 + 3.62348i 0.0950413 + 0.143455i
\(639\) 0 0
\(640\) 0.170463 0.748854i 0.00673815 0.0296010i
\(641\) 25.9177 14.9636i 1.02369 0.591027i 0.108519 0.994094i \(-0.465389\pi\)
0.915170 + 0.403067i \(0.132056\pi\)
\(642\) 0 0
\(643\) 3.48073 + 4.53618i 0.137267 + 0.178889i 0.856928 0.515435i \(-0.172370\pi\)
−0.719662 + 0.694325i \(0.755703\pi\)
\(644\) 37.3444 28.1925i 1.47157 1.11094i
\(645\) 0 0
\(646\) −14.5822 16.7600i −0.573729 0.659414i
\(647\) 5.34200 5.34200i 0.210016 0.210016i −0.594258 0.804274i \(-0.702554\pi\)
0.804274 + 0.594258i \(0.202554\pi\)
\(648\) 0 0
\(649\) 1.55702 + 1.55702i 0.0611182 + 0.0611182i
\(650\) −3.02441 + 43.5258i −0.118627 + 1.70722i
\(651\) 0 0
\(652\) −13.5594 + 3.51942i −0.531029 + 0.137831i
\(653\) −30.0734 + 23.0761i −1.17686 + 0.903038i −0.996746 0.0806079i \(-0.974314\pi\)
−0.180116 + 0.983645i \(0.557647\pi\)
\(654\) 0 0
\(655\) 0.469413 + 0.813048i 0.0183415 + 0.0317684i
\(656\) 22.4797 + 0.352880i 0.877686 + 0.0137777i
\(657\) 0 0
\(658\) −1.72367 + 8.49122i −0.0671958 + 0.331022i
\(659\) 28.1151 3.70142i 1.09521 0.144187i 0.438795 0.898587i \(-0.355406\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(660\) 0 0
\(661\) 3.64650 27.6979i 0.141832 1.07732i −0.761434 0.648243i \(-0.775504\pi\)
0.903266 0.429081i \(-0.141163\pi\)
\(662\) 19.0845 9.31853i 0.741742 0.362175i
\(663\) 0 0
\(664\) 3.77242 + 11.5585i 0.146398 + 0.448556i
\(665\) 0.532344 + 0.532344i 0.0206434 + 0.0206434i
\(666\) 0 0
\(667\) −61.5609 + 25.4994i −2.38365 + 0.987339i
\(668\) −25.1179 + 32.2077i −0.971841 + 1.24616i
\(669\) 0 0
\(670\) 0.152664 0.00940465i 0.00589793 0.000363333i
\(671\) 0.574028 0.994245i 0.0221601 0.0383824i
\(672\) 0 0
\(673\) 0.577904 + 1.00096i 0.0222766 + 0.0385841i 0.876949 0.480584i \(-0.159575\pi\)
−0.854672 + 0.519168i \(0.826242\pi\)
\(674\) −15.4342 23.2963i −0.594505 0.897342i
\(675\) 0 0
\(676\) −46.6081 + 18.8785i −1.79262 + 0.726097i
\(677\) −14.2749 10.9535i −0.548628 0.420977i 0.296900 0.954909i \(-0.404047\pi\)
−0.845528 + 0.533932i \(0.820714\pi\)
\(678\) 0 0
\(679\) −38.5553 + 10.3309i −1.47962 + 0.396462i
\(680\) 0.699602 0.0375890i 0.0268285 0.00144147i
\(681\) 0 0
\(682\) 0.0841091 1.21046i 0.00322070 0.0463507i
\(683\) 10.9938 4.55377i 0.420665 0.174245i −0.162302 0.986741i \(-0.551892\pi\)
0.582967 + 0.812496i \(0.301892\pi\)
\(684\) 0 0
\(685\) 0.529651 1.27869i 0.0202369 0.0488563i
\(686\) 25.4368 8.52344i 0.971180 0.325427i
\(687\) 0 0
\(688\) −8.46330 11.3956i −0.322660 0.434452i
\(689\) −0.589077 + 1.02031i −0.0224421 + 0.0388708i
\(690\) 0 0
\(691\) −6.21944 47.2413i −0.236599 1.79714i −0.537263 0.843415i \(-0.680542\pi\)
0.300664 0.953730i \(-0.402792\pi\)
\(692\) −12.8528 + 12.6526i −0.488591 + 0.480981i
\(693\) 0 0
\(694\) 13.8225 + 9.31459i 0.524696 + 0.353577i
\(695\) −0.393594 + 1.46891i −0.0149299 + 0.0557191i
\(696\) 0 0
\(697\) 5.30824 + 19.8106i 0.201064 + 0.750381i
\(698\) −8.00023 + 23.2675i −0.302813 + 0.880690i
\(699\) 0 0
\(700\) 25.5430 3.15907i 0.965436 0.119402i
\(701\) 4.28366 10.3417i 0.161792 0.390599i −0.822106 0.569335i \(-0.807201\pi\)
0.983897 + 0.178736i \(0.0572007\pi\)
\(702\) 0 0
\(703\) 37.8723i 1.42838i
\(704\) 3.21566 + 0.943311i 0.121195 + 0.0355524i
\(705\) 0 0
\(706\) 16.4872 1.01567i 0.620504 0.0382252i
\(707\) 8.78281 6.73929i 0.330312 0.253457i
\(708\) 0 0
\(709\) 22.2568 29.0056i 0.835872 1.08933i −0.158909 0.987293i \(-0.550798\pi\)
0.994781 0.102036i \(-0.0325356\pi\)
\(710\) −0.186630 0.957881i −0.00700410 0.0359486i
\(711\) 0 0
\(712\) 5.57910 8.14060i 0.209086 0.305082i
\(713\) 17.9673 + 4.81432i 0.672881 + 0.180298i
\(714\) 0 0
\(715\) 0.174118 + 0.0229231i 0.00651166 + 0.000857276i
\(716\) 19.1797 4.97818i 0.716777 0.186043i
\(717\) 0 0
\(718\) 9.91480 3.32229i 0.370017 0.123987i
\(719\) 35.9890i 1.34216i −0.741383 0.671082i \(-0.765830\pi\)
0.741383 0.671082i \(-0.234170\pi\)
\(720\) 0 0
\(721\) 4.51888i 0.168292i
\(722\) −0.209724 0.625885i −0.00780511 0.0232930i
\(723\) 0 0
\(724\) −35.8152 21.0544i −1.33106 0.782482i
\(725\) −36.3381 4.78401i −1.34956 0.177674i
\(726\) 0 0
\(727\) 47.5511 + 12.7413i 1.76357 + 0.472548i 0.987436 0.158017i \(-0.0505100\pi\)
0.776137 + 0.630565i \(0.217177\pi\)
\(728\) 24.5590 + 37.7087i 0.910219 + 1.39758i
\(729\) 0 0
\(730\) 0.882383 0.171920i 0.0326585 0.00636305i
\(731\) 7.88279 10.2731i 0.291556 0.379963i
\(732\) 0 0
\(733\) 9.72530 7.46248i 0.359212 0.275633i −0.413350 0.910572i \(-0.635641\pi\)
0.772562 + 0.634939i \(0.218975\pi\)
\(734\) −0.106565 1.72985i −0.00393339 0.0638501i
\(735\) 0 0
\(736\) −23.6216 + 45.6209i −0.870702 + 1.68161i
\(737\) 0.667403i 0.0245841i
\(738\) 0 0
\(739\) 15.0548 36.3454i 0.553798 1.33699i −0.360807 0.932640i \(-0.617499\pi\)
0.914606 0.404347i \(-0.132501\pi\)
\(740\) 0.941820 + 0.734499i 0.0346220 + 0.0270007i
\(741\) 0 0
\(742\) 0.657225 + 0.225978i 0.0241275 + 0.00829591i
\(743\) −12.7934 47.7455i −0.469344 1.75161i −0.642072 0.766644i \(-0.721925\pi\)
0.172728 0.984969i \(-0.444742\pi\)
\(744\) 0 0
\(745\) 0.164105 0.612450i 0.00601236 0.0224384i
\(746\) 13.3074 19.7477i 0.487217 0.723014i
\(747\) 0 0
\(748\) −0.0239923 + 3.05698i −0.000877246 + 0.111774i
\(749\) −2.37420 18.0338i −0.0867514 0.658942i
\(750\) 0 0
\(751\) 19.0194 32.9426i 0.694028 1.20209i −0.276479 0.961020i \(-0.589168\pi\)
0.970507 0.241073i \(-0.0774992\pi\)
\(752\) −2.31760 9.22630i −0.0845141 0.336448i
\(753\) 0 0
\(754\) −20.3608 60.7632i −0.741495 2.21286i
\(755\) 0.120016 0.289744i 0.00436782 0.0105449i
\(756\) 0 0
\(757\) −13.4464 + 5.56969i −0.488718 + 0.202434i −0.613414 0.789761i \(-0.710204\pi\)
0.124696 + 0.992195i \(0.460204\pi\)
\(758\) 15.6593 + 1.08809i 0.568770 + 0.0395213i
\(759\) 0 0
\(760\) −0.779528 0.274890i −0.0282764 0.00997130i
\(761\) 23.0675 6.18093i 0.836197 0.224058i 0.184782 0.982780i \(-0.440842\pi\)
0.651415 + 0.758721i \(0.274176\pi\)
\(762\) 0 0
\(763\) 11.4823 + 8.81072i 0.415689 + 0.318969i
\(764\) 7.39007 17.4525i 0.267364 0.631410i
\(765\) 0 0
\(766\) −6.84295 + 4.53357i −0.247246 + 0.163805i
\(767\) −16.2323 28.1152i −0.586115 1.01518i
\(768\) 0 0
\(769\) −1.73319 + 3.00198i −0.0625005 + 0.108254i −0.895583 0.444895i \(-0.853241\pi\)
0.833082 + 0.553149i \(0.186574\pi\)
\(770\) −0.00636993 0.103402i −0.000229556 0.00372636i
\(771\) 0 0
\(772\) −35.6218 + 4.40557i −1.28206 + 0.158560i
\(773\) −17.9811 + 7.44800i −0.646734 + 0.267886i −0.681844 0.731497i \(-0.738822\pi\)
0.0351102 + 0.999383i \(0.488822\pi\)
\(774\) 0 0
\(775\) 7.23484 + 7.23484i 0.259883 + 0.259883i
\(776\) 33.2868 28.5055i 1.19493 1.02329i
\(777\) 0 0
\(778\) −2.53090 5.18333i −0.0907370 0.185831i
\(779\) 3.15833 23.9899i 0.113159 0.859528i
\(780\) 0 0
\(781\) 4.22182 0.555813i 0.151068 0.0198885i
\(782\) −45.9284 9.32323i −1.64240 0.333398i
\(783\) 0 0
\(784\) −1.04416 + 1.01188i −0.0372913 + 0.0361386i
\(785\) −0.166539 0.288454i −0.00594404 0.0102954i
\(786\) 0 0
\(787\) −18.9960 + 14.5761i −0.677133 + 0.519583i −0.889111 0.457692i \(-0.848676\pi\)
0.211977 + 0.977275i \(0.432010\pi\)
\(788\) 8.99590 + 5.28835i 0.320466 + 0.188390i
\(789\) 0 0
\(790\) 0.952439 + 0.0661807i 0.0338863 + 0.00235460i
\(791\) −22.5355 22.5355i −0.801269 0.801269i
\(792\) 0 0
\(793\) −11.9688 + 11.9688i −0.425025 + 0.425025i
\(794\) −30.1420 + 26.2253i −1.06970 + 0.930701i
\(795\) 0 0
\(796\) 5.56956 39.8836i 0.197408 1.41364i
\(797\) 6.61805 + 8.62481i 0.234423 + 0.305507i 0.895721 0.444618i \(-0.146660\pi\)
−0.661297 + 0.750124i \(0.729994\pi\)
\(798\) 0 0
\(799\) 7.51545 4.33904i 0.265877 0.153504i
\(800\) −23.7993 + 15.2354i −0.841433 + 0.538654i
\(801\) 0 0
\(802\) −31.2744 + 20.7198i −1.10434 + 0.731642i
\(803\) 0.512005 + 3.88906i 0.0180683 + 0.137242i
\(804\) 0 0
\(805\) 1.57458 + 0.207298i 0.0554967 + 0.00730628i
\(806\) −5.81681 + 16.9174i −0.204888 + 0.595889i
\(807\) 0 0
\(808\) −5.50382 + 10.8371i −0.193624 + 0.381249i
\(809\) −11.2197 + 11.2197i −0.394464 + 0.394464i −0.876275 0.481811i \(-0.839979\pi\)
0.481811 + 0.876275i \(0.339979\pi\)
\(810\) 0 0
\(811\) 15.3654 + 37.0955i 0.539554 + 1.30260i 0.925035 + 0.379882i \(0.124036\pi\)
−0.385481 + 0.922716i \(0.625964\pi\)
\(812\) −32.8855 + 18.6439i −1.15406 + 0.654272i
\(813\) 0 0
\(814\) −3.45156 + 3.90473i −0.120977 + 0.136861i
\(815\) −0.411777 0.237739i −0.0144239 0.00832765i
\(816\) 0 0
\(817\) −13.2303 + 7.63851i −0.462869 + 0.267238i
\(818\) 7.74617 38.1594i 0.270838 1.33421i
\(819\) 0 0
\(820\) 0.535336 + 0.543805i 0.0186947 + 0.0189905i
\(821\) 14.6379 19.0765i 0.510867 0.665774i −0.464703 0.885467i \(-0.653839\pi\)
0.975569 + 0.219693i \(0.0705054\pi\)
\(822\) 0 0
\(823\) 1.70474 + 6.36218i 0.0594236 + 0.221772i 0.989252 0.146222i \(-0.0467114\pi\)
−0.929828 + 0.367994i \(0.880045\pi\)
\(824\) −2.14185 4.47529i −0.0746147 0.155904i
\(825\) 0 0
\(826\) −14.4478 + 12.5704i −0.502702 + 0.437380i
\(827\) 12.8972 + 31.1365i 0.448478 + 1.08272i 0.972892 + 0.231259i \(0.0742843\pi\)
−0.524414 + 0.851463i \(0.675716\pi\)
\(828\) 0 0
\(829\) 21.8417 + 9.04712i 0.758593 + 0.314220i 0.728242 0.685320i \(-0.240338\pi\)
0.0303508 + 0.999539i \(0.490338\pi\)
\(830\) −0.183974 + 0.369402i −0.00638584 + 0.0128221i
\(831\) 0 0
\(832\) −42.1952 25.7046i −1.46286 0.891145i
\(833\) −1.14871 0.663208i −0.0398004 0.0229788i
\(834\) 0 0
\(835\) −1.37446 + 0.180951i −0.0475650 + 0.00626205i
\(836\) 1.40634 3.32123i 0.0486392 0.114867i
\(837\) 0 0
\(838\) 8.18343 1.59443i 0.282692 0.0550786i
\(839\) −28.6548 7.67802i −0.989272 0.265075i −0.272328 0.962205i \(-0.587793\pi\)
−0.716945 + 0.697130i \(0.754460\pi\)
\(840\) 0 0
\(841\) 23.9869 6.42726i 0.827134 0.221630i
\(842\) −46.6330 + 22.7698i −1.60708 + 0.784699i
\(843\) 0 0
\(844\) 12.6635 + 3.49993i 0.435897 + 0.120473i
\(845\) −1.57687 0.653163i −0.0542461 0.0224695i
\(846\) 0 0
\(847\) −27.8855 −0.958157
\(848\) −0.757994 + 0.0877117i −0.0260296 + 0.00301203i
\(849\) 0 0
\(850\) −19.3143 17.0727i −0.662475 0.585590i
\(851\) −48.6360 63.3837i −1.66722 2.17277i
\(852\) 0 0
\(853\) −4.26787 3.27486i −0.146129 0.112129i 0.533110 0.846046i \(-0.321023\pi\)
−0.679239 + 0.733917i \(0.737690\pi\)
\(854\) 8.28027 + 5.57982i 0.283345 + 0.190938i
\(855\) 0 0
\(856\) 10.8989 + 16.7346i 0.372518 + 0.571976i
\(857\) 6.94395 25.9152i 0.237201 0.885246i −0.739943 0.672669i \(-0.765148\pi\)
0.977144 0.212577i \(-0.0681856\pi\)
\(858\) 0 0
\(859\) −5.20582 + 39.5421i −0.177620 + 1.34916i 0.637760 + 0.770235i \(0.279861\pi\)
−0.815381 + 0.578925i \(0.803472\pi\)
\(860\) 0.0666327 0.477157i 0.00227216 0.0162709i
\(861\) 0 0
\(862\) 3.40156 6.82999i 0.115858 0.232630i
\(863\) −31.8190 −1.08313 −0.541566 0.840658i \(-0.682169\pi\)
−0.541566 + 0.840658i \(0.682169\pi\)
\(864\) 0 0
\(865\) −0.612158 −0.0208140
\(866\) −0.675466 + 1.35627i −0.0229533 + 0.0460878i
\(867\) 0 0
\(868\) 10.4515 + 1.45951i 0.354748 + 0.0495388i
\(869\) −0.543763 + 4.13029i −0.0184459 + 0.140110i
\(870\) 0 0
\(871\) 2.54676 9.50462i 0.0862935 0.322052i
\(872\) −15.5477 3.28335i −0.526510 0.111188i
\(873\) 0 0
\(874\) 45.8520 + 30.8983i 1.55097 + 1.04515i
\(875\) 1.38675 + 1.06409i 0.0468807 + 0.0359728i
\(876\) 0 0
\(877\) 16.0161 + 20.8726i 0.540825 + 0.704817i 0.981199 0.192998i \(-0.0618209\pi\)
−0.440374 + 0.897814i \(0.645154\pi\)
\(878\) −6.70193 5.92412i −0.226179 0.199930i
\(879\) 0 0
\(880\) 0.0553188 + 0.0993855i 0.00186480 + 0.00335029i
\(881\) −28.0517 −0.945086 −0.472543 0.881308i \(-0.656664\pi\)
−0.472543 + 0.881308i \(0.656664\pi\)
\(882\) 0 0
\(883\) −19.5098 8.08123i −0.656558 0.271955i 0.0294315 0.999567i \(-0.490630\pi\)
−0.685989 + 0.727612i \(0.740630\pi\)
\(884\) 12.0068 43.4434i 0.403834 1.46116i
\(885\) 0 0
\(886\) −25.6215 + 12.5104i −0.860772 + 0.420294i
\(887\) 5.16774 1.38469i 0.173516 0.0464934i −0.171015 0.985268i \(-0.554705\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(888\) 0 0
\(889\) −15.1760 4.06640i −0.508987 0.136383i
\(890\) 0.328785 0.0640592i 0.0110209 0.00214727i
\(891\) 0 0
\(892\) −4.33697 1.83644i −0.145212 0.0614885i
\(893\) −10.1508 + 1.33637i −0.339682 + 0.0447200i
\(894\) 0 0
\(895\) 0.582453 + 0.336279i 0.0194693 + 0.0112406i
\(896\) −10.1231 + 27.3312i −0.338188 + 0.913072i
\(897\) 0 0
\(898\) 1.28412 2.57839i 0.0428518 0.0860420i
\(899\) −13.8840 5.75093i −0.463057 0.191804i
\(900\) 0 0
\(901\) −0.266381 0.643101i −0.00887444 0.0214248i
\(902\) −2.51200 + 2.18558i −0.0836404 + 0.0727720i
\(903\) 0 0
\(904\) 32.9994 + 11.6368i 1.09754 + 0.387034i
\(905\) −0.364965 1.36207i −0.0121318 0.0452767i
\(906\) 0 0
\(907\) 24.5568 32.0031i 0.815396 1.06264i −0.181459 0.983399i \(-0.558082\pi\)
0.996855 0.0792463i \(-0.0252514\pi\)
\(908\) 22.6824 22.3292i 0.752743 0.741019i
\(909\) 0 0
\(910\) −0.303859 + 1.49688i −0.0100728 + 0.0496210i
\(911\) 46.5326 26.8656i 1.54169 0.890097i 0.542961 0.839758i \(-0.317303\pi\)
0.998732 0.0503391i \(-0.0160302\pi\)
\(912\) 0 0
\(913\) −1.55945 0.900350i −0.0516103 0.0297972i
\(914\) −10.3706 + 11.7322i −0.343029 + 0.388067i
\(915\) 0 0
\(916\) −15.2515 26.9018i −0.503924 0.888860i
\(917\) −13.6343 32.9161i −0.450244 1.08699i
\(918\) 0 0
\(919\) −18.7622 + 18.7622i −0.618909 + 0.618909i −0.945252 0.326343i \(-0.894184\pi\)
0.326343 + 0.945252i \(0.394184\pi\)
\(920\) −1.65765 + 0.541018i −0.0546510 + 0.0178368i
\(921\) 0 0
\(922\) −13.2926 + 38.6598i −0.437770 + 1.27319i
\(923\) −62.2447 8.19466i −2.04881 0.269731i
\(924\) 0 0
\(925\) −5.73605 43.5697i −0.188600 1.43256i
\(926\) −7.68026 + 5.08831i −0.252389 + 0.167212i
\(927\) 0 0
\(928\) 23.7315 34.0510i 0.779025 1.11778i
\(929\) −38.2126 + 22.0621i −1.25371 + 0.723832i −0.971845 0.235620i \(-0.924288\pi\)
−0.281869 + 0.959453i \(0.590954\pi\)
\(930\) 0 0
\(931\) 0.952649 + 1.24152i 0.0312218 + 0.0406890i
\(932\) 15.3909 + 2.14927i 0.504147 + 0.0704017i
\(933\) 0 0
\(934\) −22.7163 + 19.7645i −0.743299 + 0.646713i
\(935\) −0.0733707 + 0.0733707i −0.00239948 + 0.00239948i
\(936\) 0 0
\(937\) −17.0883 17.0883i −0.558251 0.558251i 0.370558 0.928809i \(-0.379166\pi\)
−0.928809 + 0.370558i \(0.879166\pi\)
\(938\) −5.79057 0.402360i −0.189069 0.0131375i
\(939\) 0 0
\(940\) 0.163631 0.278350i 0.00533707 0.00907878i
\(941\) 7.02586 5.39113i 0.229037 0.175746i −0.487868 0.872918i \(-0.662225\pi\)
0.716904 + 0.697172i \(0.245558\pi\)
\(942\) 0 0
\(943\) −25.5223 44.2059i −0.831120 1.43954i
\(944\) 8.35032 19.2971i 0.271780 0.628066i
\(945\) 0 0
\(946\) 2.06023 + 0.418216i 0.0669838 + 0.0135974i
\(947\) −44.1003 + 5.80592i −1.43307 + 0.188667i −0.806747 0.590897i \(-0.798774\pi\)
−0.626322 + 0.779565i \(0.715440\pi\)
\(948\) 0 0
\(949\) 7.54878 57.3386i 0.245044 1.86129i
\(950\) 13.3442 + 27.3292i 0.432944 + 0.886677i
\(951\) 0 0
\(952\) −26.5087 2.05114i −0.859151 0.0664777i
\(953\) 31.3869 + 31.3869i 1.01672 + 1.01672i 0.999858 + 0.0168649i \(0.00536852\pi\)
0.0168649 + 0.999858i \(0.494631\pi\)
\(954\) 0 0
\(955\) 0.594317 0.246174i 0.0192316 0.00796601i
\(956\) 4.92511 + 39.8226i 0.159289 + 1.28795i
\(957\) 0 0
\(958\) −0.0414477 0.672815i −0.00133912 0.0217377i
\(959\) −26.2620 + 45.4871i −0.848044 + 1.46886i
\(960\) 0 0
\(961\) −13.4024 23.2137i −0.432336 0.748828i
\(962\) 64.0545 42.4372i 2.06520 1.36823i
\(963\) 0 0
\(964\) 19.9009 + 8.42682i 0.640966 + 0.271410i
\(965\) −0.966519 0.741636i −0.0311134 0.0238741i
\(966\) 0 0
\(967\) 3.02217 0.809787i 0.0971863 0.0260410i −0.209898 0.977723i \(-0.567313\pi\)
0.307084 + 0.951682i \(0.400647\pi\)
\(968\) 27.6165 13.2171i 0.887628 0.424813i
\(969\) 0 0
\(970\) 1.48389 + 0.103109i 0.0476448 + 0.00331062i
\(971\) −38.1764 + 15.8132i −1.22514 + 0.507470i −0.899040 0.437866i \(-0.855735\pi\)
−0.326100 + 0.945335i \(0.605735\pi\)
\(972\) 0 0
\(973\) 22.0851 53.3182i 0.708016 1.70930i
\(974\) 12.5152 + 37.3494i 0.401012 + 1.19675i
\(975\) 0 0
\(976\) −10.8451 1.60134i −0.347143 0.0512576i
\(977\) 15.1894 26.3088i 0.485951 0.841692i −0.513919 0.857839i \(-0.671807\pi\)
0.999870 + 0.0161471i \(0.00513999\pi\)
\(978\) 0 0
\(979\) 0.190778 + 1.44910i 0.00609729 + 0.0463135i
\(980\) −0.0493502 0.000387319i −0.00157643 1.23724e-5i
\(981\) 0 0
\(982\) 24.0976 35.7601i 0.768986 1.14115i
\(983\) −9.55477 + 35.6589i −0.304750 + 1.13734i 0.628411 + 0.777882i \(0.283706\pi\)
−0.933161 + 0.359460i \(0.882961\pi\)
\(984\) 0 0
\(985\) 0.0916701 + 0.342118i 0.00292085 + 0.0109008i
\(986\) 35.8051 + 12.3111i 1.14027 + 0.392065i
\(987\) 0 0
\(988\) −32.7015 + 41.9318i −1.04037 + 1.33403i
\(989\) −12.3330 + 29.7744i −0.392166 + 0.946772i
\(990\) 0 0
\(991\) 43.6720i 1.38729i −0.720319 0.693643i \(-0.756005\pi\)
0.720319 0.693643i \(-0.243995\pi\)
\(992\) −11.0425 + 3.50836i −0.350599 + 0.111391i
\(993\) 0 0
\(994\) 2.27715 + 36.9647i 0.0722269 + 1.17245i
\(995\) 1.08439 0.832085i 0.0343776 0.0263789i
\(996\) 0 0
\(997\) −1.33100 + 1.73459i −0.0421532 + 0.0549352i −0.813954 0.580929i \(-0.802689\pi\)
0.771801 + 0.635864i \(0.219356\pi\)
\(998\) −47.0573 + 9.16847i −1.48957 + 0.290223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.611.39 368
3.2 odd 2 288.2.bf.a.131.8 yes 368
9.2 odd 6 inner 864.2.bn.a.35.23 368
9.7 even 3 288.2.bf.a.227.24 yes 368
32.11 odd 8 inner 864.2.bn.a.395.23 368
96.11 even 8 288.2.bf.a.203.24 yes 368
288.11 even 24 inner 864.2.bn.a.683.39 368
288.43 odd 24 288.2.bf.a.11.8 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.8 368 288.43 odd 24
288.2.bf.a.131.8 yes 368 3.2 odd 2
288.2.bf.a.203.24 yes 368 96.11 even 8
288.2.bf.a.227.24 yes 368 9.7 even 3
864.2.bn.a.35.23 368 9.2 odd 6 inner
864.2.bn.a.395.23 368 32.11 odd 8 inner
864.2.bn.a.611.39 368 1.1 even 1 trivial
864.2.bn.a.683.39 368 288.11 even 24 inner