Properties

Label 864.2.bn.a.35.23
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.23
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0869556 + 1.41154i) q^{2} +(-1.98488 + 0.245482i) q^{4} +(0.0538553 + 0.0413246i) q^{5} +(-2.48836 + 0.666754i) q^{7} +(-0.519104 - 2.78038i) q^{8} +(-0.0536483 + 0.0796122i) q^{10} +(0.0546768 - 0.415312i) q^{11} +(-6.12318 + 0.806132i) q^{13} +(-1.15753 - 3.45444i) q^{14} +(3.87948 - 0.974505i) q^{16} +3.64897 q^{17} +(3.97733 + 1.64746i) q^{19} +(-0.117041 - 0.0688038i) q^{20} +(0.590983 + 0.0410647i) q^{22} +(2.35051 - 8.77221i) q^{23} +(-1.29290 - 4.82518i) q^{25} +(-1.67033 - 8.57300i) q^{26} +(4.77541 - 1.93427i) q^{28} +(-4.46654 - 5.82091i) q^{29} +(-1.77380 + 1.02410i) q^{31} +(1.71289 + 5.39129i) q^{32} +(0.317298 + 5.15065i) q^{34} +(-0.161565 - 0.0669223i) q^{35} +(-3.36655 - 8.12758i) q^{37} +(-1.97960 + 5.75740i) q^{38} +(0.0869418 - 0.171190i) q^{40} +(-5.42911 - 1.45472i) q^{41} +(3.51829 + 0.463192i) q^{43} +(-0.00657510 + 0.837765i) q^{44} +(12.5867 + 2.55503i) q^{46} +(-2.05961 - 1.18912i) q^{47} +(-0.314804 + 0.181752i) q^{49} +(6.69850 - 2.24456i) q^{50} +(11.9559 - 3.10320i) q^{52} +(-0.0730018 - 0.176242i) q^{53} +(0.0201073 - 0.0201073i) q^{55} +(3.14555 + 6.57248i) q^{56} +(7.82805 - 6.81086i) q^{58} +(-3.20000 + 4.17032i) q^{59} +(2.17432 - 1.66842i) q^{61} +(-1.59980 - 2.41473i) q^{62} +(-7.46106 + 2.88662i) q^{64} +(-0.363079 - 0.209624i) q^{65} +(1.57962 - 0.207960i) q^{67} +(-7.24275 + 0.895757i) q^{68} +(0.0804144 - 0.233874i) q^{70} +(7.18803 - 7.18803i) q^{71} +(-6.62149 - 6.62149i) q^{73} +(11.1796 - 5.45876i) q^{74} +(-8.29893 - 2.29365i) q^{76} +(0.140855 + 1.06990i) q^{77} +(-4.97251 + 8.61265i) q^{79} +(0.249202 + 0.107836i) q^{80} +(1.58131 - 7.78988i) q^{82} +(2.61687 + 3.41038i) q^{83} +(0.196516 + 0.150792i) q^{85} +(-0.347877 + 5.00648i) q^{86} +(-1.18311 + 0.0635674i) q^{88} +(2.46723 + 2.46723i) q^{89} +(14.6992 - 6.08860i) q^{91} +(-2.51204 + 17.9888i) q^{92} +(1.49939 - 3.01062i) q^{94} +(0.146119 + 0.253086i) q^{95} +(-7.74713 + 13.4184i) q^{97} +(-0.283924 - 0.428554i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0869556 + 1.41154i 0.0614869 + 0.998108i
\(3\) 0 0
\(4\) −1.98488 + 0.245482i −0.992439 + 0.122741i
\(5\) 0.0538553 + 0.0413246i 0.0240848 + 0.0184809i 0.620734 0.784021i \(-0.286835\pi\)
−0.596649 + 0.802502i \(0.703501\pi\)
\(6\) 0 0
\(7\) −2.48836 + 0.666754i −0.940512 + 0.252009i −0.696331 0.717721i \(-0.745186\pi\)
−0.244180 + 0.969730i \(0.578519\pi\)
\(8\) −0.519104 2.78038i −0.183531 0.983014i
\(9\) 0 0
\(10\) −0.0536483 + 0.0796122i −0.0169651 + 0.0251756i
\(11\) 0.0546768 0.415312i 0.0164857 0.125221i −0.981223 0.192876i \(-0.938218\pi\)
0.997709 + 0.0676551i \(0.0215517\pi\)
\(12\) 0 0
\(13\) −6.12318 + 0.806132i −1.69826 + 0.223581i −0.916512 0.400008i \(-0.869007\pi\)
−0.781752 + 0.623589i \(0.785674\pi\)
\(14\) −1.15753 3.45444i −0.309362 0.923237i
\(15\) 0 0
\(16\) 3.87948 0.974505i 0.969869 0.243626i
\(17\) 3.64897 0.885004 0.442502 0.896767i \(-0.354091\pi\)
0.442502 + 0.896767i \(0.354091\pi\)
\(18\) 0 0
\(19\) 3.97733 + 1.64746i 0.912461 + 0.377954i 0.788998 0.614395i \(-0.210600\pi\)
0.123463 + 0.992349i \(0.460600\pi\)
\(20\) −0.117041 0.0688038i −0.0261711 0.0153850i
\(21\) 0 0
\(22\) 0.590983 + 0.0410647i 0.125998 + 0.00875502i
\(23\) 2.35051 8.77221i 0.490114 1.82913i −0.0657198 0.997838i \(-0.520934\pi\)
0.555834 0.831293i \(-0.312399\pi\)
\(24\) 0 0
\(25\) −1.29290 4.82518i −0.258581 0.965036i
\(26\) −1.67033 8.57300i −0.327579 1.68130i
\(27\) 0 0
\(28\) 4.77541 1.93427i 0.902468 0.365543i
\(29\) −4.46654 5.82091i −0.829416 1.08092i −0.995496 0.0948040i \(-0.969778\pi\)
0.166080 0.986112i \(-0.446889\pi\)
\(30\) 0 0
\(31\) −1.77380 + 1.02410i −0.318584 + 0.183935i −0.650761 0.759282i \(-0.725550\pi\)
0.332177 + 0.943217i \(0.392217\pi\)
\(32\) 1.71289 + 5.39129i 0.302800 + 0.953054i
\(33\) 0 0
\(34\) 0.317298 + 5.15065i 0.0544162 + 0.883330i
\(35\) −0.161565 0.0669223i −0.0273094 0.0113119i
\(36\) 0 0
\(37\) −3.36655 8.12758i −0.553458 1.33617i −0.914866 0.403758i \(-0.867704\pi\)
0.361408 0.932408i \(-0.382296\pi\)
\(38\) −1.97960 + 5.75740i −0.321134 + 0.933974i
\(39\) 0 0
\(40\) 0.0869418 0.171190i 0.0137467 0.0270676i
\(41\) −5.42911 1.45472i −0.847884 0.227190i −0.191383 0.981515i \(-0.561297\pi\)
−0.656501 + 0.754326i \(0.727964\pi\)
\(42\) 0 0
\(43\) 3.51829 + 0.463192i 0.536534 + 0.0706361i 0.393924 0.919143i \(-0.371117\pi\)
0.142610 + 0.989779i \(0.454451\pi\)
\(44\) −0.00657510 + 0.837765i −0.000991233 + 0.126298i
\(45\) 0 0
\(46\) 12.5867 + 2.55503i 1.85581 + 0.376719i
\(47\) −2.05961 1.18912i −0.300425 0.173450i 0.342209 0.939624i \(-0.388825\pi\)
−0.642634 + 0.766173i \(0.722158\pi\)
\(48\) 0 0
\(49\) −0.314804 + 0.181752i −0.0449720 + 0.0259646i
\(50\) 6.69850 2.24456i 0.947310 0.317428i
\(51\) 0 0
\(52\) 11.9559 3.10320i 1.65798 0.430337i
\(53\) −0.0730018 0.176242i −0.0100276 0.0242087i 0.918786 0.394755i \(-0.129171\pi\)
−0.928814 + 0.370546i \(0.879171\pi\)
\(54\) 0 0
\(55\) 0.0201073 0.0201073i 0.00271126 0.00271126i
\(56\) 3.14555 + 6.57248i 0.420342 + 0.878284i
\(57\) 0 0
\(58\) 7.82805 6.81086i 1.02787 0.894309i
\(59\) −3.20000 + 4.17032i −0.416604 + 0.542929i −0.953766 0.300550i \(-0.902830\pi\)
0.537162 + 0.843479i \(0.319496\pi\)
\(60\) 0 0
\(61\) 2.17432 1.66842i 0.278393 0.213619i −0.460121 0.887856i \(-0.652194\pi\)
0.738515 + 0.674237i \(0.235527\pi\)
\(62\) −1.59980 2.41473i −0.203175 0.306672i
\(63\) 0 0
\(64\) −7.46106 + 2.88662i −0.932633 + 0.360827i
\(65\) −0.363079 0.209624i −0.0450344 0.0260006i
\(66\) 0 0
\(67\) 1.57962 0.207960i 0.192981 0.0254064i −0.0334162 0.999442i \(-0.510639\pi\)
0.226397 + 0.974035i \(0.427305\pi\)
\(68\) −7.24275 + 0.895757i −0.878313 + 0.108626i
\(69\) 0 0
\(70\) 0.0804144 0.233874i 0.00961136 0.0279533i
\(71\) 7.18803 7.18803i 0.853063 0.853063i −0.137446 0.990509i \(-0.543889\pi\)
0.990509 + 0.137446i \(0.0438895\pi\)
\(72\) 0 0
\(73\) −6.62149 6.62149i −0.774986 0.774986i 0.203987 0.978974i \(-0.434610\pi\)
−0.978974 + 0.203987i \(0.934610\pi\)
\(74\) 11.1796 5.45876i 1.29961 0.634568i
\(75\) 0 0
\(76\) −8.29893 2.29365i −0.951952 0.263099i
\(77\) 0.140855 + 1.06990i 0.0160519 + 0.121927i
\(78\) 0 0
\(79\) −4.97251 + 8.61265i −0.559452 + 0.968999i 0.438091 + 0.898931i \(0.355655\pi\)
−0.997542 + 0.0700678i \(0.977678\pi\)
\(80\) 0.249202 + 0.107836i 0.0278616 + 0.0120564i
\(81\) 0 0
\(82\) 1.58131 7.78988i 0.174626 0.860249i
\(83\) 2.61687 + 3.41038i 0.287239 + 0.374337i 0.914578 0.404409i \(-0.132523\pi\)
−0.627339 + 0.778746i \(0.715856\pi\)
\(84\) 0 0
\(85\) 0.196516 + 0.150792i 0.0213152 + 0.0163557i
\(86\) −0.347877 + 5.00648i −0.0375126 + 0.539862i
\(87\) 0 0
\(88\) −1.18311 + 0.0635674i −0.126120 + 0.00677631i
\(89\) 2.46723 + 2.46723i 0.261526 + 0.261526i 0.825674 0.564148i \(-0.190795\pi\)
−0.564148 + 0.825674i \(0.690795\pi\)
\(90\) 0 0
\(91\) 14.6992 6.08860i 1.54089 0.638259i
\(92\) −2.51204 + 17.9888i −0.261899 + 1.87546i
\(93\) 0 0
\(94\) 1.49939 3.01062i 0.154650 0.310521i
\(95\) 0.146119 + 0.253086i 0.0149915 + 0.0259661i
\(96\) 0 0
\(97\) −7.74713 + 13.4184i −0.786602 + 1.36243i 0.141436 + 0.989947i \(0.454828\pi\)
−0.928038 + 0.372486i \(0.878505\pi\)
\(98\) −0.283924 0.428554i −0.0286807 0.0432905i
\(99\) 0 0
\(100\) 3.75075 + 9.26000i 0.375075 + 0.926000i
\(101\) −0.560913 + 4.26055i −0.0558129 + 0.423941i 0.940614 + 0.339479i \(0.110251\pi\)
−0.996427 + 0.0844624i \(0.973083\pi\)
\(102\) 0 0
\(103\) 0.454001 1.69436i 0.0447341 0.166950i −0.939945 0.341326i \(-0.889124\pi\)
0.984679 + 0.174376i \(0.0557908\pi\)
\(104\) 5.41992 + 16.6063i 0.531467 + 1.62838i
\(105\) 0 0
\(106\) 0.242424 0.118370i 0.0235463 0.0114971i
\(107\) −6.52327 + 2.70203i −0.630628 + 0.261215i −0.675020 0.737799i \(-0.735865\pi\)
0.0443917 + 0.999014i \(0.485865\pi\)
\(108\) 0 0
\(109\) −2.14998 + 5.19051i −0.205931 + 0.497161i −0.992775 0.119991i \(-0.961713\pi\)
0.786844 + 0.617152i \(0.211713\pi\)
\(110\) 0.0301306 + 0.0266337i 0.00287284 + 0.00253942i
\(111\) 0 0
\(112\) −9.00378 + 5.01158i −0.850777 + 0.473549i
\(113\) −6.18560 10.7138i −0.581893 1.00787i −0.995255 0.0973009i \(-0.968979\pi\)
0.413362 0.910567i \(-0.364354\pi\)
\(114\) 0 0
\(115\) 0.489096 0.375296i 0.0456084 0.0349966i
\(116\) 10.2945 + 10.4573i 0.955818 + 0.970940i
\(117\) 0 0
\(118\) −6.16482 4.15428i −0.567518 0.382433i
\(119\) −9.07994 + 2.43296i −0.832357 + 0.223029i
\(120\) 0 0
\(121\) 10.4557 + 2.80159i 0.950517 + 0.254690i
\(122\) 2.54410 + 2.92406i 0.230332 + 0.264732i
\(123\) 0 0
\(124\) 3.26938 2.46816i 0.293599 0.221647i
\(125\) 0.259658 0.626870i 0.0232245 0.0560689i
\(126\) 0 0
\(127\) 6.09879i 0.541180i −0.962695 0.270590i \(-0.912781\pi\)
0.962695 0.270590i \(-0.0872188\pi\)
\(128\) −4.72335 10.2806i −0.417489 0.908682i
\(129\) 0 0
\(130\) 0.264320 0.530727i 0.0231824 0.0465479i
\(131\) −1.80518 13.7117i −0.157720 1.19800i −0.868899 0.494989i \(-0.835172\pi\)
0.711180 0.703010i \(-0.248161\pi\)
\(132\) 0 0
\(133\) −10.9955 1.44758i −0.953428 0.125521i
\(134\) 0.430900 + 2.21160i 0.0372241 + 0.191053i
\(135\) 0 0
\(136\) −1.89419 10.1455i −0.162426 0.869972i
\(137\) −5.27697 19.6939i −0.450842 1.68256i −0.700033 0.714110i \(-0.746831\pi\)
0.249191 0.968454i \(-0.419835\pi\)
\(138\) 0 0
\(139\) −13.6376 + 17.7729i −1.15673 + 1.50747i −0.330795 + 0.943703i \(0.607317\pi\)
−0.825931 + 0.563772i \(0.809350\pi\)
\(140\) 0.337115 + 0.0931713i 0.0284914 + 0.00787441i
\(141\) 0 0
\(142\) 10.7712 + 9.52114i 0.903901 + 0.798996i
\(143\) 2.58710i 0.216345i
\(144\) 0 0
\(145\) 0.498066i 0.0413621i
\(146\) 8.77070 9.92225i 0.725869 0.821172i
\(147\) 0 0
\(148\) 8.67738 + 15.3058i 0.713276 + 1.25813i
\(149\) −5.68607 + 7.41022i −0.465821 + 0.607069i −0.965902 0.258909i \(-0.916637\pi\)
0.500081 + 0.865979i \(0.333304\pi\)
\(150\) 0 0
\(151\) 1.19573 + 4.46253i 0.0973071 + 0.363155i 0.997359 0.0726273i \(-0.0231384\pi\)
−0.900052 + 0.435782i \(0.856472\pi\)
\(152\) 2.51593 11.9137i 0.204069 0.966328i
\(153\) 0 0
\(154\) −1.49796 + 0.291856i −0.120709 + 0.0235185i
\(155\) −0.137849 0.0181482i −0.0110723 0.00145770i
\(156\) 0 0
\(157\) −0.640445 4.86466i −0.0511131 0.388242i −0.997812 0.0661214i \(-0.978938\pi\)
0.946699 0.322121i \(-0.104396\pi\)
\(158\) −12.5895 6.26997i −1.00156 0.498812i
\(159\) 0 0
\(160\) −0.130545 + 0.361134i −0.0103205 + 0.0285502i
\(161\) 23.3956i 1.84383i
\(162\) 0 0
\(163\) −2.68046 + 6.47120i −0.209950 + 0.506863i −0.993415 0.114572i \(-0.963450\pi\)
0.783465 + 0.621436i \(0.213450\pi\)
\(164\) 11.1332 + 1.55470i 0.869358 + 0.121402i
\(165\) 0 0
\(166\) −4.58632 + 3.99037i −0.355968 + 0.309713i
\(167\) 19.7262 + 5.28563i 1.52646 + 0.409014i 0.921863 0.387516i \(-0.126667\pi\)
0.604599 + 0.796530i \(0.293333\pi\)
\(168\) 0 0
\(169\) 24.2864 6.50753i 1.86819 0.500579i
\(170\) −0.195761 + 0.290502i −0.0150142 + 0.0222805i
\(171\) 0 0
\(172\) −7.09708 0.0557006i −0.541147 0.00424713i
\(173\) −7.15432 + 5.48970i −0.543933 + 0.417374i −0.843841 0.536594i \(-0.819711\pi\)
0.299908 + 0.953968i \(0.403044\pi\)
\(174\) 0 0
\(175\) 6.43441 + 11.1447i 0.486396 + 0.842462i
\(176\) −0.192606 1.66448i −0.0145182 0.125465i
\(177\) 0 0
\(178\) −3.26805 + 3.69713i −0.244951 + 0.277112i
\(179\) −3.79147 + 9.15342i −0.283388 + 0.684159i −0.999910 0.0134054i \(-0.995733\pi\)
0.716522 + 0.697564i \(0.245733\pi\)
\(180\) 0 0
\(181\) −19.1915 + 7.94937i −1.42649 + 0.590872i −0.956482 0.291790i \(-0.905749\pi\)
−0.470009 + 0.882662i \(0.655749\pi\)
\(182\) 9.87246 + 20.2190i 0.731796 + 1.49873i
\(183\) 0 0
\(184\) −25.6103 1.98162i −1.88801 0.146087i
\(185\) 0.154563 0.576835i 0.0113637 0.0424098i
\(186\) 0 0
\(187\) 0.199514 1.51546i 0.0145899 0.110821i
\(188\) 4.37998 + 1.85465i 0.319443 + 0.135264i
\(189\) 0 0
\(190\) −0.344535 + 0.228260i −0.0249952 + 0.0165597i
\(191\) 4.73817 8.20675i 0.342842 0.593820i −0.642117 0.766606i \(-0.721944\pi\)
0.984959 + 0.172787i \(0.0552771\pi\)
\(192\) 0 0
\(193\) −8.97329 15.5422i −0.645912 1.11875i −0.984090 0.177670i \(-0.943144\pi\)
0.338178 0.941082i \(-0.390189\pi\)
\(194\) −19.6143 9.76855i −1.40822 0.701341i
\(195\) 0 0
\(196\) 0.580231 0.438035i 0.0414451 0.0312882i
\(197\) −4.82042 + 1.99668i −0.343441 + 0.142258i −0.547735 0.836652i \(-0.684510\pi\)
0.204295 + 0.978909i \(0.434510\pi\)
\(198\) 0 0
\(199\) −14.2378 14.2378i −1.00929 1.00929i −0.999956 0.00933576i \(-0.997028\pi\)
−0.00933576 0.999956i \(-0.502972\pi\)
\(200\) −12.7447 + 6.09953i −0.901186 + 0.431302i
\(201\) 0 0
\(202\) −6.06271 0.421270i −0.426571 0.0296405i
\(203\) 14.9955 + 11.5064i 1.05248 + 0.807594i
\(204\) 0 0
\(205\) −0.232270 0.302701i −0.0162225 0.0211415i
\(206\) 2.43113 + 0.493506i 0.169385 + 0.0343842i
\(207\) 0 0
\(208\) −22.9691 + 9.09444i −1.59262 + 0.630586i
\(209\) 0.901678 1.56175i 0.0623704 0.108029i
\(210\) 0 0
\(211\) 0.857445 + 6.51294i 0.0590290 + 0.448369i 0.995281 + 0.0970392i \(0.0309372\pi\)
−0.936252 + 0.351330i \(0.885729\pi\)
\(212\) 0.188164 + 0.331898i 0.0129232 + 0.0227948i
\(213\) 0 0
\(214\) −4.38125 8.97289i −0.299496 0.613374i
\(215\) 0.170337 + 0.170337i 0.0116169 + 0.0116169i
\(216\) 0 0
\(217\) 3.73103 3.73103i 0.253279 0.253279i
\(218\) −7.51355 2.58343i −0.508882 0.174972i
\(219\) 0 0
\(220\) −0.0349745 + 0.0448464i −0.00235798 + 0.00302354i
\(221\) −22.3433 + 2.94155i −1.50297 + 0.197870i
\(222\) 0 0
\(223\) 2.03938 + 1.17744i 0.136567 + 0.0788471i 0.566727 0.823906i \(-0.308209\pi\)
−0.430160 + 0.902753i \(0.641543\pi\)
\(224\) −7.85696 12.2734i −0.524965 0.820050i
\(225\) 0 0
\(226\) 14.5850 9.66283i 0.970182 0.642762i
\(227\) 12.6258 9.68813i 0.838005 0.643024i −0.0979313 0.995193i \(-0.531223\pi\)
0.935936 + 0.352169i \(0.114556\pi\)
\(228\) 0 0
\(229\) 9.41277 12.2670i 0.622013 0.810623i −0.370999 0.928633i \(-0.620985\pi\)
0.993012 + 0.118010i \(0.0376514\pi\)
\(230\) 0.572274 + 0.657743i 0.0377347 + 0.0433703i
\(231\) 0 0
\(232\) −13.8658 + 15.4404i −0.910332 + 1.01371i
\(233\) −5.49432 + 5.49432i −0.359945 + 0.359945i −0.863793 0.503848i \(-0.831917\pi\)
0.503848 + 0.863793i \(0.331917\pi\)
\(234\) 0 0
\(235\) −0.0617812 0.149153i −0.00403016 0.00972966i
\(236\) 5.32786 9.06311i 0.346814 0.589958i
\(237\) 0 0
\(238\) −4.22377 12.6051i −0.273786 0.817069i
\(239\) 17.3751 10.0315i 1.12390 0.648883i 0.181506 0.983390i \(-0.441903\pi\)
0.942393 + 0.334507i \(0.108570\pi\)
\(240\) 0 0
\(241\) −9.35807 5.40288i −0.602806 0.348030i 0.167339 0.985899i \(-0.446483\pi\)
−0.770145 + 0.637869i \(0.779816\pi\)
\(242\) −3.04537 + 15.0022i −0.195764 + 0.964379i
\(243\) 0 0
\(244\) −3.90620 + 3.84536i −0.250069 + 0.246174i
\(245\) −0.0244647 0.00322084i −0.00156299 0.000205772i
\(246\) 0 0
\(247\) −25.6819 6.88146i −1.63410 0.437857i
\(248\) 3.76819 + 4.40023i 0.239280 + 0.279415i
\(249\) 0 0
\(250\) 0.907429 + 0.312007i 0.0573908 + 0.0197331i
\(251\) 3.41749 + 8.25055i 0.215710 + 0.520770i 0.994282 0.106785i \(-0.0340557\pi\)
−0.778572 + 0.627555i \(0.784056\pi\)
\(252\) 0 0
\(253\) −3.51468 1.45583i −0.220966 0.0915272i
\(254\) 8.60868 0.530325i 0.540157 0.0332755i
\(255\) 0 0
\(256\) 14.1007 7.56114i 0.881293 0.472571i
\(257\) 23.7599 13.7178i 1.48210 0.855692i 0.482308 0.876002i \(-0.339799\pi\)
0.999794 + 0.0203099i \(0.00646527\pi\)
\(258\) 0 0
\(259\) 13.7963 + 17.9797i 0.857260 + 1.11720i
\(260\) 0.772126 + 0.326948i 0.0478852 + 0.0202764i
\(261\) 0 0
\(262\) 19.1976 3.74040i 1.18603 0.231082i
\(263\) −5.87988 21.9440i −0.362569 1.35313i −0.870686 0.491838i \(-0.836325\pi\)
0.508117 0.861288i \(-0.330342\pi\)
\(264\) 0 0
\(265\) 0.00335160 0.0125083i 0.000205887 0.000768381i
\(266\) 1.08720 15.6464i 0.0666603 0.959342i
\(267\) 0 0
\(268\) −3.08429 + 0.800543i −0.188403 + 0.0489010i
\(269\) −26.9125 11.1475i −1.64088 0.679677i −0.644498 0.764606i \(-0.722933\pi\)
−0.996387 + 0.0849297i \(0.972933\pi\)
\(270\) 0 0
\(271\) 4.68410 0.284539 0.142269 0.989828i \(-0.454560\pi\)
0.142269 + 0.989828i \(0.454560\pi\)
\(272\) 14.1561 3.55594i 0.858338 0.215610i
\(273\) 0 0
\(274\) 27.3398 9.16114i 1.65166 0.553445i
\(275\) −2.07465 + 0.273132i −0.125106 + 0.0164705i
\(276\) 0 0
\(277\) −1.62376 + 12.3337i −0.0975625 + 0.741060i 0.870822 + 0.491598i \(0.163587\pi\)
−0.968385 + 0.249462i \(0.919746\pi\)
\(278\) −26.2729 17.7045i −1.57575 1.06185i
\(279\) 0 0
\(280\) −0.102201 + 0.483952i −0.00610767 + 0.0289216i
\(281\) −11.7286 + 3.14266i −0.699668 + 0.187475i −0.591082 0.806612i \(-0.701299\pi\)
−0.108586 + 0.994087i \(0.534632\pi\)
\(282\) 0 0
\(283\) −6.44707 4.94701i −0.383238 0.294069i 0.399119 0.916899i \(-0.369316\pi\)
−0.782357 + 0.622830i \(0.785983\pi\)
\(284\) −12.5028 + 16.0319i −0.741907 + 0.951318i
\(285\) 0 0
\(286\) −3.65180 + 0.224963i −0.215935 + 0.0133024i
\(287\) 14.4795 0.854699
\(288\) 0 0
\(289\) −3.68505 −0.216767
\(290\) 0.703038 0.0433096i 0.0412838 0.00254323i
\(291\) 0 0
\(292\) 14.7683 + 11.5174i 0.864249 + 0.674004i
\(293\) 6.46185 + 4.95835i 0.377505 + 0.289670i 0.780034 0.625737i \(-0.215202\pi\)
−0.402528 + 0.915408i \(0.631869\pi\)
\(294\) 0 0
\(295\) −0.344674 + 0.0923551i −0.0200677 + 0.00537712i
\(296\) −20.8502 + 13.5794i −1.21189 + 0.789285i
\(297\) 0 0
\(298\) −10.9542 7.38173i −0.634562 0.427612i
\(299\) −7.32101 + 55.6086i −0.423385 + 3.21593i
\(300\) 0 0
\(301\) −9.06361 + 1.19325i −0.522418 + 0.0687776i
\(302\) −6.19505 + 2.07586i −0.356485 + 0.119452i
\(303\) 0 0
\(304\) 17.0354 + 2.51537i 0.977047 + 0.144266i
\(305\) 0.186046 0.0106529
\(306\) 0 0
\(307\) 30.9448 + 12.8178i 1.76611 + 0.731549i 0.995555 + 0.0941803i \(0.0300230\pi\)
0.770559 + 0.637368i \(0.219977\pi\)
\(308\) −0.542222 2.08905i −0.0308960 0.119034i
\(309\) 0 0
\(310\) 0.0136301 0.196158i 0.000774138 0.0111410i
\(311\) −4.12235 + 15.3848i −0.233757 + 0.872393i 0.744948 + 0.667122i \(0.232474\pi\)
−0.978705 + 0.205270i \(0.934193\pi\)
\(312\) 0 0
\(313\) −7.15224 26.6925i −0.404268 1.50875i −0.805401 0.592730i \(-0.798050\pi\)
0.401132 0.916020i \(-0.368617\pi\)
\(314\) 6.81096 1.32702i 0.384365 0.0748882i
\(315\) 0 0
\(316\) 7.75558 18.3157i 0.436285 1.03034i
\(317\) 0.505667 + 0.658999i 0.0284011 + 0.0370131i 0.807338 0.590089i \(-0.200907\pi\)
−0.778937 + 0.627102i \(0.784241\pi\)
\(318\) 0 0
\(319\) −2.66171 + 1.53674i −0.149027 + 0.0860409i
\(320\) −0.521106 0.152866i −0.0291307 0.00854548i
\(321\) 0 0
\(322\) −33.0238 + 2.03438i −1.84034 + 0.113372i
\(323\) 14.5131 + 6.01153i 0.807532 + 0.334491i
\(324\) 0 0
\(325\) 11.8064 + 28.5032i 0.654901 + 1.58107i
\(326\) −9.36742 3.22086i −0.518813 0.178387i
\(327\) 0 0
\(328\) −1.22642 + 15.8501i −0.0677178 + 0.875178i
\(329\) 5.91790 + 1.58570i 0.326264 + 0.0874222i
\(330\) 0 0
\(331\) −14.8891 1.96019i −0.818378 0.107742i −0.290298 0.956936i \(-0.593755\pi\)
−0.528080 + 0.849195i \(0.677088\pi\)
\(332\) −6.03136 6.12678i −0.331014 0.336251i
\(333\) 0 0
\(334\) −5.74556 + 28.3039i −0.314383 + 1.54872i
\(335\) 0.0936646 + 0.0540773i 0.00511744 + 0.00295456i
\(336\) 0 0
\(337\) 17.1129 9.88013i 0.932198 0.538205i 0.0446921 0.999001i \(-0.485769\pi\)
0.887506 + 0.460796i \(0.152436\pi\)
\(338\) 11.2975 + 33.7153i 0.614501 + 1.83387i
\(339\) 0 0
\(340\) −0.427078 0.251063i −0.0231615 0.0136158i
\(341\) 0.328337 + 0.792675i 0.0177804 + 0.0429258i
\(342\) 0 0
\(343\) 13.4134 13.4134i 0.724256 0.724256i
\(344\) −0.538508 10.0226i −0.0290344 0.540385i
\(345\) 0 0
\(346\) −8.37103 9.62123i −0.450029 0.517240i
\(347\) 7.17492 9.35054i 0.385170 0.501963i −0.560022 0.828477i \(-0.689207\pi\)
0.945192 + 0.326514i \(0.105874\pi\)
\(348\) 0 0
\(349\) 13.8028 10.5912i 0.738846 0.566936i −0.169313 0.985562i \(-0.554155\pi\)
0.908159 + 0.418626i \(0.137488\pi\)
\(350\) −15.1717 + 10.0515i −0.810961 + 0.537276i
\(351\) 0 0
\(352\) 2.33272 0.416606i 0.124334 0.0222052i
\(353\) 10.1154 + 5.84016i 0.538391 + 0.310840i 0.744427 0.667704i \(-0.232723\pi\)
−0.206036 + 0.978544i \(0.566056\pi\)
\(354\) 0 0
\(355\) 0.684157 0.0900710i 0.0363113 0.00478047i
\(356\) −5.50282 4.29149i −0.291649 0.227449i
\(357\) 0 0
\(358\) −13.2501 4.55586i −0.700289 0.240785i
\(359\) −5.22831 + 5.22831i −0.275939 + 0.275939i −0.831486 0.555546i \(-0.812509\pi\)
0.555546 + 0.831486i \(0.312509\pi\)
\(360\) 0 0
\(361\) −0.330044 0.330044i −0.0173707 0.0173707i
\(362\) −12.8896 26.3982i −0.677465 1.38746i
\(363\) 0 0
\(364\) −27.6814 + 15.6935i −1.45090 + 0.822564i
\(365\) −0.0829717 0.630233i −0.00434294 0.0329879i
\(366\) 0 0
\(367\) −0.612755 + 1.06132i −0.0319855 + 0.0554006i −0.881575 0.472044i \(-0.843516\pi\)
0.849590 + 0.527444i \(0.176850\pi\)
\(368\) 0.570175 36.3221i 0.0297224 1.89342i
\(369\) 0 0
\(370\) 0.827665 + 0.168012i 0.0430282 + 0.00873452i
\(371\) 0.299165 + 0.389879i 0.0155319 + 0.0202415i
\(372\) 0 0
\(373\) 13.3587 + 10.2505i 0.691689 + 0.530752i 0.893719 0.448628i \(-0.148087\pi\)
−0.202030 + 0.979379i \(0.564754\pi\)
\(374\) 2.15648 + 0.149844i 0.111509 + 0.00774823i
\(375\) 0 0
\(376\) −2.23705 + 6.34378i −0.115367 + 0.327155i
\(377\) 32.0419 + 32.0419i 1.65024 + 1.65024i
\(378\) 0 0
\(379\) 10.2546 4.24759i 0.526742 0.218184i −0.103433 0.994636i \(-0.532983\pi\)
0.630176 + 0.776453i \(0.282983\pi\)
\(380\) −0.352157 0.466475i −0.0180653 0.0239297i
\(381\) 0 0
\(382\) 11.9961 + 5.97448i 0.613776 + 0.305681i
\(383\) 2.90214 + 5.02665i 0.148292 + 0.256850i 0.930596 0.366047i \(-0.119289\pi\)
−0.782304 + 0.622897i \(0.785956\pi\)
\(384\) 0 0
\(385\) −0.0366275 + 0.0634407i −0.00186671 + 0.00323324i
\(386\) 21.1581 14.0176i 1.07692 0.713478i
\(387\) 0 0
\(388\) 12.0831 28.5357i 0.613427 1.44868i
\(389\) 0.532383 4.04385i 0.0269929 0.205031i −0.972634 0.232342i \(-0.925361\pi\)
0.999627 + 0.0273109i \(0.00869441\pi\)
\(390\) 0 0
\(391\) 8.57692 32.0095i 0.433753 1.61879i
\(392\) 0.668757 + 0.780928i 0.0337773 + 0.0394428i
\(393\) 0 0
\(394\) −3.23756 6.63058i −0.163106 0.334044i
\(395\) −0.623711 + 0.258350i −0.0313823 + 0.0129990i
\(396\) 0 0
\(397\) −10.8114 + 26.1011i −0.542610 + 1.30998i 0.380266 + 0.924877i \(0.375833\pi\)
−0.922875 + 0.385099i \(0.874167\pi\)
\(398\) 18.8592 21.3353i 0.945324 1.06944i
\(399\) 0 0
\(400\) −9.71794 17.4592i −0.485897 0.872961i
\(401\) 13.2637 + 22.9733i 0.662355 + 1.14723i 0.979995 + 0.199022i \(0.0637764\pi\)
−0.317640 + 0.948211i \(0.602890\pi\)
\(402\) 0 0
\(403\) 10.0357 7.70069i 0.499915 0.383599i
\(404\) 0.0674519 8.59437i 0.00335586 0.427586i
\(405\) 0 0
\(406\) −14.9378 + 22.1672i −0.741352 + 1.10014i
\(407\) −3.55955 + 0.953779i −0.176440 + 0.0472771i
\(408\) 0 0
\(409\) 26.5949 + 7.12609i 1.31503 + 0.352362i 0.847116 0.531409i \(-0.178337\pi\)
0.467919 + 0.883771i \(0.345004\pi\)
\(410\) 0.407076 0.354180i 0.0201041 0.0174917i
\(411\) 0 0
\(412\) −0.485203 + 3.47454i −0.0239042 + 0.171178i
\(413\) 5.18217 12.5109i 0.254998 0.615619i
\(414\) 0 0
\(415\) 0.291808i 0.0143243i
\(416\) −14.8344 31.6310i −0.727318 1.55084i
\(417\) 0 0
\(418\) 2.28288 + 1.13695i 0.111659 + 0.0556100i
\(419\) −0.769500 5.84494i −0.0375926 0.285544i −0.999907 0.0136062i \(-0.995669\pi\)
0.962315 0.271938i \(-0.0876644\pi\)
\(420\) 0 0
\(421\) 36.3814 + 4.78971i 1.77312 + 0.233436i 0.944991 0.327097i \(-0.106070\pi\)
0.828132 + 0.560533i \(0.189404\pi\)
\(422\) −9.11870 + 1.77665i −0.443892 + 0.0864861i
\(423\) 0 0
\(424\) −0.452125 + 0.294461i −0.0219571 + 0.0143003i
\(425\) −4.71776 17.6069i −0.228845 0.854061i
\(426\) 0 0
\(427\) −4.29807 + 5.60136i −0.207998 + 0.271069i
\(428\) 12.2846 6.96454i 0.593798 0.336644i
\(429\) 0 0
\(430\) −0.225626 + 0.255250i −0.0108806 + 0.0123092i
\(431\) 5.39534i 0.259884i 0.991522 + 0.129942i \(0.0414792\pi\)
−0.991522 + 0.129942i \(0.958521\pi\)
\(432\) 0 0
\(433\) 1.07138i 0.0514873i 0.999669 + 0.0257436i \(0.00819536\pi\)
−0.999669 + 0.0257436i \(0.991805\pi\)
\(434\) 5.59092 + 4.94205i 0.268373 + 0.237226i
\(435\) 0 0
\(436\) 2.99327 10.8303i 0.143351 0.518678i
\(437\) 23.8006 31.0175i 1.13854 1.48377i
\(438\) 0 0
\(439\) 1.63703 + 6.10948i 0.0781312 + 0.291589i 0.993925 0.110059i \(-0.0351040\pi\)
−0.915794 + 0.401649i \(0.868437\pi\)
\(440\) −0.0663436 0.0454681i −0.00316281 0.00216761i
\(441\) 0 0
\(442\) −6.09498 31.2826i −0.289909 1.48796i
\(443\) −19.9890 2.63160i −0.949706 0.125031i −0.360272 0.932847i \(-0.617316\pi\)
−0.589435 + 0.807816i \(0.700649\pi\)
\(444\) 0 0
\(445\) 0.0309161 + 0.234831i 0.00146556 + 0.0111321i
\(446\) −1.48466 + 2.98105i −0.0703009 + 0.141157i
\(447\) 0 0
\(448\) 16.6411 12.1576i 0.786220 0.574394i
\(449\) 2.03680i 0.0961223i 0.998844 + 0.0480612i \(0.0153042\pi\)
−0.998844 + 0.0480612i \(0.984696\pi\)
\(450\) 0 0
\(451\) −0.901011 + 2.17523i −0.0424269 + 0.102428i
\(452\) 14.9077 + 19.7471i 0.701200 + 0.928824i
\(453\) 0 0
\(454\) 14.7730 + 16.9794i 0.693334 + 0.796882i
\(455\) 1.04324 + 0.279535i 0.0489078 + 0.0131048i
\(456\) 0 0
\(457\) 10.6951 2.86574i 0.500295 0.134054i 0.000158032 1.00000i \(-0.499950\pi\)
0.500137 + 0.865946i \(0.333283\pi\)
\(458\) 18.1338 + 12.2198i 0.847335 + 0.570994i
\(459\) 0 0
\(460\) −0.878666 + 0.864981i −0.0409680 + 0.0403300i
\(461\) −22.9338 + 17.5977i −1.06813 + 0.819607i −0.984235 0.176867i \(-0.943404\pi\)
−0.0838979 + 0.996474i \(0.526737\pi\)
\(462\) 0 0
\(463\) −3.25725 5.64172i −0.151377 0.262193i 0.780357 0.625334i \(-0.215037\pi\)
−0.931734 + 0.363142i \(0.881704\pi\)
\(464\) −23.0004 18.2294i −1.06776 0.846280i
\(465\) 0 0
\(466\) −8.23320 7.27768i −0.381396 0.337132i
\(467\) 8.14793 19.6708i 0.377041 0.910258i −0.615476 0.788156i \(-0.711036\pi\)
0.992517 0.122103i \(-0.0389638\pi\)
\(468\) 0 0
\(469\) −3.79199 + 1.57069i −0.175098 + 0.0725279i
\(470\) 0.205163 0.100176i 0.00946345 0.00462078i
\(471\) 0 0
\(472\) 13.2562 + 6.73239i 0.610167 + 0.309883i
\(473\) 0.384738 1.43586i 0.0176903 0.0660210i
\(474\) 0 0
\(475\) 2.80700 21.3213i 0.128794 0.978289i
\(476\) 17.4253 7.05810i 0.798688 0.323507i
\(477\) 0 0
\(478\) 15.6707 + 23.6533i 0.716761 + 1.08187i
\(479\) 0.238327 0.412794i 0.0108894 0.0188611i −0.860529 0.509401i \(-0.829867\pi\)
0.871419 + 0.490540i \(0.163200\pi\)
\(480\) 0 0
\(481\) 27.1659 + 47.0527i 1.23866 + 2.14542i
\(482\) 6.81264 13.6791i 0.310307 0.623065i
\(483\) 0 0
\(484\) −21.4410 2.99413i −0.974591 0.136097i
\(485\) −0.971735 + 0.402506i −0.0441242 + 0.0182769i
\(486\) 0 0
\(487\) 19.6952 + 19.6952i 0.892476 + 0.892476i 0.994756 0.102280i \(-0.0326138\pi\)
−0.102280 + 0.994756i \(0.532614\pi\)
\(488\) −5.76754 5.17937i −0.261084 0.234459i
\(489\) 0 0
\(490\) 0.00241900 0.0348130i 0.000109279 0.00157269i
\(491\) −24.1906 18.5621i −1.09171 0.837697i −0.104089 0.994568i \(-0.533193\pi\)
−0.987619 + 0.156871i \(0.949859\pi\)
\(492\) 0 0
\(493\) −16.2983 21.2403i −0.734037 0.956616i
\(494\) 7.48024 36.8494i 0.336552 1.65793i
\(495\) 0 0
\(496\) −5.88342 + 5.70157i −0.264173 + 0.256008i
\(497\) −13.0938 + 22.6791i −0.587336 + 1.01730i
\(498\) 0 0
\(499\) −4.42487 33.6102i −0.198084 1.50460i −0.744804 0.667284i \(-0.767457\pi\)
0.546719 0.837316i \(-0.315877\pi\)
\(500\) −0.361504 + 1.30800i −0.0161669 + 0.0584956i
\(501\) 0 0
\(502\) −11.3488 + 5.54135i −0.506521 + 0.247322i
\(503\) −24.6072 24.6072i −1.09718 1.09718i −0.994739 0.102441i \(-0.967335\pi\)
−0.102441 0.994739i \(-0.532665\pi\)
\(504\) 0 0
\(505\) −0.206274 + 0.206274i −0.00917908 + 0.00917908i
\(506\) 1.74934 5.08770i 0.0777675 0.226176i
\(507\) 0 0
\(508\) 1.49715 + 12.1054i 0.0664251 + 0.537088i
\(509\) 18.5649 2.44412i 0.822876 0.108334i 0.292682 0.956210i \(-0.405452\pi\)
0.530194 + 0.847876i \(0.322119\pi\)
\(510\) 0 0
\(511\) 20.8915 + 12.0617i 0.924188 + 0.533580i
\(512\) 11.8990 + 19.2462i 0.525865 + 0.850568i
\(513\) 0 0
\(514\) 21.4292 + 32.3452i 0.945203 + 1.42668i
\(515\) 0.0944691 0.0724887i 0.00416281 0.00319423i
\(516\) 0 0
\(517\) −0.606467 + 0.790363i −0.0266724 + 0.0347601i
\(518\) −24.1793 + 21.0374i −1.06238 + 0.924332i
\(519\) 0 0
\(520\) −0.394359 + 1.11831i −0.0172938 + 0.0490414i
\(521\) 26.8438 26.8438i 1.17605 1.17605i 0.195305 0.980743i \(-0.437430\pi\)
0.980743 0.195305i \(-0.0625697\pi\)
\(522\) 0 0
\(523\) −8.96802 21.6507i −0.392144 0.946720i −0.989472 0.144723i \(-0.953771\pi\)
0.597328 0.801997i \(-0.296229\pi\)
\(524\) 6.94905 + 26.7730i 0.303571 + 1.16958i
\(525\) 0 0
\(526\) 30.4635 10.2078i 1.32827 0.445083i
\(527\) −6.47254 + 3.73692i −0.281948 + 0.162783i
\(528\) 0 0
\(529\) −51.5081 29.7382i −2.23948 1.29297i
\(530\) 0.0179474 + 0.00364324i 0.000779587 + 0.000158252i
\(531\) 0 0
\(532\) 22.1800 + 0.174077i 0.961625 + 0.00754720i
\(533\) 34.4161 + 4.53096i 1.49073 + 0.196258i
\(534\) 0 0
\(535\) −0.462973 0.124053i −0.0200161 0.00536329i
\(536\) −1.39819 4.28398i −0.0603928 0.185040i
\(537\) 0 0
\(538\) 13.3950 38.9574i 0.577498 1.67957i
\(539\) 0.0582714 + 0.140680i 0.00250993 + 0.00605950i
\(540\) 0 0
\(541\) −8.00916 3.31750i −0.344341 0.142631i 0.203809 0.979011i \(-0.434668\pi\)
−0.548150 + 0.836380i \(0.684668\pi\)
\(542\) 0.407309 + 6.61179i 0.0174954 + 0.284001i
\(543\) 0 0
\(544\) 6.25029 + 19.6726i 0.267979 + 0.843457i
\(545\) −0.330284 + 0.190689i −0.0141478 + 0.00816824i
\(546\) 0 0
\(547\) 27.7113 + 36.1141i 1.18485 + 1.54413i 0.774984 + 0.631981i \(0.217758\pi\)
0.409866 + 0.912146i \(0.365576\pi\)
\(548\) 15.3086 + 37.7946i 0.653953 + 1.61451i
\(549\) 0 0
\(550\) −0.565939 2.90469i −0.0241317 0.123856i
\(551\) −8.17516 30.5101i −0.348274 1.29978i
\(552\) 0 0
\(553\) 6.63089 24.7468i 0.281974 1.05234i
\(554\) −17.5507 1.21952i −0.745657 0.0518123i
\(555\) 0 0
\(556\) 22.7060 38.6247i 0.962950 1.63805i
\(557\) −19.9105 8.24722i −0.843637 0.349446i −0.0813502 0.996686i \(-0.525923\pi\)
−0.762286 + 0.647240i \(0.775923\pi\)
\(558\) 0 0
\(559\) −21.9165 −0.926970
\(560\) −0.692003 0.102178i −0.0292425 0.00431781i
\(561\) 0 0
\(562\) −5.45585 16.2821i −0.230141 0.686817i
\(563\) 6.60330 0.869341i 0.278296 0.0366384i 0.00991376 0.999951i \(-0.496844\pi\)
0.268382 + 0.963312i \(0.413511\pi\)
\(564\) 0 0
\(565\) 0.109615 0.832612i 0.00461156 0.0350282i
\(566\) 6.42228 9.53045i 0.269949 0.400595i
\(567\) 0 0
\(568\) −23.7168 16.2542i −0.995136 0.682009i
\(569\) −6.63825 + 1.77871i −0.278290 + 0.0745676i −0.395265 0.918567i \(-0.629347\pi\)
0.116975 + 0.993135i \(0.462680\pi\)
\(570\) 0 0
\(571\) 27.9199 + 21.4237i 1.16841 + 0.896554i 0.996078 0.0884846i \(-0.0282024\pi\)
0.172334 + 0.985039i \(0.444869\pi\)
\(572\) −0.635089 5.13509i −0.0265544 0.214709i
\(573\) 0 0
\(574\) 1.25908 + 20.4384i 0.0525528 + 0.853081i
\(575\) −45.3664 −1.89191
\(576\) 0 0
\(577\) 27.6999 1.15316 0.576580 0.817041i \(-0.304387\pi\)
0.576580 + 0.817041i \(0.304387\pi\)
\(578\) −0.320436 5.20158i −0.0133284 0.216357i
\(579\) 0 0
\(580\) 0.122266 + 0.988599i 0.00507683 + 0.0410493i
\(581\) −8.78561 6.74143i −0.364488 0.279682i
\(582\) 0 0
\(583\) −0.0771869 + 0.0206822i −0.00319675 + 0.000856567i
\(584\) −14.9730 + 21.8475i −0.619588 + 0.904056i
\(585\) 0 0
\(586\) −6.43701 + 9.55231i −0.265910 + 0.394602i
\(587\) −0.902546 + 6.85551i −0.0372520 + 0.282957i 0.962672 + 0.270669i \(0.0872449\pi\)
−0.999924 + 0.0122883i \(0.996088\pi\)
\(588\) 0 0
\(589\) −8.74215 + 1.15093i −0.360214 + 0.0474231i
\(590\) −0.160334 0.478489i −0.00660085 0.0196991i
\(591\) 0 0
\(592\) −20.9808 28.2500i −0.862307 1.16107i
\(593\) 0.448752 0.0184280 0.00921401 0.999958i \(-0.497067\pi\)
0.00921401 + 0.999958i \(0.497067\pi\)
\(594\) 0 0
\(595\) −0.589545 0.244197i −0.0241690 0.0100111i
\(596\) 9.46706 16.1042i 0.387786 0.659654i
\(597\) 0 0
\(598\) −79.1302 5.49840i −3.23588 0.224846i
\(599\) −4.73585 + 17.6744i −0.193501 + 0.722157i 0.799148 + 0.601134i \(0.205284\pi\)
−0.992650 + 0.121023i \(0.961382\pi\)
\(600\) 0 0
\(601\) 1.27794 + 4.76933i 0.0521282 + 0.194545i 0.987080 0.160231i \(-0.0512239\pi\)
−0.934951 + 0.354776i \(0.884557\pi\)
\(602\) −2.47244 12.6899i −0.100769 0.517200i
\(603\) 0 0
\(604\) −3.46885 8.56404i −0.141145 0.348466i
\(605\) 0.447320 + 0.582958i 0.0181861 + 0.0237006i
\(606\) 0 0
\(607\) −11.1380 + 6.43050i −0.452075 + 0.261006i −0.708706 0.705504i \(-0.750721\pi\)
0.256631 + 0.966509i \(0.417388\pi\)
\(608\) −2.06921 + 24.2648i −0.0839177 + 0.984069i
\(609\) 0 0
\(610\) 0.0161777 + 0.262610i 0.000655016 + 0.0106328i
\(611\) 13.5699 + 5.62085i 0.548981 + 0.227395i
\(612\) 0 0
\(613\) 1.29501 + 3.12642i 0.0523048 + 0.126275i 0.947872 0.318651i \(-0.103230\pi\)
−0.895567 + 0.444926i \(0.853230\pi\)
\(614\) −15.4019 + 44.7944i −0.621571 + 1.80775i
\(615\) 0 0
\(616\) 2.90162 0.947021i 0.116909 0.0381566i
\(617\) −13.9289 3.73222i −0.560755 0.150254i −0.0327016 0.999465i \(-0.510411\pi\)
−0.528053 + 0.849211i \(0.677078\pi\)
\(618\) 0 0
\(619\) 4.33694 + 0.570969i 0.174316 + 0.0229492i 0.217179 0.976132i \(-0.430314\pi\)
−0.0428626 + 0.999081i \(0.513648\pi\)
\(620\) 0.278069 + 0.00218239i 0.0111675 + 8.76469e-5i
\(621\) 0 0
\(622\) −22.0747 4.48105i −0.885115 0.179674i
\(623\) −7.78440 4.49433i −0.311875 0.180061i
\(624\) 0 0
\(625\) −21.5908 + 12.4654i −0.863632 + 0.498618i
\(626\) 37.0556 12.4167i 1.48104 0.496272i
\(627\) 0 0
\(628\) 2.46539 + 9.49854i 0.0983799 + 0.379033i
\(629\) −12.2844 29.6573i −0.489813 1.18251i
\(630\) 0 0
\(631\) −10.5738 + 10.5738i −0.420937 + 0.420937i −0.885526 0.464589i \(-0.846202\pi\)
0.464589 + 0.885526i \(0.346202\pi\)
\(632\) 26.5277 + 9.35464i 1.05522 + 0.372108i
\(633\) 0 0
\(634\) −0.886231 + 0.771072i −0.0351967 + 0.0306232i
\(635\) 0.252031 0.328453i 0.0100015 0.0130342i
\(636\) 0 0
\(637\) 1.78109 1.36668i 0.0705692 0.0541497i
\(638\) −2.40062 3.62348i −0.0950413 0.143455i
\(639\) 0 0
\(640\) 0.170463 0.748854i 0.00673815 0.0296010i
\(641\) 25.9177 + 14.9636i 1.02369 + 0.591027i 0.915170 0.403067i \(-0.132056\pi\)
0.108519 + 0.994094i \(0.465389\pi\)
\(642\) 0 0
\(643\) −5.66881 + 0.746313i −0.223556 + 0.0294317i −0.241472 0.970408i \(-0.577630\pi\)
0.0179159 + 0.999839i \(0.494297\pi\)
\(644\) −5.74321 46.4374i −0.226314 1.82989i
\(645\) 0 0
\(646\) −7.22351 + 21.0086i −0.284205 + 0.826571i
\(647\) −5.34200 + 5.34200i −0.210016 + 0.210016i −0.804274 0.594258i \(-0.797446\pi\)
0.594258 + 0.804274i \(0.297446\pi\)
\(648\) 0 0
\(649\) 1.55702 + 1.55702i 0.0611182 + 0.0611182i
\(650\) −39.2067 + 19.1437i −1.53781 + 0.750877i
\(651\) 0 0
\(652\) 3.73181 13.5025i 0.146149 0.528800i
\(653\) 4.94781 + 37.5823i 0.193623 + 1.47071i 0.761804 + 0.647807i \(0.224314\pi\)
−0.568181 + 0.822903i \(0.692353\pi\)
\(654\) 0 0
\(655\) 0.469413 0.813048i 0.0183415 0.0317684i
\(656\) −22.4797 0.352880i −0.877686 0.0137777i
\(657\) 0 0
\(658\) −1.72367 + 8.49122i −0.0671958 + 0.331022i
\(659\) 17.2631 + 22.4977i 0.672474 + 0.876386i 0.997597 0.0692864i \(-0.0220722\pi\)
−0.325123 + 0.945672i \(0.605406\pi\)
\(660\) 0 0
\(661\) 22.1638 + 17.0069i 0.862074 + 0.661492i 0.942112 0.335299i \(-0.108837\pi\)
−0.0800379 + 0.996792i \(0.525504\pi\)
\(662\) 1.47219 21.1870i 0.0572181 0.823454i
\(663\) 0 0
\(664\) 8.12372 9.04625i 0.315262 0.351063i
\(665\) −0.532344 0.532344i −0.0206434 0.0206434i
\(666\) 0 0
\(667\) −61.5609 + 25.4994i −2.38365 + 0.987339i
\(668\) −40.4517 5.64888i −1.56512 0.218562i
\(669\) 0 0
\(670\) −0.0681874 + 0.136913i −0.00263431 + 0.00528943i
\(671\) −0.574028 0.994245i −0.0221601 0.0383824i
\(672\) 0 0
\(673\) 0.577904 1.00096i 0.0222766 0.0385841i −0.854672 0.519168i \(-0.826242\pi\)
0.876949 + 0.480584i \(0.159575\pi\)
\(674\) 15.4342 + 23.2963i 0.594505 + 0.897342i
\(675\) 0 0
\(676\) −46.6081 + 18.8785i −1.79262 + 0.726097i
\(677\) 2.34857 17.8391i 0.0902628 0.685614i −0.885162 0.465283i \(-0.845953\pi\)
0.975425 0.220332i \(-0.0707139\pi\)
\(678\) 0 0
\(679\) 10.3309 38.5553i 0.396462 1.47962i
\(680\) 0.317248 0.624667i 0.0121659 0.0239549i
\(681\) 0 0
\(682\) −1.09034 + 0.532387i −0.0417513 + 0.0203862i
\(683\) −10.9938 + 4.55377i −0.420665 + 0.174245i −0.582967 0.812496i \(-0.698108\pi\)
0.162302 + 0.986741i \(0.448108\pi\)
\(684\) 0 0
\(685\) 0.529651 1.27869i 0.0202369 0.0488563i
\(686\) 20.0999 + 17.7672i 0.767418 + 0.678353i
\(687\) 0 0
\(688\) 14.1005 1.63165i 0.537577 0.0622060i
\(689\) 0.589077 + 1.02031i 0.0224421 + 0.0388708i
\(690\) 0 0
\(691\) −37.8025 + 29.0069i −1.43807 + 1.10347i −0.461787 + 0.886991i \(0.652792\pi\)
−0.976287 + 0.216482i \(0.930542\pi\)
\(692\) 12.8528 12.6526i 0.488591 0.480981i
\(693\) 0 0
\(694\) 13.8225 + 9.31459i 0.524696 + 0.353577i
\(695\) −1.46891 + 0.393594i −0.0557191 + 0.0149299i
\(696\) 0 0
\(697\) −19.8106 5.30824i −0.750381 0.201064i
\(698\) 16.1502 + 18.5622i 0.611293 + 0.702589i
\(699\) 0 0
\(700\) −15.5074 20.5414i −0.586123 0.776392i
\(701\) −4.28366 + 10.3417i −0.161792 + 0.390599i −0.983897 0.178736i \(-0.942799\pi\)
0.822106 + 0.569335i \(0.192799\pi\)
\(702\) 0 0
\(703\) 37.8723i 1.42838i
\(704\) 0.790898 + 3.25650i 0.0298081 + 0.122734i
\(705\) 0 0
\(706\) −7.36401 + 14.7862i −0.277148 + 0.556485i
\(707\) −1.44499 10.9758i −0.0543444 0.412787i
\(708\) 0 0
\(709\) −36.2480 4.77214i −1.36132 0.179221i −0.585756 0.810487i \(-0.699202\pi\)
−0.775566 + 0.631266i \(0.782536\pi\)
\(710\) 0.186630 + 0.957881i 0.00700410 + 0.0359486i
\(711\) 0 0
\(712\) 5.57910 8.14060i 0.209086 0.305082i
\(713\) 4.81432 + 17.9673i 0.180298 + 0.672881i
\(714\) 0 0
\(715\) −0.106911 + 0.139329i −0.00399825 + 0.00521062i
\(716\) 5.27860 19.0992i 0.197271 0.713769i
\(717\) 0 0
\(718\) −7.83458 6.92532i −0.292384 0.258451i
\(719\) 35.9890i 1.34216i 0.741383 + 0.671082i \(0.234170\pi\)
−0.741383 + 0.671082i \(0.765830\pi\)
\(720\) 0 0
\(721\) 4.51888i 0.168292i
\(722\) 0.437170 0.494569i 0.0162698 0.0184059i
\(723\) 0 0
\(724\) 36.1413 20.4897i 1.34318 0.761493i
\(725\) −22.3121 + 29.0777i −0.828652 + 1.07992i
\(726\) 0 0
\(727\) −12.7413 47.5511i −0.472548 1.76357i −0.630565 0.776137i \(-0.717177\pi\)
0.158017 0.987436i \(-0.449490\pi\)
\(728\) −24.5590 37.7087i −0.910219 1.39758i
\(729\) 0 0
\(730\) 0.882383 0.171920i 0.0326585 0.00636305i
\(731\) 12.8381 + 1.69017i 0.474835 + 0.0625132i
\(732\) 0 0
\(733\) 1.60005 + 12.1536i 0.0590992 + 0.448903i 0.995254 + 0.0973143i \(0.0310252\pi\)
−0.936154 + 0.351589i \(0.885641\pi\)
\(734\) −1.55138 0.772639i −0.0572625 0.0285186i
\(735\) 0 0
\(736\) 51.3197 2.35359i 1.89167 0.0867546i
\(737\) 0.667403i 0.0245841i
\(738\) 0 0
\(739\) 15.0548 36.3454i 0.553798 1.33699i −0.360807 0.932640i \(-0.617499\pi\)
0.914606 0.404347i \(-0.132501\pi\)
\(740\) −0.165185 + 1.18289i −0.00607232 + 0.0434839i
\(741\) 0 0
\(742\) −0.524315 + 0.456185i −0.0192482 + 0.0167471i
\(743\) −47.7455 12.7934i −1.75161 0.469344i −0.766644 0.642072i \(-0.778075\pi\)
−0.984969 + 0.172728i \(0.944742\pi\)
\(744\) 0 0
\(745\) −0.612450 + 0.164105i −0.0224384 + 0.00601236i
\(746\) −13.3074 + 19.7477i −0.487217 + 0.723014i
\(747\) 0 0
\(748\) −0.0239923 + 3.05698i −0.000877246 + 0.111774i
\(749\) 14.4307 11.0730i 0.527285 0.404600i
\(750\) 0 0
\(751\) 19.0194 + 32.9426i 0.694028 + 1.20209i 0.970507 + 0.241073i \(0.0774992\pi\)
−0.276479 + 0.961020i \(0.589168\pi\)
\(752\) −9.14901 2.60605i −0.333630 0.0950328i
\(753\) 0 0
\(754\) −42.4421 + 48.0145i −1.54565 + 1.74859i
\(755\) −0.120016 + 0.289744i −0.00436782 + 0.0105449i
\(756\) 0 0
\(757\) −13.4464 + 5.56969i −0.488718 + 0.202434i −0.613414 0.789761i \(-0.710204\pi\)
0.124696 + 0.992195i \(0.460204\pi\)
\(758\) 6.88732 + 14.1054i 0.250159 + 0.512330i
\(759\) 0 0
\(760\) 0.627825 0.537646i 0.0227736 0.0195025i
\(761\) 6.18093 23.0675i 0.224058 0.836197i −0.758721 0.651415i \(-0.774176\pi\)
0.982780 0.184782i \(-0.0591578\pi\)
\(762\) 0 0
\(763\) 1.88913 14.3494i 0.0683911 0.519482i
\(764\) −7.39007 + 17.4525i −0.267364 + 0.631410i
\(765\) 0 0
\(766\) −6.84295 + 4.53357i −0.247246 + 0.163805i
\(767\) 16.2323 28.1152i 0.586115 1.01518i
\(768\) 0 0
\(769\) −1.73319 3.00198i −0.0625005 0.108254i 0.833082 0.553149i \(-0.186574\pi\)
−0.895583 + 0.444895i \(0.853241\pi\)
\(770\) −0.0927339 0.0461846i −0.00334190 0.00166438i
\(771\) 0 0
\(772\) 21.6262 + 28.6466i 0.778345 + 1.03101i
\(773\) 17.9811 7.44800i 0.646734 0.267886i −0.0351102 0.999383i \(-0.511178\pi\)
0.681844 + 0.731497i \(0.261178\pi\)
\(774\) 0 0
\(775\) 7.23484 + 7.23484i 0.259883 + 0.259883i
\(776\) 41.3299 + 14.5744i 1.48366 + 0.523191i
\(777\) 0 0
\(778\) 5.75434 + 0.399843i 0.206303 + 0.0143351i
\(779\) −19.1967 14.7302i −0.687794 0.527763i
\(780\) 0 0
\(781\) −2.59226 3.37829i −0.0927582 0.120885i
\(782\) 45.9284 + 9.32323i 1.64240 + 0.333398i
\(783\) 0 0
\(784\) −1.04416 + 1.01188i −0.0372913 + 0.0361386i
\(785\) 0.166539 0.288454i 0.00594404 0.0102954i
\(786\) 0 0
\(787\) −3.12531 23.7391i −0.111405 0.846206i −0.952333 0.305059i \(-0.901324\pi\)
0.840928 0.541147i \(-0.182010\pi\)
\(788\) 9.07779 5.14650i 0.323383 0.183336i
\(789\) 0 0
\(790\) −0.418905 0.857927i −0.0149040 0.0305237i
\(791\) 22.5355 + 22.5355i 0.801269 + 0.801269i
\(792\) 0 0
\(793\) −11.9688 + 11.9688i −0.425025 + 0.425025i
\(794\) −37.7828 12.9911i −1.34086 0.461037i
\(795\) 0 0
\(796\) 31.7555 + 24.7652i 1.12554 + 0.877779i
\(797\) 10.7783 1.41899i 0.381788 0.0502634i 0.0628102 0.998025i \(-0.479994\pi\)
0.318978 + 0.947762i \(0.396660\pi\)
\(798\) 0 0
\(799\) −7.51545 4.33904i −0.265877 0.153504i
\(800\) 23.7993 15.2354i 0.841433 0.538654i
\(801\) 0 0
\(802\) −31.2744 + 20.7198i −1.10434 + 0.731642i
\(803\) −3.11202 + 2.38794i −0.109821 + 0.0842686i
\(804\) 0 0
\(805\) −0.966815 + 1.25998i −0.0340758 + 0.0444084i
\(806\) 11.7425 + 13.4962i 0.413611 + 0.475383i
\(807\) 0 0
\(808\) 12.1371 0.652118i 0.426983 0.0229414i
\(809\) 11.2197 11.2197i 0.394464 0.394464i −0.481811 0.876275i \(-0.660021\pi\)
0.876275 + 0.481811i \(0.160021\pi\)
\(810\) 0 0
\(811\) 15.3654 + 37.0955i 0.539554 + 1.30260i 0.925035 + 0.379882i \(0.124036\pi\)
−0.385481 + 0.922716i \(0.625964\pi\)
\(812\) −32.5888 19.1577i −1.14364 0.672305i
\(813\) 0 0
\(814\) −1.65582 4.94151i −0.0580364 0.173200i
\(815\) −0.411777 + 0.237739i −0.0144239 + 0.00832765i
\(816\) 0 0
\(817\) 13.2303 + 7.63851i 0.462869 + 0.267238i
\(818\) −7.74617 + 38.1594i −0.270838 + 1.33421i
\(819\) 0 0
\(820\) 0.535336 + 0.543805i 0.0186947 + 0.0189905i
\(821\) 23.8397 + 3.13855i 0.832011 + 0.109536i 0.534486 0.845178i \(-0.320505\pi\)
0.297525 + 0.954714i \(0.403839\pi\)
\(822\) 0 0
\(823\) −6.36218 1.70474i −0.221772 0.0594236i 0.146222 0.989252i \(-0.453289\pi\)
−0.367994 + 0.929828i \(0.619955\pi\)
\(824\) −4.94663 0.382751i −0.172324 0.0133338i
\(825\) 0 0
\(826\) 18.1102 + 6.22694i 0.630134 + 0.216663i
\(827\) −12.8972 31.1365i −0.448478 1.08272i −0.972892 0.231259i \(-0.925716\pi\)
0.524414 0.851463i \(-0.324284\pi\)
\(828\) 0 0
\(829\) 21.8417 + 9.04712i 0.758593 + 0.314220i 0.728242 0.685320i \(-0.240338\pi\)
0.0303508 + 0.999539i \(0.490338\pi\)
\(830\) −0.411899 + 0.0253744i −0.0142972 + 0.000880758i
\(831\) 0 0
\(832\) 43.3584 23.6899i 1.50318 0.821298i
\(833\) −1.14871 + 0.663208i −0.0398004 + 0.0229788i
\(834\) 0 0
\(835\) 0.843936 + 1.09984i 0.0292056 + 0.0380615i
\(836\) −1.40634 + 3.32123i −0.0486392 + 0.114867i
\(837\) 0 0
\(838\) 8.18343 1.59443i 0.282692 0.0550786i
\(839\) −7.67802 28.6548i −0.265075 0.989272i −0.962205 0.272328i \(-0.912207\pi\)
0.697130 0.716945i \(-0.254460\pi\)
\(840\) 0 0
\(841\) −6.42726 + 23.9869i −0.221630 + 0.827134i
\(842\) −3.59728 + 51.7703i −0.123970 + 1.78412i
\(843\) 0 0
\(844\) −3.30074 12.7169i −0.113616 0.437734i
\(845\) 1.57687 + 0.653163i 0.0542461 + 0.0224695i
\(846\) 0 0
\(847\) −27.8855 −0.958157
\(848\) −0.454957 0.612586i −0.0156233 0.0210363i
\(849\) 0 0
\(850\) 24.4426 8.19031i 0.838374 0.280925i
\(851\) −79.2099 + 10.4282i −2.71528 + 0.357474i
\(852\) 0 0
\(853\) −0.702171 + 5.33352i −0.0240419 + 0.182616i −0.999252 0.0386634i \(-0.987690\pi\)
0.975210 + 0.221280i \(0.0710233\pi\)
\(854\) −8.28027 5.57982i −0.283345 0.190938i
\(855\) 0 0
\(856\) 10.8989 + 16.7346i 0.372518 + 0.571976i
\(857\) 25.9152 6.94395i 0.885246 0.237201i 0.212577 0.977144i \(-0.431814\pi\)
0.672669 + 0.739943i \(0.265148\pi\)
\(858\) 0 0
\(859\) −31.6416 24.2794i −1.07960 0.828404i −0.0936736 0.995603i \(-0.529861\pi\)
−0.985923 + 0.167199i \(0.946528\pi\)
\(860\) −0.379914 0.296284i −0.0129550 0.0101032i
\(861\) 0 0
\(862\) −7.61572 + 0.469155i −0.259393 + 0.0159795i
\(863\) 31.8190 1.08313 0.541566 0.840658i \(-0.317831\pi\)
0.541566 + 0.840658i \(0.317831\pi\)
\(864\) 0 0
\(865\) −0.612158 −0.0208140
\(866\) −1.51229 + 0.0931626i −0.0513899 + 0.00316580i
\(867\) 0 0
\(868\) −6.48973 + 8.32153i −0.220276 + 0.282451i
\(869\) 3.30505 + 2.53606i 0.112116 + 0.0860298i
\(870\) 0 0
\(871\) −9.50462 + 2.54676i −0.322052 + 0.0862935i
\(872\) 15.5477 + 3.28335i 0.526510 + 0.111188i
\(873\) 0 0
\(874\) 45.8520 + 30.8983i 1.55097 + 1.04515i
\(875\) −0.228154 + 1.73301i −0.00771303 + 0.0585863i
\(876\) 0 0
\(877\) −26.0842 + 3.43405i −0.880802 + 0.115960i −0.557343 0.830283i \(-0.688179\pi\)
−0.323459 + 0.946242i \(0.604846\pi\)
\(878\) −8.48141 + 2.84198i −0.286234 + 0.0959123i
\(879\) 0 0
\(880\) 0.0584110 0.0976002i 0.00196903 0.00329010i
\(881\) 28.0517 0.945086 0.472543 0.881308i \(-0.343336\pi\)
0.472543 + 0.881308i \(0.343336\pi\)
\(882\) 0 0
\(883\) −19.5098 8.08123i −0.656558 0.271955i 0.0294315 0.999567i \(-0.490630\pi\)
−0.685989 + 0.727612i \(0.740630\pi\)
\(884\) 43.6266 11.3235i 1.46732 0.380850i
\(885\) 0 0
\(886\) 1.97645 28.4441i 0.0664001 0.955597i
\(887\) 1.38469 5.16774i 0.0464934 0.173516i −0.938775 0.344531i \(-0.888038\pi\)
0.985268 + 0.171015i \(0.0547047\pi\)
\(888\) 0 0
\(889\) 4.06640 + 15.1760i 0.136383 + 0.508987i
\(890\) −0.328785 + 0.0640592i −0.0110209 + 0.00214727i
\(891\) 0 0
\(892\) −4.33697 1.83644i −0.145212 0.0614885i
\(893\) −6.23271 8.12263i −0.208570 0.271813i
\(894\) 0 0
\(895\) −0.582453 + 0.336279i −0.0194693 + 0.0112406i
\(896\) 18.6080 + 22.4324i 0.621650 + 0.749415i
\(897\) 0 0
\(898\) −2.87501 + 0.177111i −0.0959404 + 0.00591027i
\(899\) 13.8840 + 5.75093i 0.463057 + 0.191804i
\(900\) 0 0
\(901\) −0.266381 0.643101i −0.00887444 0.0214248i
\(902\) −3.14877 1.08266i −0.104843 0.0360487i
\(903\) 0 0
\(904\) −26.5774 + 22.7599i −0.883952 + 0.756983i
\(905\) −1.36207 0.364965i −0.0452767 0.0121318i
\(906\) 0 0
\(907\) −39.9939 5.26530i −1.32798 0.174831i −0.567057 0.823679i \(-0.691918\pi\)
−0.760919 + 0.648847i \(0.775251\pi\)
\(908\) −22.6824 + 22.3292i −0.752743 + 0.741019i
\(909\) 0 0
\(910\) −0.303859 + 1.49688i −0.0100728 + 0.0496210i
\(911\) 46.5326 + 26.8656i 1.54169 + 0.890097i 0.998732 + 0.0503391i \(0.0160302\pi\)
0.542961 + 0.839758i \(0.317303\pi\)
\(912\) 0 0
\(913\) 1.55945 0.900350i 0.0516103 0.0297972i
\(914\) 4.97510 + 14.8473i 0.164562 + 0.491106i
\(915\) 0 0
\(916\) −15.6719 + 26.6591i −0.517813 + 0.880841i
\(917\) 13.6343 + 32.9161i 0.450244 + 1.08699i
\(918\) 0 0
\(919\) −18.7622 + 18.7622i −0.618909 + 0.618909i −0.945252 0.326343i \(-0.894184\pi\)
0.326343 + 0.945252i \(0.394184\pi\)
\(920\) −1.29736 1.16506i −0.0427727 0.0384107i
\(921\) 0 0
\(922\) −26.8340 30.8417i −0.883732 1.01572i
\(923\) −38.2191 + 49.8081i −1.25800 + 1.63945i
\(924\) 0 0
\(925\) −34.8644 + 26.7524i −1.14633 + 0.879613i
\(926\) 7.68026 5.08831i 0.252389 0.167212i
\(927\) 0 0
\(928\) 23.7315 34.0510i 0.779025 1.11778i
\(929\) −38.2126 22.0621i −1.25371 0.723832i −0.281869 0.959453i \(-0.590954\pi\)
−0.971845 + 0.235620i \(0.924288\pi\)
\(930\) 0 0
\(931\) −1.55151 + 0.204260i −0.0508487 + 0.00669435i
\(932\) 9.55680 12.2543i 0.313043 0.401403i
\(933\) 0 0
\(934\) 28.4747 + 9.79062i 0.931719 + 0.320359i
\(935\) 0.0733707 0.0733707i 0.00239948 0.00239948i
\(936\) 0 0
\(937\) −17.0883 17.0883i −0.558251 0.558251i 0.370558 0.928809i \(-0.379166\pi\)
−0.928809 + 0.370558i \(0.879166\pi\)
\(938\) −2.54683 5.21596i −0.0831569 0.170307i
\(939\) 0 0
\(940\) 0.159242 + 0.280884i 0.00519391 + 0.00916143i
\(941\) −1.15593 8.78014i −0.0376822 0.286224i −0.999903 0.0139530i \(-0.995558\pi\)
0.962220 0.272271i \(-0.0877748\pi\)
\(942\) 0 0
\(943\) −25.5223 + 44.2059i −0.831120 + 1.43954i
\(944\) −8.35032 + 19.2971i −0.271780 + 0.628066i
\(945\) 0 0
\(946\) 2.06023 + 0.418216i 0.0669838 + 0.0135974i
\(947\) −27.0782 35.2891i −0.879925 1.14674i −0.988284 0.152628i \(-0.951226\pi\)
0.108359 0.994112i \(-0.465440\pi\)
\(948\) 0 0
\(949\) 45.8823 + 35.2068i 1.48940 + 1.14286i
\(950\) 30.3399 + 2.10818i 0.984357 + 0.0683985i
\(951\) 0 0
\(952\) 11.4780 + 23.9828i 0.372004 + 0.777286i
\(953\) −31.3869 31.3869i −1.01672 1.01672i −0.999858 0.0168649i \(-0.994631\pi\)
−0.0168649 0.999858i \(-0.505369\pi\)
\(954\) 0 0
\(955\) 0.594317 0.246174i 0.0192316 0.00796601i
\(956\) −32.0248 + 24.1766i −1.03576 + 0.781926i
\(957\) 0 0
\(958\) 0.603399 + 0.300513i 0.0194949 + 0.00970912i
\(959\) 26.2620 + 45.4871i 0.848044 + 1.46886i
\(960\) 0 0
\(961\) −13.4024 + 23.2137i −0.432336 + 0.748828i
\(962\) −64.0545 + 42.4372i −2.06520 + 1.36823i
\(963\) 0 0
\(964\) 19.9009 + 8.42682i 0.640966 + 0.271410i
\(965\) 0.159016 1.20785i 0.00511891 0.0388820i
\(966\) 0 0
\(967\) −0.809787 + 3.02217i −0.0260410 + 0.0971863i −0.977723 0.209898i \(-0.932687\pi\)
0.951682 + 0.307084i \(0.0993534\pi\)
\(968\) 2.36191 30.5251i 0.0759148 0.981115i
\(969\) 0 0
\(970\) −0.652650 1.33664i −0.0209553 0.0429170i
\(971\) 38.1764 15.8132i 1.22514 0.507470i 0.326100 0.945335i \(-0.394265\pi\)
0.899040 + 0.437866i \(0.144265\pi\)
\(972\) 0 0
\(973\) 22.0851 53.3182i 0.708016 1.70930i
\(974\) −26.0879 + 29.5132i −0.835911 + 0.945662i
\(975\) 0 0
\(976\) 6.80935 8.59147i 0.217962 0.275006i
\(977\) −15.1894 26.3088i −0.485951 0.841692i 0.513919 0.857839i \(-0.328193\pi\)
−0.999870 + 0.0161471i \(0.994860\pi\)
\(978\) 0 0
\(979\) 1.15957 0.889770i 0.0370601 0.0284372i
\(980\) 0.0493502 0.000387319i 0.00157643 1.23724e-5i
\(981\) 0 0
\(982\) 24.0976 35.7601i 0.768986 1.14115i
\(983\) −35.6589 + 9.55477i −1.13734 + 0.304750i −0.777882 0.628411i \(-0.783706\pi\)
−0.359460 + 0.933161i \(0.617039\pi\)
\(984\) 0 0
\(985\) −0.342118 0.0916701i −0.0109008 0.00292085i
\(986\) 28.5643 24.8526i 0.909672 0.791467i
\(987\) 0 0
\(988\) 52.6648 + 7.35438i 1.67549 + 0.233974i
\(989\) 12.3330 29.7744i 0.392166 0.946772i
\(990\) 0 0
\(991\) 43.6720i 1.38729i −0.720319 0.693643i \(-0.756005\pi\)
0.720319 0.693643i \(-0.243995\pi\)
\(992\) −8.55957 7.80889i −0.271767 0.247933i
\(993\) 0 0
\(994\) −33.1509 16.5103i −1.05148 0.523674i
\(995\) −0.178410 1.35516i −0.00565596 0.0429613i
\(996\) 0 0
\(997\) 2.16770 + 0.285384i 0.0686519 + 0.00903819i 0.164774 0.986331i \(-0.447311\pi\)
−0.0961220 + 0.995370i \(0.530644\pi\)
\(998\) 47.0573 9.16847i 1.48957 0.290223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.23 368
3.2 odd 2 288.2.bf.a.227.24 yes 368
9.4 even 3 288.2.bf.a.131.8 yes 368
9.5 odd 6 inner 864.2.bn.a.611.39 368
32.11 odd 8 inner 864.2.bn.a.683.39 368
96.11 even 8 288.2.bf.a.11.8 368
288.139 odd 24 288.2.bf.a.203.24 yes 368
288.203 even 24 inner 864.2.bn.a.395.23 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.8 368 96.11 even 8
288.2.bf.a.131.8 yes 368 9.4 even 3
288.2.bf.a.203.24 yes 368 288.139 odd 24
288.2.bf.a.227.24 yes 368 3.2 odd 2
864.2.bn.a.35.23 368 1.1 even 1 trivial
864.2.bn.a.395.23 368 288.203 even 24 inner
864.2.bn.a.611.39 368 9.5 odd 6 inner
864.2.bn.a.683.39 368 32.11 odd 8 inner