Properties

Label 864.2.bi.a.383.8
Level $864$
Weight $2$
Character 864.383
Analytic conductor $6.899$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(95,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.95"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(36\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 383.8
Character \(\chi\) \(=\) 864.383
Dual form 864.2.bi.a.767.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38351 - 1.04206i) q^{3} +(-1.14718 - 3.15185i) q^{5} +(3.41716 - 0.602538i) q^{7} +(0.828207 + 2.88341i) q^{9} +(5.46372 + 1.98863i) q^{11} +(2.22836 + 1.86981i) q^{13} +(-1.69729 + 5.55605i) q^{15} +(1.37724 + 0.795152i) q^{17} +(4.19994 - 2.42483i) q^{19} +(-5.35557 - 2.72728i) q^{21} +(-0.571328 + 3.24016i) q^{23} +(-4.78789 + 4.01752i) q^{25} +(1.85887 - 4.85228i) q^{27} +(-6.50285 - 7.74980i) q^{29} +(8.83663 + 1.55814i) q^{31} +(-5.48684 - 8.44484i) q^{33} +(-5.81920 - 10.0792i) q^{35} +(1.74012 - 3.01397i) q^{37} +(-1.13449 - 4.90900i) q^{39} +(-5.53501 + 6.59637i) q^{41} +(-1.13860 + 3.12829i) q^{43} +(8.13797 - 5.91817i) q^{45} +(-0.865755 - 4.90994i) q^{47} +(4.73611 - 1.72380i) q^{49} +(-1.07683 - 2.53528i) q^{51} -4.99058i q^{53} -19.5021i q^{55} +(-8.33749 - 1.02181i) q^{57} +(-2.57752 + 0.938141i) q^{59} +(1.47210 + 8.34868i) q^{61} +(4.56749 + 9.35407i) q^{63} +(3.33704 - 9.16845i) q^{65} +(-6.88635 + 8.20683i) q^{67} +(4.16689 - 3.88744i) q^{69} +(1.30322 - 2.25724i) q^{71} +(0.241869 + 0.418929i) q^{73} +(10.8106 - 0.568995i) q^{75} +(19.8687 + 3.50338i) q^{77} +(-0.268589 - 0.320092i) q^{79} +(-7.62815 + 4.77613i) q^{81} +(-1.52401 + 1.27879i) q^{83} +(0.926253 - 5.25304i) q^{85} +(0.920988 + 17.4983i) q^{87} +(12.3006 - 7.10173i) q^{89} +(8.74130 + 5.04679i) q^{91} +(-10.6019 - 11.3640i) q^{93} +(-12.4608 - 10.4558i) q^{95} +(-8.14933 - 2.96611i) q^{97} +(-1.20896 + 17.4012i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 24 q^{29} + 36 q^{33} + 36 q^{41} - 24 q^{45} + 12 q^{57} + 48 q^{65} + 48 q^{69} + 48 q^{77} + 48 q^{81} + 36 q^{89} - 144 q^{93} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.38351 1.04206i −0.798771 0.601636i
\(4\) 0 0
\(5\) −1.14718 3.15185i −0.513034 1.40955i −0.878060 0.478551i \(-0.841162\pi\)
0.365026 0.930997i \(-0.381060\pi\)
\(6\) 0 0
\(7\) 3.41716 0.602538i 1.29157 0.227738i 0.514682 0.857381i \(-0.327910\pi\)
0.776884 + 0.629643i \(0.216799\pi\)
\(8\) 0 0
\(9\) 0.828207 + 2.88341i 0.276069 + 0.961138i
\(10\) 0 0
\(11\) 5.46372 + 1.98863i 1.64737 + 0.599595i 0.988305 0.152488i \(-0.0487284\pi\)
0.659069 + 0.752083i \(0.270951\pi\)
\(12\) 0 0
\(13\) 2.22836 + 1.86981i 0.618035 + 0.518593i 0.897185 0.441654i \(-0.145608\pi\)
−0.279150 + 0.960247i \(0.590053\pi\)
\(14\) 0 0
\(15\) −1.69729 + 5.55605i −0.438238 + 1.43457i
\(16\) 0 0
\(17\) 1.37724 + 0.795152i 0.334031 + 0.192853i 0.657629 0.753342i \(-0.271559\pi\)
−0.323598 + 0.946195i \(0.604893\pi\)
\(18\) 0 0
\(19\) 4.19994 2.42483i 0.963531 0.556295i 0.0662733 0.997802i \(-0.478889\pi\)
0.897258 + 0.441506i \(0.145556\pi\)
\(20\) 0 0
\(21\) −5.35557 2.72728i −1.16868 0.595142i
\(22\) 0 0
\(23\) −0.571328 + 3.24016i −0.119130 + 0.675620i 0.865492 + 0.500923i \(0.167006\pi\)
−0.984622 + 0.174698i \(0.944105\pi\)
\(24\) 0 0
\(25\) −4.78789 + 4.01752i −0.957579 + 0.803504i
\(26\) 0 0
\(27\) 1.85887 4.85228i 0.357739 0.933822i
\(28\) 0 0
\(29\) −6.50285 7.74980i −1.20755 1.43910i −0.866588 0.499025i \(-0.833692\pi\)
−0.340962 0.940077i \(-0.610753\pi\)
\(30\) 0 0
\(31\) 8.83663 + 1.55814i 1.58711 + 0.279850i 0.896387 0.443273i \(-0.146183\pi\)
0.690720 + 0.723123i \(0.257294\pi\)
\(32\) 0 0
\(33\) −5.48684 8.44484i −0.955136 1.47006i
\(34\) 0 0
\(35\) −5.81920 10.0792i −0.983625 1.70369i
\(36\) 0 0
\(37\) 1.74012 3.01397i 0.286073 0.495494i −0.686796 0.726851i \(-0.740983\pi\)
0.972869 + 0.231357i \(0.0743166\pi\)
\(38\) 0 0
\(39\) −1.13449 4.90900i −0.181664 0.786069i
\(40\) 0 0
\(41\) −5.53501 + 6.59637i −0.864423 + 1.03018i 0.134804 + 0.990872i \(0.456960\pi\)
−0.999227 + 0.0393074i \(0.987485\pi\)
\(42\) 0 0
\(43\) −1.13860 + 3.12829i −0.173635 + 0.477059i −0.995732 0.0922884i \(-0.970582\pi\)
0.822097 + 0.569347i \(0.192804\pi\)
\(44\) 0 0
\(45\) 8.13797 5.91817i 1.21314 0.882229i
\(46\) 0 0
\(47\) −0.865755 4.90994i −0.126283 0.716189i −0.980537 0.196333i \(-0.937097\pi\)
0.854254 0.519856i \(-0.174014\pi\)
\(48\) 0 0
\(49\) 4.73611 1.72380i 0.676587 0.246257i
\(50\) 0 0
\(51\) −1.07683 2.53528i −0.150787 0.355010i
\(52\) 0 0
\(53\) 4.99058i 0.685509i −0.939425 0.342754i \(-0.888640\pi\)
0.939425 0.342754i \(-0.111360\pi\)
\(54\) 0 0
\(55\) 19.5021i 2.62967i
\(56\) 0 0
\(57\) −8.33749 1.02181i −1.10433 0.135343i
\(58\) 0 0
\(59\) −2.57752 + 0.938141i −0.335565 + 0.122135i −0.504306 0.863525i \(-0.668252\pi\)
0.168742 + 0.985660i \(0.446030\pi\)
\(60\) 0 0
\(61\) 1.47210 + 8.34868i 0.188483 + 1.06894i 0.921398 + 0.388619i \(0.127048\pi\)
−0.732916 + 0.680320i \(0.761841\pi\)
\(62\) 0 0
\(63\) 4.56749 + 9.35407i 0.575449 + 1.17850i
\(64\) 0 0
\(65\) 3.33704 9.16845i 0.413909 1.13721i
\(66\) 0 0
\(67\) −6.88635 + 8.20683i −0.841301 + 1.00262i 0.158582 + 0.987346i \(0.449308\pi\)
−0.999883 + 0.0152779i \(0.995137\pi\)
\(68\) 0 0
\(69\) 4.16689 3.88744i 0.501635 0.467993i
\(70\) 0 0
\(71\) 1.30322 2.25724i 0.154664 0.267885i −0.778273 0.627926i \(-0.783904\pi\)
0.932936 + 0.360041i \(0.117237\pi\)
\(72\) 0 0
\(73\) 0.241869 + 0.418929i 0.0283086 + 0.0490319i 0.879833 0.475284i \(-0.157655\pi\)
−0.851524 + 0.524316i \(0.824321\pi\)
\(74\) 0 0
\(75\) 10.8106 0.568995i 1.24830 0.0657018i
\(76\) 0 0
\(77\) 19.8687 + 3.50338i 2.26424 + 0.399247i
\(78\) 0 0
\(79\) −0.268589 0.320092i −0.0302186 0.0360131i 0.750723 0.660617i \(-0.229705\pi\)
−0.780942 + 0.624603i \(0.785261\pi\)
\(80\) 0 0
\(81\) −7.62815 + 4.77613i −0.847572 + 0.530681i
\(82\) 0 0
\(83\) −1.52401 + 1.27879i −0.167281 + 0.140366i −0.722585 0.691282i \(-0.757046\pi\)
0.555304 + 0.831647i \(0.312602\pi\)
\(84\) 0 0
\(85\) 0.926253 5.25304i 0.100466 0.569773i
\(86\) 0 0
\(87\) 0.920988 + 17.4983i 0.0987403 + 1.87602i
\(88\) 0 0
\(89\) 12.3006 7.10173i 1.30386 0.752782i 0.322793 0.946469i \(-0.395378\pi\)
0.981063 + 0.193687i \(0.0620448\pi\)
\(90\) 0 0
\(91\) 8.74130 + 5.04679i 0.916337 + 0.529047i
\(92\) 0 0
\(93\) −10.6019 11.3640i −1.09937 1.17840i
\(94\) 0 0
\(95\) −12.4608 10.4558i −1.27845 1.07275i
\(96\) 0 0
\(97\) −8.14933 2.96611i −0.827439 0.301163i −0.106632 0.994299i \(-0.534007\pi\)
−0.720807 + 0.693135i \(0.756229\pi\)
\(98\) 0 0
\(99\) −1.20896 + 17.4012i −0.121505 + 1.74888i
\(100\) 0 0
\(101\) 8.08222 1.42511i 0.804211 0.141804i 0.243592 0.969878i \(-0.421674\pi\)
0.560619 + 0.828074i \(0.310563\pi\)
\(102\) 0 0
\(103\) −1.37956 3.79032i −0.135932 0.373471i 0.852985 0.521935i \(-0.174790\pi\)
−0.988918 + 0.148463i \(0.952567\pi\)
\(104\) 0 0
\(105\) −2.45219 + 20.0086i −0.239309 + 1.95264i
\(106\) 0 0
\(107\) −13.3604 −1.29160 −0.645799 0.763507i \(-0.723476\pi\)
−0.645799 + 0.763507i \(0.723476\pi\)
\(108\) 0 0
\(109\) −16.2740 −1.55876 −0.779381 0.626550i \(-0.784466\pi\)
−0.779381 + 0.626550i \(0.784466\pi\)
\(110\) 0 0
\(111\) −5.54822 + 2.35655i −0.526614 + 0.223674i
\(112\) 0 0
\(113\) 2.68603 + 7.37980i 0.252680 + 0.694233i 0.999571 + 0.0292864i \(0.00932350\pi\)
−0.746891 + 0.664947i \(0.768454\pi\)
\(114\) 0 0
\(115\) 10.8679 1.91630i 1.01344 0.178696i
\(116\) 0 0
\(117\) −3.54591 + 7.97387i −0.327819 + 0.737184i
\(118\) 0 0
\(119\) 5.18538 + 1.88732i 0.475343 + 0.173011i
\(120\) 0 0
\(121\) 17.4711 + 14.6600i 1.58828 + 1.33273i
\(122\) 0 0
\(123\) 14.5316 3.35832i 1.31027 0.302809i
\(124\) 0 0
\(125\) 3.63139 + 2.09658i 0.324801 + 0.187524i
\(126\) 0 0
\(127\) 1.78382 1.02989i 0.158289 0.0913880i −0.418763 0.908095i \(-0.637536\pi\)
0.577052 + 0.816707i \(0.304203\pi\)
\(128\) 0 0
\(129\) 4.83514 3.14152i 0.425711 0.276596i
\(130\) 0 0
\(131\) −0.674118 + 3.82311i −0.0588979 + 0.334027i −0.999992 0.00411945i \(-0.998689\pi\)
0.941094 + 0.338146i \(0.109800\pi\)
\(132\) 0 0
\(133\) 12.8908 10.8167i 1.11778 0.937925i
\(134\) 0 0
\(135\) −17.4261 0.292431i −1.49980 0.0251685i
\(136\) 0 0
\(137\) −11.5340 13.7457i −0.985418 1.17438i −0.984679 0.174376i \(-0.944209\pi\)
−0.000738616 1.00000i \(-0.500235\pi\)
\(138\) 0 0
\(139\) −6.43005 1.13379i −0.545389 0.0961669i −0.105836 0.994384i \(-0.533752\pi\)
−0.439553 + 0.898217i \(0.644863\pi\)
\(140\) 0 0
\(141\) −3.91869 + 7.69513i −0.330013 + 0.648047i
\(142\) 0 0
\(143\) 8.45675 + 14.6475i 0.707189 + 1.22489i
\(144\) 0 0
\(145\) −16.9662 + 29.3864i −1.40897 + 2.44041i
\(146\) 0 0
\(147\) −8.34877 2.55043i −0.688595 0.210356i
\(148\) 0 0
\(149\) 5.41231 6.45013i 0.443393 0.528416i −0.497343 0.867554i \(-0.665691\pi\)
0.940737 + 0.339138i \(0.110135\pi\)
\(150\) 0 0
\(151\) 4.44170 12.2035i 0.361460 0.993104i −0.617053 0.786921i \(-0.711674\pi\)
0.978514 0.206183i \(-0.0661041\pi\)
\(152\) 0 0
\(153\) −1.15211 + 4.62972i −0.0931425 + 0.374290i
\(154\) 0 0
\(155\) −5.22619 29.6392i −0.419777 2.38068i
\(156\) 0 0
\(157\) −6.95618 + 2.53184i −0.555163 + 0.202063i −0.604339 0.796727i \(-0.706563\pi\)
0.0491757 + 0.998790i \(0.484341\pi\)
\(158\) 0 0
\(159\) −5.20050 + 6.90452i −0.412426 + 0.547564i
\(160\) 0 0
\(161\) 11.4164i 0.899739i
\(162\) 0 0
\(163\) 0.380973i 0.0298401i 0.999889 + 0.0149200i \(0.00474938\pi\)
−0.999889 + 0.0149200i \(0.995251\pi\)
\(164\) 0 0
\(165\) −20.3225 + 26.9814i −1.58210 + 2.10050i
\(166\) 0 0
\(167\) 8.27607 3.01224i 0.640421 0.233094i −0.00133952 0.999999i \(-0.500426\pi\)
0.641761 + 0.766905i \(0.278204\pi\)
\(168\) 0 0
\(169\) −0.788053 4.46927i −0.0606195 0.343790i
\(170\) 0 0
\(171\) 10.4702 + 10.1019i 0.800677 + 0.772511i
\(172\) 0 0
\(173\) −2.82729 + 7.76792i −0.214955 + 0.590584i −0.999568 0.0294021i \(-0.990640\pi\)
0.784613 + 0.619986i \(0.212862\pi\)
\(174\) 0 0
\(175\) −13.9403 + 16.6134i −1.05379 + 1.25586i
\(176\) 0 0
\(177\) 4.54363 + 1.38801i 0.341520 + 0.104329i
\(178\) 0 0
\(179\) −5.96207 + 10.3266i −0.445626 + 0.771847i −0.998096 0.0616861i \(-0.980352\pi\)
0.552470 + 0.833533i \(0.313686\pi\)
\(180\) 0 0
\(181\) −3.09810 5.36606i −0.230280 0.398856i 0.727611 0.685990i \(-0.240631\pi\)
−0.957890 + 0.287134i \(0.907297\pi\)
\(182\) 0 0
\(183\) 6.66319 13.0845i 0.492557 0.967235i
\(184\) 0 0
\(185\) −11.4958 2.02702i −0.845188 0.149029i
\(186\) 0 0
\(187\) 5.94361 + 7.08332i 0.434640 + 0.517984i
\(188\) 0 0
\(189\) 3.42837 17.7011i 0.249377 1.28756i
\(190\) 0 0
\(191\) 2.20191 1.84762i 0.159325 0.133689i −0.559640 0.828736i \(-0.689061\pi\)
0.718965 + 0.695046i \(0.244616\pi\)
\(192\) 0 0
\(193\) −0.920220 + 5.21883i −0.0662389 + 0.375659i 0.933610 + 0.358290i \(0.116640\pi\)
−0.999849 + 0.0173692i \(0.994471\pi\)
\(194\) 0 0
\(195\) −14.1709 + 9.20724i −1.01480 + 0.659344i
\(196\) 0 0
\(197\) −6.17620 + 3.56583i −0.440036 + 0.254055i −0.703613 0.710583i \(-0.748431\pi\)
0.263577 + 0.964638i \(0.415098\pi\)
\(198\) 0 0
\(199\) −6.84781 3.95359i −0.485429 0.280262i 0.237247 0.971449i \(-0.423755\pi\)
−0.722676 + 0.691187i \(0.757088\pi\)
\(200\) 0 0
\(201\) 18.0794 4.17823i 1.27522 0.294710i
\(202\) 0 0
\(203\) −26.8909 22.5641i −1.88737 1.58369i
\(204\) 0 0
\(205\) 27.1404 + 9.87829i 1.89557 + 0.689930i
\(206\) 0 0
\(207\) −9.81590 + 1.03615i −0.682252 + 0.0720174i
\(208\) 0 0
\(209\) 27.7694 4.89649i 1.92085 0.338697i
\(210\) 0 0
\(211\) 9.08573 + 24.9628i 0.625487 + 1.71851i 0.693140 + 0.720803i \(0.256227\pi\)
−0.0676530 + 0.997709i \(0.521551\pi\)
\(212\) 0 0
\(213\) −4.15520 + 1.76488i −0.284710 + 0.120928i
\(214\) 0 0
\(215\) 11.1661 0.761519
\(216\) 0 0
\(217\) 31.1351 2.11359
\(218\) 0 0
\(219\) 0.101922 0.831636i 0.00688728 0.0561967i
\(220\) 0 0
\(221\) 1.58221 + 4.34707i 0.106431 + 0.292416i
\(222\) 0 0
\(223\) 3.47907 0.613455i 0.232976 0.0410800i −0.0559411 0.998434i \(-0.517816\pi\)
0.288917 + 0.957354i \(0.406705\pi\)
\(224\) 0 0
\(225\) −15.5495 10.4781i −1.03664 0.698543i
\(226\) 0 0
\(227\) −1.41313 0.514339i −0.0937930 0.0341378i 0.294697 0.955591i \(-0.404781\pi\)
−0.388490 + 0.921453i \(0.627003\pi\)
\(228\) 0 0
\(229\) 22.9309 + 19.2413i 1.51531 + 1.27150i 0.852517 + 0.522699i \(0.175075\pi\)
0.662796 + 0.748800i \(0.269369\pi\)
\(230\) 0 0
\(231\) −23.8378 25.5514i −1.56841 1.68116i
\(232\) 0 0
\(233\) −4.13296 2.38617i −0.270759 0.156323i 0.358473 0.933540i \(-0.383297\pi\)
−0.629233 + 0.777217i \(0.716631\pi\)
\(234\) 0 0
\(235\) −14.4822 + 8.36131i −0.944715 + 0.545431i
\(236\) 0 0
\(237\) 0.0380398 + 0.722737i 0.00247095 + 0.0469468i
\(238\) 0 0
\(239\) −0.275320 + 1.56142i −0.0178090 + 0.101000i −0.992417 0.122920i \(-0.960774\pi\)
0.974608 + 0.223920i \(0.0718853\pi\)
\(240\) 0 0
\(241\) 15.2130 12.7652i 0.979958 0.822282i −0.00412544 0.999991i \(-0.501313\pi\)
0.984083 + 0.177709i \(0.0568687\pi\)
\(242\) 0 0
\(243\) 15.5307 + 1.34119i 0.996292 + 0.0860372i
\(244\) 0 0
\(245\) −10.8663 12.9500i −0.694224 0.827343i
\(246\) 0 0
\(247\) 13.8929 + 2.44970i 0.883987 + 0.155871i
\(248\) 0 0
\(249\) 3.44106 0.181113i 0.218068 0.0114776i
\(250\) 0 0
\(251\) 10.6471 + 18.4413i 0.672038 + 1.16400i 0.977325 + 0.211743i \(0.0679140\pi\)
−0.305288 + 0.952260i \(0.598753\pi\)
\(252\) 0 0
\(253\) −9.56506 + 16.5672i −0.601350 + 1.04157i
\(254\) 0 0
\(255\) −6.75549 + 6.30243i −0.423045 + 0.394673i
\(256\) 0 0
\(257\) −14.0702 + 16.7682i −0.877674 + 1.04597i 0.120905 + 0.992664i \(0.461420\pi\)
−0.998578 + 0.0533065i \(0.983024\pi\)
\(258\) 0 0
\(259\) 4.13023 11.3477i 0.256640 0.705113i
\(260\) 0 0
\(261\) 16.9602 25.1689i 1.04981 1.55791i
\(262\) 0 0
\(263\) 0.883706 + 5.01175i 0.0544917 + 0.309038i 0.999856 0.0169786i \(-0.00540472\pi\)
−0.945364 + 0.326016i \(0.894294\pi\)
\(264\) 0 0
\(265\) −15.7295 + 5.72508i −0.966258 + 0.351689i
\(266\) 0 0
\(267\) −24.4184 2.99264i −1.49438 0.183147i
\(268\) 0 0
\(269\) 10.1810i 0.620745i −0.950615 0.310372i \(-0.899546\pi\)
0.950615 0.310372i \(-0.100454\pi\)
\(270\) 0 0
\(271\) 4.13681i 0.251294i 0.992075 + 0.125647i \(0.0401006\pi\)
−0.992075 + 0.125647i \(0.959899\pi\)
\(272\) 0 0
\(273\) −6.83461 16.0913i −0.413649 0.973888i
\(274\) 0 0
\(275\) −34.1491 + 12.4293i −2.05927 + 0.749512i
\(276\) 0 0
\(277\) −2.12569 12.0554i −0.127721 0.724339i −0.979655 0.200690i \(-0.935682\pi\)
0.851934 0.523649i \(-0.175430\pi\)
\(278\) 0 0
\(279\) 2.82581 + 26.7701i 0.169177 + 1.60269i
\(280\) 0 0
\(281\) −5.79234 + 15.9143i −0.345542 + 0.949369i 0.638214 + 0.769859i \(0.279673\pi\)
−0.983756 + 0.179510i \(0.942549\pi\)
\(282\) 0 0
\(283\) 16.0098 19.0798i 0.951685 1.13417i −0.0391691 0.999233i \(-0.512471\pi\)
0.990854 0.134941i \(-0.0430845\pi\)
\(284\) 0 0
\(285\) 6.34398 + 27.4507i 0.375785 + 1.62604i
\(286\) 0 0
\(287\) −14.9395 + 25.8759i −0.881849 + 1.52741i
\(288\) 0 0
\(289\) −7.23547 12.5322i −0.425616 0.737188i
\(290\) 0 0
\(291\) 8.18381 + 12.5958i 0.479744 + 0.738377i
\(292\) 0 0
\(293\) −25.4107 4.48059i −1.48451 0.261759i −0.628130 0.778108i \(-0.716179\pi\)
−0.856378 + 0.516349i \(0.827291\pi\)
\(294\) 0 0
\(295\) 5.91375 + 7.04773i 0.344312 + 0.410335i
\(296\) 0 0
\(297\) 19.8057 22.8149i 1.14924 1.32385i
\(298\) 0 0
\(299\) −7.33162 + 6.15196i −0.423999 + 0.355777i
\(300\) 0 0
\(301\) −2.00588 + 11.3759i −0.115617 + 0.655697i
\(302\) 0 0
\(303\) −12.6669 6.45053i −0.727695 0.370573i
\(304\) 0 0
\(305\) 24.6250 14.2172i 1.41002 0.814077i
\(306\) 0 0
\(307\) −11.8296 6.82981i −0.675149 0.389798i 0.122876 0.992422i \(-0.460788\pi\)
−0.798025 + 0.602624i \(0.794122\pi\)
\(308\) 0 0
\(309\) −2.04111 + 6.68154i −0.116115 + 0.380100i
\(310\) 0 0
\(311\) 11.4409 + 9.60004i 0.648753 + 0.544368i 0.906692 0.421793i \(-0.138599\pi\)
−0.257939 + 0.966161i \(0.583044\pi\)
\(312\) 0 0
\(313\) −21.3115 7.75676i −1.20460 0.438438i −0.339772 0.940508i \(-0.610350\pi\)
−0.864827 + 0.502070i \(0.832572\pi\)
\(314\) 0 0
\(315\) 24.2429 25.1268i 1.36593 1.41573i
\(316\) 0 0
\(317\) −18.0405 + 3.18103i −1.01326 + 0.178665i −0.655536 0.755164i \(-0.727557\pi\)
−0.357721 + 0.933829i \(0.616446\pi\)
\(318\) 0 0
\(319\) −20.1183 55.2745i −1.12641 3.09478i
\(320\) 0 0
\(321\) 18.4843 + 13.9224i 1.03169 + 0.777072i
\(322\) 0 0
\(323\) 7.71245 0.429132
\(324\) 0 0
\(325\) −18.1812 −1.00851
\(326\) 0 0
\(327\) 22.5152 + 16.9585i 1.24509 + 0.937807i
\(328\) 0 0
\(329\) −5.91686 16.2564i −0.326207 0.896246i
\(330\) 0 0
\(331\) 13.4955 2.37962i 0.741778 0.130795i 0.210026 0.977696i \(-0.432645\pi\)
0.531752 + 0.846900i \(0.321534\pi\)
\(332\) 0 0
\(333\) 10.1317 + 2.52128i 0.555214 + 0.138165i
\(334\) 0 0
\(335\) 33.7665 + 12.2900i 1.84486 + 0.671475i
\(336\) 0 0
\(337\) 0.683923 + 0.573880i 0.0372557 + 0.0312612i 0.661225 0.750187i \(-0.270037\pi\)
−0.623970 + 0.781449i \(0.714481\pi\)
\(338\) 0 0
\(339\) 3.97407 13.0090i 0.215842 0.706554i
\(340\) 0 0
\(341\) 45.1823 + 26.0860i 2.44676 + 1.41264i
\(342\) 0 0
\(343\) −5.88963 + 3.40038i −0.318010 + 0.183603i
\(344\) 0 0
\(345\) −17.0328 8.67382i −0.917014 0.466983i
\(346\) 0 0
\(347\) 5.98689 33.9534i 0.321393 1.82271i −0.212502 0.977161i \(-0.568161\pi\)
0.533895 0.845551i \(-0.320728\pi\)
\(348\) 0 0
\(349\) −17.1946 + 14.4280i −0.920407 + 0.772313i −0.974070 0.226246i \(-0.927355\pi\)
0.0536633 + 0.998559i \(0.482910\pi\)
\(350\) 0 0
\(351\) 13.2151 7.33688i 0.705369 0.391614i
\(352\) 0 0
\(353\) 8.27872 + 9.86619i 0.440632 + 0.525124i 0.939958 0.341290i \(-0.110864\pi\)
−0.499327 + 0.866414i \(0.666419\pi\)
\(354\) 0 0
\(355\) −8.60950 1.51809i −0.456945 0.0805717i
\(356\) 0 0
\(357\) −5.20732 8.01463i −0.275601 0.424179i
\(358\) 0 0
\(359\) 4.46272 + 7.72966i 0.235533 + 0.407956i 0.959428 0.281955i \(-0.0909829\pi\)
−0.723894 + 0.689911i \(0.757650\pi\)
\(360\) 0 0
\(361\) 2.25964 3.91382i 0.118929 0.205990i
\(362\) 0 0
\(363\) −8.89482 38.4883i −0.466857 2.02011i
\(364\) 0 0
\(365\) 1.04293 1.24292i 0.0545896 0.0650574i
\(366\) 0 0
\(367\) −3.48335 + 9.57042i −0.181829 + 0.499572i −0.996801 0.0799296i \(-0.974530\pi\)
0.814971 + 0.579501i \(0.196753\pi\)
\(368\) 0 0
\(369\) −23.6042 10.4966i −1.22879 0.546429i
\(370\) 0 0
\(371\) −3.00701 17.0536i −0.156116 0.885380i
\(372\) 0 0
\(373\) 16.0078 5.82637i 0.828854 0.301678i 0.107466 0.994209i \(-0.465726\pi\)
0.721388 + 0.692531i \(0.243504\pi\)
\(374\) 0 0
\(375\) −2.83929 6.68478i −0.146620 0.345200i
\(376\) 0 0
\(377\) 29.4285i 1.51564i
\(378\) 0 0
\(379\) 32.3208i 1.66021i −0.557607 0.830105i \(-0.688281\pi\)
0.557607 0.830105i \(-0.311719\pi\)
\(380\) 0 0
\(381\) −3.54115 0.433991i −0.181419 0.0222340i
\(382\) 0 0
\(383\) −7.49777 + 2.72897i −0.383118 + 0.139444i −0.526397 0.850239i \(-0.676458\pi\)
0.143279 + 0.989682i \(0.454235\pi\)
\(384\) 0 0
\(385\) −11.7508 66.6420i −0.598875 3.39639i
\(386\) 0 0
\(387\) −9.96314 0.692194i −0.506455 0.0351862i
\(388\) 0 0
\(389\) −7.98283 + 21.9326i −0.404746 + 1.11203i 0.555169 + 0.831737i \(0.312653\pi\)
−0.959915 + 0.280292i \(0.909569\pi\)
\(390\) 0 0
\(391\) −3.36328 + 4.00820i −0.170088 + 0.202703i
\(392\) 0 0
\(393\) 4.91657 4.58684i 0.248008 0.231376i
\(394\) 0 0
\(395\) −0.700760 + 1.21375i −0.0352591 + 0.0610705i
\(396\) 0 0
\(397\) −0.972849 1.68502i −0.0488259 0.0845689i 0.840580 0.541688i \(-0.182215\pi\)
−0.889405 + 0.457119i \(0.848881\pi\)
\(398\) 0 0
\(399\) −29.1063 + 1.53195i −1.45714 + 0.0766933i
\(400\) 0 0
\(401\) −15.0987 2.66231i −0.753993 0.132949i −0.216576 0.976266i \(-0.569489\pi\)
−0.537417 + 0.843316i \(0.680600\pi\)
\(402\) 0 0
\(403\) 16.7778 + 19.9949i 0.835759 + 0.996019i
\(404\) 0 0
\(405\) 23.8045 + 18.5637i 1.18285 + 0.922436i
\(406\) 0 0
\(407\) 15.5012 13.0070i 0.768365 0.644735i
\(408\) 0 0
\(409\) −3.10459 + 17.6070i −0.153512 + 0.870612i 0.806621 + 0.591069i \(0.201294\pi\)
−0.960133 + 0.279543i \(0.909817\pi\)
\(410\) 0 0
\(411\) 1.63354 + 31.0365i 0.0805768 + 1.53092i
\(412\) 0 0
\(413\) −8.24254 + 4.75883i −0.405589 + 0.234167i
\(414\) 0 0
\(415\) 5.77886 + 3.33643i 0.283673 + 0.163779i
\(416\) 0 0
\(417\) 7.71456 + 8.26913i 0.377784 + 0.404941i
\(418\) 0 0
\(419\) 21.0982 + 17.7035i 1.03071 + 0.864871i 0.990936 0.134337i \(-0.0428905\pi\)
0.0397778 + 0.999209i \(0.487335\pi\)
\(420\) 0 0
\(421\) −20.4069 7.42750i −0.994570 0.361994i −0.207082 0.978324i \(-0.566397\pi\)
−0.787488 + 0.616330i \(0.788619\pi\)
\(422\) 0 0
\(423\) 13.4404 6.56278i 0.653493 0.319093i
\(424\) 0 0
\(425\) −9.78864 + 1.72600i −0.474819 + 0.0837234i
\(426\) 0 0
\(427\) 10.0608 + 27.6418i 0.486876 + 1.33768i
\(428\) 0 0
\(429\) 3.56364 29.0775i 0.172054 1.40387i
\(430\) 0 0
\(431\) −0.653581 −0.0314819 −0.0157409 0.999876i \(-0.505011\pi\)
−0.0157409 + 0.999876i \(0.505011\pi\)
\(432\) 0 0
\(433\) 12.1518 0.583978 0.291989 0.956422i \(-0.405683\pi\)
0.291989 + 0.956422i \(0.405683\pi\)
\(434\) 0 0
\(435\) 54.0955 22.9765i 2.59368 1.10164i
\(436\) 0 0
\(437\) 5.45731 + 14.9938i 0.261059 + 0.717253i
\(438\) 0 0
\(439\) 19.0842 3.36507i 0.910841 0.160606i 0.301456 0.953480i \(-0.402527\pi\)
0.609385 + 0.792874i \(0.291416\pi\)
\(440\) 0 0
\(441\) 8.89291 + 12.2285i 0.423472 + 0.582309i
\(442\) 0 0
\(443\) 24.9273 + 9.07278i 1.18433 + 0.431061i 0.857729 0.514102i \(-0.171875\pi\)
0.326600 + 0.945163i \(0.394097\pi\)
\(444\) 0 0
\(445\) −36.4945 30.6225i −1.73001 1.45165i
\(446\) 0 0
\(447\) −14.2094 + 3.28387i −0.672083 + 0.155322i
\(448\) 0 0
\(449\) −0.126259 0.0728959i −0.00595855 0.00344017i 0.497018 0.867740i \(-0.334428\pi\)
−0.502976 + 0.864300i \(0.667762\pi\)
\(450\) 0 0
\(451\) −43.3595 + 25.0336i −2.04172 + 1.17879i
\(452\) 0 0
\(453\) −18.8619 + 12.2551i −0.886211 + 0.575795i
\(454\) 0 0
\(455\) 5.87888 33.3408i 0.275606 1.56304i
\(456\) 0 0
\(457\) 13.4428 11.2799i 0.628828 0.527649i −0.271737 0.962372i \(-0.587598\pi\)
0.900565 + 0.434722i \(0.143153\pi\)
\(458\) 0 0
\(459\) 6.41841 5.20469i 0.299586 0.242934i
\(460\) 0 0
\(461\) −17.4050 20.7424i −0.810629 0.966071i 0.189245 0.981930i \(-0.439396\pi\)
−0.999874 + 0.0158593i \(0.994952\pi\)
\(462\) 0 0
\(463\) −15.7643 2.77967i −0.732630 0.129182i −0.205126 0.978735i \(-0.565761\pi\)
−0.527503 + 0.849553i \(0.676872\pi\)
\(464\) 0 0
\(465\) −23.6554 + 46.4521i −1.09699 + 2.15417i
\(466\) 0 0
\(467\) 8.83583 + 15.3041i 0.408873 + 0.708189i 0.994764 0.102201i \(-0.0325885\pi\)
−0.585891 + 0.810390i \(0.699255\pi\)
\(468\) 0 0
\(469\) −18.5868 + 32.1934i −0.858261 + 1.48655i
\(470\) 0 0
\(471\) 12.2623 + 3.74595i 0.565017 + 0.172604i
\(472\) 0 0
\(473\) −12.4420 + 14.8278i −0.572085 + 0.681784i
\(474\) 0 0
\(475\) −10.3670 + 28.4832i −0.475672 + 1.30690i
\(476\) 0 0
\(477\) 14.3899 4.13323i 0.658868 0.189248i
\(478\) 0 0
\(479\) 1.27385 + 7.22438i 0.0582038 + 0.330090i 0.999981 0.00614707i \(-0.00195669\pi\)
−0.941777 + 0.336237i \(0.890846\pi\)
\(480\) 0 0
\(481\) 9.51316 3.46251i 0.433763 0.157877i
\(482\) 0 0
\(483\) 11.8966 15.7947i 0.541315 0.718685i
\(484\) 0 0
\(485\) 29.0881i 1.32082i
\(486\) 0 0
\(487\) 36.6472i 1.66064i −0.557284 0.830322i \(-0.688157\pi\)
0.557284 0.830322i \(-0.311843\pi\)
\(488\) 0 0
\(489\) 0.396998 0.527080i 0.0179529 0.0238354i
\(490\) 0 0
\(491\) 19.5005 7.09761i 0.880046 0.320311i 0.137818 0.990458i \(-0.455991\pi\)
0.742229 + 0.670147i \(0.233769\pi\)
\(492\) 0 0
\(493\) −2.79375 15.8441i −0.125824 0.713584i
\(494\) 0 0
\(495\) 56.2327 16.1518i 2.52747 0.725969i
\(496\) 0 0
\(497\) 3.09324 8.49860i 0.138751 0.381214i
\(498\) 0 0
\(499\) −27.6630 + 32.9675i −1.23837 + 1.47583i −0.413499 + 0.910505i \(0.635693\pi\)
−0.824869 + 0.565324i \(0.808751\pi\)
\(500\) 0 0
\(501\) −14.5890 4.45672i −0.651788 0.199111i
\(502\) 0 0
\(503\) 10.9000 18.8794i 0.486008 0.841791i −0.513862 0.857873i \(-0.671786\pi\)
0.999871 + 0.0160816i \(0.00511916\pi\)
\(504\) 0 0
\(505\) −13.7635 23.8391i −0.612467 1.06082i
\(506\) 0 0
\(507\) −3.56699 + 7.00449i −0.158415 + 0.311080i
\(508\) 0 0
\(509\) −14.2651 2.51531i −0.632288 0.111489i −0.151686 0.988429i \(-0.548470\pi\)
−0.480601 + 0.876939i \(0.659581\pi\)
\(510\) 0 0
\(511\) 1.07893 + 1.28581i 0.0477289 + 0.0568811i
\(512\) 0 0
\(513\) −3.95885 24.8867i −0.174788 1.09877i
\(514\) 0 0
\(515\) −10.3639 + 8.69635i −0.456688 + 0.383207i
\(516\) 0 0
\(517\) 5.03382 28.5482i 0.221387 1.25555i
\(518\) 0 0
\(519\) 12.0063 7.80079i 0.527016 0.342417i
\(520\) 0 0
\(521\) 28.7081 16.5746i 1.25773 0.726148i 0.285093 0.958500i \(-0.407975\pi\)
0.972632 + 0.232352i \(0.0746421\pi\)
\(522\) 0 0
\(523\) 10.5049 + 6.06501i 0.459347 + 0.265204i 0.711770 0.702413i \(-0.247894\pi\)
−0.252422 + 0.967617i \(0.581227\pi\)
\(524\) 0 0
\(525\) 36.5988 8.45816i 1.59730 0.369144i
\(526\) 0 0
\(527\) 10.9312 + 9.17241i 0.476173 + 0.399556i
\(528\) 0 0
\(529\) 11.4407 + 4.16408i 0.497422 + 0.181047i
\(530\) 0 0
\(531\) −4.83977 6.65508i −0.210028 0.288806i
\(532\) 0 0
\(533\) −24.6680 + 4.34963i −1.06849 + 0.188403i
\(534\) 0 0
\(535\) 15.3268 + 42.1099i 0.662633 + 1.82057i
\(536\) 0 0
\(537\) 19.0096 8.07412i 0.820324 0.348424i
\(538\) 0 0
\(539\) 29.3048 1.26225
\(540\) 0 0
\(541\) 11.1698 0.480227 0.240113 0.970745i \(-0.422815\pi\)
0.240113 + 0.970745i \(0.422815\pi\)
\(542\) 0 0
\(543\) −1.30553 + 10.6524i −0.0560254 + 0.457139i
\(544\) 0 0
\(545\) 18.6691 + 51.2930i 0.799698 + 2.19715i
\(546\) 0 0
\(547\) −16.3793 + 2.88811i −0.700327 + 0.123487i −0.512464 0.858709i \(-0.671267\pi\)
−0.187863 + 0.982195i \(0.560156\pi\)
\(548\) 0 0
\(549\) −22.8535 + 11.1591i −0.975363 + 0.476259i
\(550\) 0 0
\(551\) −46.1036 16.7803i −1.96408 0.714866i
\(552\) 0 0
\(553\) −1.11068 0.931970i −0.0472309 0.0396314i
\(554\) 0 0
\(555\) 13.7923 + 14.7837i 0.585450 + 0.627535i
\(556\) 0 0
\(557\) −10.4348 6.02454i −0.442137 0.255268i 0.262367 0.964968i \(-0.415497\pi\)
−0.704504 + 0.709700i \(0.748830\pi\)
\(558\) 0 0
\(559\) −8.38653 + 4.84196i −0.354712 + 0.204793i
\(560\) 0 0
\(561\) −0.841784 15.9935i −0.0355401 0.675245i
\(562\) 0 0
\(563\) 0.365491 2.07280i 0.0154036 0.0873582i −0.976137 0.217156i \(-0.930322\pi\)
0.991540 + 0.129798i \(0.0414329\pi\)
\(564\) 0 0
\(565\) 20.1786 16.9319i 0.848922 0.712330i
\(566\) 0 0
\(567\) −23.1888 + 20.9171i −0.973839 + 0.878434i
\(568\) 0 0
\(569\) 1.20299 + 1.43367i 0.0504319 + 0.0601024i 0.790671 0.612242i \(-0.209732\pi\)
−0.740239 + 0.672344i \(0.765288\pi\)
\(570\) 0 0
\(571\) −41.8780 7.38422i −1.75254 0.309020i −0.797022 0.603951i \(-0.793592\pi\)
−0.955519 + 0.294931i \(0.904703\pi\)
\(572\) 0 0
\(573\) −4.97171 + 0.261676i −0.207696 + 0.0109317i
\(574\) 0 0
\(575\) −10.2820 17.8089i −0.428787 0.742681i
\(576\) 0 0
\(577\) 18.9664 32.8508i 0.789582 1.36760i −0.136642 0.990621i \(-0.543631\pi\)
0.926223 0.376975i \(-0.123036\pi\)
\(578\) 0 0
\(579\) 6.71149 6.26138i 0.278920 0.260214i
\(580\) 0 0
\(581\) −4.43726 + 5.28812i −0.184088 + 0.219388i
\(582\) 0 0
\(583\) 9.92442 27.2671i 0.411028 1.12929i
\(584\) 0 0
\(585\) 29.2002 + 2.02870i 1.20728 + 0.0838764i
\(586\) 0 0
\(587\) 2.91662 + 16.5410i 0.120382 + 0.682719i 0.983944 + 0.178477i \(0.0571170\pi\)
−0.863562 + 0.504242i \(0.831772\pi\)
\(588\) 0 0
\(589\) 40.8915 14.8833i 1.68491 0.613256i
\(590\) 0 0
\(591\) 12.2607 + 1.50263i 0.504336 + 0.0618098i
\(592\) 0 0
\(593\) 7.62540i 0.313138i −0.987667 0.156569i \(-0.949957\pi\)
0.987667 0.156569i \(-0.0500433\pi\)
\(594\) 0 0
\(595\) 18.5086i 0.758779i
\(596\) 0 0
\(597\) 5.35414 + 12.6057i 0.219130 + 0.515916i
\(598\) 0 0
\(599\) −29.5427 + 10.7527i −1.20708 + 0.439342i −0.865691 0.500578i \(-0.833121\pi\)
−0.341392 + 0.939921i \(0.610898\pi\)
\(600\) 0 0
\(601\) 3.90591 + 22.1515i 0.159325 + 0.903579i 0.954724 + 0.297493i \(0.0961503\pi\)
−0.795399 + 0.606086i \(0.792739\pi\)
\(602\) 0 0
\(603\) −29.3670 13.0592i −1.19592 0.531813i
\(604\) 0 0
\(605\) 26.1636 71.8839i 1.06370 2.92249i
\(606\) 0 0
\(607\) −25.9055 + 30.8729i −1.05147 + 1.25309i −0.0849830 + 0.996382i \(0.527084\pi\)
−0.966488 + 0.256712i \(0.917361\pi\)
\(608\) 0 0
\(609\) 13.6906 + 59.2397i 0.554770 + 2.40051i
\(610\) 0 0
\(611\) 7.25147 12.5599i 0.293363 0.508120i
\(612\) 0 0
\(613\) −19.2398 33.3243i −0.777089 1.34596i −0.933613 0.358283i \(-0.883362\pi\)
0.156524 0.987674i \(-0.449971\pi\)
\(614\) 0 0
\(615\) −27.2552 41.9487i −1.09904 1.69154i
\(616\) 0 0
\(617\) −18.4142 3.24692i −0.741327 0.130716i −0.209785 0.977748i \(-0.567276\pi\)
−0.531542 + 0.847032i \(0.678387\pi\)
\(618\) 0 0
\(619\) 1.54231 + 1.83806i 0.0619908 + 0.0738778i 0.796149 0.605101i \(-0.206867\pi\)
−0.734158 + 0.678979i \(0.762423\pi\)
\(620\) 0 0
\(621\) 14.6601 + 8.79527i 0.588291 + 0.352942i
\(622\) 0 0
\(623\) 37.7540 31.6793i 1.51258 1.26921i
\(624\) 0 0
\(625\) −2.98438 + 16.9253i −0.119375 + 0.677011i
\(626\) 0 0
\(627\) −43.5217 22.1631i −1.73809 0.885109i
\(628\) 0 0
\(629\) 4.79313 2.76732i 0.191115 0.110340i
\(630\) 0 0
\(631\) 1.88608 + 1.08893i 0.0750837 + 0.0433496i 0.537072 0.843537i \(-0.319530\pi\)
−0.461988 + 0.886886i \(0.652864\pi\)
\(632\) 0 0
\(633\) 13.4426 44.0043i 0.534297 1.74901i
\(634\) 0 0
\(635\) −5.29242 4.44086i −0.210023 0.176230i
\(636\) 0 0
\(637\) 13.7769 + 5.01439i 0.545862 + 0.198677i
\(638\) 0 0
\(639\) 7.58789 + 1.88825i 0.300172 + 0.0746982i
\(640\) 0 0
\(641\) −13.0761 + 2.30566i −0.516474 + 0.0910683i −0.425809 0.904813i \(-0.640010\pi\)
−0.0906650 + 0.995881i \(0.528899\pi\)
\(642\) 0 0
\(643\) −3.47410 9.54501i −0.137005 0.376418i 0.852149 0.523299i \(-0.175299\pi\)
−0.989154 + 0.146881i \(0.953077\pi\)
\(644\) 0 0
\(645\) −15.4484 11.6357i −0.608279 0.458157i
\(646\) 0 0
\(647\) −2.76977 −0.108891 −0.0544454 0.998517i \(-0.517339\pi\)
−0.0544454 + 0.998517i \(0.517339\pi\)
\(648\) 0 0
\(649\) −15.9485 −0.626032
\(650\) 0 0
\(651\) −43.0757 32.4447i −1.68827 1.27161i
\(652\) 0 0
\(653\) 5.04244 + 13.8540i 0.197326 + 0.542148i 0.998408 0.0564063i \(-0.0179642\pi\)
−0.801082 + 0.598554i \(0.795742\pi\)
\(654\) 0 0
\(655\) 12.8232 2.26107i 0.501044 0.0883475i
\(656\) 0 0
\(657\) −1.00763 + 1.04437i −0.0393113 + 0.0407447i
\(658\) 0 0
\(659\) 20.4458 + 7.44165i 0.796454 + 0.289885i 0.708016 0.706196i \(-0.249590\pi\)
0.0884376 + 0.996082i \(0.471813\pi\)
\(660\) 0 0
\(661\) −15.8814 13.3261i −0.617715 0.518325i 0.279369 0.960184i \(-0.409875\pi\)
−0.897084 + 0.441859i \(0.854319\pi\)
\(662\) 0 0
\(663\) 2.34093 7.66298i 0.0909141 0.297606i
\(664\) 0 0
\(665\) −48.8806 28.2212i −1.89551 1.09437i
\(666\) 0 0
\(667\) 28.8259 16.6426i 1.11614 0.644405i
\(668\) 0 0
\(669\) −5.45260 2.77669i −0.210810 0.107353i
\(670\) 0 0
\(671\) −8.55932 + 48.5423i −0.330429 + 1.87396i
\(672\) 0 0
\(673\) −28.0079 + 23.5014i −1.07963 + 0.905914i −0.995890 0.0905741i \(-0.971130\pi\)
−0.0837364 + 0.996488i \(0.526685\pi\)
\(674\) 0 0
\(675\) 10.5941 + 30.7002i 0.407766 + 1.18165i
\(676\) 0 0
\(677\) −4.14058 4.93456i −0.159136 0.189650i 0.680585 0.732669i \(-0.261726\pi\)
−0.839721 + 0.543019i \(0.817281\pi\)
\(678\) 0 0
\(679\) −29.6348 5.22541i −1.13728 0.200533i
\(680\) 0 0
\(681\) 1.41911 + 2.18417i 0.0543805 + 0.0836975i
\(682\) 0 0
\(683\) 16.7347 + 28.9854i 0.640337 + 1.10910i 0.985358 + 0.170501i \(0.0545385\pi\)
−0.345021 + 0.938595i \(0.612128\pi\)
\(684\) 0 0
\(685\) −30.0928 + 52.1222i −1.14979 + 1.99149i
\(686\) 0 0
\(687\) −11.6745 50.5159i −0.445409 1.92730i
\(688\) 0 0
\(689\) 9.33145 11.1208i 0.355500 0.423668i
\(690\) 0 0
\(691\) 2.44673 6.72234i 0.0930780 0.255730i −0.884414 0.466704i \(-0.845441\pi\)
0.977492 + 0.210974i \(0.0676636\pi\)
\(692\) 0 0
\(693\) 6.35367 + 60.1911i 0.241356 + 2.28647i
\(694\) 0 0
\(695\) 3.80287 + 21.5672i 0.144251 + 0.818089i
\(696\) 0 0
\(697\) −12.8682 + 4.68363i −0.487417 + 0.177405i
\(698\) 0 0
\(699\) 3.23146 + 7.60810i 0.122225 + 0.287765i
\(700\) 0 0
\(701\) 46.9364i 1.77276i 0.462955 + 0.886382i \(0.346789\pi\)
−0.462955 + 0.886382i \(0.653211\pi\)
\(702\) 0 0
\(703\) 16.8780i 0.636565i
\(704\) 0 0
\(705\) 28.7493 + 3.52342i 1.08276 + 0.132700i
\(706\) 0 0
\(707\) 26.7596 9.73969i 1.00640 0.366299i
\(708\) 0 0
\(709\) 6.76220 + 38.3503i 0.253960 + 1.44028i 0.798729 + 0.601691i \(0.205506\pi\)
−0.544769 + 0.838586i \(0.683383\pi\)
\(710\) 0 0
\(711\) 0.700509 1.03955i 0.0262712 0.0389863i
\(712\) 0 0
\(713\) −10.0972 + 27.7419i −0.378144 + 1.03894i
\(714\) 0 0
\(715\) 36.4653 43.4577i 1.36373 1.62523i
\(716\) 0 0
\(717\) 2.00800 1.87334i 0.0749902 0.0699610i
\(718\) 0 0
\(719\) −16.1643 + 27.9974i −0.602826 + 1.04413i 0.389565 + 0.920999i \(0.372625\pi\)
−0.992391 + 0.123126i \(0.960708\pi\)
\(720\) 0 0
\(721\) −6.99801 12.1209i −0.260619 0.451406i
\(722\) 0 0
\(723\) −34.3496 + 1.80792i −1.27748 + 0.0672373i
\(724\) 0 0
\(725\) 62.2700 + 10.9799i 2.31265 + 0.407782i
\(726\) 0 0
\(727\) −3.60694 4.29858i −0.133774 0.159425i 0.694999 0.719011i \(-0.255405\pi\)
−0.828773 + 0.559585i \(0.810960\pi\)
\(728\) 0 0
\(729\) −20.0892 18.0395i −0.744046 0.668129i
\(730\) 0 0
\(731\) −4.05560 + 3.40305i −0.150002 + 0.125866i
\(732\) 0 0
\(733\) 7.24616 41.0950i 0.267643 1.51788i −0.493759 0.869599i \(-0.664377\pi\)
0.761402 0.648280i \(-0.224512\pi\)
\(734\) 0 0
\(735\) 1.53898 + 29.2398i 0.0567661 + 1.07853i
\(736\) 0 0
\(737\) −53.9454 + 31.1454i −1.98711 + 1.14726i
\(738\) 0 0
\(739\) 18.7633 + 10.8330i 0.690218 + 0.398498i 0.803694 0.595043i \(-0.202865\pi\)
−0.113476 + 0.993541i \(0.536198\pi\)
\(740\) 0 0
\(741\) −16.6683 17.8665i −0.612326 0.656343i
\(742\) 0 0
\(743\) 3.58520 + 3.00834i 0.131528 + 0.110365i 0.706179 0.708034i \(-0.250418\pi\)
−0.574651 + 0.818399i \(0.694862\pi\)
\(744\) 0 0
\(745\) −26.5387 9.65930i −0.972303 0.353889i
\(746\) 0 0
\(747\) −4.94948 3.33523i −0.181092 0.122030i
\(748\) 0 0
\(749\) −45.6547 + 8.05015i −1.66819 + 0.294146i
\(750\) 0 0
\(751\) 7.04027 + 19.3430i 0.256903 + 0.705836i 0.999354 + 0.0359352i \(0.0114410\pi\)
−0.742451 + 0.669900i \(0.766337\pi\)
\(752\) 0 0
\(753\) 4.48663 36.6087i 0.163502 1.33409i
\(754\) 0 0
\(755\) −43.5589 −1.58527
\(756\) 0 0
\(757\) 24.1617 0.878172 0.439086 0.898445i \(-0.355302\pi\)
0.439086 + 0.898445i \(0.355302\pi\)
\(758\) 0 0
\(759\) 30.4974 12.9535i 1.10699 0.470181i
\(760\) 0 0
\(761\) 8.13784 + 22.3585i 0.294996 + 0.810496i 0.995317 + 0.0966674i \(0.0308183\pi\)
−0.700320 + 0.713829i \(0.746959\pi\)
\(762\) 0 0
\(763\) −55.6108 + 9.80568i −2.01325 + 0.354990i
\(764\) 0 0
\(765\) 15.9138 1.67984i 0.575366 0.0607346i
\(766\) 0 0
\(767\) −7.49778 2.72897i −0.270729 0.0985374i
\(768\) 0 0
\(769\) −6.27859 5.26836i −0.226412 0.189982i 0.522524 0.852624i \(-0.324990\pi\)
−0.748936 + 0.662643i \(0.769435\pi\)
\(770\) 0 0
\(771\) 36.9398 8.53695i 1.33035 0.307451i
\(772\) 0 0
\(773\) 36.7083 + 21.1936i 1.32031 + 0.762280i 0.983777 0.179393i \(-0.0574135\pi\)
0.336530 + 0.941673i \(0.390747\pi\)
\(774\) 0 0
\(775\) −48.5687 + 28.0412i −1.74464 + 1.00727i
\(776\) 0 0
\(777\) −17.5393 + 11.3957i −0.629218 + 0.408820i
\(778\) 0 0
\(779\) −7.25159 + 41.1258i −0.259815 + 1.47349i
\(780\) 0 0
\(781\) 11.6092 9.74131i 0.415411 0.348571i
\(782\) 0 0
\(783\) −49.6921 + 17.1478i −1.77585 + 0.612813i
\(784\) 0 0
\(785\) 15.9599 + 19.0203i 0.569635 + 0.678865i
\(786\) 0 0
\(787\) −8.56883 1.51092i −0.305446 0.0538584i 0.0188244 0.999823i \(-0.494008\pi\)
−0.324270 + 0.945964i \(0.605119\pi\)
\(788\) 0 0
\(789\) 3.99994 7.85469i 0.142402 0.279634i
\(790\) 0 0
\(791\) 13.6252 + 23.5995i 0.484456 + 0.839103i
\(792\) 0 0
\(793\) −12.3301 + 21.3564i −0.437855 + 0.758388i
\(794\) 0 0
\(795\) 27.7279 + 8.47046i 0.983407 + 0.300416i
\(796\) 0 0
\(797\) −13.9119 + 16.5796i −0.492785 + 0.587278i −0.953923 0.300050i \(-0.902997\pi\)
0.461139 + 0.887328i \(0.347441\pi\)
\(798\) 0 0
\(799\) 2.71180 7.45060i 0.0959364 0.263583i
\(800\) 0 0
\(801\) 30.6646 + 29.5859i 1.08348 + 1.04537i
\(802\) 0 0
\(803\) 0.488408 + 2.76990i 0.0172355 + 0.0977476i
\(804\) 0 0
\(805\) 35.9828 13.0967i 1.26823 0.461596i
\(806\) 0 0
\(807\) −10.6092 + 14.0855i −0.373462 + 0.495833i
\(808\) 0 0
\(809\) 9.86094i 0.346692i 0.984861 + 0.173346i \(0.0554579\pi\)
−0.984861 + 0.173346i \(0.944542\pi\)
\(810\) 0 0
\(811\) 29.9307i 1.05101i −0.850791 0.525504i \(-0.823877\pi\)
0.850791 0.525504i \(-0.176123\pi\)
\(812\) 0 0
\(813\) 4.31082 5.72333i 0.151187 0.200726i
\(814\) 0 0
\(815\) 1.20077 0.437044i 0.0420611 0.0153090i
\(816\) 0 0
\(817\) 2.80351 + 15.8995i 0.0980826 + 0.556254i
\(818\) 0 0
\(819\) −7.31238 + 29.3846i −0.255515 + 1.02678i
\(820\) 0 0
\(821\) 9.47855 26.0421i 0.330804 0.908875i −0.657100 0.753804i \(-0.728217\pi\)
0.987903 0.155072i \(-0.0495609\pi\)
\(822\) 0 0
\(823\) −8.40732 + 10.0195i −0.293061 + 0.349256i −0.892405 0.451235i \(-0.850984\pi\)
0.599344 + 0.800491i \(0.295428\pi\)
\(824\) 0 0
\(825\) 60.1977 + 18.3895i 2.09582 + 0.640241i
\(826\) 0 0
\(827\) −22.6995 + 39.3167i −0.789338 + 1.36717i 0.137034 + 0.990566i \(0.456243\pi\)
−0.926373 + 0.376608i \(0.877090\pi\)
\(828\) 0 0
\(829\) −1.61195 2.79199i −0.0559855 0.0969696i 0.836674 0.547701i \(-0.184497\pi\)
−0.892660 + 0.450731i \(0.851163\pi\)
\(830\) 0 0
\(831\) −9.62158 + 18.8939i −0.333769 + 0.655422i
\(832\) 0 0
\(833\) 7.89346 + 1.39183i 0.273492 + 0.0482241i
\(834\) 0 0
\(835\) −18.9882 22.6293i −0.657115 0.783120i
\(836\) 0 0
\(837\) 23.9866 39.9815i 0.829100 1.38196i
\(838\) 0 0
\(839\) −4.73298 + 3.97144i −0.163401 + 0.137109i −0.720822 0.693120i \(-0.756235\pi\)
0.557421 + 0.830230i \(0.311791\pi\)
\(840\) 0 0
\(841\) −12.7365 + 72.2322i −0.439189 + 2.49077i
\(842\) 0 0
\(843\) 24.5975 15.9817i 0.847183 0.550438i
\(844\) 0 0
\(845\) −13.1824 + 7.61088i −0.453489 + 0.261822i
\(846\) 0 0
\(847\) 68.5348 + 39.5686i 2.35489 + 1.35959i
\(848\) 0 0
\(849\) −42.0321 + 9.71381i −1.44254 + 0.333377i
\(850\) 0 0
\(851\) 8.77157 + 7.36022i 0.300686 + 0.252305i
\(852\) 0 0
\(853\) −35.3639 12.8714i −1.21084 0.440708i −0.343843 0.939027i \(-0.611729\pi\)
−0.866994 + 0.498319i \(0.833951\pi\)
\(854\) 0 0
\(855\) 19.8284 44.5892i 0.678117 1.52492i
\(856\) 0 0
\(857\) 46.0639 8.12231i 1.57351 0.277453i 0.682312 0.731061i \(-0.260974\pi\)
0.891201 + 0.453608i \(0.149863\pi\)
\(858\) 0 0
\(859\) 9.09399 + 24.9855i 0.310283 + 0.852496i 0.992599 + 0.121438i \(0.0387506\pi\)
−0.682316 + 0.731057i \(0.739027\pi\)
\(860\) 0 0
\(861\) 47.6333 20.2318i 1.62334 0.689496i
\(862\) 0 0
\(863\) −3.97809 −0.135416 −0.0677079 0.997705i \(-0.521569\pi\)
−0.0677079 + 0.997705i \(0.521569\pi\)
\(864\) 0 0
\(865\) 27.7267 0.942736
\(866\) 0 0
\(867\) −3.04899 + 24.8782i −0.103549 + 0.844910i
\(868\) 0 0
\(869\) −0.830950 2.28302i −0.0281880 0.0774460i
\(870\) 0 0
\(871\) −30.6905 + 5.41156i −1.03991 + 0.183364i
\(872\) 0 0
\(873\) 1.80320 25.9544i 0.0610290 0.878425i
\(874\) 0 0
\(875\) 13.6723 + 4.97631i 0.462208 + 0.168230i
\(876\) 0 0
\(877\) 43.2551 + 36.2954i 1.46062 + 1.22561i 0.924341 + 0.381567i \(0.124615\pi\)
0.536280 + 0.844040i \(0.319829\pi\)
\(878\) 0 0
\(879\) 30.4869 + 32.6785i 1.02830 + 1.10222i
\(880\) 0 0
\(881\) 1.59619 + 0.921563i 0.0537772 + 0.0310483i 0.526648 0.850084i \(-0.323449\pi\)
−0.472870 + 0.881132i \(0.656782\pi\)
\(882\) 0 0
\(883\) 4.53672 2.61928i 0.152673 0.0881456i −0.421717 0.906727i \(-0.638573\pi\)
0.574390 + 0.818582i \(0.305239\pi\)
\(884\) 0 0
\(885\) −0.837554 15.9131i −0.0281541 0.534914i
\(886\) 0 0
\(887\) 0.735322 4.17022i 0.0246897 0.140022i −0.969971 0.243220i \(-0.921796\pi\)
0.994661 + 0.103198i \(0.0329075\pi\)
\(888\) 0 0
\(889\) 5.47506 4.59412i 0.183628 0.154082i
\(890\) 0 0
\(891\) −51.1760 + 10.9259i −1.71446 + 0.366030i
\(892\) 0 0
\(893\) −15.5419 18.5221i −0.520090 0.619820i
\(894\) 0 0
\(895\) 39.3874 + 6.94507i 1.31658 + 0.232148i
\(896\) 0 0
\(897\) 16.5541 0.871292i 0.552726 0.0290916i
\(898\) 0 0
\(899\) −45.3881 78.6145i −1.51378 2.62194i
\(900\) 0 0
\(901\) 3.96827 6.87324i 0.132202 0.228981i
\(902\) 0 0
\(903\) 14.6296 13.6485i 0.486842 0.454192i
\(904\) 0 0
\(905\) −13.3589 + 15.9206i −0.444066 + 0.529217i
\(906\) 0 0
\(907\) 0.432381 1.18796i 0.0143570 0.0394455i −0.932307 0.361668i \(-0.882208\pi\)
0.946664 + 0.322222i \(0.104430\pi\)
\(908\) 0 0
\(909\) 10.8029 + 22.1241i 0.358311 + 0.733810i
\(910\) 0 0
\(911\) 7.56798 + 42.9202i 0.250738 + 1.42201i 0.806779 + 0.590853i \(0.201209\pi\)
−0.556041 + 0.831155i \(0.687680\pi\)
\(912\) 0 0
\(913\) −10.8698 + 3.95628i −0.359738 + 0.130934i
\(914\) 0 0
\(915\) −48.8842 5.99109i −1.61606 0.198059i
\(916\) 0 0
\(917\) 13.4704i 0.444831i
\(918\) 0 0
\(919\) 3.43998i 0.113475i −0.998389 0.0567373i \(-0.981930\pi\)
0.998389 0.0567373i \(-0.0180697\pi\)
\(920\) 0 0
\(921\) 9.24925 + 21.7763i 0.304773 + 0.717553i
\(922\) 0 0
\(923\) 7.12465 2.59316i 0.234511 0.0853550i
\(924\) 0 0
\(925\) 3.77719 + 21.4215i 0.124193 + 0.704335i
\(926\) 0 0
\(927\) 9.78650 7.11702i 0.321431 0.233754i
\(928\) 0 0
\(929\) −6.44699 + 17.7130i −0.211519 + 0.581144i −0.999398 0.0346860i \(-0.988957\pi\)
0.787879 + 0.615830i \(0.211179\pi\)
\(930\) 0 0
\(931\) 15.7114 18.7241i 0.514921 0.613659i
\(932\) 0 0
\(933\) −5.82474 25.2039i −0.190693 0.825138i
\(934\) 0 0
\(935\) 15.5072 26.8592i 0.507138 0.878389i
\(936\) 0 0
\(937\) 19.1876 + 33.2338i 0.626830 + 1.08570i 0.988184 + 0.153273i \(0.0489813\pi\)
−0.361354 + 0.932429i \(0.617685\pi\)
\(938\) 0 0
\(939\) 21.4017 + 32.9395i 0.698418 + 1.07494i
\(940\) 0 0
\(941\) −22.0021 3.87956i −0.717247 0.126470i −0.196898 0.980424i \(-0.563087\pi\)
−0.520349 + 0.853954i \(0.674198\pi\)
\(942\) 0 0
\(943\) −18.2110 21.7030i −0.593031 0.706747i
\(944\) 0 0
\(945\) −59.7240 + 9.50060i −1.94282 + 0.309054i
\(946\) 0 0
\(947\) −0.652233 + 0.547288i −0.0211947 + 0.0177845i −0.653323 0.757079i \(-0.726626\pi\)
0.632129 + 0.774863i \(0.282181\pi\)
\(948\) 0 0
\(949\) −0.244349 + 1.38577i −0.00793191 + 0.0449841i
\(950\) 0 0
\(951\) 28.2741 + 14.3984i 0.916851 + 0.466900i
\(952\) 0 0
\(953\) −12.4899 + 7.21102i −0.404586 + 0.233588i −0.688461 0.725273i \(-0.741713\pi\)
0.283875 + 0.958861i \(0.408380\pi\)
\(954\) 0 0
\(955\) −8.34941 4.82053i −0.270181 0.155989i
\(956\) 0 0
\(957\) −29.7657 + 97.4375i −0.962189 + 3.14971i
\(958\) 0 0
\(959\) −47.6959 40.0217i −1.54018 1.29237i
\(960\) 0 0
\(961\) 46.5278 + 16.9348i 1.50090 + 0.546282i
\(962\) 0 0
\(963\) −11.0652 38.5236i −0.356570 1.24140i
\(964\) 0 0
\(965\) 17.5046 3.08653i 0.563493 0.0993590i
\(966\) 0 0
\(967\) 9.53902 + 26.2082i 0.306754 + 0.842800i 0.993284 + 0.115699i \(0.0369108\pi\)
−0.686530 + 0.727101i \(0.740867\pi\)
\(968\) 0 0
\(969\) −10.6703 8.03686i −0.342778 0.258181i
\(970\) 0 0
\(971\) 11.8273 0.379555 0.189777 0.981827i \(-0.439223\pi\)
0.189777 + 0.981827i \(0.439223\pi\)
\(972\) 0 0
\(973\) −22.6557 −0.726307
\(974\) 0 0
\(975\) 25.1538 + 18.9459i 0.805567 + 0.606755i
\(976\) 0 0
\(977\) −12.5347 34.4388i −0.401021 1.10180i −0.961781 0.273818i \(-0.911713\pi\)
0.560760 0.827978i \(-0.310509\pi\)
\(978\) 0 0
\(979\) 81.3296 14.3406i 2.59930 0.458327i
\(980\) 0 0
\(981\) −13.4782 46.9246i −0.430326 1.49819i
\(982\) 0 0
\(983\) −37.7590 13.7431i −1.20432 0.438338i −0.339593 0.940573i \(-0.610289\pi\)
−0.864731 + 0.502235i \(0.832511\pi\)
\(984\) 0 0
\(985\) 18.3241 + 15.3758i 0.583856 + 0.489913i
\(986\) 0 0
\(987\) −8.75419 + 28.6567i −0.278649 + 0.912152i
\(988\) 0 0
\(989\) −9.48563 5.47653i −0.301626 0.174144i
\(990\) 0 0
\(991\) −20.6696 + 11.9336i −0.656592 + 0.379083i −0.790977 0.611846i \(-0.790427\pi\)
0.134385 + 0.990929i \(0.457094\pi\)
\(992\) 0 0
\(993\) −21.1508 10.7709i −0.671202 0.341805i
\(994\) 0 0
\(995\) −4.60543 + 26.1187i −0.146002 + 0.828019i
\(996\) 0 0
\(997\) −26.1895 + 21.9756i −0.829430 + 0.695974i −0.955160 0.296090i \(-0.904317\pi\)
0.125730 + 0.992064i \(0.459873\pi\)
\(998\) 0 0
\(999\) −11.3900 14.0461i −0.360363 0.444399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bi.a.383.8 216
4.3 odd 2 inner 864.2.bi.a.383.29 yes 216
27.11 odd 18 inner 864.2.bi.a.767.29 yes 216
108.11 even 18 inner 864.2.bi.a.767.8 yes 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.2.bi.a.383.8 216 1.1 even 1 trivial
864.2.bi.a.383.29 yes 216 4.3 odd 2 inner
864.2.bi.a.767.8 yes 216 108.11 even 18 inner
864.2.bi.a.767.29 yes 216 27.11 odd 18 inner