Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(95,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 17]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.95");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.bi (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95.1 | 0 | −1.72799 | + | 0.118502i | 0 | 1.85973 | − | 2.21633i | 0 | −0.235484 | + | 0.646986i | 0 | 2.97191 | − | 0.409541i | 0 | ||||||||||
95.2 | 0 | −1.70911 | − | 0.280941i | 0 | −1.54632 | + | 1.84283i | 0 | 0.573007 | − | 1.57432i | 0 | 2.84214 | + | 0.960320i | 0 | ||||||||||
95.3 | 0 | −1.69887 | + | 0.337423i | 0 | −0.948003 | + | 1.12979i | 0 | −0.391368 | + | 1.07528i | 0 | 2.77229 | − | 1.14647i | 0 | ||||||||||
95.4 | 0 | −1.68666 | − | 0.393943i | 0 | 2.16279 | − | 2.57751i | 0 | 0.669796 | − | 1.84025i | 0 | 2.68962 | + | 1.32889i | 0 | ||||||||||
95.5 | 0 | −1.59297 | − | 0.680026i | 0 | −0.802661 | + | 0.956575i | 0 | −1.53564 | + | 4.21915i | 0 | 2.07513 | + | 2.16653i | 0 | ||||||||||
95.6 | 0 | −1.54765 | + | 0.777684i | 0 | −1.51205 | + | 1.80199i | 0 | 0.535936 | − | 1.47247i | 0 | 1.79042 | − | 2.40716i | 0 | ||||||||||
95.7 | 0 | −1.46065 | + | 0.930864i | 0 | 0.902634 | − | 1.07572i | 0 | 1.52652 | − | 4.19407i | 0 | 1.26699 | − | 2.71933i | 0 | ||||||||||
95.8 | 0 | −1.37511 | + | 1.05313i | 0 | −2.70735 | + | 3.22649i | 0 | −1.09514 | + | 3.00888i | 0 | 0.781832 | − | 2.89633i | 0 | ||||||||||
95.9 | 0 | −1.29799 | − | 1.14683i | 0 | −0.251563 | + | 0.299801i | 0 | 0.212073 | − | 0.582665i | 0 | 0.369555 | + | 2.97715i | 0 | ||||||||||
95.10 | 0 | −1.23859 | + | 1.21074i | 0 | 1.02326 | − | 1.21948i | 0 | −0.575400 | + | 1.58090i | 0 | 0.0682160 | − | 2.99922i | 0 | ||||||||||
95.11 | 0 | −1.18010 | − | 1.26782i | 0 | 1.50278 | − | 1.79094i | 0 | −1.53224 | + | 4.20980i | 0 | −0.214731 | + | 2.99231i | 0 | ||||||||||
95.12 | 0 | −0.948095 | − | 1.44952i | 0 | 0.639391 | − | 0.761997i | 0 | 1.09080 | − | 2.99694i | 0 | −1.20223 | + | 2.74857i | 0 | ||||||||||
95.13 | 0 | −0.639313 | + | 1.60974i | 0 | 1.25880 | − | 1.50018i | 0 | −0.917368 | + | 2.52045i | 0 | −2.18256 | − | 2.05826i | 0 | ||||||||||
95.14 | 0 | −0.633406 | − | 1.61208i | 0 | −2.10172 | + | 2.50473i | 0 | 1.57289 | − | 4.32148i | 0 | −2.19759 | + | 2.04220i | 0 | ||||||||||
95.15 | 0 | −0.413006 | + | 1.68209i | 0 | −2.09970 | + | 2.50233i | 0 | 0.771995 | − | 2.12104i | 0 | −2.65885 | − | 1.38943i | 0 | ||||||||||
95.16 | 0 | −0.246052 | + | 1.71448i | 0 | 0.0151145 | − | 0.0180127i | 0 | 1.23843 | − | 3.40255i | 0 | −2.87892 | − | 0.843705i | 0 | ||||||||||
95.17 | 0 | −0.152734 | + | 1.72530i | 0 | −0.204383 | + | 0.243574i | 0 | 0.388373 | − | 1.06705i | 0 | −2.95334 | − | 0.527025i | 0 | ||||||||||
95.18 | 0 | −0.0609182 | − | 1.73098i | 0 | 2.80925 | − | 3.34793i | 0 | −0.417699 | + | 1.14762i | 0 | −2.99258 | + | 0.210896i | 0 | ||||||||||
95.19 | 0 | 0.0609182 | + | 1.73098i | 0 | 2.80925 | − | 3.34793i | 0 | 0.417699 | − | 1.14762i | 0 | −2.99258 | + | 0.210896i | 0 | ||||||||||
95.20 | 0 | 0.152734 | − | 1.72530i | 0 | −0.204383 | + | 0.243574i | 0 | −0.388373 | + | 1.06705i | 0 | −2.95334 | − | 0.527025i | 0 | ||||||||||
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
27.f | odd | 18 | 1 | inner |
108.l | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.bi.a | ✓ | 216 |
4.b | odd | 2 | 1 | inner | 864.2.bi.a | ✓ | 216 |
27.f | odd | 18 | 1 | inner | 864.2.bi.a | ✓ | 216 |
108.l | even | 18 | 1 | inner | 864.2.bi.a | ✓ | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.bi.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
864.2.bi.a | ✓ | 216 | 4.b | odd | 2 | 1 | inner |
864.2.bi.a | ✓ | 216 | 27.f | odd | 18 | 1 | inner |
864.2.bi.a | ✓ | 216 | 108.l | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(864, [\chi])\).