Properties

Label 864.2.bi.a.383.34
Level $864$
Weight $2$
Character 864.383
Analytic conductor $6.899$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(95,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.95"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(36\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 383.34
Character \(\chi\) \(=\) 864.383
Dual form 864.2.bi.a.767.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70869 - 0.283541i) q^{3} +(-1.19113 - 3.27259i) q^{5} +(0.573300 - 0.101088i) q^{7} +(2.83921 - 0.968964i) q^{9} +(-1.42849 - 0.519927i) q^{11} +(-4.76553 - 3.99876i) q^{13} +(-2.96317 - 5.25409i) q^{15} +(0.858874 + 0.495871i) q^{17} +(-3.76282 + 2.17246i) q^{19} +(0.950926 - 0.335282i) q^{21} +(0.715065 - 4.05534i) q^{23} +(-5.46085 + 4.58220i) q^{25} +(4.57657 - 2.46069i) q^{27} +(0.165623 + 0.197381i) q^{29} +(9.95515 + 1.75536i) q^{31} +(-2.58825 - 0.483357i) q^{33} +(-1.01369 - 1.75577i) q^{35} +(-5.32749 + 9.22749i) q^{37} +(-9.27661 - 5.48139i) q^{39} +(4.47348 - 5.33129i) q^{41} +(-0.0229902 + 0.0631651i) q^{43} +(-6.55288 - 8.13741i) q^{45} +(-1.42549 - 8.08438i) q^{47} +(-6.25939 + 2.27823i) q^{49} +(1.60814 + 0.603762i) q^{51} +1.96751i q^{53} +5.29415i q^{55} +(-5.81349 + 4.77897i) q^{57} +(11.1376 - 4.05376i) q^{59} +(-1.98322 - 11.2474i) q^{61} +(1.52977 - 0.842517i) q^{63} +(-7.40995 + 20.3587i) q^{65} +(4.37173 - 5.21003i) q^{67} +(0.0719681 - 7.13204i) q^{69} +(1.76215 - 3.05214i) q^{71} +(-0.283777 - 0.491516i) q^{73} +(-8.03163 + 9.37790i) q^{75} +(-0.871510 - 0.153671i) q^{77} +(8.27612 + 9.86310i) q^{79} +(7.12222 - 5.50218i) q^{81} +(-1.23417 + 1.03559i) q^{83} +(0.599756 - 3.40139i) q^{85} +(0.338962 + 0.290302i) q^{87} +(4.61926 - 2.66693i) q^{89} +(-3.13631 - 1.81075i) q^{91} +(17.5079 + 0.176669i) q^{93} +(11.5916 + 9.72648i) q^{95} +(8.38829 + 3.05309i) q^{97} +(-4.55956 - 0.0920288i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 24 q^{29} + 36 q^{33} + 36 q^{41} - 24 q^{45} + 12 q^{57} + 48 q^{65} + 48 q^{69} + 48 q^{77} + 48 q^{81} + 36 q^{89} - 144 q^{93} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70869 0.283541i 0.986510 0.163702i
\(4\) 0 0
\(5\) −1.19113 3.27259i −0.532688 1.46355i −0.855860 0.517207i \(-0.826972\pi\)
0.323173 0.946340i \(-0.395251\pi\)
\(6\) 0 0
\(7\) 0.573300 0.101088i 0.216687 0.0382077i −0.0642507 0.997934i \(-0.520466\pi\)
0.280938 + 0.959726i \(0.409355\pi\)
\(8\) 0 0
\(9\) 2.83921 0.968964i 0.946403 0.322988i
\(10\) 0 0
\(11\) −1.42849 0.519927i −0.430705 0.156764i 0.117565 0.993065i \(-0.462491\pi\)
−0.548270 + 0.836301i \(0.684713\pi\)
\(12\) 0 0
\(13\) −4.76553 3.99876i −1.32172 1.10906i −0.985937 0.167117i \(-0.946554\pi\)
−0.335784 0.941939i \(-0.609001\pi\)
\(14\) 0 0
\(15\) −2.96317 5.25409i −0.765088 1.35660i
\(16\) 0 0
\(17\) 0.858874 + 0.495871i 0.208308 + 0.120266i 0.600525 0.799606i \(-0.294958\pi\)
−0.392217 + 0.919873i \(0.628292\pi\)
\(18\) 0 0
\(19\) −3.76282 + 2.17246i −0.863249 + 0.498397i −0.865099 0.501601i \(-0.832745\pi\)
0.00184984 + 0.999998i \(0.499411\pi\)
\(20\) 0 0
\(21\) 0.950926 0.335282i 0.207509 0.0731645i
\(22\) 0 0
\(23\) 0.715065 4.05534i 0.149101 0.845596i −0.814881 0.579629i \(-0.803198\pi\)
0.963982 0.265967i \(-0.0856913\pi\)
\(24\) 0 0
\(25\) −5.46085 + 4.58220i −1.09217 + 0.916439i
\(26\) 0 0
\(27\) 4.57657 2.46069i 0.880762 0.473559i
\(28\) 0 0
\(29\) 0.165623 + 0.197381i 0.0307553 + 0.0366528i 0.781203 0.624277i \(-0.214606\pi\)
−0.750448 + 0.660930i \(0.770162\pi\)
\(30\) 0 0
\(31\) 9.95515 + 1.75536i 1.78800 + 0.315272i 0.966831 0.255416i \(-0.0822125\pi\)
0.821167 + 0.570689i \(0.193324\pi\)
\(32\) 0 0
\(33\) −2.58825 0.483357i −0.450557 0.0841416i
\(34\) 0 0
\(35\) −1.01369 1.75577i −0.171345 0.296779i
\(36\) 0 0
\(37\) −5.32749 + 9.22749i −0.875835 + 1.51699i −0.0199635 + 0.999801i \(0.506355\pi\)
−0.855871 + 0.517189i \(0.826978\pi\)
\(38\) 0 0
\(39\) −9.27661 5.48139i −1.48545 0.877726i
\(40\) 0 0
\(41\) 4.47348 5.33129i 0.698641 0.832608i −0.293731 0.955888i \(-0.594897\pi\)
0.992372 + 0.123280i \(0.0393414\pi\)
\(42\) 0 0
\(43\) −0.0229902 + 0.0631651i −0.00350597 + 0.00963258i −0.941433 0.337199i \(-0.890520\pi\)
0.937927 + 0.346832i \(0.112743\pi\)
\(44\) 0 0
\(45\) −6.55288 8.13741i −0.976845 1.21305i
\(46\) 0 0
\(47\) −1.42549 8.08438i −0.207930 1.17923i −0.892762 0.450528i \(-0.851236\pi\)
0.684833 0.728700i \(-0.259875\pi\)
\(48\) 0 0
\(49\) −6.25939 + 2.27823i −0.894199 + 0.325462i
\(50\) 0 0
\(51\) 1.60814 + 0.603762i 0.225185 + 0.0845436i
\(52\) 0 0
\(53\) 1.96751i 0.270258i 0.990828 + 0.135129i \(0.0431449\pi\)
−0.990828 + 0.135129i \(0.956855\pi\)
\(54\) 0 0
\(55\) 5.29415i 0.713863i
\(56\) 0 0
\(57\) −5.81349 + 4.77897i −0.770015 + 0.632990i
\(58\) 0 0
\(59\) 11.1376 4.05376i 1.44999 0.527754i 0.507404 0.861708i \(-0.330605\pi\)
0.942589 + 0.333954i \(0.108383\pi\)
\(60\) 0 0
\(61\) −1.98322 11.2474i −0.253925 1.44008i −0.798816 0.601575i \(-0.794540\pi\)
0.544891 0.838507i \(-0.316571\pi\)
\(62\) 0 0
\(63\) 1.52977 0.842517i 0.192733 0.106147i
\(64\) 0 0
\(65\) −7.40995 + 20.3587i −0.919091 + 2.52518i
\(66\) 0 0
\(67\) 4.37173 5.21003i 0.534092 0.636506i −0.429760 0.902943i \(-0.641402\pi\)
0.963852 + 0.266437i \(0.0858463\pi\)
\(68\) 0 0
\(69\) 0.0719681 7.13204i 0.00866394 0.858597i
\(70\) 0 0
\(71\) 1.76215 3.05214i 0.209129 0.362222i −0.742311 0.670055i \(-0.766270\pi\)
0.951440 + 0.307833i \(0.0996038\pi\)
\(72\) 0 0
\(73\) −0.283777 0.491516i −0.0332136 0.0575276i 0.848941 0.528488i \(-0.177241\pi\)
−0.882154 + 0.470960i \(0.843907\pi\)
\(74\) 0 0
\(75\) −8.03163 + 9.37790i −0.927413 + 1.08287i
\(76\) 0 0
\(77\) −0.871510 0.153671i −0.0993177 0.0175124i
\(78\) 0 0
\(79\) 8.27612 + 9.86310i 0.931137 + 1.10969i 0.993748 + 0.111647i \(0.0356127\pi\)
−0.0626113 + 0.998038i \(0.519943\pi\)
\(80\) 0 0
\(81\) 7.12222 5.50218i 0.791358 0.611354i
\(82\) 0 0
\(83\) −1.23417 + 1.03559i −0.135468 + 0.113671i −0.708004 0.706209i \(-0.750404\pi\)
0.572536 + 0.819879i \(0.305960\pi\)
\(84\) 0 0
\(85\) 0.599756 3.40139i 0.0650527 0.368932i
\(86\) 0 0
\(87\) 0.338962 + 0.290302i 0.0363406 + 0.0311236i
\(88\) 0 0
\(89\) 4.61926 2.66693i 0.489641 0.282694i −0.234785 0.972047i \(-0.575438\pi\)
0.724426 + 0.689353i \(0.242105\pi\)
\(90\) 0 0
\(91\) −3.13631 1.81075i −0.328774 0.189818i
\(92\) 0 0
\(93\) 17.5079 + 0.176669i 1.81549 + 0.0183197i
\(94\) 0 0
\(95\) 11.5916 + 9.72648i 1.18927 + 0.997916i
\(96\) 0 0
\(97\) 8.38829 + 3.05309i 0.851702 + 0.309994i 0.730734 0.682662i \(-0.239178\pi\)
0.120968 + 0.992656i \(0.461400\pi\)
\(98\) 0 0
\(99\) −4.55956 0.0920288i −0.458253 0.00924924i
\(100\) 0 0
\(101\) 7.95496 1.40267i 0.791548 0.139571i 0.236766 0.971567i \(-0.423913\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(102\) 0 0
\(103\) −1.22482 3.36517i −0.120685 0.331580i 0.864609 0.502445i \(-0.167566\pi\)
−0.985294 + 0.170865i \(0.945344\pi\)
\(104\) 0 0
\(105\) −2.22991 2.71263i −0.217617 0.264725i
\(106\) 0 0
\(107\) 14.1997 1.37274 0.686370 0.727253i \(-0.259203\pi\)
0.686370 + 0.727253i \(0.259203\pi\)
\(108\) 0 0
\(109\) 4.82293 0.461953 0.230976 0.972959i \(-0.425808\pi\)
0.230976 + 0.972959i \(0.425808\pi\)
\(110\) 0 0
\(111\) −6.48664 + 17.2774i −0.615685 + 1.63990i
\(112\) 0 0
\(113\) 5.68265 + 15.6130i 0.534579 + 1.46874i 0.853566 + 0.520984i \(0.174435\pi\)
−0.318988 + 0.947759i \(0.603343\pi\)
\(114\) 0 0
\(115\) −14.1232 + 2.49030i −1.31699 + 0.232222i
\(116\) 0 0
\(117\) −17.4050 6.73568i −1.60909 0.622714i
\(118\) 0 0
\(119\) 0.542519 + 0.197461i 0.0497326 + 0.0181012i
\(120\) 0 0
\(121\) −6.65624 5.58525i −0.605113 0.507750i
\(122\) 0 0
\(123\) 6.13214 10.3779i 0.552916 0.935745i
\(124\) 0 0
\(125\) 6.42003 + 3.70660i 0.574225 + 0.331529i
\(126\) 0 0
\(127\) −7.14207 + 4.12348i −0.633757 + 0.365900i −0.782205 0.623021i \(-0.785905\pi\)
0.148449 + 0.988920i \(0.452572\pi\)
\(128\) 0 0
\(129\) −0.0213731 + 0.114448i −0.00188180 + 0.0100766i
\(130\) 0 0
\(131\) −0.142753 + 0.809591i −0.0124724 + 0.0707343i −0.990409 0.138169i \(-0.955878\pi\)
0.977936 + 0.208903i \(0.0669894\pi\)
\(132\) 0 0
\(133\) −1.93761 + 1.62585i −0.168012 + 0.140979i
\(134\) 0 0
\(135\) −13.5041 12.0463i −1.16225 1.03678i
\(136\) 0 0
\(137\) −3.37267 4.01940i −0.288147 0.343400i 0.602481 0.798133i \(-0.294179\pi\)
−0.890628 + 0.454733i \(0.849735\pi\)
\(138\) 0 0
\(139\) −5.17764 0.912958i −0.439162 0.0774361i −0.0503043 0.998734i \(-0.516019\pi\)
−0.388858 + 0.921298i \(0.627130\pi\)
\(140\) 0 0
\(141\) −4.72797 13.4095i −0.398167 1.12928i
\(142\) 0 0
\(143\) 4.72844 + 8.18990i 0.395412 + 0.684874i
\(144\) 0 0
\(145\) 0.448671 0.777121i 0.0372601 0.0645364i
\(146\) 0 0
\(147\) −10.0494 + 5.66758i −0.828857 + 0.467454i
\(148\) 0 0
\(149\) 2.10528 2.50897i 0.172471 0.205543i −0.672884 0.739748i \(-0.734945\pi\)
0.845355 + 0.534205i \(0.179389\pi\)
\(150\) 0 0
\(151\) 2.90758 7.98851i 0.236615 0.650095i −0.763376 0.645954i \(-0.776460\pi\)
0.999991 0.00414108i \(-0.00131815\pi\)
\(152\) 0 0
\(153\) 2.91900 + 0.575664i 0.235987 + 0.0465397i
\(154\) 0 0
\(155\) −6.11325 34.6700i −0.491028 2.78476i
\(156\) 0 0
\(157\) −3.19343 + 1.16231i −0.254863 + 0.0927626i −0.466292 0.884631i \(-0.654410\pi\)
0.211429 + 0.977393i \(0.432188\pi\)
\(158\) 0 0
\(159\) 0.557869 + 3.36185i 0.0442419 + 0.266612i
\(160\) 0 0
\(161\) 2.39721i 0.188926i
\(162\) 0 0
\(163\) 11.4921i 0.900129i 0.892996 + 0.450064i \(0.148599\pi\)
−0.892996 + 0.450064i \(0.851401\pi\)
\(164\) 0 0
\(165\) 1.50111 + 9.04604i 0.116861 + 0.704233i
\(166\) 0 0
\(167\) −15.4019 + 5.60583i −1.19183 + 0.433792i −0.860367 0.509675i \(-0.829766\pi\)
−0.331467 + 0.943467i \(0.607543\pi\)
\(168\) 0 0
\(169\) 4.46282 + 25.3099i 0.343294 + 1.94692i
\(170\) 0 0
\(171\) −8.57838 + 9.81411i −0.656005 + 0.750504i
\(172\) 0 0
\(173\) −6.32756 + 17.3848i −0.481075 + 1.32174i 0.427498 + 0.904016i \(0.359395\pi\)
−0.908573 + 0.417727i \(0.862827\pi\)
\(174\) 0 0
\(175\) −2.66750 + 3.17900i −0.201644 + 0.240310i
\(176\) 0 0
\(177\) 17.8813 10.0846i 1.34404 0.758002i
\(178\) 0 0
\(179\) 8.34873 14.4604i 0.624013 1.08082i −0.364718 0.931118i \(-0.618834\pi\)
0.988731 0.149704i \(-0.0478322\pi\)
\(180\) 0 0
\(181\) 6.23773 + 10.8041i 0.463647 + 0.803060i 0.999139 0.0414800i \(-0.0132073\pi\)
−0.535492 + 0.844540i \(0.679874\pi\)
\(182\) 0 0
\(183\) −6.57779 18.6559i −0.486245 1.37909i
\(184\) 0 0
\(185\) 36.5435 + 6.44361i 2.68673 + 0.473743i
\(186\) 0 0
\(187\) −0.969074 1.15490i −0.0708657 0.0844544i
\(188\) 0 0
\(189\) 2.37500 1.87335i 0.172756 0.136266i
\(190\) 0 0
\(191\) −19.4764 + 16.3427i −1.40927 + 1.18251i −0.452460 + 0.891785i \(0.649453\pi\)
−0.956805 + 0.290729i \(0.906102\pi\)
\(192\) 0 0
\(193\) 2.98850 16.9486i 0.215117 1.21999i −0.665587 0.746320i \(-0.731819\pi\)
0.880704 0.473667i \(-0.157070\pi\)
\(194\) 0 0
\(195\) −6.88876 + 36.8876i −0.493314 + 2.64157i
\(196\) 0 0
\(197\) 3.76094 2.17138i 0.267956 0.154704i −0.360002 0.932951i \(-0.617224\pi\)
0.627958 + 0.778247i \(0.283891\pi\)
\(198\) 0 0
\(199\) 23.0361 + 13.2999i 1.63299 + 0.942806i 0.983165 + 0.182721i \(0.0584904\pi\)
0.649823 + 0.760086i \(0.274843\pi\)
\(200\) 0 0
\(201\) 5.99266 10.1419i 0.422690 0.715352i
\(202\) 0 0
\(203\) 0.114904 + 0.0964161i 0.00806470 + 0.00676708i
\(204\) 0 0
\(205\) −22.7756 8.28965i −1.59072 0.578974i
\(206\) 0 0
\(207\) −1.89925 12.2068i −0.132007 0.848433i
\(208\) 0 0
\(209\) 6.50466 1.14695i 0.449936 0.0793359i
\(210\) 0 0
\(211\) 9.11279 + 25.0372i 0.627350 + 1.72363i 0.688237 + 0.725486i \(0.258385\pi\)
−0.0608870 + 0.998145i \(0.519393\pi\)
\(212\) 0 0
\(213\) 2.14556 5.71479i 0.147011 0.391571i
\(214\) 0 0
\(215\) 0.234098 0.0159653
\(216\) 0 0
\(217\) 5.88473 0.399482
\(218\) 0 0
\(219\) −0.624251 0.759384i −0.0421830 0.0513144i
\(220\) 0 0
\(221\) −2.11012 5.79752i −0.141942 0.389983i
\(222\) 0 0
\(223\) 0.777443 0.137084i 0.0520614 0.00917983i −0.147557 0.989054i \(-0.547141\pi\)
0.199618 + 0.979874i \(0.436030\pi\)
\(224\) 0 0
\(225\) −11.0645 + 18.3012i −0.737634 + 1.22008i
\(226\) 0 0
\(227\) 19.3407 + 7.03943i 1.28369 + 0.467223i 0.891649 0.452727i \(-0.149549\pi\)
0.392036 + 0.919950i \(0.371771\pi\)
\(228\) 0 0
\(229\) 8.12307 + 6.81607i 0.536788 + 0.450418i 0.870438 0.492279i \(-0.163836\pi\)
−0.333650 + 0.942697i \(0.608280\pi\)
\(230\) 0 0
\(231\) −1.53271 0.0154663i −0.100845 0.00101761i
\(232\) 0 0
\(233\) −20.4551 11.8098i −1.34006 0.773683i −0.353242 0.935532i \(-0.614921\pi\)
−0.986816 + 0.161849i \(0.948254\pi\)
\(234\) 0 0
\(235\) −24.7589 + 14.2946i −1.61509 + 0.932475i
\(236\) 0 0
\(237\) 16.9379 + 14.5063i 1.10023 + 0.942286i
\(238\) 0 0
\(239\) −3.29941 + 18.7119i −0.213421 + 1.21037i 0.670204 + 0.742177i \(0.266207\pi\)
−0.883625 + 0.468195i \(0.844904\pi\)
\(240\) 0 0
\(241\) −15.7064 + 13.1792i −1.01174 + 0.848947i −0.988567 0.150784i \(-0.951820\pi\)
−0.0231694 + 0.999732i \(0.507376\pi\)
\(242\) 0 0
\(243\) 10.6095 11.4209i 0.680602 0.732653i
\(244\) 0 0
\(245\) 14.9115 + 17.7708i 0.952658 + 1.13533i
\(246\) 0 0
\(247\) 26.6190 + 4.69364i 1.69373 + 0.298649i
\(248\) 0 0
\(249\) −1.81517 + 2.11943i −0.115032 + 0.134314i
\(250\) 0 0
\(251\) −8.18279 14.1730i −0.516493 0.894592i −0.999817 0.0191506i \(-0.993904\pi\)
0.483323 0.875442i \(-0.339430\pi\)
\(252\) 0 0
\(253\) −3.12994 + 5.42121i −0.196778 + 0.340829i
\(254\) 0 0
\(255\) 0.0603628 5.98196i 0.00378006 0.374605i
\(256\) 0 0
\(257\) 7.22455 8.60988i 0.450655 0.537070i −0.492108 0.870534i \(-0.663773\pi\)
0.942763 + 0.333465i \(0.108218\pi\)
\(258\) 0 0
\(259\) −2.12146 + 5.82866i −0.131821 + 0.362176i
\(260\) 0 0
\(261\) 0.661492 + 0.399924i 0.0409453 + 0.0247547i
\(262\) 0 0
\(263\) 3.55437 + 20.1578i 0.219172 + 1.24298i 0.873519 + 0.486790i \(0.161832\pi\)
−0.654347 + 0.756194i \(0.727056\pi\)
\(264\) 0 0
\(265\) 6.43885 2.34355i 0.395536 0.143963i
\(266\) 0 0
\(267\) 7.13668 5.86670i 0.436758 0.359036i
\(268\) 0 0
\(269\) 15.6928i 0.956805i −0.878141 0.478403i \(-0.841216\pi\)
0.878141 0.478403i \(-0.158784\pi\)
\(270\) 0 0
\(271\) 5.04698i 0.306582i −0.988181 0.153291i \(-0.951013\pi\)
0.988181 0.153291i \(-0.0489873\pi\)
\(272\) 0 0
\(273\) −5.87238 2.20473i −0.355413 0.133436i
\(274\) 0 0
\(275\) 10.1832 3.70637i 0.614067 0.223502i
\(276\) 0 0
\(277\) 0.685177 + 3.88583i 0.0411683 + 0.233477i 0.998448 0.0556853i \(-0.0177344\pi\)
−0.957280 + 0.289162i \(0.906623\pi\)
\(278\) 0 0
\(279\) 29.9656 4.66234i 1.79400 0.279127i
\(280\) 0 0
\(281\) 5.27584 14.4953i 0.314730 0.864714i −0.676955 0.736025i \(-0.736701\pi\)
0.991685 0.128690i \(-0.0410771\pi\)
\(282\) 0 0
\(283\) 2.71786 3.23902i 0.161560 0.192540i −0.679191 0.733961i \(-0.737669\pi\)
0.840751 + 0.541422i \(0.182114\pi\)
\(284\) 0 0
\(285\) 22.5642 + 13.3328i 1.33659 + 0.789767i
\(286\) 0 0
\(287\) 2.02572 3.50864i 0.119574 0.207109i
\(288\) 0 0
\(289\) −8.00822 13.8707i −0.471072 0.815921i
\(290\) 0 0
\(291\) 15.1986 + 2.83834i 0.890959 + 0.166387i
\(292\) 0 0
\(293\) −19.6225 3.45998i −1.14636 0.202134i −0.431973 0.901886i \(-0.642183\pi\)
−0.714385 + 0.699752i \(0.753294\pi\)
\(294\) 0 0
\(295\) −26.5326 31.6203i −1.54479 1.84101i
\(296\) 0 0
\(297\) −7.81695 + 1.13557i −0.453586 + 0.0658927i
\(298\) 0 0
\(299\) −19.6240 + 16.4665i −1.13488 + 0.952281i
\(300\) 0 0
\(301\) −0.00679503 + 0.0385365i −0.000391659 + 0.00222121i
\(302\) 0 0
\(303\) 13.1948 4.65228i 0.758022 0.267267i
\(304\) 0 0
\(305\) −34.4459 + 19.8873i −1.97236 + 1.13875i
\(306\) 0 0
\(307\) 24.7252 + 14.2751i 1.41114 + 0.814725i 0.995496 0.0948008i \(-0.0302214\pi\)
0.415648 + 0.909525i \(0.363555\pi\)
\(308\) 0 0
\(309\) −3.04699 5.40272i −0.173337 0.307350i
\(310\) 0 0
\(311\) 2.70082 + 2.26626i 0.153149 + 0.128508i 0.716143 0.697954i \(-0.245906\pi\)
−0.562993 + 0.826461i \(0.690350\pi\)
\(312\) 0 0
\(313\) −22.6114 8.22989i −1.27807 0.465181i −0.388279 0.921542i \(-0.626930\pi\)
−0.889795 + 0.456361i \(0.849153\pi\)
\(314\) 0 0
\(315\) −4.57936 4.00276i −0.258018 0.225530i
\(316\) 0 0
\(317\) 20.8619 3.67851i 1.17172 0.206606i 0.446281 0.894893i \(-0.352748\pi\)
0.725438 + 0.688287i \(0.241637\pi\)
\(318\) 0 0
\(319\) −0.133966 0.368068i −0.00750065 0.0206079i
\(320\) 0 0
\(321\) 24.2629 4.02620i 1.35422 0.224721i
\(322\) 0 0
\(323\) −4.30905 −0.239762
\(324\) 0 0
\(325\) 44.3469 2.45993
\(326\) 0 0
\(327\) 8.24087 1.36750i 0.455721 0.0756228i
\(328\) 0 0
\(329\) −1.63447 4.49067i −0.0901113 0.247579i
\(330\) 0 0
\(331\) 9.24695 1.63049i 0.508259 0.0896197i 0.0863623 0.996264i \(-0.472476\pi\)
0.421896 + 0.906644i \(0.361365\pi\)
\(332\) 0 0
\(333\) −6.18477 + 31.3609i −0.338923 + 1.71857i
\(334\) 0 0
\(335\) −22.2576 8.10110i −1.21606 0.442610i
\(336\) 0 0
\(337\) −1.24722 1.04654i −0.0679404 0.0570087i 0.608185 0.793795i \(-0.291898\pi\)
−0.676125 + 0.736786i \(0.736342\pi\)
\(338\) 0 0
\(339\) 14.1368 + 25.0664i 0.767804 + 1.36142i
\(340\) 0 0
\(341\) −13.3081 7.68346i −0.720676 0.416083i
\(342\) 0 0
\(343\) −6.88726 + 3.97636i −0.371877 + 0.214703i
\(344\) 0 0
\(345\) −23.4260 + 8.25964i −1.26121 + 0.444684i
\(346\) 0 0
\(347\) −3.34153 + 18.9508i −0.179383 + 1.01733i 0.753580 + 0.657356i \(0.228325\pi\)
−0.932963 + 0.359974i \(0.882786\pi\)
\(348\) 0 0
\(349\) −16.1769 + 13.5741i −0.865932 + 0.726603i −0.963237 0.268651i \(-0.913422\pi\)
0.0973055 + 0.995255i \(0.468978\pi\)
\(350\) 0 0
\(351\) −31.6495 6.57413i −1.68933 0.350901i
\(352\) 0 0
\(353\) −21.6145 25.7592i −1.15043 1.37102i −0.917115 0.398623i \(-0.869488\pi\)
−0.233311 0.972402i \(-0.574956\pi\)
\(354\) 0 0
\(355\) −12.0873 2.13133i −0.641530 0.113119i
\(356\) 0 0
\(357\) 0.982982 + 0.183572i 0.0520249 + 0.00971566i
\(358\) 0 0
\(359\) −17.5568 30.4092i −0.926612 1.60494i −0.788948 0.614459i \(-0.789374\pi\)
−0.137663 0.990479i \(-0.543959\pi\)
\(360\) 0 0
\(361\) −0.0608111 + 0.105328i −0.00320058 + 0.00554357i
\(362\) 0 0
\(363\) −12.9571 7.65611i −0.680069 0.401842i
\(364\) 0 0
\(365\) −1.27052 + 1.51414i −0.0665019 + 0.0792539i
\(366\) 0 0
\(367\) −0.0226511 + 0.0622335i −0.00118238 + 0.00324856i −0.940282 0.340395i \(-0.889439\pi\)
0.939100 + 0.343644i \(0.111661\pi\)
\(368\) 0 0
\(369\) 7.53533 19.4713i 0.392274 1.01364i
\(370\) 0 0
\(371\) 0.198892 + 1.12797i 0.0103260 + 0.0585614i
\(372\) 0 0
\(373\) −0.0644945 + 0.0234741i −0.00333940 + 0.00121544i −0.343689 0.939083i \(-0.611677\pi\)
0.340350 + 0.940299i \(0.389454\pi\)
\(374\) 0 0
\(375\) 12.0208 + 4.51308i 0.620750 + 0.233054i
\(376\) 0 0
\(377\) 1.60291i 0.0825541i
\(378\) 0 0
\(379\) 27.8705i 1.43161i −0.698299 0.715806i \(-0.746059\pi\)
0.698299 0.715806i \(-0.253941\pi\)
\(380\) 0 0
\(381\) −11.0344 + 9.07079i −0.565308 + 0.464711i
\(382\) 0 0
\(383\) −6.08836 + 2.21598i −0.311101 + 0.113231i −0.492852 0.870113i \(-0.664046\pi\)
0.181751 + 0.983345i \(0.441823\pi\)
\(384\) 0 0
\(385\) 0.535176 + 3.03514i 0.0272751 + 0.154685i
\(386\) 0 0
\(387\) −0.00406934 + 0.201616i −0.000206856 + 0.0102487i
\(388\) 0 0
\(389\) −10.3203 + 28.3548i −0.523259 + 1.43764i 0.343612 + 0.939112i \(0.388349\pi\)
−0.866872 + 0.498531i \(0.833873\pi\)
\(390\) 0 0
\(391\) 2.62508 3.12844i 0.132756 0.158212i
\(392\) 0 0
\(393\) −0.0143674 + 1.42381i −0.000724741 + 0.0718218i
\(394\) 0 0
\(395\) 22.4200 38.8326i 1.12807 1.95388i
\(396\) 0 0
\(397\) −1.31295 2.27409i −0.0658950 0.114133i 0.831196 0.555980i \(-0.187657\pi\)
−0.897091 + 0.441847i \(0.854324\pi\)
\(398\) 0 0
\(399\) −2.84977 + 3.32745i −0.142667 + 0.166581i
\(400\) 0 0
\(401\) 11.8095 + 2.08234i 0.589740 + 0.103987i 0.460552 0.887633i \(-0.347652\pi\)
0.129189 + 0.991620i \(0.458763\pi\)
\(402\) 0 0
\(403\) −40.4223 48.1735i −2.01358 2.39969i
\(404\) 0 0
\(405\) −26.4898 16.7543i −1.31629 0.832529i
\(406\) 0 0
\(407\) 12.4079 10.4114i 0.615036 0.516076i
\(408\) 0 0
\(409\) 3.71166 21.0498i 0.183530 1.04085i −0.744300 0.667845i \(-0.767217\pi\)
0.927830 0.373003i \(-0.121672\pi\)
\(410\) 0 0
\(411\) −6.90250 5.91159i −0.340475 0.291597i
\(412\) 0 0
\(413\) 5.97540 3.44990i 0.294030 0.169758i
\(414\) 0 0
\(415\) 4.85911 + 2.80541i 0.238524 + 0.137712i
\(416\) 0 0
\(417\) −9.10582 0.0918851i −0.445914 0.00449963i
\(418\) 0 0
\(419\) −4.27322 3.58565i −0.208760 0.175171i 0.532412 0.846485i \(-0.321286\pi\)
−0.741173 + 0.671314i \(0.765730\pi\)
\(420\) 0 0
\(421\) −4.29843 1.56450i −0.209493 0.0762492i 0.235142 0.971961i \(-0.424444\pi\)
−0.444635 + 0.895712i \(0.646667\pi\)
\(422\) 0 0
\(423\) −11.8808 21.5720i −0.577662 1.04887i
\(424\) 0 0
\(425\) −6.96236 + 1.22765i −0.337724 + 0.0595498i
\(426\) 0 0
\(427\) −2.27396 6.24765i −0.110045 0.302345i
\(428\) 0 0
\(429\) 10.4016 + 12.6533i 0.502193 + 0.610905i
\(430\) 0 0
\(431\) 21.6902 1.04478 0.522390 0.852707i \(-0.325041\pi\)
0.522390 + 0.852707i \(0.325041\pi\)
\(432\) 0 0
\(433\) 14.4385 0.693870 0.346935 0.937889i \(-0.387222\pi\)
0.346935 + 0.937889i \(0.387222\pi\)
\(434\) 0 0
\(435\) 0.546292 1.45507i 0.0261927 0.0697653i
\(436\) 0 0
\(437\) 6.11941 + 16.8129i 0.292731 + 0.804272i
\(438\) 0 0
\(439\) 6.79424 1.19801i 0.324272 0.0571778i −0.00914283 0.999958i \(-0.502910\pi\)
0.333414 + 0.942780i \(0.391799\pi\)
\(440\) 0 0
\(441\) −15.5642 + 12.5335i −0.741153 + 0.596834i
\(442\) 0 0
\(443\) 7.01410 + 2.55292i 0.333250 + 0.121293i 0.503225 0.864155i \(-0.332147\pi\)
−0.169975 + 0.985448i \(0.554369\pi\)
\(444\) 0 0
\(445\) −14.2299 11.9403i −0.674562 0.566025i
\(446\) 0 0
\(447\) 2.88586 4.88397i 0.136496 0.231004i
\(448\) 0 0
\(449\) −21.1658 12.2201i −0.998877 0.576702i −0.0909615 0.995854i \(-0.528994\pi\)
−0.907916 + 0.419152i \(0.862327\pi\)
\(450\) 0 0
\(451\) −9.16220 + 5.28980i −0.431431 + 0.249087i
\(452\) 0 0
\(453\) 2.70307 14.4743i 0.127001 0.680060i
\(454\) 0 0
\(455\) −2.19010 + 12.4207i −0.102673 + 0.582290i
\(456\) 0 0
\(457\) 0.996769 0.836388i 0.0466269 0.0391246i −0.619176 0.785252i \(-0.712533\pi\)
0.665803 + 0.746127i \(0.268089\pi\)
\(458\) 0 0
\(459\) 5.15088 + 0.155972i 0.240423 + 0.00728015i
\(460\) 0 0
\(461\) −9.12564 10.8755i −0.425023 0.506523i 0.510456 0.859904i \(-0.329477\pi\)
−0.935480 + 0.353381i \(0.885032\pi\)
\(462\) 0 0
\(463\) 33.2154 + 5.85677i 1.54365 + 0.272187i 0.879677 0.475571i \(-0.157758\pi\)
0.663972 + 0.747758i \(0.268870\pi\)
\(464\) 0 0
\(465\) −20.2760 57.5067i −0.940276 2.66681i
\(466\) 0 0
\(467\) 13.0487 + 22.6011i 0.603824 + 1.04585i 0.992236 + 0.124368i \(0.0396902\pi\)
−0.388413 + 0.921486i \(0.626976\pi\)
\(468\) 0 0
\(469\) 1.97964 3.42884i 0.0914113 0.158329i
\(470\) 0 0
\(471\) −5.12699 + 2.89149i −0.236239 + 0.133233i
\(472\) 0 0
\(473\) 0.0656824 0.0782773i 0.00302008 0.00359919i
\(474\) 0 0
\(475\) 10.5935 29.1054i 0.486064 1.33545i
\(476\) 0 0
\(477\) 1.90645 + 5.58617i 0.0872901 + 0.255773i
\(478\) 0 0
\(479\) −1.39041 7.88541i −0.0635295 0.360293i −0.999956 0.00942856i \(-0.996999\pi\)
0.936426 0.350865i \(-0.114112\pi\)
\(480\) 0 0
\(481\) 62.2868 22.6706i 2.84004 1.03369i
\(482\) 0 0
\(483\) −0.679706 4.09607i −0.0309277 0.186378i
\(484\) 0 0
\(485\) 31.0881i 1.41164i
\(486\) 0 0
\(487\) 1.43126i 0.0648566i −0.999474 0.0324283i \(-0.989676\pi\)
0.999474 0.0324283i \(-0.0103241\pi\)
\(488\) 0 0
\(489\) 3.25847 + 19.6363i 0.147353 + 0.887986i
\(490\) 0 0
\(491\) −33.7796 + 12.2948i −1.52445 + 0.554855i −0.962255 0.272148i \(-0.912266\pi\)
−0.562197 + 0.827003i \(0.690044\pi\)
\(492\) 0 0
\(493\) 0.0443732 + 0.251653i 0.00199847 + 0.0113339i
\(494\) 0 0
\(495\) 5.12984 + 15.0312i 0.230569 + 0.675602i
\(496\) 0 0
\(497\) 0.701707 1.92792i 0.0314758 0.0864792i
\(498\) 0 0
\(499\) 20.4907 24.4198i 0.917288 1.09318i −0.0780713 0.996948i \(-0.524876\pi\)
0.995359 0.0962330i \(-0.0306794\pi\)
\(500\) 0 0
\(501\) −24.7275 + 13.9457i −1.10474 + 0.623046i
\(502\) 0 0
\(503\) −4.69716 + 8.13572i −0.209436 + 0.362754i −0.951537 0.307534i \(-0.900496\pi\)
0.742101 + 0.670288i \(0.233829\pi\)
\(504\) 0 0
\(505\) −14.0657 24.3626i −0.625917 1.08412i
\(506\) 0 0
\(507\) 14.8020 + 41.9813i 0.657378 + 1.86446i
\(508\) 0 0
\(509\) 23.7648 + 4.19038i 1.05336 + 0.185735i 0.673407 0.739272i \(-0.264830\pi\)
0.379950 + 0.925007i \(0.375941\pi\)
\(510\) 0 0
\(511\) −0.212376 0.253100i −0.00939495 0.0111965i
\(512\) 0 0
\(513\) −11.8751 + 19.2015i −0.524297 + 0.847769i
\(514\) 0 0
\(515\) −9.55390 + 8.01667i −0.420995 + 0.353257i
\(516\) 0 0
\(517\) −2.16699 + 12.2896i −0.0953039 + 0.540495i
\(518\) 0 0
\(519\) −5.88250 + 31.4993i −0.258213 + 1.38267i
\(520\) 0 0
\(521\) 5.61174 3.23994i 0.245855 0.141944i −0.372010 0.928229i \(-0.621331\pi\)
0.617865 + 0.786284i \(0.287998\pi\)
\(522\) 0 0
\(523\) −16.0544 9.26903i −0.702011 0.405306i 0.106085 0.994357i \(-0.466168\pi\)
−0.808096 + 0.589051i \(0.799502\pi\)
\(524\) 0 0
\(525\) −3.65654 + 6.18825i −0.159584 + 0.270077i
\(526\) 0 0
\(527\) 7.67979 + 6.44411i 0.334537 + 0.280710i
\(528\) 0 0
\(529\) 5.67849 + 2.06680i 0.246891 + 0.0898609i
\(530\) 0 0
\(531\) 27.6941 22.3014i 1.20182 0.967799i
\(532\) 0 0
\(533\) −42.6371 + 7.51807i −1.84682 + 0.325644i
\(534\) 0 0
\(535\) −16.9137 46.4699i −0.731241 2.00907i
\(536\) 0 0
\(537\) 10.1652 27.0755i 0.438662 1.16839i
\(538\) 0 0
\(539\) 10.1260 0.436157
\(540\) 0 0
\(541\) 41.5057 1.78447 0.892235 0.451570i \(-0.149136\pi\)
0.892235 + 0.451570i \(0.149136\pi\)
\(542\) 0 0
\(543\) 13.7217 + 16.6921i 0.588855 + 0.716326i
\(544\) 0 0
\(545\) −5.74472 15.7835i −0.246077 0.676090i
\(546\) 0 0
\(547\) −14.8282 + 2.61461i −0.634007 + 0.111792i −0.481409 0.876496i \(-0.659875\pi\)
−0.152597 + 0.988288i \(0.548764\pi\)
\(548\) 0 0
\(549\) −16.5291 30.0121i −0.705445 1.28088i
\(550\) 0 0
\(551\) −1.05201 0.382901i −0.0448172 0.0163121i
\(552\) 0 0
\(553\) 5.74174 + 4.81789i 0.244164 + 0.204878i
\(554\) 0 0
\(555\) 64.2684 + 0.648520i 2.72804 + 0.0275281i
\(556\) 0 0
\(557\) −20.8755 12.0525i −0.884524 0.510680i −0.0123769 0.999923i \(-0.503940\pi\)
−0.872148 + 0.489243i \(0.837273\pi\)
\(558\) 0 0
\(559\) 0.362142 0.209083i 0.0153170 0.00884327i
\(560\) 0 0
\(561\) −1.98330 1.69858i −0.0837351 0.0717142i
\(562\) 0 0
\(563\) 1.32702 7.52589i 0.0559271 0.317179i −0.943991 0.329971i \(-0.892961\pi\)
0.999918 + 0.0127925i \(0.00407210\pi\)
\(564\) 0 0
\(565\) 44.3261 37.1940i 1.86481 1.56476i
\(566\) 0 0
\(567\) 3.52696 3.87437i 0.148118 0.162708i
\(568\) 0 0
\(569\) 10.3936 + 12.3866i 0.435724 + 0.519275i 0.938565 0.345104i \(-0.112156\pi\)
−0.502841 + 0.864379i \(0.667712\pi\)
\(570\) 0 0
\(571\) −34.7174 6.12161i −1.45288 0.256181i −0.609193 0.793022i \(-0.708507\pi\)
−0.843684 + 0.536840i \(0.819618\pi\)
\(572\) 0 0
\(573\) −28.6453 + 33.4468i −1.19667 + 1.39726i
\(574\) 0 0
\(575\) 14.6775 + 25.4221i 0.612093 + 1.06018i
\(576\) 0 0
\(577\) −4.70841 + 8.15521i −0.196014 + 0.339506i −0.947232 0.320548i \(-0.896133\pi\)
0.751219 + 0.660053i \(0.229466\pi\)
\(578\) 0 0
\(579\) 0.300779 29.8072i 0.0124999 1.23874i
\(580\) 0 0
\(581\) −0.602862 + 0.718463i −0.0250109 + 0.0298069i
\(582\) 0 0
\(583\) 1.02296 2.81056i 0.0423667 0.116402i
\(584\) 0 0
\(585\) −1.31159 + 64.9825i −0.0542274 + 2.68669i
\(586\) 0 0
\(587\) −0.736783 4.17851i −0.0304103 0.172465i 0.965820 0.259214i \(-0.0834635\pi\)
−0.996230 + 0.0867485i \(0.972352\pi\)
\(588\) 0 0
\(589\) −41.2729 + 15.0221i −1.70062 + 0.618974i
\(590\) 0 0
\(591\) 5.81059 4.77659i 0.239016 0.196483i
\(592\) 0 0
\(593\) 18.1170i 0.743976i 0.928238 + 0.371988i \(0.121324\pi\)
−0.928238 + 0.371988i \(0.878676\pi\)
\(594\) 0 0
\(595\) 2.01064i 0.0824283i
\(596\) 0 0
\(597\) 43.1326 + 16.1937i 1.76530 + 0.662763i
\(598\) 0 0
\(599\) 16.1974 5.89539i 0.661810 0.240879i 0.0107921 0.999942i \(-0.496565\pi\)
0.651017 + 0.759063i \(0.274342\pi\)
\(600\) 0 0
\(601\) 1.91764 + 10.8755i 0.0782221 + 0.443619i 0.998614 + 0.0526234i \(0.0167583\pi\)
−0.920392 + 0.390996i \(0.872131\pi\)
\(602\) 0 0
\(603\) 7.36394 19.0284i 0.299883 0.774897i
\(604\) 0 0
\(605\) −10.3498 + 28.4359i −0.420780 + 1.15608i
\(606\) 0 0
\(607\) −23.4840 + 27.9871i −0.953186 + 1.13596i 0.0374318 + 0.999299i \(0.488082\pi\)
−0.990618 + 0.136663i \(0.956362\pi\)
\(608\) 0 0
\(609\) 0.223673 + 0.132165i 0.00906369 + 0.00535559i
\(610\) 0 0
\(611\) −25.5342 + 44.2266i −1.03300 + 1.78922i
\(612\) 0 0
\(613\) −1.03350 1.79008i −0.0417427 0.0723005i 0.844399 0.535714i \(-0.179958\pi\)
−0.886142 + 0.463414i \(0.846624\pi\)
\(614\) 0 0
\(615\) −41.2668 7.70658i −1.66404 0.310759i
\(616\) 0 0
\(617\) −22.6757 3.99834i −0.912891 0.160967i −0.302575 0.953126i \(-0.597846\pi\)
−0.610316 + 0.792158i \(0.708957\pi\)
\(618\) 0 0
\(619\) 15.5198 + 18.4958i 0.623794 + 0.743409i 0.981718 0.190342i \(-0.0609596\pi\)
−0.357923 + 0.933751i \(0.616515\pi\)
\(620\) 0 0
\(621\) −6.70636 20.3191i −0.269117 0.815377i
\(622\) 0 0
\(623\) 2.37863 1.99590i 0.0952977 0.0799642i
\(624\) 0 0
\(625\) −1.70623 + 9.67651i −0.0682492 + 0.387060i
\(626\) 0 0
\(627\) 10.7892 3.80410i 0.430879 0.151921i
\(628\) 0 0
\(629\) −9.15129 + 5.28350i −0.364886 + 0.210667i
\(630\) 0 0
\(631\) 6.25684 + 3.61239i 0.249081 + 0.143807i 0.619343 0.785120i \(-0.287399\pi\)
−0.370263 + 0.928927i \(0.620732\pi\)
\(632\) 0 0
\(633\) 22.6699 + 40.1968i 0.901049 + 1.59768i
\(634\) 0 0
\(635\) 22.0016 + 18.4615i 0.873105 + 0.732622i
\(636\) 0 0
\(637\) 38.9395 + 14.1728i 1.54284 + 0.561547i
\(638\) 0 0
\(639\) 2.04571 10.3731i 0.0809270 0.410354i
\(640\) 0 0
\(641\) −9.06847 + 1.59902i −0.358183 + 0.0631573i −0.349844 0.936808i \(-0.613765\pi\)
−0.00833877 + 0.999965i \(0.502654\pi\)
\(642\) 0 0
\(643\) −0.106356 0.292210i −0.00419425 0.0115236i 0.937578 0.347776i \(-0.113063\pi\)
−0.941772 + 0.336252i \(0.890841\pi\)
\(644\) 0 0
\(645\) 0.399999 0.0663762i 0.0157500 0.00261356i
\(646\) 0 0
\(647\) −13.6389 −0.536200 −0.268100 0.963391i \(-0.586396\pi\)
−0.268100 + 0.963391i \(0.586396\pi\)
\(648\) 0 0
\(649\) −18.0176 −0.707252
\(650\) 0 0
\(651\) 10.0552 1.66856i 0.394092 0.0653961i
\(652\) 0 0
\(653\) −11.5721 31.7940i −0.452851 1.24420i −0.930709 0.365760i \(-0.880809\pi\)
0.477859 0.878437i \(-0.341413\pi\)
\(654\) 0 0
\(655\) 2.81950 0.497153i 0.110167 0.0194254i
\(656\) 0 0
\(657\) −1.28196 1.12055i −0.0500142 0.0437167i
\(658\) 0 0
\(659\) −37.4531 13.6318i −1.45897 0.531020i −0.513886 0.857858i \(-0.671795\pi\)
−0.945080 + 0.326838i \(0.894017\pi\)
\(660\) 0 0
\(661\) −28.9434 24.2864i −1.12577 0.944632i −0.126887 0.991917i \(-0.540499\pi\)
−0.998881 + 0.0472854i \(0.984943\pi\)
\(662\) 0 0
\(663\) −5.24937 9.30783i −0.203869 0.361486i
\(664\) 0 0
\(665\) 7.62867 + 4.40442i 0.295827 + 0.170796i
\(666\) 0 0
\(667\) 0.918878 0.530515i 0.0355791 0.0205416i
\(668\) 0 0
\(669\) 1.28954 0.454670i 0.0498563 0.0175786i
\(670\) 0 0
\(671\) −3.01482 + 17.0979i −0.116386 + 0.660057i
\(672\) 0 0
\(673\) −8.50135 + 7.13348i −0.327703 + 0.274975i −0.791763 0.610828i \(-0.790837\pi\)
0.464060 + 0.885804i \(0.346392\pi\)
\(674\) 0 0
\(675\) −13.7166 + 34.4082i −0.527953 + 1.32437i
\(676\) 0 0
\(677\) 8.86465 + 10.5645i 0.340696 + 0.406026i 0.909002 0.416791i \(-0.136845\pi\)
−0.568306 + 0.822817i \(0.692401\pi\)
\(678\) 0 0
\(679\) 5.11764 + 0.902377i 0.196397 + 0.0346301i
\(680\) 0 0
\(681\) 35.0431 + 6.54430i 1.34285 + 0.250778i
\(682\) 0 0
\(683\) −8.22428 14.2449i −0.314693 0.545065i 0.664679 0.747129i \(-0.268568\pi\)
−0.979372 + 0.202064i \(0.935235\pi\)
\(684\) 0 0
\(685\) −9.13656 + 15.8250i −0.349090 + 0.604642i
\(686\) 0 0
\(687\) 15.8124 + 9.34329i 0.603281 + 0.356469i
\(688\) 0 0
\(689\) 7.86759 9.37623i 0.299731 0.357206i
\(690\) 0 0
\(691\) −4.66180 + 12.8082i −0.177343 + 0.487247i −0.996234 0.0867022i \(-0.972367\pi\)
0.818891 + 0.573949i \(0.194589\pi\)
\(692\) 0 0
\(693\) −2.62330 + 0.408158i −0.0996509 + 0.0155046i
\(694\) 0 0
\(695\) 3.17948 + 18.0318i 0.120605 + 0.683983i
\(696\) 0 0
\(697\) 6.48579 2.36064i 0.245667 0.0894154i
\(698\) 0 0
\(699\) −38.2999 14.3793i −1.44863 0.543875i
\(700\) 0 0
\(701\) 29.8352i 1.12686i −0.826164 0.563429i \(-0.809482\pi\)
0.826164 0.563429i \(-0.190518\pi\)
\(702\) 0 0
\(703\) 46.2951i 1.74605i
\(704\) 0 0
\(705\) −38.2521 + 31.4451i −1.44066 + 1.18429i
\(706\) 0 0
\(707\) 4.41878 1.60830i 0.166185 0.0604865i
\(708\) 0 0
\(709\) 2.25709 + 12.8006i 0.0847670 + 0.480737i 0.997407 + 0.0719723i \(0.0229293\pi\)
−0.912640 + 0.408765i \(0.865960\pi\)
\(710\) 0 0
\(711\) 33.0546 + 19.9841i 1.23965 + 0.749464i
\(712\) 0 0
\(713\) 14.2372 39.1163i 0.533186 1.46492i
\(714\) 0 0
\(715\) 21.1700 25.2295i 0.791714 0.943528i
\(716\) 0 0
\(717\) −0.332071 + 32.9083i −0.0124014 + 1.22898i
\(718\) 0 0
\(719\) 5.56340 9.63609i 0.207480 0.359365i −0.743440 0.668802i \(-0.766807\pi\)
0.950920 + 0.309437i \(0.100141\pi\)
\(720\) 0 0
\(721\) −1.04237 1.80543i −0.0388198 0.0672379i
\(722\) 0 0
\(723\) −23.1004 + 26.9725i −0.859113 + 1.00312i
\(724\) 0 0
\(725\) −1.80888 0.318954i −0.0671801 0.0118457i
\(726\) 0 0
\(727\) 14.8219 + 17.6641i 0.549714 + 0.655123i 0.967336 0.253497i \(-0.0815809\pi\)
−0.417622 + 0.908621i \(0.637136\pi\)
\(728\) 0 0
\(729\) 14.8901 22.5230i 0.551484 0.834186i
\(730\) 0 0
\(731\) −0.0510674 + 0.0428507i −0.00188880 + 0.00158489i
\(732\) 0 0
\(733\) 4.20335 23.8384i 0.155254 0.880492i −0.803298 0.595577i \(-0.796924\pi\)
0.958553 0.284915i \(-0.0919653\pi\)
\(734\) 0 0
\(735\) 30.5177 + 26.1367i 1.12566 + 0.964065i
\(736\) 0 0
\(737\) −8.95380 + 5.16948i −0.329817 + 0.190420i
\(738\) 0 0
\(739\) −2.48625 1.43543i −0.0914580 0.0528033i 0.453573 0.891219i \(-0.350149\pi\)
−0.545031 + 0.838416i \(0.683482\pi\)
\(740\) 0 0
\(741\) 46.8143 + 0.472394i 1.71977 + 0.0173538i
\(742\) 0 0
\(743\) −37.1866 31.2033i −1.36424 1.14474i −0.974646 0.223752i \(-0.928169\pi\)
−0.389599 0.920985i \(-0.627386\pi\)
\(744\) 0 0
\(745\) −10.7185 3.90121i −0.392695 0.142929i
\(746\) 0 0
\(747\) −2.50061 + 4.13612i −0.0914926 + 0.151333i
\(748\) 0 0
\(749\) 8.14070 1.43542i 0.297455 0.0524493i
\(750\) 0 0
\(751\) 12.4360 + 34.1677i 0.453797 + 1.24680i 0.930032 + 0.367479i \(0.119779\pi\)
−0.476235 + 0.879318i \(0.657999\pi\)
\(752\) 0 0
\(753\) −18.0004 21.8971i −0.655972 0.797973i
\(754\) 0 0
\(755\) −29.6064 −1.07749
\(756\) 0 0
\(757\) 34.7205 1.26194 0.630969 0.775808i \(-0.282658\pi\)
0.630969 + 0.775808i \(0.282658\pi\)
\(758\) 0 0
\(759\) −3.81095 + 10.1506i −0.138329 + 0.368444i
\(760\) 0 0
\(761\) −0.602221 1.65459i −0.0218305 0.0599788i 0.928299 0.371835i \(-0.121271\pi\)
−0.950129 + 0.311857i \(0.899049\pi\)
\(762\) 0 0
\(763\) 2.76498 0.487541i 0.100099 0.0176502i
\(764\) 0 0
\(765\) −1.59299 10.2384i −0.0575946 0.370170i
\(766\) 0 0
\(767\) −69.2867 25.2183i −2.50180 0.910579i
\(768\) 0 0
\(769\) 28.7912 + 24.1587i 1.03824 + 0.871185i 0.991808 0.127736i \(-0.0407710\pi\)
0.0464302 + 0.998922i \(0.485215\pi\)
\(770\) 0 0
\(771\) 9.90323 16.7600i 0.356656 0.603598i
\(772\) 0 0
\(773\) 6.18041 + 3.56826i 0.222294 + 0.128341i 0.607012 0.794693i \(-0.292368\pi\)
−0.384718 + 0.923034i \(0.625701\pi\)
\(774\) 0 0
\(775\) −62.4070 + 36.0307i −2.24172 + 1.29426i
\(776\) 0 0
\(777\) −1.97224 + 10.5609i −0.0707538 + 0.378869i
\(778\) 0 0
\(779\) −5.25087 + 29.7791i −0.188132 + 1.06695i
\(780\) 0 0
\(781\) −4.10410 + 3.44375i −0.146856 + 0.123227i
\(782\) 0 0
\(783\) 1.24368 + 0.495785i 0.0444454 + 0.0177179i
\(784\) 0 0
\(785\) 7.60754 + 9.06631i 0.271525 + 0.323591i
\(786\) 0 0
\(787\) 41.0237 + 7.23358i 1.46234 + 0.257849i 0.847496 0.530802i \(-0.178109\pi\)
0.614841 + 0.788651i \(0.289220\pi\)
\(788\) 0 0
\(789\) 11.7889 + 33.4356i 0.419695 + 1.19034i
\(790\) 0 0
\(791\) 4.83615 + 8.37645i 0.171954 + 0.297832i
\(792\) 0 0
\(793\) −35.5245 + 61.5303i −1.26151 + 2.18500i
\(794\) 0 0
\(795\) 10.3375 5.83007i 0.366633 0.206771i
\(796\) 0 0
\(797\) 7.92442 9.44395i 0.280697 0.334522i −0.607213 0.794539i \(-0.707712\pi\)
0.887910 + 0.460017i \(0.152157\pi\)
\(798\) 0 0
\(799\) 2.78449 7.65033i 0.0985082 0.270649i
\(800\) 0 0
\(801\) 10.5309 12.0479i 0.372091 0.425691i
\(802\) 0 0
\(803\) 0.149819 + 0.849668i 0.00528701 + 0.0299841i
\(804\) 0 0
\(805\) −7.84508 + 2.85538i −0.276503 + 0.100639i
\(806\) 0 0
\(807\) −4.44954 26.8140i −0.156631 0.943898i
\(808\) 0 0
\(809\) 22.6558i 0.796534i 0.917270 + 0.398267i \(0.130388\pi\)
−0.917270 + 0.398267i \(0.869612\pi\)
\(810\) 0 0
\(811\) 18.3727i 0.645153i 0.946543 + 0.322577i \(0.104549\pi\)
−0.946543 + 0.322577i \(0.895451\pi\)
\(812\) 0 0
\(813\) −1.43103 8.62371i −0.0501883 0.302447i
\(814\) 0 0
\(815\) 37.6089 13.6885i 1.31738 0.479487i
\(816\) 0 0
\(817\) −0.0507159 0.287624i −0.00177432 0.0100627i
\(818\) 0 0
\(819\) −10.6592 2.10212i −0.372462 0.0734541i
\(820\) 0 0
\(821\) 6.25489 17.1852i 0.218297 0.599766i −0.781409 0.624020i \(-0.785499\pi\)
0.999706 + 0.0242532i \(0.00772079\pi\)
\(822\) 0 0
\(823\) 17.9729 21.4193i 0.626497 0.746631i −0.355676 0.934609i \(-0.615749\pi\)
0.982173 + 0.187979i \(0.0601937\pi\)
\(824\) 0 0
\(825\) 16.3489 9.22035i 0.569196 0.321011i
\(826\) 0 0
\(827\) −18.5651 + 32.1557i −0.645573 + 1.11816i 0.338596 + 0.940932i \(0.390048\pi\)
−0.984169 + 0.177233i \(0.943285\pi\)
\(828\) 0 0
\(829\) 10.0595 + 17.4236i 0.349382 + 0.605147i 0.986140 0.165917i \(-0.0530584\pi\)
−0.636758 + 0.771064i \(0.719725\pi\)
\(830\) 0 0
\(831\) 2.27254 + 6.44539i 0.0788337 + 0.223588i
\(832\) 0 0
\(833\) −6.50574 1.14714i −0.225411 0.0397460i
\(834\) 0 0
\(835\) 36.6912 + 43.7268i 1.26975 + 1.51323i
\(836\) 0 0
\(837\) 49.8799 16.4630i 1.72410 0.569043i
\(838\) 0 0
\(839\) 17.7136 14.8634i 0.611540 0.513143i −0.283592 0.958945i \(-0.591526\pi\)
0.895131 + 0.445802i \(0.147082\pi\)
\(840\) 0 0
\(841\) 5.02427 28.4940i 0.173251 0.982553i
\(842\) 0 0
\(843\) 4.90475 26.2637i 0.168929 0.904571i
\(844\) 0 0
\(845\) 77.5133 44.7523i 2.66654 1.53953i
\(846\) 0 0
\(847\) −4.38062 2.52915i −0.150520 0.0869027i
\(848\) 0 0
\(849\) 3.72557 6.30509i 0.127861 0.216390i
\(850\) 0 0
\(851\) 33.6111 + 28.2030i 1.15217 + 0.966788i
\(852\) 0 0
\(853\) −17.0665 6.21171i −0.584347 0.212685i 0.0328941 0.999459i \(-0.489528\pi\)
−0.617241 + 0.786774i \(0.711750\pi\)
\(854\) 0 0
\(855\) 42.3355 + 16.3837i 1.44784 + 0.560311i
\(856\) 0 0
\(857\) −22.6751 + 3.99823i −0.774566 + 0.136577i −0.546940 0.837172i \(-0.684207\pi\)
−0.227626 + 0.973749i \(0.573096\pi\)
\(858\) 0 0
\(859\) 11.9011 + 32.6979i 0.406059 + 1.11564i 0.959244 + 0.282579i \(0.0911900\pi\)
−0.553185 + 0.833058i \(0.686588\pi\)
\(860\) 0 0
\(861\) 2.46647 6.56954i 0.0840570 0.223889i
\(862\) 0 0
\(863\) −16.2935 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(864\) 0 0
\(865\) 64.4303 2.19070
\(866\) 0 0
\(867\) −17.6164 21.4299i −0.598285 0.727798i
\(868\) 0 0
\(869\) −6.69425 18.3923i −0.227087 0.623916i
\(870\) 0 0
\(871\) −41.6673 + 7.34707i −1.41184 + 0.248946i
\(872\) 0 0
\(873\) 26.7745 + 0.540407i 0.906178 + 0.0182900i
\(874\) 0 0
\(875\) 4.05529 + 1.47601i 0.137094 + 0.0498981i
\(876\) 0 0
\(877\) −8.68742 7.28961i −0.293353 0.246153i 0.484218 0.874947i \(-0.339104\pi\)
−0.777571 + 0.628795i \(0.783549\pi\)
\(878\) 0 0
\(879\) −34.5097 0.348231i −1.16398 0.0117455i
\(880\) 0 0
\(881\) 45.1724 + 26.0803i 1.52190 + 0.878668i 0.999665 + 0.0258648i \(0.00823393\pi\)
0.522232 + 0.852803i \(0.325099\pi\)
\(882\) 0 0
\(883\) −37.5310 + 21.6685i −1.26302 + 0.729205i −0.973658 0.228015i \(-0.926776\pi\)
−0.289362 + 0.957220i \(0.593443\pi\)
\(884\) 0 0
\(885\) −54.3015 46.5061i −1.82532 1.56328i
\(886\) 0 0
\(887\) 1.93441 10.9706i 0.0649510 0.368355i −0.934957 0.354762i \(-0.884562\pi\)
0.999908 0.0135933i \(-0.00432703\pi\)
\(888\) 0 0
\(889\) −3.67771 + 3.08597i −0.123347 + 0.103500i
\(890\) 0 0
\(891\) −13.0347 + 4.15676i −0.436680 + 0.139257i
\(892\) 0 0
\(893\) 22.9269 + 27.3232i 0.767219 + 0.914336i
\(894\) 0 0
\(895\) −57.2674 10.0978i −1.91424 0.337532i
\(896\) 0 0
\(897\) −28.8623 + 33.7002i −0.963684 + 1.12522i
\(898\) 0 0
\(899\) 1.30232 + 2.25569i 0.0434349 + 0.0752314i
\(900\) 0 0
\(901\) −0.975631 + 1.68984i −0.0325030 + 0.0562968i
\(902\) 0 0
\(903\) −0.000683890 0.0677735i −2.27584e−5 0.00225536i
\(904\) 0 0
\(905\) 27.9274 33.2825i 0.928337 1.10635i
\(906\) 0 0
\(907\) 2.90941 7.99354i 0.0966054 0.265421i −0.881972 0.471303i \(-0.843784\pi\)
0.978577 + 0.205882i \(0.0660062\pi\)
\(908\) 0 0
\(909\) 21.2267 11.6906i 0.704044 0.387751i
\(910\) 0 0
\(911\) 7.22116 + 40.9532i 0.239248 + 1.35684i 0.833481 + 0.552548i \(0.186344\pi\)
−0.594233 + 0.804293i \(0.702544\pi\)
\(912\) 0 0
\(913\) 2.30142 0.837650i 0.0761660 0.0277222i
\(914\) 0 0
\(915\) −53.2183 + 43.7480i −1.75934 + 1.44626i
\(916\) 0 0
\(917\) 0.478569i 0.0158037i
\(918\) 0 0
\(919\) 29.7513i 0.981404i 0.871328 + 0.490702i \(0.163260\pi\)
−0.871328 + 0.490702i \(0.836740\pi\)
\(920\) 0 0
\(921\) 46.2952 + 17.3811i 1.52548 + 0.572726i
\(922\) 0 0
\(923\) −20.6024 + 7.49865i −0.678135 + 0.246821i
\(924\) 0 0
\(925\) −13.1895 74.8015i −0.433669 2.45946i
\(926\) 0 0
\(927\) −6.73825 8.36760i −0.221313 0.274828i
\(928\) 0 0
\(929\) 6.38406 17.5401i 0.209454 0.575471i −0.789829 0.613327i \(-0.789831\pi\)
0.999283 + 0.0378565i \(0.0120530\pi\)
\(930\) 0 0
\(931\) 18.6036 22.1709i 0.609707 0.726621i
\(932\) 0 0
\(933\) 5.25743 + 3.10653i 0.172120 + 0.101703i
\(934\) 0 0
\(935\) −2.62522 + 4.54701i −0.0858538 + 0.148703i
\(936\) 0 0
\(937\) −20.1936 34.9764i −0.659697 1.14263i −0.980694 0.195549i \(-0.937351\pi\)
0.320997 0.947080i \(-0.395982\pi\)
\(938\) 0 0
\(939\) −40.9693 7.65102i −1.33698 0.249682i
\(940\) 0 0
\(941\) −30.9752 5.46176i −1.00976 0.178048i −0.355789 0.934566i \(-0.615788\pi\)
−0.653972 + 0.756518i \(0.726899\pi\)
\(942\) 0 0
\(943\) −18.4213 21.9537i −0.599882 0.714911i
\(944\) 0 0
\(945\) −8.95963 5.54102i −0.291457 0.180249i
\(946\) 0 0
\(947\) −32.5062 + 27.2759i −1.05631 + 0.886348i −0.993743 0.111692i \(-0.964373\pi\)
−0.0625661 + 0.998041i \(0.519928\pi\)
\(948\) 0 0
\(949\) −0.613105 + 3.47709i −0.0199022 + 0.112871i
\(950\) 0 0
\(951\) 34.6034 12.2006i 1.12209 0.395632i
\(952\) 0 0
\(953\) −27.9512 + 16.1376i −0.905429 + 0.522749i −0.878957 0.476900i \(-0.841760\pi\)
−0.0264711 + 0.999650i \(0.508427\pi\)
\(954\) 0 0
\(955\) 76.6817 + 44.2722i 2.48136 + 1.43262i
\(956\) 0 0
\(957\) −0.333268 0.590928i −0.0107730 0.0191020i
\(958\) 0 0
\(959\) −2.33987 1.96338i −0.0755582 0.0634009i
\(960\) 0 0
\(961\) 66.8932 + 24.3472i 2.15785 + 0.785392i
\(962\) 0 0
\(963\) 40.3160 13.7590i 1.29916 0.443378i
\(964\) 0 0
\(965\) −59.0255 + 10.4078i −1.90010 + 0.335039i
\(966\) 0 0
\(967\) −14.2016 39.0186i −0.456693 1.25475i −0.927932 0.372749i \(-0.878415\pi\)
0.471239 0.882005i \(-0.343807\pi\)
\(968\) 0 0
\(969\) −7.36280 + 1.22179i −0.236527 + 0.0392496i
\(970\) 0 0
\(971\) 14.5385 0.466564 0.233282 0.972409i \(-0.425054\pi\)
0.233282 + 0.972409i \(0.425054\pi\)
\(972\) 0 0
\(973\) −3.06063 −0.0981193
\(974\) 0 0
\(975\) 75.7750 12.5742i 2.42674 0.402696i
\(976\) 0 0
\(977\) 11.4395 + 31.4298i 0.365982 + 1.00553i 0.976874 + 0.213814i \(0.0685886\pi\)
−0.610892 + 0.791714i \(0.709189\pi\)
\(978\) 0 0
\(979\) −7.98517 + 1.40800i −0.255207 + 0.0449999i
\(980\) 0 0
\(981\) 13.6933 4.67324i 0.437194 0.149205i
\(982\) 0 0
\(983\) 3.63677 + 1.32368i 0.115995 + 0.0422187i 0.399366 0.916792i \(-0.369230\pi\)
−0.283371 + 0.959010i \(0.591453\pi\)
\(984\) 0 0
\(985\) −11.5858 9.72164i −0.369154 0.309757i
\(986\) 0 0
\(987\) −4.06609 7.20971i −0.129425 0.229487i
\(988\) 0 0
\(989\) 0.239716 + 0.138400i 0.00762253 + 0.00440087i
\(990\) 0 0
\(991\) −7.46425 + 4.30949i −0.237110 + 0.136895i −0.613848 0.789425i \(-0.710379\pi\)
0.376738 + 0.926320i \(0.377046\pi\)
\(992\) 0 0
\(993\) 15.3378 5.40788i 0.486731 0.171614i
\(994\) 0 0
\(995\) 16.0863 91.2297i 0.509969 2.89218i
\(996\) 0 0
\(997\) −3.42878 + 2.87709i −0.108591 + 0.0911184i −0.695466 0.718559i \(-0.744802\pi\)
0.586876 + 0.809677i \(0.300358\pi\)
\(998\) 0 0
\(999\) −1.67572 + 55.3396i −0.0530174 + 1.75087i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bi.a.383.34 yes 216
4.3 odd 2 inner 864.2.bi.a.383.3 216
27.11 odd 18 inner 864.2.bi.a.767.3 yes 216
108.11 even 18 inner 864.2.bi.a.767.34 yes 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.2.bi.a.383.3 216 4.3 odd 2 inner
864.2.bi.a.383.34 yes 216 1.1 even 1 trivial
864.2.bi.a.767.3 yes 216 27.11 odd 18 inner
864.2.bi.a.767.34 yes 216 108.11 even 18 inner