Properties

Label 864.2.bf.a.241.17
Level $864$
Weight $2$
Character 864.241
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 241.17
Character \(\chi\) \(=\) 864.241
Dual form 864.2.bf.a.337.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0518114 - 1.73128i) q^{3} +(1.55117 + 1.84861i) q^{5} +(1.49685 - 0.544810i) q^{7} +(-2.99463 + 0.179400i) q^{9} +(0.102391 - 0.122025i) q^{11} +(3.39140 - 0.597995i) q^{13} +(3.12009 - 2.78128i) q^{15} +(-1.43581 - 2.48690i) q^{17} +(3.75621 + 2.16865i) q^{19} +(-1.02077 - 2.56324i) q^{21} +(-2.14748 - 0.781619i) q^{23} +(-0.142997 + 0.810974i) q^{25} +(0.465746 + 5.17524i) q^{27} +(8.60509 + 1.51731i) q^{29} +(6.69129 + 2.43543i) q^{31} +(-0.216565 - 0.170946i) q^{33} +(3.32901 + 1.92201i) q^{35} +(-5.14590 + 2.97099i) q^{37} +(-1.21101 - 5.84046i) q^{39} +(-1.74706 - 9.90807i) q^{41} +(7.59829 - 9.05529i) q^{43} +(-4.97682 - 5.25763i) q^{45} +(-3.66367 + 1.33347i) q^{47} +(-3.41856 + 2.86851i) q^{49} +(-4.23112 + 2.61464i) q^{51} +9.80805i q^{53} +0.384404 q^{55} +(3.55991 - 6.61539i) q^{57} +(-1.72220 - 2.05244i) q^{59} +(-0.492702 - 1.35369i) q^{61} +(-4.38478 + 1.90004i) q^{63} +(6.36609 + 5.34178i) q^{65} +(-0.225321 + 0.0397302i) q^{67} +(-1.24193 + 3.75838i) q^{69} +(-2.82317 - 4.88987i) q^{71} +(7.14574 - 12.3768i) q^{73} +(1.41143 + 0.205549i) q^{75} +(0.0867843 - 0.238438i) q^{77} +(2.18269 - 12.3786i) q^{79} +(8.93563 - 1.07447i) q^{81} +(-11.1079 - 1.95862i) q^{83} +(2.37013 - 6.51187i) q^{85} +(2.18104 - 14.9764i) q^{87} +(-3.73417 + 6.46777i) q^{89} +(4.75063 - 2.74278i) q^{91} +(3.86972 - 11.7107i) q^{93} +(1.81753 + 10.3077i) q^{95} +(5.17680 + 4.34385i) q^{97} +(-0.284733 + 0.383790i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0518114 1.73128i −0.0299133 0.999552i
\(4\) 0 0
\(5\) 1.55117 + 1.84861i 0.693704 + 0.826724i 0.991798 0.127812i \(-0.0407956\pi\)
−0.298095 + 0.954536i \(0.596351\pi\)
\(6\) 0 0
\(7\) 1.49685 0.544810i 0.565757 0.205919i −0.0432765 0.999063i \(-0.513780\pi\)
0.609034 + 0.793144i \(0.291557\pi\)
\(8\) 0 0
\(9\) −2.99463 + 0.179400i −0.998210 + 0.0597999i
\(10\) 0 0
\(11\) 0.102391 0.122025i 0.0308722 0.0367920i −0.750387 0.660998i \(-0.770133\pi\)
0.781260 + 0.624206i \(0.214577\pi\)
\(12\) 0 0
\(13\) 3.39140 0.597995i 0.940604 0.165854i 0.317735 0.948180i \(-0.397078\pi\)
0.622869 + 0.782326i \(0.285967\pi\)
\(14\) 0 0
\(15\) 3.12009 2.78128i 0.805603 0.718123i
\(16\) 0 0
\(17\) −1.43581 2.48690i −0.348236 0.603163i 0.637700 0.770285i \(-0.279886\pi\)
−0.985936 + 0.167122i \(0.946553\pi\)
\(18\) 0 0
\(19\) 3.75621 + 2.16865i 0.861733 + 0.497522i 0.864592 0.502474i \(-0.167577\pi\)
−0.00285908 + 0.999996i \(0.500910\pi\)
\(20\) 0 0
\(21\) −1.02077 2.56324i −0.222750 0.559344i
\(22\) 0 0
\(23\) −2.14748 0.781619i −0.447781 0.162979i 0.108280 0.994120i \(-0.465466\pi\)
−0.556061 + 0.831142i \(0.687688\pi\)
\(24\) 0 0
\(25\) −0.142997 + 0.810974i −0.0285993 + 0.162195i
\(26\) 0 0
\(27\) 0.465746 + 5.17524i 0.0896329 + 0.995975i
\(28\) 0 0
\(29\) 8.60509 + 1.51731i 1.59793 + 0.281757i 0.900486 0.434886i \(-0.143211\pi\)
0.697440 + 0.716643i \(0.254322\pi\)
\(30\) 0 0
\(31\) 6.69129 + 2.43543i 1.20179 + 0.437416i 0.863849 0.503751i \(-0.168047\pi\)
0.337942 + 0.941167i \(0.390269\pi\)
\(32\) 0 0
\(33\) −0.216565 0.170946i −0.0376991 0.0297578i
\(34\) 0 0
\(35\) 3.32901 + 1.92201i 0.562706 + 0.324878i
\(36\) 0 0
\(37\) −5.14590 + 2.97099i −0.845981 + 0.488427i −0.859293 0.511484i \(-0.829096\pi\)
0.0133118 + 0.999911i \(0.495763\pi\)
\(38\) 0 0
\(39\) −1.21101 5.84046i −0.193916 0.935222i
\(40\) 0 0
\(41\) −1.74706 9.90807i −0.272845 1.54738i −0.745725 0.666254i \(-0.767897\pi\)
0.472880 0.881127i \(-0.343214\pi\)
\(42\) 0 0
\(43\) 7.59829 9.05529i 1.15873 1.38092i 0.247567 0.968871i \(-0.420369\pi\)
0.911162 0.412048i \(-0.135187\pi\)
\(44\) 0 0
\(45\) −4.97682 5.25763i −0.741900 0.783761i
\(46\) 0 0
\(47\) −3.66367 + 1.33347i −0.534402 + 0.194506i −0.595103 0.803650i \(-0.702889\pi\)
0.0607009 + 0.998156i \(0.480666\pi\)
\(48\) 0 0
\(49\) −3.41856 + 2.86851i −0.488366 + 0.409788i
\(50\) 0 0
\(51\) −4.23112 + 2.61464i −0.592476 + 0.366123i
\(52\) 0 0
\(53\) 9.80805i 1.34724i 0.739078 + 0.673620i \(0.235262\pi\)
−0.739078 + 0.673620i \(0.764738\pi\)
\(54\) 0 0
\(55\) 0.384404 0.0518330
\(56\) 0 0
\(57\) 3.55991 6.61539i 0.471522 0.876230i
\(58\) 0 0
\(59\) −1.72220 2.05244i −0.224212 0.267205i 0.642198 0.766539i \(-0.278023\pi\)
−0.866410 + 0.499334i \(0.833578\pi\)
\(60\) 0 0
\(61\) −0.492702 1.35369i −0.0630841 0.173322i 0.904146 0.427224i \(-0.140508\pi\)
−0.967230 + 0.253902i \(0.918286\pi\)
\(62\) 0 0
\(63\) −4.38478 + 1.90004i −0.552431 + 0.239382i
\(64\) 0 0
\(65\) 6.36609 + 5.34178i 0.789616 + 0.662566i
\(66\) 0 0
\(67\) −0.225321 + 0.0397302i −0.0275273 + 0.00485381i −0.187395 0.982285i \(-0.560004\pi\)
0.159868 + 0.987138i \(0.448893\pi\)
\(68\) 0 0
\(69\) −1.24193 + 3.75838i −0.149511 + 0.452456i
\(70\) 0 0
\(71\) −2.82317 4.88987i −0.335048 0.580320i 0.648446 0.761261i \(-0.275419\pi\)
−0.983494 + 0.180940i \(0.942086\pi\)
\(72\) 0 0
\(73\) 7.14574 12.3768i 0.836346 1.44859i −0.0565836 0.998398i \(-0.518021\pi\)
0.892930 0.450196i \(-0.148646\pi\)
\(74\) 0 0
\(75\) 1.41143 + 0.205549i 0.162978 + 0.0237347i
\(76\) 0 0
\(77\) 0.0867843 0.238438i 0.00988999 0.0271725i
\(78\) 0 0
\(79\) 2.18269 12.3786i 0.245572 1.39271i −0.573590 0.819143i \(-0.694450\pi\)
0.819161 0.573563i \(-0.194439\pi\)
\(80\) 0 0
\(81\) 8.93563 1.07447i 0.992848 0.119386i
\(82\) 0 0
\(83\) −11.1079 1.95862i −1.21925 0.214987i −0.473248 0.880929i \(-0.656919\pi\)
−0.746003 + 0.665942i \(0.768030\pi\)
\(84\) 0 0
\(85\) 2.37013 6.51187i 0.257076 0.706311i
\(86\) 0 0
\(87\) 2.18104 14.9764i 0.233832 1.60564i
\(88\) 0 0
\(89\) −3.73417 + 6.46777i −0.395821 + 0.685582i −0.993206 0.116373i \(-0.962873\pi\)
0.597385 + 0.801955i \(0.296207\pi\)
\(90\) 0 0
\(91\) 4.75063 2.74278i 0.498001 0.287521i
\(92\) 0 0
\(93\) 3.86972 11.7107i 0.401271 1.21434i
\(94\) 0 0
\(95\) 1.81753 + 10.3077i 0.186474 + 1.05755i
\(96\) 0 0
\(97\) 5.17680 + 4.34385i 0.525624 + 0.441051i 0.866587 0.499026i \(-0.166309\pi\)
−0.340963 + 0.940077i \(0.610753\pi\)
\(98\) 0 0
\(99\) −0.284733 + 0.383790i −0.0286168 + 0.0385724i
\(100\) 0 0
\(101\) 0.582767 + 1.60114i 0.0579875 + 0.159319i 0.965304 0.261129i \(-0.0840949\pi\)
−0.907316 + 0.420449i \(0.861873\pi\)
\(102\) 0 0
\(103\) −9.82235 + 8.24193i −0.967825 + 0.812102i −0.982208 0.187795i \(-0.939866\pi\)
0.0143832 + 0.999897i \(0.495422\pi\)
\(104\) 0 0
\(105\) 3.15504 5.86302i 0.307901 0.572172i
\(106\) 0 0
\(107\) 15.7558i 1.52317i 0.648065 + 0.761585i \(0.275579\pi\)
−0.648065 + 0.761585i \(0.724421\pi\)
\(108\) 0 0
\(109\) 4.23854i 0.405978i −0.979181 0.202989i \(-0.934934\pi\)
0.979181 0.202989i \(-0.0650656\pi\)
\(110\) 0 0
\(111\) 5.41021 + 8.75504i 0.513515 + 0.830992i
\(112\) 0 0
\(113\) −5.72871 + 4.80696i −0.538912 + 0.452201i −0.871166 0.490989i \(-0.836635\pi\)
0.332254 + 0.943190i \(0.392191\pi\)
\(114\) 0 0
\(115\) −1.88620 5.18228i −0.175889 0.483250i
\(116\) 0 0
\(117\) −10.0487 + 2.39919i −0.929003 + 0.221805i
\(118\) 0 0
\(119\) −3.50409 2.94028i −0.321220 0.269535i
\(120\) 0 0
\(121\) 1.90572 + 10.8079i 0.173248 + 0.982536i
\(122\) 0 0
\(123\) −17.0631 + 3.53799i −1.53853 + 0.319010i
\(124\) 0 0
\(125\) 8.72843 5.03936i 0.780695 0.450734i
\(126\) 0 0
\(127\) −6.92735 + 11.9985i −0.614703 + 1.06470i 0.375734 + 0.926728i \(0.377391\pi\)
−0.990437 + 0.137969i \(0.955943\pi\)
\(128\) 0 0
\(129\) −16.0709 12.6856i −1.41496 1.11690i
\(130\) 0 0
\(131\) 1.76657 4.85361i 0.154346 0.424061i −0.838286 0.545231i \(-0.816442\pi\)
0.992632 + 0.121169i \(0.0386643\pi\)
\(132\) 0 0
\(133\) 6.80399 + 1.19973i 0.589981 + 0.104030i
\(134\) 0 0
\(135\) −8.84455 + 8.88865i −0.761217 + 0.765013i
\(136\) 0 0
\(137\) −3.27446 + 18.5704i −0.279756 + 1.58658i 0.443680 + 0.896185i \(0.353673\pi\)
−0.723436 + 0.690391i \(0.757438\pi\)
\(138\) 0 0
\(139\) 5.53623 15.2107i 0.469577 1.29015i −0.448512 0.893777i \(-0.648046\pi\)
0.918089 0.396375i \(-0.129732\pi\)
\(140\) 0 0
\(141\) 2.49842 + 6.27374i 0.210405 + 0.528344i
\(142\) 0 0
\(143\) 0.274279 0.475066i 0.0229364 0.0397270i
\(144\) 0 0
\(145\) 10.5430 + 18.2611i 0.875551 + 1.51650i
\(146\) 0 0
\(147\) 5.14331 + 5.76985i 0.424213 + 0.475889i
\(148\) 0 0
\(149\) −12.7731 + 2.25224i −1.04641 + 0.184511i −0.670321 0.742071i \(-0.733843\pi\)
−0.376092 + 0.926582i \(0.622732\pi\)
\(150\) 0 0
\(151\) −2.57721 2.16253i −0.209730 0.175985i 0.531871 0.846825i \(-0.321489\pi\)
−0.741602 + 0.670841i \(0.765933\pi\)
\(152\) 0 0
\(153\) 4.74588 + 7.18977i 0.383682 + 0.581259i
\(154\) 0 0
\(155\) 5.87716 + 16.1474i 0.472065 + 1.29699i
\(156\) 0 0
\(157\) −0.320529 0.381992i −0.0255810 0.0304863i 0.753102 0.657903i \(-0.228557\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(158\) 0 0
\(159\) 16.9804 0.508169i 1.34664 0.0403004i
\(160\) 0 0
\(161\) −3.64030 −0.286896
\(162\) 0 0
\(163\) 11.3041i 0.885405i 0.896669 + 0.442703i \(0.145980\pi\)
−0.896669 + 0.442703i \(0.854020\pi\)
\(164\) 0 0
\(165\) −0.0199165 0.665509i −0.00155050 0.0518098i
\(166\) 0 0
\(167\) −10.0898 + 8.46632i −0.780770 + 0.655144i −0.943442 0.331536i \(-0.892433\pi\)
0.162673 + 0.986680i \(0.447989\pi\)
\(168\) 0 0
\(169\) −1.07204 + 0.390189i −0.0824644 + 0.0300146i
\(170\) 0 0
\(171\) −11.6375 5.82044i −0.889943 0.445100i
\(172\) 0 0
\(173\) −10.5281 + 12.5470i −0.800440 + 0.953928i −0.999661 0.0260269i \(-0.991714\pi\)
0.199221 + 0.979955i \(0.436159\pi\)
\(174\) 0 0
\(175\) 0.227782 + 1.29182i 0.0172187 + 0.0976521i
\(176\) 0 0
\(177\) −3.46411 + 3.08795i −0.260379 + 0.232104i
\(178\) 0 0
\(179\) 5.13398 2.96410i 0.383731 0.221547i −0.295709 0.955278i \(-0.595556\pi\)
0.679441 + 0.733731i \(0.262223\pi\)
\(180\) 0 0
\(181\) 1.50802 + 0.870656i 0.112090 + 0.0647154i 0.554997 0.831852i \(-0.312719\pi\)
−0.442907 + 0.896568i \(0.646053\pi\)
\(182\) 0 0
\(183\) −2.31808 + 0.923140i −0.171357 + 0.0682405i
\(184\) 0 0
\(185\) −13.4744 4.90427i −0.990655 0.360569i
\(186\) 0 0
\(187\) −0.450481 0.0794319i −0.0329424 0.00580863i
\(188\) 0 0
\(189\) 3.51667 + 7.49283i 0.255800 + 0.545023i
\(190\) 0 0
\(191\) −1.88621 + 10.6972i −0.136481 + 0.774023i 0.837336 + 0.546689i \(0.184112\pi\)
−0.973817 + 0.227334i \(0.926999\pi\)
\(192\) 0 0
\(193\) −13.6021 4.95075i −0.979100 0.356363i −0.197609 0.980281i \(-0.563318\pi\)
−0.781490 + 0.623918i \(0.785540\pi\)
\(194\) 0 0
\(195\) 8.91826 11.2982i 0.638650 0.809082i
\(196\) 0 0
\(197\) 7.36911 + 4.25456i 0.525027 + 0.303125i 0.738989 0.673717i \(-0.235303\pi\)
−0.213962 + 0.976842i \(0.568637\pi\)
\(198\) 0 0
\(199\) 6.17939 + 10.7030i 0.438045 + 0.758716i 0.997539 0.0701183i \(-0.0223377\pi\)
−0.559494 + 0.828835i \(0.689004\pi\)
\(200\) 0 0
\(201\) 0.0804581 + 0.388034i 0.00567508 + 0.0273698i
\(202\) 0 0
\(203\) 13.7072 2.41695i 0.962057 0.169637i
\(204\) 0 0
\(205\) 15.6062 18.5987i 1.08998 1.29899i
\(206\) 0 0
\(207\) 6.57114 + 1.95540i 0.456726 + 0.135910i
\(208\) 0 0
\(209\) 0.649234 0.236302i 0.0449084 0.0163453i
\(210\) 0 0
\(211\) −1.13641 1.35433i −0.0782339 0.0932356i 0.725508 0.688214i \(-0.241605\pi\)
−0.803742 + 0.594978i \(0.797161\pi\)
\(212\) 0 0
\(213\) −8.31943 + 5.14103i −0.570038 + 0.352257i
\(214\) 0 0
\(215\) 28.5259 1.94545
\(216\) 0 0
\(217\) 11.3427 0.769994
\(218\) 0 0
\(219\) −21.7979 11.7300i −1.47296 0.792640i
\(220\) 0 0
\(221\) −6.35657 7.57546i −0.427589 0.509581i
\(222\) 0 0
\(223\) 2.82725 1.02903i 0.189327 0.0689092i −0.245617 0.969367i \(-0.578991\pi\)
0.434944 + 0.900458i \(0.356768\pi\)
\(224\) 0 0
\(225\) 0.282734 2.45422i 0.0188489 0.163615i
\(226\) 0 0
\(227\) −3.65533 + 4.35626i −0.242613 + 0.289135i −0.873586 0.486670i \(-0.838211\pi\)
0.630973 + 0.775805i \(0.282656\pi\)
\(228\) 0 0
\(229\) −21.4459 + 3.78149i −1.41718 + 0.249888i −0.829185 0.558974i \(-0.811195\pi\)
−0.587998 + 0.808862i \(0.700084\pi\)
\(230\) 0 0
\(231\) −0.417298 0.137894i −0.0274562 0.00907275i
\(232\) 0 0
\(233\) −11.7482 20.3485i −0.769650 1.33307i −0.937753 0.347303i \(-0.887097\pi\)
0.168103 0.985769i \(-0.446236\pi\)
\(234\) 0 0
\(235\) −8.14804 4.70427i −0.531520 0.306873i
\(236\) 0 0
\(237\) −21.5439 3.13748i −1.39943 0.203801i
\(238\) 0 0
\(239\) −21.9880 8.00297i −1.42228 0.517669i −0.487574 0.873082i \(-0.662118\pi\)
−0.934710 + 0.355413i \(0.884340\pi\)
\(240\) 0 0
\(241\) 0.682320 3.86963i 0.0439521 0.249265i −0.954913 0.296884i \(-0.904052\pi\)
0.998866 + 0.0476196i \(0.0151635\pi\)
\(242\) 0 0
\(243\) −2.32317 15.4144i −0.149032 0.988832i
\(244\) 0 0
\(245\) −10.6055 1.87004i −0.677562 0.119472i
\(246\) 0 0
\(247\) 14.0356 + 5.10855i 0.893066 + 0.325049i
\(248\) 0 0
\(249\) −2.81540 + 19.3323i −0.178419 + 1.22514i
\(250\) 0 0
\(251\) −0.431970 0.249398i −0.0272657 0.0157419i 0.486305 0.873789i \(-0.338344\pi\)
−0.513571 + 0.858047i \(0.671678\pi\)
\(252\) 0 0
\(253\) −0.315261 + 0.182016i −0.0198203 + 0.0114433i
\(254\) 0 0
\(255\) −11.3966 3.76595i −0.713685 0.235833i
\(256\) 0 0
\(257\) 0.156179 + 0.885735i 0.00974218 + 0.0552506i 0.989291 0.145955i \(-0.0466253\pi\)
−0.979549 + 0.201205i \(0.935514\pi\)
\(258\) 0 0
\(259\) −6.08403 + 7.25067i −0.378043 + 0.450535i
\(260\) 0 0
\(261\) −26.0413 3.00003i −1.61191 0.185697i
\(262\) 0 0
\(263\) 9.42004 3.42861i 0.580864 0.211417i −0.0348423 0.999393i \(-0.511093\pi\)
0.615707 + 0.787976i \(0.288871\pi\)
\(264\) 0 0
\(265\) −18.1313 + 15.2139i −1.11380 + 0.934585i
\(266\) 0 0
\(267\) 11.3910 + 6.12977i 0.697115 + 0.375136i
\(268\) 0 0
\(269\) 1.04059i 0.0634460i −0.999497 0.0317230i \(-0.989901\pi\)
0.999497 0.0317230i \(-0.0100994\pi\)
\(270\) 0 0
\(271\) 30.0408 1.82485 0.912423 0.409248i \(-0.134209\pi\)
0.912423 + 0.409248i \(0.134209\pi\)
\(272\) 0 0
\(273\) −4.99464 8.08254i −0.302289 0.489178i
\(274\) 0 0
\(275\) 0.0843178 + 0.100486i 0.00508456 + 0.00605954i
\(276\) 0 0
\(277\) 6.71914 + 18.4607i 0.403714 + 1.10920i 0.960437 + 0.278497i \(0.0898363\pi\)
−0.556723 + 0.830698i \(0.687941\pi\)
\(278\) 0 0
\(279\) −20.4749 6.09280i −1.22580 0.364767i
\(280\) 0 0
\(281\) 21.2698 + 17.8475i 1.26885 + 1.06469i 0.994681 + 0.103008i \(0.0328467\pi\)
0.274167 + 0.961682i \(0.411598\pi\)
\(282\) 0 0
\(283\) −24.5768 + 4.33356i −1.46094 + 0.257603i −0.846934 0.531698i \(-0.821554\pi\)
−0.614007 + 0.789301i \(0.710443\pi\)
\(284\) 0 0
\(285\) 17.7513 3.68070i 1.05150 0.218026i
\(286\) 0 0
\(287\) −8.01310 13.8791i −0.472999 0.819258i
\(288\) 0 0
\(289\) 4.37687 7.58097i 0.257463 0.445939i
\(290\) 0 0
\(291\) 7.25219 9.18753i 0.425131 0.538582i
\(292\) 0 0
\(293\) 2.79279 7.67312i 0.163156 0.448268i −0.830993 0.556283i \(-0.812227\pi\)
0.994149 + 0.108015i \(0.0344493\pi\)
\(294\) 0 0
\(295\) 1.12274 6.36736i 0.0653683 0.370722i
\(296\) 0 0
\(297\) 0.679199 + 0.473067i 0.0394111 + 0.0274501i
\(298\) 0 0
\(299\) −7.75036 1.36660i −0.448215 0.0790324i
\(300\) 0 0
\(301\) 6.44011 17.6941i 0.371202 1.01987i
\(302\) 0 0
\(303\) 2.74182 1.09189i 0.157513 0.0627273i
\(304\) 0 0
\(305\) 1.73818 3.01061i 0.0995278 0.172387i
\(306\) 0 0
\(307\) −16.1236 + 9.30896i −0.920222 + 0.531290i −0.883706 0.468043i \(-0.844959\pi\)
−0.0365160 + 0.999333i \(0.511626\pi\)
\(308\) 0 0
\(309\) 14.7780 + 16.5782i 0.840689 + 0.943099i
\(310\) 0 0
\(311\) 0.851609 + 4.82971i 0.0482903 + 0.273868i 0.999386 0.0350274i \(-0.0111518\pi\)
−0.951096 + 0.308895i \(0.900041\pi\)
\(312\) 0 0
\(313\) −7.88890 6.61958i −0.445907 0.374161i 0.392007 0.919962i \(-0.371781\pi\)
−0.837914 + 0.545802i \(0.816225\pi\)
\(314\) 0 0
\(315\) −10.3140 5.15848i −0.581126 0.290647i
\(316\) 0 0
\(317\) −7.72259 21.2177i −0.433744 1.19170i −0.943497 0.331381i \(-0.892485\pi\)
0.509753 0.860321i \(-0.329737\pi\)
\(318\) 0 0
\(319\) 1.06624 0.894680i 0.0596979 0.0500925i
\(320\) 0 0
\(321\) 27.2776 0.816330i 1.52249 0.0455631i
\(322\) 0 0
\(323\) 12.4551i 0.693020i
\(324\) 0 0
\(325\) 2.83585i 0.157304i
\(326\) 0 0
\(327\) −7.33808 + 0.219605i −0.405797 + 0.0121442i
\(328\) 0 0
\(329\) −4.75749 + 3.99201i −0.262289 + 0.220087i
\(330\) 0 0
\(331\) 8.06296 + 22.1528i 0.443180 + 1.21763i 0.937389 + 0.348284i \(0.113236\pi\)
−0.494209 + 0.869343i \(0.664542\pi\)
\(332\) 0 0
\(333\) 14.8771 9.82018i 0.815259 0.538143i
\(334\) 0 0
\(335\) −0.422957 0.354903i −0.0231086 0.0193904i
\(336\) 0 0
\(337\) −5.70981 32.3820i −0.311033 1.76396i −0.593649 0.804724i \(-0.702313\pi\)
0.282615 0.959233i \(-0.408798\pi\)
\(338\) 0 0
\(339\) 8.61898 + 9.66892i 0.468119 + 0.525144i
\(340\) 0 0
\(341\) 0.982316 0.567140i 0.0531954 0.0307124i
\(342\) 0 0
\(343\) −9.12950 + 15.8128i −0.492947 + 0.853809i
\(344\) 0 0
\(345\) −8.87423 + 3.53403i −0.477772 + 0.190266i
\(346\) 0 0
\(347\) −0.288638 + 0.793027i −0.0154949 + 0.0425719i −0.947199 0.320646i \(-0.896100\pi\)
0.931704 + 0.363218i \(0.118322\pi\)
\(348\) 0 0
\(349\) 13.8072 + 2.43459i 0.739085 + 0.130321i 0.530501 0.847684i \(-0.322004\pi\)
0.208583 + 0.978005i \(0.433115\pi\)
\(350\) 0 0
\(351\) 4.67429 + 17.2728i 0.249495 + 0.921952i
\(352\) 0 0
\(353\) 4.09441 23.2205i 0.217923 1.23590i −0.657838 0.753159i \(-0.728529\pi\)
0.875761 0.482744i \(-0.160360\pi\)
\(354\) 0 0
\(355\) 4.66025 12.8039i 0.247341 0.679562i
\(356\) 0 0
\(357\) −4.90889 + 6.21889i −0.259806 + 0.329139i
\(358\) 0 0
\(359\) 13.4957 23.3753i 0.712277 1.23370i −0.251724 0.967799i \(-0.580997\pi\)
0.964001 0.265900i \(-0.0856692\pi\)
\(360\) 0 0
\(361\) −0.0939335 0.162698i −0.00494387 0.00856303i
\(362\) 0 0
\(363\) 18.6127 3.85931i 0.976914 0.202561i
\(364\) 0 0
\(365\) 33.9641 5.98879i 1.77776 0.313468i
\(366\) 0 0
\(367\) −22.3181 18.7271i −1.16500 0.977547i −0.165033 0.986288i \(-0.552773\pi\)
−0.999962 + 0.00874090i \(0.997218\pi\)
\(368\) 0 0
\(369\) 7.00930 + 29.3576i 0.364890 + 1.52829i
\(370\) 0 0
\(371\) 5.34353 + 14.6812i 0.277422 + 0.762211i
\(372\) 0 0
\(373\) −0.738799 0.880467i −0.0382536 0.0455888i 0.746578 0.665297i \(-0.231695\pi\)
−0.784832 + 0.619709i \(0.787251\pi\)
\(374\) 0 0
\(375\) −9.17676 14.8502i −0.473886 0.766862i
\(376\) 0 0
\(377\) 30.0906 1.54975
\(378\) 0 0
\(379\) 16.9124i 0.868731i 0.900737 + 0.434365i \(0.143027\pi\)
−0.900737 + 0.434365i \(0.856973\pi\)
\(380\) 0 0
\(381\) 21.1317 + 11.3715i 1.08261 + 0.582579i
\(382\) 0 0
\(383\) −15.4572 + 12.9701i −0.789826 + 0.662743i −0.945702 0.325034i \(-0.894624\pi\)
0.155876 + 0.987777i \(0.450180\pi\)
\(384\) 0 0
\(385\) 0.575396 0.209427i 0.0293249 0.0106734i
\(386\) 0 0
\(387\) −21.1296 + 28.4804i −1.07408 + 1.44774i
\(388\) 0 0
\(389\) −18.7454 + 22.3399i −0.950428 + 1.13268i 0.0406204 + 0.999175i \(0.487067\pi\)
−0.991049 + 0.133502i \(0.957378\pi\)
\(390\) 0 0
\(391\) 1.13957 + 6.46284i 0.0576307 + 0.326840i
\(392\) 0 0
\(393\) −8.49446 2.80694i −0.428489 0.141592i
\(394\) 0 0
\(395\) 26.2690 15.1664i 1.32174 0.763105i
\(396\) 0 0
\(397\) 10.3158 + 5.95584i 0.517736 + 0.298915i 0.736008 0.676973i \(-0.236709\pi\)
−0.218272 + 0.975888i \(0.570042\pi\)
\(398\) 0 0
\(399\) 1.72453 11.8417i 0.0863347 0.592829i
\(400\) 0 0
\(401\) 2.23681 + 0.814132i 0.111701 + 0.0406558i 0.397266 0.917704i \(-0.369959\pi\)
−0.285565 + 0.958359i \(0.592181\pi\)
\(402\) 0 0
\(403\) 24.1492 + 4.25815i 1.20296 + 0.212114i
\(404\) 0 0
\(405\) 15.8469 + 14.8518i 0.787441 + 0.737993i
\(406\) 0 0
\(407\) −0.164360 + 0.932134i −0.00814705 + 0.0462042i
\(408\) 0 0
\(409\) 12.0885 + 4.39986i 0.597739 + 0.217559i 0.623130 0.782119i \(-0.285861\pi\)
−0.0253911 + 0.999678i \(0.508083\pi\)
\(410\) 0 0
\(411\) 32.3201 + 4.70684i 1.59424 + 0.232171i
\(412\) 0 0
\(413\) −3.69607 2.13393i −0.181872 0.105004i
\(414\) 0 0
\(415\) −13.6095 23.5724i −0.668064 1.15712i
\(416\) 0 0
\(417\) −26.6207 8.79666i −1.30362 0.430774i
\(418\) 0 0
\(419\) −7.38244 + 1.30172i −0.360656 + 0.0635933i −0.351040 0.936360i \(-0.614172\pi\)
−0.00961568 + 0.999954i \(0.503061\pi\)
\(420\) 0 0
\(421\) −5.15270 + 6.14075i −0.251127 + 0.299282i −0.876850 0.480763i \(-0.840360\pi\)
0.625723 + 0.780045i \(0.284804\pi\)
\(422\) 0 0
\(423\) 10.7321 4.65051i 0.521814 0.226115i
\(424\) 0 0
\(425\) 2.22213 0.808790i 0.107789 0.0392321i
\(426\) 0 0
\(427\) −1.47501 1.75784i −0.0713805 0.0850680i
\(428\) 0 0
\(429\) −0.836681 0.450240i −0.0403953 0.0217378i
\(430\) 0 0
\(431\) 4.63698 0.223356 0.111678 0.993744i \(-0.464378\pi\)
0.111678 + 0.993744i \(0.464378\pi\)
\(432\) 0 0
\(433\) −0.0678381 −0.00326009 −0.00163005 0.999999i \(-0.500519\pi\)
−0.00163005 + 0.999999i \(0.500519\pi\)
\(434\) 0 0
\(435\) 31.0687 19.1990i 1.48963 0.920523i
\(436\) 0 0
\(437\) −6.37133 7.59305i −0.304782 0.363225i
\(438\) 0 0
\(439\) −12.9530 + 4.71449i −0.618211 + 0.225010i −0.632092 0.774893i \(-0.717804\pi\)
0.0138813 + 0.999904i \(0.495581\pi\)
\(440\) 0 0
\(441\) 9.72272 9.20343i 0.462987 0.438258i
\(442\) 0 0
\(443\) 8.58044 10.2258i 0.407669 0.485841i −0.522673 0.852533i \(-0.675065\pi\)
0.930342 + 0.366692i \(0.119510\pi\)
\(444\) 0 0
\(445\) −17.7487 + 3.12957i −0.841369 + 0.148356i
\(446\) 0 0
\(447\) 4.56104 + 21.9971i 0.215730 + 1.04043i
\(448\) 0 0
\(449\) 6.26480 + 10.8509i 0.295654 + 0.512088i 0.975137 0.221604i \(-0.0711291\pi\)
−0.679483 + 0.733692i \(0.737796\pi\)
\(450\) 0 0
\(451\) −1.38792 0.801316i −0.0653546 0.0377325i
\(452\) 0 0
\(453\) −3.61041 + 4.57390i −0.169632 + 0.214901i
\(454\) 0 0
\(455\) 12.4393 + 4.52755i 0.583166 + 0.212255i
\(456\) 0 0
\(457\) 3.14504 17.8364i 0.147119 0.834352i −0.818523 0.574474i \(-0.805207\pi\)
0.965642 0.259878i \(-0.0836822\pi\)
\(458\) 0 0
\(459\) 12.2016 8.58894i 0.569521 0.400898i
\(460\) 0 0
\(461\) 6.87340 + 1.21197i 0.320126 + 0.0564469i 0.331402 0.943490i \(-0.392478\pi\)
−0.0112760 + 0.999936i \(0.503589\pi\)
\(462\) 0 0
\(463\) −26.8210 9.76206i −1.24648 0.453681i −0.367269 0.930115i \(-0.619707\pi\)
−0.879210 + 0.476434i \(0.841929\pi\)
\(464\) 0 0
\(465\) 27.6510 11.0116i 1.28229 0.510651i
\(466\) 0 0
\(467\) −0.471619 0.272289i −0.0218239 0.0126000i 0.489048 0.872257i \(-0.337344\pi\)
−0.510872 + 0.859657i \(0.670677\pi\)
\(468\) 0 0
\(469\) −0.315627 + 0.182227i −0.0145743 + 0.00841448i
\(470\) 0 0
\(471\) −0.644726 + 0.574716i −0.0297074 + 0.0264815i
\(472\) 0 0
\(473\) −0.326975 1.85437i −0.0150343 0.0852640i
\(474\) 0 0
\(475\) −2.29584 + 2.73608i −0.105340 + 0.125540i
\(476\) 0 0
\(477\) −1.75956 29.3715i −0.0805647 1.34483i
\(478\) 0 0
\(479\) −7.93244 + 2.88717i −0.362442 + 0.131918i −0.516821 0.856094i \(-0.672885\pi\)
0.154379 + 0.988012i \(0.450662\pi\)
\(480\) 0 0
\(481\) −15.6752 + 13.1530i −0.714725 + 0.599726i
\(482\) 0 0
\(483\) 0.188609 + 6.30236i 0.00858200 + 0.286767i
\(484\) 0 0
\(485\) 16.3079i 0.740505i
\(486\) 0 0
\(487\) 15.0013 0.679775 0.339888 0.940466i \(-0.389611\pi\)
0.339888 + 0.940466i \(0.389611\pi\)
\(488\) 0 0
\(489\) 19.5705 0.585681i 0.885009 0.0264854i
\(490\) 0 0
\(491\) −9.43399 11.2430i −0.425750 0.507389i 0.509941 0.860209i \(-0.329667\pi\)
−0.935691 + 0.352820i \(0.885223\pi\)
\(492\) 0 0
\(493\) −8.58191 23.5786i −0.386510 1.06193i
\(494\) 0 0
\(495\) −1.15115 + 0.0689619i −0.0517402 + 0.00309961i
\(496\) 0 0
\(497\) −6.88991 5.78132i −0.309055 0.259328i
\(498\) 0 0
\(499\) −17.0588 + 3.00792i −0.763655 + 0.134653i −0.541892 0.840448i \(-0.682292\pi\)
−0.221762 + 0.975101i \(0.571181\pi\)
\(500\) 0 0
\(501\) 15.1803 + 17.0295i 0.678206 + 0.760823i
\(502\) 0 0
\(503\) 2.40445 + 4.16463i 0.107209 + 0.185692i 0.914639 0.404272i \(-0.132475\pi\)
−0.807429 + 0.589964i \(0.799142\pi\)
\(504\) 0 0
\(505\) −2.05591 + 3.56095i −0.0914870 + 0.158460i
\(506\) 0 0
\(507\) 0.731069 + 1.83577i 0.0324679 + 0.0815296i
\(508\) 0 0
\(509\) 10.1785 27.9653i 0.451155 1.23954i −0.480757 0.876854i \(-0.659638\pi\)
0.931912 0.362685i \(-0.118140\pi\)
\(510\) 0 0
\(511\) 3.95313 22.4193i 0.174876 0.991772i
\(512\) 0 0
\(513\) −9.47383 + 20.4493i −0.418280 + 0.902859i
\(514\) 0 0
\(515\) −30.4722 5.37308i −1.34277 0.236766i
\(516\) 0 0
\(517\) −0.212412 + 0.583597i −0.00934187 + 0.0256666i
\(518\) 0 0
\(519\) 22.2677 + 17.5771i 0.977445 + 0.771547i
\(520\) 0 0
\(521\) 15.3931 26.6615i 0.674382 1.16806i −0.302267 0.953223i \(-0.597744\pi\)
0.976649 0.214840i \(-0.0689231\pi\)
\(522\) 0 0
\(523\) 20.1716 11.6461i 0.882042 0.509247i 0.0107111 0.999943i \(-0.496590\pi\)
0.871331 + 0.490695i \(0.163257\pi\)
\(524\) 0 0
\(525\) 2.22469 0.461284i 0.0970933 0.0201321i
\(526\) 0 0
\(527\) −3.55077 20.1374i −0.154674 0.877200i
\(528\) 0 0
\(529\) −13.6183 11.4271i −0.592099 0.496830i
\(530\) 0 0
\(531\) 5.52557 + 5.83734i 0.239789 + 0.253319i
\(532\) 0 0
\(533\) −11.8499 32.5574i −0.513278 1.41022i
\(534\) 0 0
\(535\) −29.1263 + 24.4399i −1.25924 + 1.05663i
\(536\) 0 0
\(537\) −5.39768 8.73475i −0.232927 0.376932i
\(538\) 0 0
\(539\) 0.710862i 0.0306190i
\(540\) 0 0
\(541\) 29.0030i 1.24694i 0.781848 + 0.623469i \(0.214277\pi\)
−0.781848 + 0.623469i \(0.785723\pi\)
\(542\) 0 0
\(543\) 1.42921 2.65591i 0.0613334 0.113976i
\(544\) 0 0
\(545\) 7.83541 6.57469i 0.335632 0.281629i
\(546\) 0 0
\(547\) −3.84045 10.5516i −0.164206 0.451152i 0.830113 0.557596i \(-0.188276\pi\)
−0.994319 + 0.106443i \(0.966054\pi\)
\(548\) 0 0
\(549\) 1.71831 + 3.96541i 0.0733358 + 0.169239i
\(550\) 0 0
\(551\) 29.0320 + 24.3607i 1.23681 + 1.03780i
\(552\) 0 0
\(553\) −3.47684 19.7182i −0.147850 0.838501i
\(554\) 0 0
\(555\) −7.79251 + 23.5819i −0.330774 + 1.00100i
\(556\) 0 0
\(557\) 2.53413 1.46308i 0.107374 0.0619927i −0.445351 0.895356i \(-0.646921\pi\)
0.552726 + 0.833363i \(0.313588\pi\)
\(558\) 0 0
\(559\) 20.3538 35.2538i 0.860874 1.49108i
\(560\) 0 0
\(561\) −0.114178 + 0.784021i −0.00482062 + 0.0331014i
\(562\) 0 0
\(563\) 2.96778 8.15390i 0.125077 0.343646i −0.861312 0.508077i \(-0.830357\pi\)
0.986389 + 0.164431i \(0.0525788\pi\)
\(564\) 0 0
\(565\) −17.7724 3.13375i −0.747690 0.131838i
\(566\) 0 0
\(567\) 12.7899 6.47655i 0.537127 0.271989i
\(568\) 0 0
\(569\) −1.80356 + 10.2285i −0.0756093 + 0.428802i 0.923381 + 0.383884i \(0.125414\pi\)
−0.998991 + 0.0449179i \(0.985697\pi\)
\(570\) 0 0
\(571\) −1.71537 + 4.71295i −0.0717862 + 0.197231i −0.970397 0.241516i \(-0.922355\pi\)
0.898611 + 0.438747i \(0.144578\pi\)
\(572\) 0 0
\(573\) 18.6175 + 2.71131i 0.777759 + 0.113266i
\(574\) 0 0
\(575\) 0.940956 1.62978i 0.0392406 0.0679667i
\(576\) 0 0
\(577\) 4.43057 + 7.67398i 0.184447 + 0.319472i 0.943390 0.331685i \(-0.107617\pi\)
−0.758943 + 0.651157i \(0.774284\pi\)
\(578\) 0 0
\(579\) −7.86638 + 23.8055i −0.326915 + 0.989321i
\(580\) 0 0
\(581\) −17.6940 + 3.11993i −0.734070 + 0.129436i
\(582\) 0 0
\(583\) 1.19683 + 1.00426i 0.0495677 + 0.0415922i
\(584\) 0 0
\(585\) −20.0224 14.8546i −0.827824 0.614162i
\(586\) 0 0
\(587\) 0.553940 + 1.52194i 0.0228636 + 0.0628171i 0.950599 0.310420i \(-0.100470\pi\)
−0.927736 + 0.373238i \(0.878248\pi\)
\(588\) 0 0
\(589\) 19.8523 + 23.6590i 0.817999 + 0.974854i
\(590\) 0 0
\(591\) 6.98401 12.9784i 0.287284 0.533860i
\(592\) 0 0
\(593\) −16.7535 −0.687984 −0.343992 0.938973i \(-0.611779\pi\)
−0.343992 + 0.938973i \(0.611779\pi\)
\(594\) 0 0
\(595\) 11.0386i 0.452538i
\(596\) 0 0
\(597\) 18.2097 11.2528i 0.745273 0.460545i
\(598\) 0 0
\(599\) 31.3875 26.3372i 1.28246 1.07611i 0.289557 0.957161i \(-0.406492\pi\)
0.992900 0.118949i \(-0.0379524\pi\)
\(600\) 0 0
\(601\) −8.03176 + 2.92332i −0.327622 + 0.119245i −0.500594 0.865682i \(-0.666885\pi\)
0.172972 + 0.984927i \(0.444663\pi\)
\(602\) 0 0
\(603\) 0.667626 0.159400i 0.0271878 0.00649126i
\(604\) 0 0
\(605\) −17.0235 + 20.2878i −0.692103 + 0.824817i
\(606\) 0 0
\(607\) −4.22098 23.9383i −0.171324 0.971627i −0.942302 0.334765i \(-0.891343\pi\)
0.770978 0.636862i \(-0.219768\pi\)
\(608\) 0 0
\(609\) −4.89460 23.6057i −0.198339 0.956552i
\(610\) 0 0
\(611\) −11.6276 + 6.71318i −0.470401 + 0.271586i
\(612\) 0 0
\(613\) 14.3628 + 8.29237i 0.580108 + 0.334926i 0.761176 0.648545i \(-0.224622\pi\)
−0.181068 + 0.983471i \(0.557955\pi\)
\(614\) 0 0
\(615\) −33.0081 26.0550i −1.33101 1.05064i
\(616\) 0 0
\(617\) −17.6023 6.40672i −0.708642 0.257925i −0.0375461 0.999295i \(-0.511954\pi\)
−0.671096 + 0.741370i \(0.734176\pi\)
\(618\) 0 0
\(619\) 4.87939 + 0.860368i 0.196119 + 0.0345811i 0.270845 0.962623i \(-0.412697\pi\)
−0.0747256 + 0.997204i \(0.523808\pi\)
\(620\) 0 0
\(621\) 3.04488 11.4778i 0.122187 0.460587i
\(622\) 0 0
\(623\) −2.06579 + 11.7157i −0.0827643 + 0.469380i
\(624\) 0 0
\(625\) 26.7242 + 9.72681i 1.06897 + 0.389072i
\(626\) 0 0
\(627\) −0.442741 1.11176i −0.0176814 0.0443994i
\(628\) 0 0
\(629\) 14.7771 + 8.53157i 0.589202 + 0.340176i
\(630\) 0 0
\(631\) 2.46788 + 4.27449i 0.0982447 + 0.170165i 0.910958 0.412499i \(-0.135344\pi\)
−0.812713 + 0.582664i \(0.802011\pi\)
\(632\) 0 0
\(633\) −2.28583 + 2.03761i −0.0908536 + 0.0809879i
\(634\) 0 0
\(635\) −32.9261 + 5.80576i −1.30663 + 0.230394i
\(636\) 0 0
\(637\) −9.87834 + 11.7725i −0.391394 + 0.466445i
\(638\) 0 0
\(639\) 9.33158 + 14.1369i 0.369152 + 0.559246i
\(640\) 0 0
\(641\) 1.74409 0.634798i 0.0688875 0.0250730i −0.307347 0.951598i \(-0.599441\pi\)
0.376234 + 0.926525i \(0.377219\pi\)
\(642\) 0 0
\(643\) 21.2761 + 25.3559i 0.839048 + 0.999938i 0.999916 + 0.0129623i \(0.00412614\pi\)
−0.160868 + 0.986976i \(0.551429\pi\)
\(644\) 0 0
\(645\) −1.47797 49.3863i −0.0581949 1.94458i
\(646\) 0 0
\(647\) −8.85391 −0.348083 −0.174042 0.984738i \(-0.555683\pi\)
−0.174042 + 0.984738i \(0.555683\pi\)
\(648\) 0 0
\(649\) −0.426789 −0.0167529
\(650\) 0 0
\(651\) −0.587682 19.6374i −0.0230331 0.769650i
\(652\) 0 0
\(653\) −6.38975 7.61501i −0.250050 0.297998i 0.626389 0.779511i \(-0.284532\pi\)
−0.876439 + 0.481512i \(0.840088\pi\)
\(654\) 0 0
\(655\) 11.7127 4.26306i 0.457652 0.166572i
\(656\) 0 0
\(657\) −19.1785 + 38.3459i −0.748224 + 1.49601i
\(658\) 0 0
\(659\) 27.1973 32.4125i 1.05946 1.26261i 0.0958197 0.995399i \(-0.469453\pi\)
0.963637 0.267213i \(-0.0861028\pi\)
\(660\) 0 0
\(661\) −49.7307 + 8.76886i −1.93430 + 0.341069i −0.999886 0.0151198i \(-0.995187\pi\)
−0.934414 + 0.356189i \(0.884076\pi\)
\(662\) 0 0
\(663\) −12.7859 + 11.3975i −0.496562 + 0.442641i
\(664\) 0 0
\(665\) 8.33631 + 14.4389i 0.323268 + 0.559917i
\(666\) 0 0
\(667\) −17.2933 9.98430i −0.669600 0.386594i
\(668\) 0 0
\(669\) −1.92803 4.84143i −0.0745418 0.187181i
\(670\) 0 0
\(671\) −0.215633 0.0784840i −0.00832442 0.00302984i
\(672\) 0 0
\(673\) 2.52619 14.3267i 0.0973775 0.552255i −0.896615 0.442810i \(-0.853981\pi\)
0.993993 0.109445i \(-0.0349074\pi\)
\(674\) 0 0
\(675\) −4.26358 0.362334i −0.164105 0.0139462i
\(676\) 0 0
\(677\) 39.3485 + 6.93820i 1.51229 + 0.266657i 0.867396 0.497619i \(-0.165792\pi\)
0.644890 + 0.764276i \(0.276903\pi\)
\(678\) 0 0
\(679\) 10.1155 + 3.68173i 0.388197 + 0.141292i
\(680\) 0 0
\(681\) 7.73127 + 6.10268i 0.296263 + 0.233855i
\(682\) 0 0
\(683\) −16.3031 9.41260i −0.623821 0.360163i 0.154534 0.987987i \(-0.450612\pi\)
−0.778355 + 0.627824i \(0.783946\pi\)
\(684\) 0 0
\(685\) −39.4087 + 22.7526i −1.50573 + 0.869333i
\(686\) 0 0
\(687\) 7.65794 + 36.9328i 0.292168 + 1.40907i
\(688\) 0 0
\(689\) 5.86516 + 33.2630i 0.223445 + 1.26722i
\(690\) 0 0
\(691\) 7.33473 8.74119i 0.279026 0.332531i −0.608270 0.793730i \(-0.708136\pi\)
0.887297 + 0.461199i \(0.152581\pi\)
\(692\) 0 0
\(693\) −0.217111 + 0.729603i −0.00824738 + 0.0277153i
\(694\) 0 0
\(695\) 36.7062 13.3600i 1.39235 0.506773i
\(696\) 0 0
\(697\) −22.1320 + 18.5709i −0.838307 + 0.703423i
\(698\) 0 0
\(699\) −34.6201 + 21.3937i −1.30945 + 0.809182i
\(700\) 0 0
\(701\) 29.8398i 1.12704i −0.826104 0.563518i \(-0.809448\pi\)
0.826104 0.563518i \(-0.190552\pi\)
\(702\) 0 0
\(703\) −25.7721 −0.972013
\(704\) 0 0
\(705\) −7.72223 + 14.3502i −0.290836 + 0.540461i
\(706\) 0 0
\(707\) 1.74463 + 2.07917i 0.0656137 + 0.0781954i
\(708\) 0 0
\(709\) −0.897749 2.46655i −0.0337157 0.0926331i 0.921693 0.387921i \(-0.126807\pi\)
−0.955408 + 0.295288i \(0.904584\pi\)
\(710\) 0 0
\(711\) −4.31562 + 37.4610i −0.161849 + 1.40490i
\(712\) 0 0
\(713\) −12.4658 10.4601i −0.466849 0.391733i
\(714\) 0 0
\(715\) 1.30367 0.229871i 0.0487543 0.00859670i
\(716\) 0 0
\(717\) −12.7161 + 38.4819i −0.474892 + 1.43713i
\(718\) 0 0
\(719\) 6.54404 + 11.3346i 0.244051 + 0.422709i 0.961864 0.273526i \(-0.0881901\pi\)
−0.717813 + 0.696236i \(0.754857\pi\)
\(720\) 0 0
\(721\) −10.2123 + 17.6883i −0.380327 + 0.658746i
\(722\) 0 0
\(723\) −6.73475 0.980794i −0.250468 0.0364761i
\(724\) 0 0
\(725\) −2.46100 + 6.76154i −0.0913992 + 0.251117i
\(726\) 0 0
\(727\) −6.97054 + 39.5319i −0.258523 + 1.46616i 0.528342 + 0.849031i \(0.322814\pi\)
−0.786865 + 0.617125i \(0.788297\pi\)
\(728\) 0 0
\(729\) −26.5662 + 4.82069i −0.983932 + 0.178544i
\(730\) 0 0
\(731\) −33.4294 5.89450i −1.23643 0.218016i
\(732\) 0 0
\(733\) 0.696450 1.91348i 0.0257240 0.0706760i −0.926166 0.377116i \(-0.876916\pi\)
0.951890 + 0.306440i \(0.0991380\pi\)
\(734\) 0 0
\(735\) −2.68807 + 18.4580i −0.0991509 + 0.680833i
\(736\) 0 0
\(737\) −0.0182229 + 0.0315629i −0.000671248 + 0.00116264i
\(738\) 0 0
\(739\) −30.6990 + 17.7241i −1.12928 + 0.651990i −0.943754 0.330649i \(-0.892732\pi\)
−0.185526 + 0.982639i \(0.559399\pi\)
\(740\) 0 0
\(741\) 8.11710 24.5642i 0.298189 0.902389i
\(742\) 0 0
\(743\) −9.22773 52.3330i −0.338532 1.91991i −0.389106 0.921193i \(-0.627216\pi\)
0.0505739 0.998720i \(-0.483895\pi\)
\(744\) 0 0
\(745\) −23.9767 20.1189i −0.878440 0.737099i
\(746\) 0 0
\(747\) 33.6155 + 3.87260i 1.22993 + 0.141691i
\(748\) 0 0
\(749\) 8.58392 + 23.5841i 0.313649 + 0.861745i
\(750\) 0 0
\(751\) −6.58894 + 5.52878i −0.240434 + 0.201748i −0.755040 0.655679i \(-0.772383\pi\)
0.514606 + 0.857427i \(0.327938\pi\)
\(752\) 0 0
\(753\) −0.409396 + 0.760782i −0.0149192 + 0.0277244i
\(754\) 0 0
\(755\) 8.11871i 0.295470i
\(756\) 0 0
\(757\) 21.7216i 0.789484i 0.918792 + 0.394742i \(0.129166\pi\)
−0.918792 + 0.394742i \(0.870834\pi\)
\(758\) 0 0
\(759\) 0.331454 + 0.536373i 0.0120310 + 0.0194691i
\(760\) 0 0
\(761\) −0.341041 + 0.286168i −0.0123627 + 0.0103736i −0.648948 0.760833i \(-0.724791\pi\)
0.636585 + 0.771206i \(0.280346\pi\)
\(762\) 0 0
\(763\) −2.30920 6.34447i −0.0835986 0.229685i
\(764\) 0 0
\(765\) −5.92943 + 19.9258i −0.214379 + 0.720420i
\(766\) 0 0
\(767\) −7.06802 5.93077i −0.255211 0.214148i
\(768\) 0 0
\(769\) 3.22004 + 18.2618i 0.116118 + 0.658536i 0.986191 + 0.165614i \(0.0529604\pi\)
−0.870073 + 0.492923i \(0.835928\pi\)
\(770\) 0 0
\(771\) 1.52536 0.316280i 0.0549345 0.0113905i
\(772\) 0 0
\(773\) 1.50501 0.868919i 0.0541315 0.0312528i −0.472690 0.881229i \(-0.656717\pi\)
0.526822 + 0.849976i \(0.323384\pi\)
\(774\) 0 0
\(775\) −2.93190 + 5.07821i −0.105317 + 0.182415i
\(776\) 0 0
\(777\) 12.8681 + 10.1575i 0.461642 + 0.364397i
\(778\) 0 0
\(779\) 14.9248 41.0055i 0.534736 1.46918i
\(780\) 0 0
\(781\) −0.885756 0.156183i −0.0316948 0.00558865i
\(782\) 0 0
\(783\) −3.84465 + 45.2401i −0.137397 + 1.61675i
\(784\) 0 0
\(785\) 0.208959 1.18507i 0.00745808 0.0422969i
\(786\) 0 0
\(787\) 12.6576 34.7764i 0.451193 1.23964i −0.480692 0.876890i \(-0.659614\pi\)
0.931885 0.362754i \(-0.118163\pi\)
\(788\) 0 0
\(789\) −6.42394 16.1310i −0.228698 0.574280i
\(790\) 0 0
\(791\) −5.95616 + 10.3164i −0.211777 + 0.366808i
\(792\) 0 0
\(793\) −2.48045 4.29626i −0.0880833 0.152565i
\(794\) 0 0
\(795\) 27.2789 + 30.6020i 0.967484 + 1.08534i
\(796\) 0 0
\(797\) 11.7114 2.06503i 0.414837 0.0731470i 0.0376658 0.999290i \(-0.488008\pi\)
0.377172 + 0.926143i \(0.376897\pi\)
\(798\) 0 0
\(799\) 8.57656 + 7.19659i 0.303417 + 0.254597i
\(800\) 0 0
\(801\) 10.0221 20.0385i 0.354115 0.708025i
\(802\) 0 0
\(803\) −0.778620 2.13924i −0.0274769 0.0754922i
\(804\) 0 0
\(805\) −5.64671 6.72949i −0.199021 0.237183i
\(806\) 0 0
\(807\) −1.80155 + 0.0539145i −0.0634176 + 0.00189788i
\(808\) 0 0
\(809\) 13.6067 0.478385 0.239192 0.970972i \(-0.423117\pi\)
0.239192 + 0.970972i \(0.423117\pi\)
\(810\) 0 0
\(811\) 23.1998i 0.814656i 0.913282 + 0.407328i \(0.133539\pi\)
−0.913282 + 0.407328i \(0.866461\pi\)
\(812\) 0 0
\(813\) −1.55645 52.0088i −0.0545872 1.82403i
\(814\) 0 0
\(815\) −20.8969 + 17.5346i −0.731985 + 0.614209i
\(816\) 0 0
\(817\) 48.1785 17.5355i 1.68555 0.613491i
\(818\) 0 0
\(819\) −13.7343 + 9.06586i −0.479916 + 0.316787i
\(820\) 0 0
\(821\) 18.9516 22.5856i 0.661414 0.788243i −0.326174 0.945310i \(-0.605759\pi\)
0.987588 + 0.157067i \(0.0502039\pi\)
\(822\) 0 0
\(823\) −2.95142 16.7383i −0.102880 0.583462i −0.992046 0.125877i \(-0.959826\pi\)
0.889166 0.457585i \(-0.151285\pi\)
\(824\) 0 0
\(825\) 0.169600 0.151184i 0.00590473 0.00526354i
\(826\) 0 0
\(827\) −44.0488 + 25.4316i −1.53173 + 0.884343i −0.532444 + 0.846465i \(0.678726\pi\)
−0.999282 + 0.0378772i \(0.987940\pi\)
\(828\) 0 0
\(829\) −41.8595 24.1676i −1.45384 0.839374i −0.455143 0.890418i \(-0.650412\pi\)
−0.998696 + 0.0510440i \(0.983745\pi\)
\(830\) 0 0
\(831\) 31.6124 12.5892i 1.09662 0.436713i
\(832\) 0 0
\(833\) 12.0421 + 4.38298i 0.417235 + 0.151861i
\(834\) 0 0
\(835\) −31.3019 5.51936i −1.08325 0.191005i
\(836\) 0 0
\(837\) −9.48749 + 35.7633i −0.327936 + 1.23616i
\(838\) 0 0
\(839\) −4.93028 + 27.9610i −0.170212 + 0.965321i 0.773314 + 0.634023i \(0.218598\pi\)
−0.943526 + 0.331298i \(0.892514\pi\)
\(840\) 0 0
\(841\) 44.4943 + 16.1946i 1.53429 + 0.558434i
\(842\) 0 0
\(843\) 29.7968 37.7485i 1.02626 1.30013i
\(844\) 0 0
\(845\) −2.38422 1.37653i −0.0820196 0.0473540i
\(846\) 0 0
\(847\) 8.74084 + 15.1396i 0.300339 + 0.520202i
\(848\) 0 0
\(849\) 8.77594 + 42.3247i 0.301190 + 1.45258i
\(850\) 0 0
\(851\) 13.3729 2.35800i 0.458417 0.0808313i
\(852\) 0 0
\(853\) −17.3921 + 20.7271i −0.595495 + 0.709684i −0.976652 0.214827i \(-0.931081\pi\)
0.381157 + 0.924510i \(0.375526\pi\)
\(854\) 0 0
\(855\) −7.29202 30.5417i −0.249382 1.04450i
\(856\) 0 0
\(857\) 1.73329 0.630867i 0.0592082 0.0215500i −0.312246 0.950001i \(-0.601081\pi\)
0.371454 + 0.928451i \(0.378859\pi\)
\(858\) 0 0
\(859\) 11.6792 + 13.9187i 0.398489 + 0.474901i 0.927559 0.373678i \(-0.121903\pi\)
−0.529070 + 0.848578i \(0.677459\pi\)
\(860\) 0 0
\(861\) −23.6134 + 14.5920i −0.804742 + 0.497294i
\(862\) 0 0
\(863\) −49.6695 −1.69077 −0.845385 0.534157i \(-0.820629\pi\)
−0.845385 + 0.534157i \(0.820629\pi\)
\(864\) 0 0
\(865\) −39.5254 −1.34390
\(866\) 0 0
\(867\) −13.3515 7.18480i −0.453441 0.244008i
\(868\) 0 0
\(869\) −1.28702 1.53381i −0.0436592 0.0520310i
\(870\) 0 0
\(871\) −0.740394 + 0.269482i −0.0250873 + 0.00913103i
\(872\) 0 0
\(873\) −16.2819 12.0795i −0.551059 0.408830i
\(874\) 0 0
\(875\) 10.3197 12.2985i 0.348869 0.415766i
\(876\) 0 0
\(877\) 22.9919 4.05410i 0.776382 0.136897i 0.228603 0.973520i \(-0.426584\pi\)
0.547779 + 0.836623i \(0.315473\pi\)
\(878\) 0 0
\(879\) −13.4290 4.43753i −0.452948 0.149674i
\(880\) 0 0
\(881\) −15.9640 27.6505i −0.537842 0.931569i −0.999020 0.0442614i \(-0.985907\pi\)
0.461178 0.887307i \(-0.347427\pi\)
\(882\) 0 0
\(883\) 40.1101 + 23.1576i 1.34981 + 0.779315i 0.988223 0.153023i \(-0.0489007\pi\)
0.361590 + 0.932337i \(0.382234\pi\)
\(884\) 0 0
\(885\) −11.0818 1.61387i −0.372512 0.0542496i
\(886\) 0 0
\(887\) 32.0649 + 11.6707i 1.07663 + 0.391863i 0.818654 0.574288i \(-0.194721\pi\)
0.257980 + 0.966150i \(0.416943\pi\)
\(888\) 0 0
\(889\) −3.83231 + 21.7341i −0.128532 + 0.728939i
\(890\) 0 0
\(891\) 0.783820 1.20039i 0.0262589 0.0402146i
\(892\) 0 0
\(893\) −16.6533 2.93643i −0.557283 0.0982640i
\(894\) 0 0
\(895\) 13.4431 + 4.89290i 0.449354 + 0.163552i
\(896\) 0 0
\(897\) −1.96440 + 13.4888i −0.0655894 + 0.450379i
\(898\) 0 0
\(899\) 53.8839 + 31.1099i 1.79713 + 1.03757i
\(900\) 0 0
\(901\) 24.3917 14.0825i 0.812605 0.469158i
\(902\) 0 0
\(903\) −30.9670 10.2329i −1.03052 0.340528i
\(904\) 0 0
\(905\) 0.729690 + 4.13828i 0.0242557 + 0.137561i
\(906\) 0 0
\(907\) −0.685743 + 0.817237i −0.0227697 + 0.0271359i −0.777309 0.629119i \(-0.783416\pi\)
0.754539 + 0.656255i \(0.227860\pi\)
\(908\) 0 0
\(909\) −2.03242 4.69028i −0.0674110 0.155567i
\(910\) 0 0
\(911\) −2.39685 + 0.872383i −0.0794113 + 0.0289033i −0.381420 0.924402i \(-0.624565\pi\)
0.302009 + 0.953305i \(0.402343\pi\)
\(912\) 0 0
\(913\) −1.37636 + 1.15490i −0.0455508 + 0.0382216i
\(914\) 0 0
\(915\) −5.30226 2.85328i −0.175287 0.0943266i
\(916\) 0 0
\(917\) 8.22758i 0.271699i
\(918\) 0 0
\(919\) −3.85703 −0.127232 −0.0636159 0.997974i \(-0.520263\pi\)
−0.0636159 + 0.997974i \(0.520263\pi\)
\(920\) 0 0
\(921\) 16.9518 + 27.4321i 0.558579 + 0.903917i
\(922\) 0 0
\(923\) −12.4986 14.8952i −0.411396 0.490283i
\(924\) 0 0
\(925\) −1.67355 4.59804i −0.0550259 0.151182i
\(926\) 0 0
\(927\) 27.9357 26.4437i 0.917530 0.868524i
\(928\) 0 0
\(929\) 23.6191 + 19.8188i 0.774919 + 0.650234i 0.941964 0.335715i \(-0.108978\pi\)
−0.167045 + 0.985949i \(0.553422\pi\)
\(930\) 0 0
\(931\) −19.0616 + 3.36108i −0.624719 + 0.110155i
\(932\) 0 0
\(933\) 8.31744 1.72460i 0.272301 0.0564610i
\(934\) 0 0
\(935\) −0.551933 0.955975i −0.0180501 0.0312637i
\(936\) 0 0
\(937\) 3.69048 6.39210i 0.120563 0.208821i −0.799427 0.600763i \(-0.794863\pi\)
0.919990 + 0.391942i \(0.128197\pi\)
\(938\) 0 0
\(939\) −11.0516 + 14.0008i −0.360655 + 0.456900i
\(940\) 0 0
\(941\) −13.1119 + 36.0246i −0.427435 + 1.17437i 0.519929 + 0.854209i \(0.325958\pi\)
−0.947364 + 0.320158i \(0.896264\pi\)
\(942\) 0 0
\(943\) −3.99256 + 22.6429i −0.130016 + 0.737355i
\(944\) 0 0
\(945\) −8.39636 + 18.1236i −0.273134 + 0.589561i
\(946\) 0 0
\(947\) 21.8272 + 3.84873i 0.709289 + 0.125067i 0.516642 0.856201i \(-0.327182\pi\)
0.192647 + 0.981268i \(0.438293\pi\)
\(948\) 0 0
\(949\) 16.8328 46.2477i 0.546416 1.50126i
\(950\) 0 0
\(951\) −36.3335 + 14.4693i −1.17819 + 0.469198i
\(952\) 0 0
\(953\) 22.3908 38.7819i 0.725308 1.25627i −0.233540 0.972347i \(-0.575031\pi\)
0.958847 0.283922i \(-0.0916358\pi\)
\(954\) 0 0
\(955\) −22.7008 + 13.1063i −0.734580 + 0.424110i
\(956\) 0 0
\(957\) −1.60418 1.79960i −0.0518558 0.0581727i
\(958\) 0 0
\(959\) 5.21595 + 29.5811i 0.168432 + 0.955224i
\(960\) 0 0
\(961\) 15.0947 + 12.6659i 0.486925 + 0.408579i
\(962\) 0 0
\(963\) −2.82658 47.1828i −0.0910854 1.52044i
\(964\) 0 0
\(965\) −11.9471 32.8244i −0.384591 1.05666i
\(966\) 0 0
\(967\) −32.4852 + 27.2583i −1.04465 + 0.876567i −0.992521 0.122073i \(-0.961046\pi\)
−0.0521310 + 0.998640i \(0.516601\pi\)
\(968\) 0 0
\(969\) −21.5632 + 0.645316i −0.692710 + 0.0207305i
\(970\) 0 0
\(971\) 9.33492i 0.299572i 0.988718 + 0.149786i \(0.0478584\pi\)
−0.988718 + 0.149786i \(0.952142\pi\)
\(972\) 0 0
\(973\) 25.7843i 0.826608i
\(974\) 0 0
\(975\) 4.90963 0.146929i 0.157234 0.00470550i
\(976\) 0 0
\(977\) 0.274142 0.230032i 0.00877057 0.00735938i −0.638392 0.769712i \(-0.720400\pi\)
0.647162 + 0.762352i \(0.275956\pi\)
\(978\) 0 0
\(979\) 0.406885 + 1.11791i 0.0130041 + 0.0357285i
\(980\) 0 0
\(981\) 0.760392 + 12.6929i 0.0242774 + 0.405252i
\(982\) 0 0
\(983\) 6.53130 + 5.48041i 0.208316 + 0.174798i 0.740976 0.671531i \(-0.234363\pi\)
−0.532660 + 0.846329i \(0.678808\pi\)
\(984\) 0 0
\(985\) 3.56571 + 20.2221i 0.113613 + 0.644331i
\(986\) 0 0
\(987\) 7.15777 + 8.02970i 0.227834 + 0.255588i
\(988\) 0 0
\(989\) −23.3950 + 13.5071i −0.743917 + 0.429501i
\(990\) 0 0
\(991\) 25.9790 44.9969i 0.825249 1.42937i −0.0764798 0.997071i \(-0.524368\pi\)
0.901729 0.432302i \(-0.142299\pi\)
\(992\) 0 0
\(993\) 37.9348 15.1070i 1.20383 0.479405i
\(994\) 0 0
\(995\) −10.2004 + 28.0255i −0.323375 + 0.888467i
\(996\) 0 0
\(997\) 44.7921 + 7.89805i 1.41858 + 0.250134i 0.829755 0.558128i \(-0.188480\pi\)
0.588824 + 0.808262i \(0.299591\pi\)
\(998\) 0 0
\(999\) −17.7722 25.2475i −0.562289 0.798797i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.241.17 204
4.3 odd 2 216.2.t.a.133.31 yes 204
8.3 odd 2 216.2.t.a.133.9 yes 204
8.5 even 2 inner 864.2.bf.a.241.18 204
12.11 even 2 648.2.t.a.397.4 204
24.11 even 2 648.2.t.a.397.26 204
27.13 even 9 inner 864.2.bf.a.337.18 204
108.67 odd 18 216.2.t.a.13.9 204
108.95 even 18 648.2.t.a.253.26 204
216.13 even 18 inner 864.2.bf.a.337.17 204
216.67 odd 18 216.2.t.a.13.31 yes 204
216.203 even 18 648.2.t.a.253.4 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.9 204 108.67 odd 18
216.2.t.a.13.31 yes 204 216.67 odd 18
216.2.t.a.133.9 yes 204 8.3 odd 2
216.2.t.a.133.31 yes 204 4.3 odd 2
648.2.t.a.253.4 204 216.203 even 18
648.2.t.a.253.26 204 108.95 even 18
648.2.t.a.397.4 204 12.11 even 2
648.2.t.a.397.26 204 24.11 even 2
864.2.bf.a.241.17 204 1.1 even 1 trivial
864.2.bf.a.241.18 204 8.5 even 2 inner
864.2.bf.a.337.17 204 216.13 even 18 inner
864.2.bf.a.337.18 204 27.13 even 9 inner