Properties

Label 648.2.t.a.397.4
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.4
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24359 + 0.673416i) q^{2} +(1.09302 - 1.67490i) q^{4} +(-1.55117 - 1.84861i) q^{5} +(-1.49685 + 0.544810i) q^{7} +(-0.231362 + 2.81895i) q^{8} +(3.17390 + 1.25433i) q^{10} +(0.102391 - 0.122025i) q^{11} +(3.39140 - 0.597995i) q^{13} +(1.49458 - 1.68552i) q^{14} +(-1.61061 - 3.66141i) q^{16} +(1.43581 + 2.48690i) q^{17} +(-3.75621 - 2.16865i) q^{19} +(-4.79171 + 0.577486i) q^{20} +(-0.0451590 + 0.220701i) q^{22} +(-2.14748 - 0.781619i) q^{23} +(-0.142997 + 0.810974i) q^{25} +(-3.81480 + 3.02748i) q^{26} +(-0.723589 + 3.10257i) q^{28} +(-8.60509 - 1.51731i) q^{29} +(-6.69129 - 2.43543i) q^{31} +(4.46858 + 3.46868i) q^{32} +(-3.46028 - 2.12578i) q^{34} +(3.32901 + 1.92201i) q^{35} +(-5.14590 + 2.97099i) q^{37} +(6.13158 + 0.167414i) q^{38} +(5.57002 - 3.94497i) q^{40} +(1.74706 + 9.90807i) q^{41} +(-7.59829 + 9.05529i) q^{43} +(-0.0924647 - 0.304872i) q^{44} +(3.19694 - 0.474136i) q^{46} +(-3.66367 + 1.33347i) q^{47} +(-3.41856 + 2.86851i) q^{49} +(-0.368294 - 1.10481i) q^{50} +(2.70529 - 6.33388i) q^{52} -9.80805i q^{53} -0.384404 q^{55} +(-1.18948 - 4.34560i) q^{56} +(11.7230 - 3.90790i) q^{58} +(-1.72220 - 2.05244i) q^{59} +(-0.492702 - 1.35369i) q^{61} +(9.96127 - 1.47735i) q^{62} +(-7.89294 - 1.30440i) q^{64} +(-6.36609 - 5.34178i) q^{65} +(0.225321 - 0.0397302i) q^{67} +(5.73470 + 0.313390i) q^{68} +(-5.43423 - 0.148374i) q^{70} +(-2.82317 - 4.88987i) q^{71} +(7.14574 - 12.3768i) q^{73} +(4.39867 - 7.16002i) q^{74} +(-7.73789 + 3.92091i) q^{76} +(-0.0867843 + 0.238438i) q^{77} +(-2.18269 + 12.3786i) q^{79} +(-4.27021 + 8.65685i) q^{80} +(-8.84487 - 11.1451i) q^{82} +(-11.1079 - 1.95862i) q^{83} +(2.37013 - 6.51187i) q^{85} +(3.35117 - 16.3779i) q^{86} +(0.320294 + 0.316868i) q^{88} +(3.73417 - 6.46777i) q^{89} +(-4.75063 + 2.74278i) q^{91} +(-3.65638 + 2.74250i) q^{92} +(3.65812 - 4.12546i) q^{94} +(1.81753 + 10.3077i) q^{95} +(5.17680 + 4.34385i) q^{97} +(2.31958 - 5.86936i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24359 + 0.673416i −0.879349 + 0.476177i
\(3\) 0 0
\(4\) 1.09302 1.67490i 0.546511 0.837452i
\(5\) −1.55117 1.84861i −0.693704 0.826724i 0.298095 0.954536i \(-0.403649\pi\)
−0.991798 + 0.127812i \(0.959204\pi\)
\(6\) 0 0
\(7\) −1.49685 + 0.544810i −0.565757 + 0.205919i −0.609034 0.793144i \(-0.708443\pi\)
0.0432765 + 0.999063i \(0.486220\pi\)
\(8\) −0.231362 + 2.81895i −0.0817989 + 0.996649i
\(9\) 0 0
\(10\) 3.17390 + 1.25433i 1.00367 + 0.396653i
\(11\) 0.102391 0.122025i 0.0308722 0.0367920i −0.750387 0.660998i \(-0.770133\pi\)
0.781260 + 0.624206i \(0.214577\pi\)
\(12\) 0 0
\(13\) 3.39140 0.597995i 0.940604 0.165854i 0.317735 0.948180i \(-0.397078\pi\)
0.622869 + 0.782326i \(0.285967\pi\)
\(14\) 1.49458 1.68552i 0.399445 0.450475i
\(15\) 0 0
\(16\) −1.61061 3.66141i −0.402651 0.915353i
\(17\) 1.43581 + 2.48690i 0.348236 + 0.603163i 0.985936 0.167122i \(-0.0534474\pi\)
−0.637700 + 0.770285i \(0.720114\pi\)
\(18\) 0 0
\(19\) −3.75621 2.16865i −0.861733 0.497522i 0.00285908 0.999996i \(-0.499090\pi\)
−0.864592 + 0.502474i \(0.832423\pi\)
\(20\) −4.79171 + 0.577486i −1.07146 + 0.129130i
\(21\) 0 0
\(22\) −0.0451590 + 0.220701i −0.00962792 + 0.0470537i
\(23\) −2.14748 0.781619i −0.447781 0.162979i 0.108280 0.994120i \(-0.465466\pi\)
−0.556061 + 0.831142i \(0.687688\pi\)
\(24\) 0 0
\(25\) −0.142997 + 0.810974i −0.0285993 + 0.162195i
\(26\) −3.81480 + 3.02748i −0.748144 + 0.593737i
\(27\) 0 0
\(28\) −0.723589 + 3.10257i −0.136746 + 0.586331i
\(29\) −8.60509 1.51731i −1.59793 0.281757i −0.697440 0.716643i \(-0.745678\pi\)
−0.900486 + 0.434886i \(0.856789\pi\)
\(30\) 0 0
\(31\) −6.69129 2.43543i −1.20179 0.437416i −0.337942 0.941167i \(-0.609731\pi\)
−0.863849 + 0.503751i \(0.831953\pi\)
\(32\) 4.46858 + 3.46868i 0.789941 + 0.613182i
\(33\) 0 0
\(34\) −3.46028 2.12578i −0.593433 0.364569i
\(35\) 3.32901 + 1.92201i 0.562706 + 0.324878i
\(36\) 0 0
\(37\) −5.14590 + 2.97099i −0.845981 + 0.488427i −0.859293 0.511484i \(-0.829096\pi\)
0.0133118 + 0.999911i \(0.495763\pi\)
\(38\) 6.13158 + 0.167414i 0.994673 + 0.0271582i
\(39\) 0 0
\(40\) 5.57002 3.94497i 0.880698 0.623754i
\(41\) 1.74706 + 9.90807i 0.272845 + 1.54738i 0.745725 + 0.666254i \(0.232103\pi\)
−0.472880 + 0.881127i \(0.656786\pi\)
\(42\) 0 0
\(43\) −7.59829 + 9.05529i −1.15873 + 1.38092i −0.247567 + 0.968871i \(0.579631\pi\)
−0.911162 + 0.412048i \(0.864813\pi\)
\(44\) −0.0924647 0.304872i −0.0139396 0.0459612i
\(45\) 0 0
\(46\) 3.19694 0.474136i 0.471363 0.0699075i
\(47\) −3.66367 + 1.33347i −0.534402 + 0.194506i −0.595103 0.803650i \(-0.702889\pi\)
0.0607009 + 0.998156i \(0.480666\pi\)
\(48\) 0 0
\(49\) −3.41856 + 2.86851i −0.488366 + 0.409788i
\(50\) −0.368294 1.10481i −0.0520846 0.156244i
\(51\) 0 0
\(52\) 2.70529 6.33388i 0.375156 0.878352i
\(53\) 9.80805i 1.34724i −0.739078 0.673620i \(-0.764738\pi\)
0.739078 0.673620i \(-0.235262\pi\)
\(54\) 0 0
\(55\) −0.384404 −0.0518330
\(56\) −1.18948 4.34560i −0.158950 0.580705i
\(57\) 0 0
\(58\) 11.7230 3.90790i 1.53930 0.513132i
\(59\) −1.72220 2.05244i −0.224212 0.267205i 0.642198 0.766539i \(-0.278023\pi\)
−0.866410 + 0.499334i \(0.833578\pi\)
\(60\) 0 0
\(61\) −0.492702 1.35369i −0.0630841 0.173322i 0.904146 0.427224i \(-0.140508\pi\)
−0.967230 + 0.253902i \(0.918286\pi\)
\(62\) 9.96127 1.47735i 1.26508 0.187624i
\(63\) 0 0
\(64\) −7.89294 1.30440i −0.986618 0.163050i
\(65\) −6.36609 5.34178i −0.789616 0.662566i
\(66\) 0 0
\(67\) 0.225321 0.0397302i 0.0275273 0.00485381i −0.159868 0.987138i \(-0.551107\pi\)
0.187395 + 0.982285i \(0.439996\pi\)
\(68\) 5.73470 + 0.313390i 0.695435 + 0.0380041i
\(69\) 0 0
\(70\) −5.43423 0.148374i −0.649515 0.0177341i
\(71\) −2.82317 4.88987i −0.335048 0.580320i 0.648446 0.761261i \(-0.275419\pi\)
−0.983494 + 0.180940i \(0.942086\pi\)
\(72\) 0 0
\(73\) 7.14574 12.3768i 0.836346 1.44859i −0.0565836 0.998398i \(-0.518021\pi\)
0.892930 0.450196i \(-0.148646\pi\)
\(74\) 4.39867 7.16002i 0.511335 0.832335i
\(75\) 0 0
\(76\) −7.73789 + 3.92091i −0.887597 + 0.449759i
\(77\) −0.0867843 + 0.238438i −0.00988999 + 0.0271725i
\(78\) 0 0
\(79\) −2.18269 + 12.3786i −0.245572 + 1.39271i 0.573590 + 0.819143i \(0.305550\pi\)
−0.819161 + 0.573563i \(0.805561\pi\)
\(80\) −4.27021 + 8.65685i −0.477424 + 0.967865i
\(81\) 0 0
\(82\) −8.84487 11.1451i −0.976753 1.23077i
\(83\) −11.1079 1.95862i −1.21925 0.214987i −0.473248 0.880929i \(-0.656919\pi\)
−0.746003 + 0.665942i \(0.768030\pi\)
\(84\) 0 0
\(85\) 2.37013 6.51187i 0.257076 0.706311i
\(86\) 3.35117 16.3779i 0.361366 1.76607i
\(87\) 0 0
\(88\) 0.320294 + 0.316868i 0.0341434 + 0.0337783i
\(89\) 3.73417 6.46777i 0.395821 0.685582i −0.597385 0.801955i \(-0.703793\pi\)
0.993206 + 0.116373i \(0.0371268\pi\)
\(90\) 0 0
\(91\) −4.75063 + 2.74278i −0.498001 + 0.287521i
\(92\) −3.65638 + 2.74250i −0.381204 + 0.285925i
\(93\) 0 0
\(94\) 3.65812 4.12546i 0.377307 0.425509i
\(95\) 1.81753 + 10.3077i 0.186474 + 1.05755i
\(96\) 0 0
\(97\) 5.17680 + 4.34385i 0.525624 + 0.441051i 0.866587 0.499026i \(-0.166309\pi\)
−0.340963 + 0.940077i \(0.610753\pi\)
\(98\) 2.31958 5.86936i 0.234313 0.592895i
\(99\) 0 0
\(100\) 1.20201 + 1.12592i 0.120201 + 0.112592i
\(101\) −0.582767 1.60114i −0.0579875 0.159319i 0.907316 0.420449i \(-0.138127\pi\)
−0.965304 + 0.261129i \(0.915905\pi\)
\(102\) 0 0
\(103\) 9.82235 8.24193i 0.967825 0.812102i −0.0143832 0.999897i \(-0.504578\pi\)
0.982208 + 0.187795i \(0.0601340\pi\)
\(104\) 0.901075 + 9.69852i 0.0883576 + 0.951019i
\(105\) 0 0
\(106\) 6.60490 + 12.1972i 0.641525 + 1.18469i
\(107\) 15.7558i 1.52317i 0.648065 + 0.761585i \(0.275579\pi\)
−0.648065 + 0.761585i \(0.724421\pi\)
\(108\) 0 0
\(109\) 4.23854i 0.405978i −0.979181 0.202989i \(-0.934934\pi\)
0.979181 0.202989i \(-0.0650656\pi\)
\(110\) 0.478040 0.258864i 0.0455793 0.0246817i
\(111\) 0 0
\(112\) 4.40561 + 4.60312i 0.416291 + 0.434954i
\(113\) 5.72871 4.80696i 0.538912 0.452201i −0.332254 0.943190i \(-0.607809\pi\)
0.871166 + 0.490989i \(0.163365\pi\)
\(114\) 0 0
\(115\) 1.88620 + 5.18228i 0.175889 + 0.483250i
\(116\) −11.9469 + 12.7542i −1.10924 + 1.18420i
\(117\) 0 0
\(118\) 3.52386 + 1.39263i 0.324397 + 0.128202i
\(119\) −3.50409 2.94028i −0.321220 0.269535i
\(120\) 0 0
\(121\) 1.90572 + 10.8079i 0.173248 + 0.982536i
\(122\) 1.52431 + 1.35164i 0.138005 + 0.122371i
\(123\) 0 0
\(124\) −11.3928 + 8.54529i −1.02311 + 0.767390i
\(125\) −8.72843 + 5.03936i −0.780695 + 0.450734i
\(126\) 0 0
\(127\) 6.92735 11.9985i 0.614703 1.06470i −0.375734 0.926728i \(-0.622609\pi\)
0.990437 0.137969i \(-0.0440574\pi\)
\(128\) 10.6940 3.69310i 0.945222 0.326427i
\(129\) 0 0
\(130\) 11.5140 + 2.35595i 1.00985 + 0.206631i
\(131\) 1.76657 4.85361i 0.154346 0.424061i −0.838286 0.545231i \(-0.816442\pi\)
0.992632 + 0.121169i \(0.0386643\pi\)
\(132\) 0 0
\(133\) 6.80399 + 1.19973i 0.589981 + 0.104030i
\(134\) −0.253452 + 0.201143i −0.0218949 + 0.0173761i
\(135\) 0 0
\(136\) −7.34265 + 3.47211i −0.629627 + 0.297731i
\(137\) 3.27446 18.5704i 0.279756 1.58658i −0.443680 0.896185i \(-0.646327\pi\)
0.723436 0.690391i \(-0.242562\pi\)
\(138\) 0 0
\(139\) −5.53623 + 15.2107i −0.469577 + 1.29015i 0.448512 + 0.893777i \(0.351954\pi\)
−0.918089 + 0.396375i \(0.870268\pi\)
\(140\) 6.85786 3.47498i 0.579595 0.293689i
\(141\) 0 0
\(142\) 6.80377 + 4.17981i 0.570959 + 0.350762i
\(143\) 0.274279 0.475066i 0.0229364 0.0397270i
\(144\) 0 0
\(145\) 10.5430 + 18.2611i 0.875551 + 1.51650i
\(146\) −0.551633 + 20.2037i −0.0456535 + 1.67207i
\(147\) 0 0
\(148\) −0.648466 + 11.8662i −0.0533036 + 0.975399i
\(149\) 12.7731 2.25224i 1.04641 0.184511i 0.376092 0.926582i \(-0.377268\pi\)
0.670321 + 0.742071i \(0.266157\pi\)
\(150\) 0 0
\(151\) 2.57721 + 2.16253i 0.209730 + 0.175985i 0.741602 0.670841i \(-0.234067\pi\)
−0.531871 + 0.846825i \(0.678511\pi\)
\(152\) 6.98235 10.0868i 0.566344 0.818149i
\(153\) 0 0
\(154\) −0.0526440 0.354961i −0.00424217 0.0286035i
\(155\) 5.87716 + 16.1474i 0.472065 + 1.29699i
\(156\) 0 0
\(157\) −0.320529 0.381992i −0.0255810 0.0304863i 0.753102 0.657903i \(-0.228557\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(158\) −5.62161 16.8638i −0.447231 1.34161i
\(159\) 0 0
\(160\) −0.519282 13.6412i −0.0410528 1.07843i
\(161\) 3.64030 0.286896
\(162\) 0 0
\(163\) 11.3041i 0.885405i −0.896669 0.442703i \(-0.854020\pi\)
0.896669 0.442703i \(-0.145980\pi\)
\(164\) 18.5046 + 7.90358i 1.44497 + 0.617166i
\(165\) 0 0
\(166\) 15.1326 5.04452i 1.17452 0.391531i
\(167\) −10.0898 + 8.46632i −0.780770 + 0.655144i −0.943442 0.331536i \(-0.892433\pi\)
0.162673 + 0.986680i \(0.447989\pi\)
\(168\) 0 0
\(169\) −1.07204 + 0.390189i −0.0824644 + 0.0300146i
\(170\) 1.43773 + 9.69416i 0.110269 + 0.743508i
\(171\) 0 0
\(172\) 6.86164 + 22.6240i 0.523195 + 1.72507i
\(173\) 10.5281 12.5470i 0.800440 0.953928i −0.199221 0.979955i \(-0.563841\pi\)
0.999661 + 0.0260269i \(0.00828556\pi\)
\(174\) 0 0
\(175\) −0.227782 1.29182i −0.0172187 0.0976521i
\(176\) −0.611698 0.178363i −0.0461085 0.0134446i
\(177\) 0 0
\(178\) −0.288268 + 10.5579i −0.0216066 + 0.791347i
\(179\) 5.13398 2.96410i 0.383731 0.221547i −0.295709 0.955278i \(-0.595556\pi\)
0.679441 + 0.733731i \(0.262223\pi\)
\(180\) 0 0
\(181\) 1.50802 + 0.870656i 0.112090 + 0.0647154i 0.554997 0.831852i \(-0.312719\pi\)
−0.442907 + 0.896568i \(0.646053\pi\)
\(182\) 4.06079 6.61003i 0.301006 0.489968i
\(183\) 0 0
\(184\) 2.70019 5.87280i 0.199061 0.432949i
\(185\) 13.4744 + 4.90427i 0.990655 + 0.360569i
\(186\) 0 0
\(187\) 0.450481 + 0.0794319i 0.0329424 + 0.00580863i
\(188\) −1.77105 + 7.59381i −0.129167 + 0.553836i
\(189\) 0 0
\(190\) −9.20163 11.5946i −0.667556 0.841160i
\(191\) −1.88621 + 10.6972i −0.136481 + 0.774023i 0.837336 + 0.546689i \(0.184112\pi\)
−0.973817 + 0.227334i \(0.926999\pi\)
\(192\) 0 0
\(193\) −13.6021 4.95075i −0.979100 0.356363i −0.197609 0.980281i \(-0.563318\pi\)
−0.781490 + 0.623918i \(0.785540\pi\)
\(194\) −9.36302 1.91582i −0.672226 0.137548i
\(195\) 0 0
\(196\) 1.06792 + 8.86111i 0.0762800 + 0.632936i
\(197\) −7.36911 4.25456i −0.525027 0.303125i 0.213962 0.976842i \(-0.431363\pi\)
−0.738989 + 0.673717i \(0.764697\pi\)
\(198\) 0 0
\(199\) −6.17939 10.7030i −0.438045 0.758716i 0.559494 0.828835i \(-0.310996\pi\)
−0.997539 + 0.0701183i \(0.977662\pi\)
\(200\) −2.25301 0.590729i −0.159312 0.0417709i
\(201\) 0 0
\(202\) 1.80296 + 1.59871i 0.126855 + 0.112485i
\(203\) 13.7072 2.41695i 0.962057 0.169637i
\(204\) 0 0
\(205\) 15.6062 18.5987i 1.08998 1.29899i
\(206\) −6.66471 + 16.8641i −0.464352 + 1.17498i
\(207\) 0 0
\(208\) −7.65171 11.4542i −0.530550 0.794204i
\(209\) −0.649234 + 0.236302i −0.0449084 + 0.0163453i
\(210\) 0 0
\(211\) 1.13641 + 1.35433i 0.0782339 + 0.0932356i 0.803742 0.594978i \(-0.202839\pi\)
−0.725508 + 0.688214i \(0.758395\pi\)
\(212\) −16.4275 10.7204i −1.12825 0.736281i
\(213\) 0 0
\(214\) −10.6102 19.5937i −0.725299 1.33940i
\(215\) 28.5259 1.94545
\(216\) 0 0
\(217\) 11.3427 0.769994
\(218\) 2.85430 + 5.27100i 0.193318 + 0.356997i
\(219\) 0 0
\(220\) −0.420162 + 0.643840i −0.0283273 + 0.0434077i
\(221\) 6.35657 + 7.57546i 0.427589 + 0.509581i
\(222\) 0 0
\(223\) −2.82725 + 1.02903i −0.189327 + 0.0689092i −0.434944 0.900458i \(-0.643232\pi\)
0.245617 + 0.969367i \(0.421009\pi\)
\(224\) −8.57859 2.75758i −0.573181 0.184249i
\(225\) 0 0
\(226\) −3.88707 + 9.83568i −0.258564 + 0.654260i
\(227\) −3.65533 + 4.35626i −0.242613 + 0.289135i −0.873586 0.486670i \(-0.838211\pi\)
0.630973 + 0.775805i \(0.282656\pi\)
\(228\) 0 0
\(229\) −21.4459 + 3.78149i −1.41718 + 0.249888i −0.829185 0.558974i \(-0.811195\pi\)
−0.587998 + 0.808862i \(0.700084\pi\)
\(230\) −5.83548 5.17443i −0.384780 0.341192i
\(231\) 0 0
\(232\) 6.26811 23.9063i 0.411522 1.56952i
\(233\) 11.7482 + 20.3485i 0.769650 + 1.33307i 0.937753 + 0.347303i \(0.112903\pi\)
−0.168103 + 0.985769i \(0.553764\pi\)
\(234\) 0 0
\(235\) 8.14804 + 4.70427i 0.531520 + 0.306873i
\(236\) −5.32005 + 0.641160i −0.346306 + 0.0417360i
\(237\) 0 0
\(238\) 6.33768 + 1.29679i 0.410811 + 0.0840583i
\(239\) −21.9880 8.00297i −1.42228 0.517669i −0.487574 0.873082i \(-0.662118\pi\)
−0.934710 + 0.355413i \(0.884340\pi\)
\(240\) 0 0
\(241\) 0.682320 3.86963i 0.0439521 0.249265i −0.954913 0.296884i \(-0.904052\pi\)
0.998866 + 0.0476196i \(0.0151635\pi\)
\(242\) −9.64814 12.1572i −0.620206 0.781496i
\(243\) 0 0
\(244\) −2.80583 0.654382i −0.179625 0.0418925i
\(245\) 10.6055 + 1.87004i 0.677562 + 0.119472i
\(246\) 0 0
\(247\) −14.0356 5.10855i −0.893066 0.325049i
\(248\) 8.41347 18.2989i 0.534256 1.16198i
\(249\) 0 0
\(250\) 7.46099 12.1448i 0.471874 0.768102i
\(251\) −0.431970 0.249398i −0.0272657 0.0157419i 0.486305 0.873789i \(-0.338344\pi\)
−0.513571 + 0.858047i \(0.671678\pi\)
\(252\) 0 0
\(253\) −0.315261 + 0.182016i −0.0198203 + 0.0114433i
\(254\) −0.534774 + 19.5862i −0.0335547 + 1.22895i
\(255\) 0 0
\(256\) −10.8119 + 11.7942i −0.675744 + 0.737137i
\(257\) −0.156179 0.885735i −0.00974218 0.0552506i 0.979549 0.201205i \(-0.0644858\pi\)
−0.989291 + 0.145955i \(0.953375\pi\)
\(258\) 0 0
\(259\) 6.08403 7.25067i 0.378043 0.450535i
\(260\) −15.9052 + 4.82390i −0.986401 + 0.299165i
\(261\) 0 0
\(262\) 1.07161 + 7.22552i 0.0662044 + 0.446394i
\(263\) 9.42004 3.42861i 0.580864 0.211417i −0.0348423 0.999393i \(-0.511093\pi\)
0.615707 + 0.787976i \(0.288871\pi\)
\(264\) 0 0
\(265\) −18.1313 + 15.2139i −1.11380 + 0.934585i
\(266\) −9.26928 + 3.08995i −0.568336 + 0.189457i
\(267\) 0 0
\(268\) 0.179737 0.420817i 0.0109792 0.0257055i
\(269\) 1.04059i 0.0634460i 0.999497 + 0.0317230i \(0.0100994\pi\)
−0.999497 + 0.0317230i \(0.989901\pi\)
\(270\) 0 0
\(271\) −30.0408 −1.82485 −0.912423 0.409248i \(-0.865791\pi\)
−0.912423 + 0.409248i \(0.865791\pi\)
\(272\) 6.79305 9.26253i 0.411889 0.561623i
\(273\) 0 0
\(274\) 8.43352 + 25.2990i 0.509488 + 1.52837i
\(275\) 0.0843178 + 0.100486i 0.00508456 + 0.00605954i
\(276\) 0 0
\(277\) 6.71914 + 18.4607i 0.403714 + 1.10920i 0.960437 + 0.278497i \(0.0898363\pi\)
−0.556723 + 0.830698i \(0.687941\pi\)
\(278\) −3.35832 22.6440i −0.201418 1.35810i
\(279\) 0 0
\(280\) −6.18825 + 8.93964i −0.369818 + 0.534245i
\(281\) −21.2698 17.8475i −1.26885 1.06469i −0.994681 0.103008i \(-0.967153\pi\)
−0.274167 0.961682i \(-0.588402\pi\)
\(282\) 0 0
\(283\) 24.5768 4.33356i 1.46094 0.257603i 0.614007 0.789301i \(-0.289557\pi\)
0.846934 + 0.531698i \(0.178446\pi\)
\(284\) −11.2758 0.616201i −0.669098 0.0365648i
\(285\) 0 0
\(286\) −0.0211737 + 0.775490i −0.00125203 + 0.0458557i
\(287\) −8.01310 13.8791i −0.472999 0.819258i
\(288\) 0 0
\(289\) 4.37687 7.58097i 0.257463 0.445939i
\(290\) −25.4085 15.6094i −1.49204 0.916615i
\(291\) 0 0
\(292\) −12.9195 25.4965i −0.756055 1.49207i
\(293\) −2.79279 + 7.67312i −0.163156 + 0.448268i −0.994149 0.108015i \(-0.965551\pi\)
0.830993 + 0.556283i \(0.187773\pi\)
\(294\) 0 0
\(295\) −1.12274 + 6.36736i −0.0653683 + 0.370722i
\(296\) −7.18449 15.1934i −0.417590 0.883099i
\(297\) 0 0
\(298\) −14.3678 + 11.4025i −0.832303 + 0.660527i
\(299\) −7.75036 1.36660i −0.448215 0.0790324i
\(300\) 0 0
\(301\) 6.44011 17.6941i 0.371202 1.01987i
\(302\) −4.66127 0.953769i −0.268226 0.0548832i
\(303\) 0 0
\(304\) −1.89055 + 17.2459i −0.108430 + 0.989118i
\(305\) −1.73818 + 3.01061i −0.0995278 + 0.172387i
\(306\) 0 0
\(307\) 16.1236 9.30896i 0.920222 0.531290i 0.0365160 0.999333i \(-0.488374\pi\)
0.883706 + 0.468043i \(0.155041\pi\)
\(308\) 0.304503 + 0.405973i 0.0173507 + 0.0231325i
\(309\) 0 0
\(310\) −18.1826 16.1229i −1.03271 0.915718i
\(311\) 0.851609 + 4.82971i 0.0482903 + 0.273868i 0.999386 0.0350274i \(-0.0111518\pi\)
−0.951096 + 0.308895i \(0.900041\pi\)
\(312\) 0 0
\(313\) −7.88890 6.61958i −0.445907 0.374161i 0.392007 0.919962i \(-0.371781\pi\)
−0.837914 + 0.545802i \(0.816225\pi\)
\(314\) 0.655845 + 0.259191i 0.0370115 + 0.0146270i
\(315\) 0 0
\(316\) 18.3473 + 17.1859i 1.03212 + 0.966783i
\(317\) 7.72259 + 21.2177i 0.433744 + 1.19170i 0.943497 + 0.331381i \(0.107515\pi\)
−0.509753 + 0.860321i \(0.670263\pi\)
\(318\) 0 0
\(319\) −1.06624 + 0.894680i −0.0596979 + 0.0500925i
\(320\) 9.83196 + 16.6143i 0.549623 + 0.928769i
\(321\) 0 0
\(322\) −4.52703 + 2.45143i −0.252282 + 0.136613i
\(323\) 12.4551i 0.693020i
\(324\) 0 0
\(325\) 2.83585i 0.157304i
\(326\) 7.61236 + 14.0576i 0.421609 + 0.778581i
\(327\) 0 0
\(328\) −28.3345 + 2.63252i −1.56451 + 0.145356i
\(329\) 4.75749 3.99201i 0.262289 0.220087i
\(330\) 0 0
\(331\) −8.06296 22.1528i −0.443180 1.21763i −0.937389 0.348284i \(-0.886764\pi\)
0.494209 0.869343i \(-0.335458\pi\)
\(332\) −15.4217 + 16.4639i −0.846375 + 0.903572i
\(333\) 0 0
\(334\) 6.84616 17.3232i 0.374605 0.947885i
\(335\) −0.422957 0.354903i −0.0231086 0.0193904i
\(336\) 0 0
\(337\) −5.70981 32.3820i −0.311033 1.76396i −0.593649 0.804724i \(-0.702313\pi\)
0.282615 0.959233i \(-0.408798\pi\)
\(338\) 1.07041 1.20716i 0.0582227 0.0656609i
\(339\) 0 0
\(340\) −8.31615 11.0873i −0.451007 0.601296i
\(341\) −0.982316 + 0.567140i −0.0531954 + 0.0307124i
\(342\) 0 0
\(343\) 9.12950 15.8128i 0.492947 0.853809i
\(344\) −23.7684 23.5143i −1.28151 1.26780i
\(345\) 0 0
\(346\) −4.64336 + 22.6931i −0.249628 + 1.21999i
\(347\) −0.288638 + 0.793027i −0.0154949 + 0.0425719i −0.947199 0.320646i \(-0.896100\pi\)
0.931704 + 0.363218i \(0.118322\pi\)
\(348\) 0 0
\(349\) 13.8072 + 2.43459i 0.739085 + 0.130321i 0.530501 0.847684i \(-0.322004\pi\)
0.208583 + 0.978005i \(0.433115\pi\)
\(350\) 1.15320 + 1.45309i 0.0616409 + 0.0776711i
\(351\) 0 0
\(352\) 0.880812 0.190117i 0.0469475 0.0101333i
\(353\) −4.09441 + 23.2205i −0.217923 + 1.23590i 0.657838 + 0.753159i \(0.271471\pi\)
−0.875761 + 0.482744i \(0.839640\pi\)
\(354\) 0 0
\(355\) −4.66025 + 12.8039i −0.247341 + 0.679562i
\(356\) −6.75136 13.3238i −0.357821 0.706159i
\(357\) 0 0
\(358\) −4.38848 + 7.14342i −0.231938 + 0.377542i
\(359\) 13.4957 23.3753i 0.712277 1.23370i −0.251724 0.967799i \(-0.580997\pi\)
0.964001 0.265900i \(-0.0856692\pi\)
\(360\) 0 0
\(361\) −0.0939335 0.162698i −0.00494387 0.00856303i
\(362\) −2.46167 0.0672125i −0.129383 0.00353261i
\(363\) 0 0
\(364\) −0.598655 + 10.9548i −0.0313780 + 0.574185i
\(365\) −33.9641 + 5.98879i −1.77776 + 0.313468i
\(366\) 0 0
\(367\) 22.3181 + 18.7271i 1.16500 + 0.977547i 0.999962 0.00874090i \(-0.00278235\pi\)
0.165033 + 0.986288i \(0.447227\pi\)
\(368\) 0.596913 + 9.12170i 0.0311163 + 0.475501i
\(369\) 0 0
\(370\) −20.0592 + 2.97496i −1.04283 + 0.154661i
\(371\) 5.34353 + 14.6812i 0.277422 + 0.762211i
\(372\) 0 0
\(373\) −0.738799 0.880467i −0.0382536 0.0455888i 0.746578 0.665297i \(-0.231695\pi\)
−0.784832 + 0.619709i \(0.787251\pi\)
\(374\) −0.613703 + 0.204580i −0.0317338 + 0.0105786i
\(375\) 0 0
\(376\) −2.91134 10.6362i −0.150141 0.548521i
\(377\) −30.0906 −1.54975
\(378\) 0 0
\(379\) 16.9124i 0.868731i −0.900737 0.434365i \(-0.856973\pi\)
0.900737 0.434365i \(-0.143027\pi\)
\(380\) 19.2510 + 8.22237i 0.987556 + 0.421799i
\(381\) 0 0
\(382\) −4.85801 14.5731i −0.248557 0.745626i
\(383\) −15.4572 + 12.9701i −0.789826 + 0.662743i −0.945702 0.325034i \(-0.894624\pi\)
0.155876 + 0.987777i \(0.450180\pi\)
\(384\) 0 0
\(385\) 0.575396 0.209427i 0.0293249 0.0106734i
\(386\) 20.2493 3.00316i 1.03066 0.152857i
\(387\) 0 0
\(388\) 12.9339 3.92272i 0.656619 0.199146i
\(389\) 18.7454 22.3399i 0.950428 1.13268i −0.0406204 0.999175i \(-0.512933\pi\)
0.991049 0.133502i \(-0.0426221\pi\)
\(390\) 0 0
\(391\) −1.13957 6.46284i −0.0576307 0.326840i
\(392\) −7.29526 10.3004i −0.368466 0.520249i
\(393\) 0 0
\(394\) 12.0292 + 0.328441i 0.606023 + 0.0165466i
\(395\) 26.2690 15.1664i 1.32174 0.763105i
\(396\) 0 0
\(397\) 10.3158 + 5.95584i 0.517736 + 0.298915i 0.736008 0.676973i \(-0.236709\pi\)
−0.218272 + 0.975888i \(0.570042\pi\)
\(398\) 14.8922 + 9.14884i 0.746478 + 0.458590i
\(399\) 0 0
\(400\) 3.19962 0.782590i 0.159981 0.0391295i
\(401\) −2.23681 0.814132i −0.111701 0.0406558i 0.285565 0.958359i \(-0.407819\pi\)
−0.397266 + 0.917704i \(0.630041\pi\)
\(402\) 0 0
\(403\) −24.1492 4.25815i −1.20296 0.212114i
\(404\) −3.31873 0.774002i −0.165113 0.0385080i
\(405\) 0 0
\(406\) −15.4185 + 12.2363i −0.765207 + 0.607279i
\(407\) −0.164360 + 0.932134i −0.00814705 + 0.0462042i
\(408\) 0 0
\(409\) 12.0885 + 4.39986i 0.597739 + 0.217559i 0.623130 0.782119i \(-0.285861\pi\)
−0.0253911 + 0.999678i \(0.508083\pi\)
\(410\) −6.88298 + 33.6386i −0.339926 + 1.66129i
\(411\) 0 0
\(412\) −3.06840 25.4601i −0.151169 1.25433i
\(413\) 3.69607 + 2.13393i 0.181872 + 0.105004i
\(414\) 0 0
\(415\) 13.6095 + 23.5724i 0.668064 + 1.15712i
\(416\) 17.2290 + 9.09149i 0.844721 + 0.445747i
\(417\) 0 0
\(418\) 0.648250 0.731066i 0.0317069 0.0357576i
\(419\) −7.38244 + 1.30172i −0.360656 + 0.0635933i −0.351040 0.936360i \(-0.614172\pi\)
−0.00961568 + 0.999954i \(0.503061\pi\)
\(420\) 0 0
\(421\) −5.15270 + 6.14075i −0.251127 + 0.299282i −0.876850 0.480763i \(-0.840360\pi\)
0.625723 + 0.780045i \(0.284804\pi\)
\(422\) −2.32525 0.918943i −0.113192 0.0447335i
\(423\) 0 0
\(424\) 27.6484 + 2.26921i 1.34273 + 0.110203i
\(425\) −2.22213 + 0.808790i −0.107789 + 0.0392321i
\(426\) 0 0
\(427\) 1.47501 + 1.75784i 0.0713805 + 0.0850680i
\(428\) 26.3894 + 17.2214i 1.27558 + 0.832429i
\(429\) 0 0
\(430\) −35.4745 + 19.2098i −1.71073 + 0.926380i
\(431\) 4.63698 0.223356 0.111678 0.993744i \(-0.464378\pi\)
0.111678 + 0.993744i \(0.464378\pi\)
\(432\) 0 0
\(433\) −0.0678381 −0.00326009 −0.00163005 0.999999i \(-0.500519\pi\)
−0.00163005 + 0.999999i \(0.500519\pi\)
\(434\) −14.1057 + 7.63837i −0.677094 + 0.366654i
\(435\) 0 0
\(436\) −7.09914 4.63282i −0.339987 0.221872i
\(437\) 6.37133 + 7.59305i 0.304782 + 0.363225i
\(438\) 0 0
\(439\) 12.9530 4.71449i 0.618211 0.225010i −0.0138813 0.999904i \(-0.504419\pi\)
0.632092 + 0.774893i \(0.282196\pi\)
\(440\) 0.0889366 1.08361i 0.00423989 0.0516593i
\(441\) 0 0
\(442\) −13.0064 5.14014i −0.618651 0.244492i
\(443\) 8.58044 10.2258i 0.407669 0.485841i −0.522673 0.852533i \(-0.675065\pi\)
0.930342 + 0.366692i \(0.119510\pi\)
\(444\) 0 0
\(445\) −17.7487 + 3.12957i −0.841369 + 0.148356i
\(446\) 2.82296 3.18361i 0.133671 0.150748i
\(447\) 0 0
\(448\) 12.5252 2.34766i 0.591761 0.110917i
\(449\) −6.26480 10.8509i −0.295654 0.512088i 0.679483 0.733692i \(-0.262204\pi\)
−0.975137 + 0.221604i \(0.928871\pi\)
\(450\) 0 0
\(451\) 1.38792 + 0.801316i 0.0653546 + 0.0377325i
\(452\) −1.78959 14.8491i −0.0841751 0.698445i
\(453\) 0 0
\(454\) 1.61216 7.87895i 0.0756622 0.369777i
\(455\) 12.4393 + 4.52755i 0.583166 + 0.212255i
\(456\) 0 0
\(457\) 3.14504 17.8364i 0.147119 0.834352i −0.818523 0.574474i \(-0.805207\pi\)
0.965642 0.259878i \(-0.0836822\pi\)
\(458\) 24.1233 19.1446i 1.12721 0.894569i
\(459\) 0 0
\(460\) 10.7415 + 2.50515i 0.500824 + 0.116803i
\(461\) −6.87340 1.21197i −0.320126 0.0564469i 0.0112760 0.999936i \(-0.496411\pi\)
−0.331402 + 0.943490i \(0.607522\pi\)
\(462\) 0 0
\(463\) 26.8210 + 9.76206i 1.24648 + 0.453681i 0.879210 0.476434i \(-0.158071\pi\)
0.367269 + 0.930115i \(0.380293\pi\)
\(464\) 8.30391 + 33.9506i 0.385499 + 1.57612i
\(465\) 0 0
\(466\) −28.3129 17.3937i −1.31157 0.805747i
\(467\) −0.471619 0.272289i −0.0218239 0.0126000i 0.489048 0.872257i \(-0.337344\pi\)
−0.510872 + 0.859657i \(0.670677\pi\)
\(468\) 0 0
\(469\) −0.315627 + 0.182227i −0.0145743 + 0.00841448i
\(470\) −13.3007 0.363158i −0.613517 0.0167512i
\(471\) 0 0
\(472\) 6.18418 4.37994i 0.284650 0.201603i
\(473\) 0.326975 + 1.85437i 0.0150343 + 0.0852640i
\(474\) 0 0
\(475\) 2.29584 2.73608i 0.105340 0.125540i
\(476\) −8.75474 + 2.65522i −0.401273 + 0.121702i
\(477\) 0 0
\(478\) 32.7333 4.85466i 1.49719 0.222047i
\(479\) −7.93244 + 2.88717i −0.362442 + 0.131918i −0.516821 0.856094i \(-0.672885\pi\)
0.154379 + 0.988012i \(0.450662\pi\)
\(480\) 0 0
\(481\) −15.6752 + 13.1530i −0.714725 + 0.599726i
\(482\) 1.75735 + 5.27171i 0.0800449 + 0.240120i
\(483\) 0 0
\(484\) 20.1852 + 8.62137i 0.917508 + 0.391880i
\(485\) 16.3079i 0.740505i
\(486\) 0 0
\(487\) −15.0013 −0.679775 −0.339888 0.940466i \(-0.610389\pi\)
−0.339888 + 0.940466i \(0.610389\pi\)
\(488\) 3.92997 1.07571i 0.177901 0.0486951i
\(489\) 0 0
\(490\) −14.4482 + 4.81637i −0.652704 + 0.217581i
\(491\) −9.43399 11.2430i −0.425750 0.507389i 0.509941 0.860209i \(-0.329667\pi\)
−0.935691 + 0.352820i \(0.885223\pi\)
\(492\) 0 0
\(493\) −8.58191 23.5786i −0.386510 1.06193i
\(494\) 20.8947 3.09888i 0.940098 0.139425i
\(495\) 0 0
\(496\) 1.85991 + 28.4221i 0.0835124 + 1.27619i
\(497\) 6.88991 + 5.78132i 0.309055 + 0.259328i
\(498\) 0 0
\(499\) 17.0588 3.00792i 0.763655 0.134653i 0.221762 0.975101i \(-0.428819\pi\)
0.541892 + 0.840448i \(0.317708\pi\)
\(500\) −1.09992 + 20.1274i −0.0491900 + 0.900125i
\(501\) 0 0
\(502\) 0.705142 + 0.0192529i 0.0314720 + 0.000859300i
\(503\) 2.40445 + 4.16463i 0.107209 + 0.185692i 0.914639 0.404272i \(-0.132475\pi\)
−0.807429 + 0.589964i \(0.799142\pi\)
\(504\) 0 0
\(505\) −2.05591 + 3.56095i −0.0914870 + 0.158460i
\(506\) 0.269482 0.438655i 0.0119800 0.0195006i
\(507\) 0 0
\(508\) −12.5246 24.7173i −0.555690 1.09665i
\(509\) −10.1785 + 27.9653i −0.451155 + 1.23954i 0.480757 + 0.876854i \(0.340362\pi\)
−0.931912 + 0.362685i \(0.881860\pi\)
\(510\) 0 0
\(511\) −3.95313 + 22.4193i −0.174876 + 0.991772i
\(512\) 5.50316 21.9480i 0.243208 0.969974i
\(513\) 0 0
\(514\) 0.790690 + 0.996316i 0.0348759 + 0.0439456i
\(515\) −30.4722 5.37308i −1.34277 0.236766i
\(516\) 0 0
\(517\) −0.212412 + 0.583597i −0.00934187 + 0.0256666i
\(518\) −2.68332 + 13.1139i −0.117898 + 0.576193i
\(519\) 0 0
\(520\) 16.5311 16.7098i 0.724936 0.732772i
\(521\) −15.3931 + 26.6615i −0.674382 + 1.16806i 0.302267 + 0.953223i \(0.402256\pi\)
−0.976649 + 0.214840i \(0.931077\pi\)
\(522\) 0 0
\(523\) −20.1716 + 11.6461i −0.882042 + 0.509247i −0.871331 0.490695i \(-0.836743\pi\)
−0.0107111 + 0.999943i \(0.503410\pi\)
\(524\) −6.19842 8.26393i −0.270779 0.361011i
\(525\) 0 0
\(526\) −9.40576 + 10.6074i −0.410111 + 0.462504i
\(527\) −3.55077 20.1374i −0.154674 0.877200i
\(528\) 0 0
\(529\) −13.6183 11.4271i −0.592099 0.496830i
\(530\) 12.3025 31.1298i 0.534387 1.35219i
\(531\) 0 0
\(532\) 9.44634 10.0847i 0.409551 0.437227i
\(533\) 11.8499 + 32.5574i 0.513278 + 1.41022i
\(534\) 0 0
\(535\) 29.1263 24.4399i 1.25924 1.05663i
\(536\) 0.0598665 + 0.644361i 0.00258584 + 0.0278321i
\(537\) 0 0
\(538\) −0.700751 1.29407i −0.0302115 0.0557912i
\(539\) 0.710862i 0.0306190i
\(540\) 0 0
\(541\) 29.0030i 1.24694i 0.781848 + 0.623469i \(0.214277\pi\)
−0.781848 + 0.623469i \(0.785723\pi\)
\(542\) 37.3583 20.2299i 1.60468 0.868950i
\(543\) 0 0
\(544\) −2.21022 + 16.0933i −0.0947625 + 0.689995i
\(545\) −7.83541 + 6.57469i −0.335632 + 0.281629i
\(546\) 0 0
\(547\) 3.84045 + 10.5516i 0.164206 + 0.451152i 0.994319 0.106443i \(-0.0339463\pi\)
−0.830113 + 0.557596i \(0.811724\pi\)
\(548\) −27.5246 25.7823i −1.17579 1.10136i
\(549\) 0 0
\(550\) −0.172526 0.0681823i −0.00735651 0.00290730i
\(551\) 29.0320 + 24.3607i 1.23681 + 1.03780i
\(552\) 0 0
\(553\) −3.47684 19.7182i −0.147850 0.838501i
\(554\) −20.7876 18.4327i −0.883179 0.783131i
\(555\) 0 0
\(556\) 19.4252 + 25.8983i 0.823811 + 1.09833i
\(557\) −2.53413 + 1.46308i −0.107374 + 0.0619927i −0.552726 0.833363i \(-0.686412\pi\)
0.445351 + 0.895356i \(0.353079\pi\)
\(558\) 0 0
\(559\) −20.3538 + 35.2538i −0.860874 + 1.49108i
\(560\) 1.67553 15.2845i 0.0708043 0.645887i
\(561\) 0 0
\(562\) 38.4696 + 7.87148i 1.62274 + 0.332038i
\(563\) 2.96778 8.15390i 0.125077 0.343646i −0.861312 0.508077i \(-0.830357\pi\)
0.986389 + 0.164431i \(0.0525788\pi\)
\(564\) 0 0
\(565\) −17.7724 3.13375i −0.747690 0.131838i
\(566\) −27.6452 + 21.9396i −1.16201 + 0.922190i
\(567\) 0 0
\(568\) 14.4375 6.82703i 0.605782 0.286456i
\(569\) 1.80356 10.2285i 0.0756093 0.428802i −0.923381 0.383884i \(-0.874586\pi\)
0.998991 0.0449179i \(-0.0143026\pi\)
\(570\) 0 0
\(571\) 1.71537 4.71295i 0.0717862 0.197231i −0.898611 0.438747i \(-0.855422\pi\)
0.970397 + 0.241516i \(0.0776447\pi\)
\(572\) −0.495896 0.978649i −0.0207345 0.0409194i
\(573\) 0 0
\(574\) 19.3114 + 11.8637i 0.806043 + 0.495183i
\(575\) 0.940956 1.62978i 0.0392406 0.0679667i
\(576\) 0 0
\(577\) 4.43057 + 7.67398i 0.184447 + 0.319472i 0.943390 0.331685i \(-0.107617\pi\)
−0.758943 + 0.651157i \(0.774284\pi\)
\(578\) −0.337884 + 12.3751i −0.0140541 + 0.514735i
\(579\) 0 0
\(580\) 42.1093 + 2.30119i 1.74849 + 0.0955515i
\(581\) 17.6940 3.11993i 0.734070 0.129436i
\(582\) 0 0
\(583\) −1.19683 1.00426i −0.0495677 0.0415922i
\(584\) 33.2363 + 23.0070i 1.37533 + 0.952037i
\(585\) 0 0
\(586\) −1.69412 11.4229i −0.0699836 0.471876i
\(587\) 0.553940 + 1.52194i 0.0228636 + 0.0628171i 0.950599 0.310420i \(-0.100470\pi\)
−0.927736 + 0.373238i \(0.878248\pi\)
\(588\) 0 0
\(589\) 19.8523 + 23.6590i 0.817999 + 0.974854i
\(590\) −2.89166 8.67445i −0.119048 0.357121i
\(591\) 0 0
\(592\) 19.1660 + 14.0562i 0.787719 + 0.577706i
\(593\) 16.7535 0.687984 0.343992 0.938973i \(-0.388221\pi\)
0.343992 + 0.938973i \(0.388221\pi\)
\(594\) 0 0
\(595\) 11.0386i 0.452538i
\(596\) 10.1890 23.8555i 0.417357 0.977158i
\(597\) 0 0
\(598\) 10.5585 3.51973i 0.431771 0.143933i
\(599\) 31.3875 26.3372i 1.28246 1.07611i 0.289557 0.957161i \(-0.406492\pi\)
0.992900 0.118949i \(-0.0379524\pi\)
\(600\) 0 0
\(601\) −8.03176 + 2.92332i −0.327622 + 0.119245i −0.500594 0.865682i \(-0.666885\pi\)
0.172972 + 0.984927i \(0.444663\pi\)
\(602\) 3.90662 + 26.3410i 0.159222 + 1.07358i
\(603\) 0 0
\(604\) 6.43898 1.95288i 0.261998 0.0794614i
\(605\) 17.0235 20.2878i 0.692103 0.824817i
\(606\) 0 0
\(607\) 4.22098 + 23.9383i 0.171324 + 0.971627i 0.942302 + 0.334765i \(0.108657\pi\)
−0.770978 + 0.636862i \(0.780232\pi\)
\(608\) −9.26258 22.7199i −0.375647 0.921413i
\(609\) 0 0
\(610\) 0.134183 4.91448i 0.00543291 0.198981i
\(611\) −11.6276 + 6.71318i −0.470401 + 0.271586i
\(612\) 0 0
\(613\) 14.3628 + 8.29237i 0.580108 + 0.334926i 0.761176 0.648545i \(-0.224622\pi\)
−0.181068 + 0.983471i \(0.557955\pi\)
\(614\) −13.7823 + 22.4344i −0.556208 + 0.905378i
\(615\) 0 0
\(616\) −0.652066 0.299806i −0.0262725 0.0120795i
\(617\) 17.6023 + 6.40672i 0.708642 + 0.257925i 0.671096 0.741370i \(-0.265824\pi\)
0.0375461 + 0.999295i \(0.488046\pi\)
\(618\) 0 0
\(619\) −4.87939 0.860368i −0.196119 0.0345811i 0.0747256 0.997204i \(-0.476192\pi\)
−0.270845 + 0.962623i \(0.587303\pi\)
\(620\) 33.4691 + 7.80575i 1.34415 + 0.313486i
\(621\) 0 0
\(622\) −4.31146 5.43269i −0.172874 0.217831i
\(623\) −2.06579 + 11.7157i −0.0827643 + 0.469380i
\(624\) 0 0
\(625\) 26.7242 + 9.72681i 1.06897 + 0.389072i
\(626\) 14.2683 + 2.91951i 0.570275 + 0.116687i
\(627\) 0 0
\(628\) −0.990145 + 0.119330i −0.0395111 + 0.00476179i
\(629\) −14.7771 8.53157i −0.589202 0.340176i
\(630\) 0 0
\(631\) −2.46788 4.27449i −0.0982447 0.170165i 0.812713 0.582664i \(-0.197989\pi\)
−0.910958 + 0.412499i \(0.864656\pi\)
\(632\) −34.3898 9.01684i −1.36795 0.358670i
\(633\) 0 0
\(634\) −23.8920 21.1855i −0.948874 0.841384i
\(635\) −32.9261 + 5.80576i −1.30663 + 0.230394i
\(636\) 0 0
\(637\) −9.87834 + 11.7725i −0.391394 + 0.466445i
\(638\) 0.723469 1.83064i 0.0286424 0.0724755i
\(639\) 0 0
\(640\) −23.4153 14.0404i −0.925569 0.554994i
\(641\) −1.74409 + 0.634798i −0.0688875 + 0.0250730i −0.376234 0.926525i \(-0.622781\pi\)
0.307347 + 0.951598i \(0.400559\pi\)
\(642\) 0 0
\(643\) −21.2761 25.3559i −0.839048 0.999938i −0.999916 0.0129623i \(-0.995874\pi\)
0.160868 0.986976i \(-0.448571\pi\)
\(644\) 3.97893 6.09715i 0.156792 0.240261i
\(645\) 0 0
\(646\) 8.38746 + 15.4890i 0.330000 + 0.609407i
\(647\) −8.85391 −0.348083 −0.174042 0.984738i \(-0.555683\pi\)
−0.174042 + 0.984738i \(0.555683\pi\)
\(648\) 0 0
\(649\) −0.426789 −0.0167529
\(650\) −1.90970 3.52662i −0.0749047 0.138326i
\(651\) 0 0
\(652\) −18.9333 12.3556i −0.741484 0.483884i
\(653\) 6.38975 + 7.61501i 0.250050 + 0.297998i 0.876439 0.481512i \(-0.159912\pi\)
−0.626389 + 0.779511i \(0.715468\pi\)
\(654\) 0 0
\(655\) −11.7127 + 4.26306i −0.457652 + 0.166572i
\(656\) 33.4637 22.3547i 1.30654 0.872804i
\(657\) 0 0
\(658\) −3.22808 + 8.16819i −0.125844 + 0.318429i
\(659\) 27.1973 32.4125i 1.05946 1.26261i 0.0958197 0.995399i \(-0.469453\pi\)
0.963637 0.267213i \(-0.0861028\pi\)
\(660\) 0 0
\(661\) −49.7307 + 8.76886i −1.93430 + 0.341069i −0.999886 0.0151198i \(-0.995187\pi\)
−0.934414 + 0.356189i \(0.884076\pi\)
\(662\) 24.9450 + 22.1192i 0.969516 + 0.859688i
\(663\) 0 0
\(664\) 8.09121 30.8595i 0.314000 1.19758i
\(665\) −8.33631 14.4389i −0.323268 0.559917i
\(666\) 0 0
\(667\) 17.2933 + 9.98430i 0.669600 + 0.386594i
\(668\) 3.15193 + 26.1533i 0.121952 + 1.01190i
\(669\) 0 0
\(670\) 0.764981 + 0.156527i 0.0295538 + 0.00604717i
\(671\) −0.215633 0.0784840i −0.00832442 0.00302984i
\(672\) 0 0
\(673\) 2.52619 14.3267i 0.0973775 0.552255i −0.896615 0.442810i \(-0.853981\pi\)
0.993993 0.109445i \(-0.0349074\pi\)
\(674\) 28.9072 + 36.4247i 1.11346 + 1.40303i
\(675\) 0 0
\(676\) −0.518230 + 2.22204i −0.0199319 + 0.0854632i
\(677\) −39.3485 6.93820i −1.51229 0.266657i −0.644890 0.764276i \(-0.723097\pi\)
−0.867396 + 0.497619i \(0.834208\pi\)
\(678\) 0 0
\(679\) −10.1155 3.68173i −0.388197 0.141292i
\(680\) 17.8083 + 8.18786i 0.682916 + 0.313990i
\(681\) 0 0
\(682\) 0.839675 1.36680i 0.0321528 0.0523373i
\(683\) −16.3031 9.41260i −0.623821 0.360163i 0.154534 0.987987i \(-0.450612\pi\)
−0.778355 + 0.627824i \(0.783946\pi\)
\(684\) 0 0
\(685\) −39.4087 + 22.7526i −1.50573 + 0.869333i
\(686\) −0.704774 + 25.8125i −0.0269084 + 0.985526i
\(687\) 0 0
\(688\) 45.3930 + 13.2360i 1.73059 + 0.504617i
\(689\) −5.86516 33.2630i −0.223445 1.26722i
\(690\) 0 0
\(691\) −7.33473 + 8.74119i −0.279026 + 0.332531i −0.887297 0.461199i \(-0.847419\pi\)
0.608270 + 0.793730i \(0.291864\pi\)
\(692\) −9.50745 31.3477i −0.361419 1.19166i
\(693\) 0 0
\(694\) −0.175090 1.18057i −0.00664632 0.0448139i
\(695\) 36.7062 13.3600i 1.39235 0.506773i
\(696\) 0 0
\(697\) −22.1320 + 18.5709i −0.838307 + 0.703423i
\(698\) −18.8100 + 6.27039i −0.711969 + 0.237338i
\(699\) 0 0
\(700\) −2.41264 1.03047i −0.0911891 0.0389481i
\(701\) 29.8398i 1.12704i 0.826104 + 0.563518i \(0.190552\pi\)
−0.826104 + 0.563518i \(0.809448\pi\)
\(702\) 0 0
\(703\) 25.7721 0.972013
\(704\) −0.967340 + 0.829580i −0.0364580 + 0.0312660i
\(705\) 0 0
\(706\) −10.5453 31.6340i −0.396878 1.19056i
\(707\) 1.74463 + 2.07917i 0.0656137 + 0.0781954i
\(708\) 0 0
\(709\) −0.897749 2.46655i −0.0337157 0.0926331i 0.921693 0.387921i \(-0.126807\pi\)
−0.955408 + 0.295288i \(0.904584\pi\)
\(710\) −2.82694 19.0611i −0.106093 0.715351i
\(711\) 0 0
\(712\) 17.3684 + 12.0228i 0.650907 + 0.450574i
\(713\) 12.4658 + 10.4601i 0.466849 + 0.391733i
\(714\) 0 0
\(715\) −1.30367 + 0.229871i −0.0487543 + 0.00859670i
\(716\) 0.646963 11.8387i 0.0241781 0.442435i
\(717\) 0 0
\(718\) −1.04184 + 38.1574i −0.0388809 + 1.42402i
\(719\) 6.54404 + 11.3346i 0.244051 + 0.422709i 0.961864 0.273526i \(-0.0881901\pi\)
−0.717813 + 0.696236i \(0.754857\pi\)
\(720\) 0 0
\(721\) −10.2123 + 17.6883i −0.380327 + 0.658746i
\(722\) 0.226378 + 0.139072i 0.00842491 + 0.00517574i
\(723\) 0 0
\(724\) 3.10657 1.57414i 0.115455 0.0585026i
\(725\) 2.46100 6.76154i 0.0913992 0.251117i
\(726\) 0 0
\(727\) 6.97054 39.5319i 0.258523 1.46616i −0.528342 0.849031i \(-0.677186\pi\)
0.786865 0.617125i \(-0.211703\pi\)
\(728\) −6.63263 14.0263i −0.245822 0.519851i
\(729\) 0 0
\(730\) 38.2044 30.3196i 1.41401 1.12218i
\(731\) −33.4294 5.89450i −1.23643 0.218016i
\(732\) 0 0
\(733\) 0.696450 1.91348i 0.0257240 0.0706760i −0.926166 0.377116i \(-0.876916\pi\)
0.951890 + 0.306440i \(0.0991380\pi\)
\(734\) −40.3657 8.25944i −1.48992 0.304862i
\(735\) 0 0
\(736\) −6.88501 10.9417i −0.253785 0.403315i
\(737\) 0.0182229 0.0315629i 0.000671248 0.00116264i
\(738\) 0 0
\(739\) 30.6990 17.7241i 1.12928 0.651990i 0.185526 0.982639i \(-0.440601\pi\)
0.943754 + 0.330649i \(0.107268\pi\)
\(740\) 22.9419 17.2078i 0.843363 0.632571i
\(741\) 0 0
\(742\) −16.5317 14.6590i −0.606898 0.538148i
\(743\) −9.22773 52.3330i −0.338532 1.91991i −0.389106 0.921193i \(-0.627216\pi\)
0.0505739 0.998720i \(-0.483895\pi\)
\(744\) 0 0
\(745\) −23.9767 20.1189i −0.878440 0.737099i
\(746\) 1.51168 + 0.597419i 0.0553466 + 0.0218731i
\(747\) 0 0
\(748\) 0.625426 0.667691i 0.0228678 0.0244132i
\(749\) −8.58392 23.5841i −0.313649 0.861745i
\(750\) 0 0
\(751\) 6.58894 5.52878i 0.240434 0.201748i −0.514606 0.857427i \(-0.672062\pi\)
0.755040 + 0.655679i \(0.227617\pi\)
\(752\) 10.7831 + 11.2665i 0.393220 + 0.410848i
\(753\) 0 0
\(754\) 37.4203 20.2635i 1.36277 0.737953i
\(755\) 8.11871i 0.295470i
\(756\) 0 0
\(757\) 21.7216i 0.789484i 0.918792 + 0.394742i \(0.129166\pi\)
−0.918792 + 0.394742i \(0.870834\pi\)
\(758\) 11.3891 + 21.0320i 0.413670 + 0.763918i
\(759\) 0 0
\(760\) −29.4774 + 2.73870i −1.06926 + 0.0993430i
\(761\) 0.341041 0.286168i 0.0123627 0.0103736i −0.636585 0.771206i \(-0.719654\pi\)
0.648948 + 0.760833i \(0.275209\pi\)
\(762\) 0 0
\(763\) 2.30920 + 6.34447i 0.0835986 + 0.229685i
\(764\) 15.8551 + 14.8515i 0.573618 + 0.537308i
\(765\) 0 0
\(766\) 10.4881 26.5386i 0.378951 0.958880i
\(767\) −7.06802 5.93077i −0.255211 0.214148i
\(768\) 0 0
\(769\) 3.22004 + 18.2618i 0.116118 + 0.658536i 0.986191 + 0.165614i \(0.0529604\pi\)
−0.870073 + 0.492923i \(0.835928\pi\)
\(770\) −0.574524 + 0.647922i −0.0207044 + 0.0233495i
\(771\) 0 0
\(772\) −23.1594 + 17.3709i −0.833526 + 0.625192i
\(773\) −1.50501 + 0.868919i −0.0541315 + 0.0312528i −0.526822 0.849976i \(-0.676616\pi\)
0.472690 + 0.881229i \(0.343283\pi\)
\(774\) 0 0
\(775\) 2.93190 5.07821i 0.105317 0.182415i
\(776\) −13.4428 + 13.5881i −0.482569 + 0.487785i
\(777\) 0 0
\(778\) −8.26750 + 40.4050i −0.296404 + 1.44859i
\(779\) 14.9248 41.0055i 0.534736 1.46918i
\(780\) 0 0
\(781\) −0.885756 0.156183i −0.0316948 0.00558865i
\(782\) 5.76934 + 7.26970i 0.206311 + 0.259964i
\(783\) 0 0
\(784\) 16.0088 + 7.89672i 0.571742 + 0.282026i
\(785\) −0.208959 + 1.18507i −0.00745808 + 0.0422969i
\(786\) 0 0
\(787\) −12.6576 + 34.7764i −0.451193 + 1.23964i 0.480692 + 0.876890i \(0.340386\pi\)
−0.931885 + 0.362754i \(0.881837\pi\)
\(788\) −15.1806 + 7.69222i −0.540785 + 0.274024i
\(789\) 0 0
\(790\) −22.4545 + 36.5507i −0.798896 + 1.30042i
\(791\) −5.95616 + 10.3164i −0.211777 + 0.366808i
\(792\) 0 0
\(793\) −2.48045 4.29626i −0.0880833 0.152565i
\(794\) −16.8394 0.459776i −0.597608 0.0163168i
\(795\) 0 0
\(796\) −24.6807 1.34875i −0.874785 0.0478052i
\(797\) −11.7114 + 2.06503i −0.414837 + 0.0731470i −0.377172 0.926143i \(-0.623103\pi\)
−0.0376658 + 0.999290i \(0.511992\pi\)
\(798\) 0 0
\(799\) −8.57656 7.19659i −0.303417 0.254597i
\(800\) −3.45201 + 3.12790i −0.122047 + 0.110588i
\(801\) 0 0
\(802\) 3.32992 0.493858i 0.117584 0.0174387i
\(803\) −0.778620 2.13924i −0.0274769 0.0754922i
\(804\) 0 0
\(805\) −5.64671 6.72949i −0.199021 0.237183i
\(806\) 32.8992 10.9671i 1.15882 0.386298i
\(807\) 0 0
\(808\) 4.64836 1.27235i 0.163529 0.0447610i
\(809\) −13.6067 −0.478385 −0.239192 0.970972i \(-0.576883\pi\)
−0.239192 + 0.970972i \(0.576883\pi\)
\(810\) 0 0
\(811\) 23.1998i 0.814656i −0.913282 0.407328i \(-0.866461\pi\)
0.913282 0.407328i \(-0.133539\pi\)
\(812\) 10.9341 25.6000i 0.383712 0.898385i
\(813\) 0 0
\(814\) −0.423317 1.26987i −0.0148373 0.0445091i
\(815\) −20.8969 + 17.5346i −0.731985 + 0.614209i
\(816\) 0 0
\(817\) 48.1785 17.5355i 1.68555 0.613491i
\(818\) −17.9961 + 2.66899i −0.629218 + 0.0933189i
\(819\) 0 0
\(820\) −14.0932 46.4676i −0.492155 1.62272i
\(821\) −18.9516 + 22.5856i −0.661414 + 0.788243i −0.987588 0.157067i \(-0.949796\pi\)
0.326174 + 0.945310i \(0.394241\pi\)
\(822\) 0 0
\(823\) 2.95142 + 16.7383i 0.102880 + 0.583462i 0.992046 + 0.125877i \(0.0401744\pi\)
−0.889166 + 0.457585i \(0.848715\pi\)
\(824\) 20.9611 + 29.5956i 0.730213 + 1.03101i
\(825\) 0 0
\(826\) −6.03342 0.164734i −0.209929 0.00573183i
\(827\) −44.0488 + 25.4316i −1.53173 + 0.884343i −0.532444 + 0.846465i \(0.678726\pi\)
−0.999282 + 0.0378772i \(0.987940\pi\)
\(828\) 0 0
\(829\) −41.8595 24.1676i −1.45384 0.839374i −0.455143 0.890418i \(-0.650412\pi\)
−0.998696 + 0.0510440i \(0.983745\pi\)
\(830\) −32.7986 20.1494i −1.13846 0.699397i
\(831\) 0 0
\(832\) −27.5481 + 0.296210i −0.955059 + 0.0102692i
\(833\) −12.0421 4.38298i −0.417235 0.151861i
\(834\) 0 0
\(835\) 31.3019 + 5.51936i 1.08325 + 0.191005i
\(836\) −0.313844 + 1.34569i −0.0108545 + 0.0465416i
\(837\) 0 0
\(838\) 8.30411 6.59026i 0.286861 0.227657i
\(839\) −4.93028 + 27.9610i −0.170212 + 0.965321i 0.773314 + 0.634023i \(0.218598\pi\)
−0.943526 + 0.331298i \(0.892514\pi\)
\(840\) 0 0
\(841\) 44.4943 + 16.1946i 1.53429 + 0.558434i
\(842\) 2.27256 11.1065i 0.0783176 0.382754i
\(843\) 0 0
\(844\) 3.51049 0.423076i 0.120836 0.0145629i
\(845\) 2.38422 + 1.37653i 0.0820196 + 0.0473540i
\(846\) 0 0
\(847\) −8.74084 15.1396i −0.300339 0.520202i
\(848\) −35.9113 + 15.7969i −1.23320 + 0.542468i
\(849\) 0 0
\(850\) 2.21876 2.50222i 0.0761030 0.0858254i
\(851\) 13.3729 2.35800i 0.458417 0.0808313i
\(852\) 0 0
\(853\) −17.3921 + 20.7271i −0.595495 + 0.709684i −0.976652 0.214827i \(-0.931081\pi\)
0.381157 + 0.924510i \(0.375526\pi\)
\(854\) −3.01806 1.19274i −0.103276 0.0408147i
\(855\) 0 0
\(856\) −44.4148 3.64530i −1.51807 0.124594i
\(857\) −1.73329 + 0.630867i −0.0592082 + 0.0215500i −0.371454 0.928451i \(-0.621141\pi\)
0.312246 + 0.950001i \(0.398919\pi\)
\(858\) 0 0
\(859\) −11.6792 13.9187i −0.398489 0.474901i 0.529070 0.848578i \(-0.322541\pi\)
−0.927559 + 0.373678i \(0.878097\pi\)
\(860\) 31.1795 47.7782i 1.06321 1.62922i
\(861\) 0 0
\(862\) −5.76650 + 3.12262i −0.196408 + 0.106357i
\(863\) −49.6695 −1.69077 −0.845385 0.534157i \(-0.820629\pi\)
−0.845385 + 0.534157i \(0.820629\pi\)
\(864\) 0 0
\(865\) −39.5254 −1.34390
\(866\) 0.0843627 0.0456833i 0.00286676 0.00155238i
\(867\) 0 0
\(868\) 12.3979 18.9980i 0.420810 0.644833i
\(869\) 1.28702 + 1.53381i 0.0436592 + 0.0520310i
\(870\) 0 0
\(871\) 0.740394 0.269482i 0.0250873 0.00913103i
\(872\) 11.9482 + 0.980638i 0.404618 + 0.0332086i
\(873\) 0 0
\(874\) −13.0366 5.15208i −0.440969 0.174272i
\(875\) 10.3197 12.2985i 0.348869 0.415766i
\(876\) 0 0
\(877\) 22.9919 4.05410i 0.776382 0.136897i 0.228603 0.973520i \(-0.426584\pi\)
0.547779 + 0.836623i \(0.315473\pi\)
\(878\) −12.9333 + 14.5856i −0.436479 + 0.492240i
\(879\) 0 0
\(880\) 0.619123 + 1.40746i 0.0208706 + 0.0474455i
\(881\) 15.9640 + 27.6505i 0.537842 + 0.931569i 0.999020 + 0.0442614i \(0.0140935\pi\)
−0.461178 + 0.887307i \(0.652573\pi\)
\(882\) 0 0
\(883\) −40.1101 23.1576i −1.34981 0.779315i −0.361590 0.932337i \(-0.617766\pi\)
−0.988223 + 0.153023i \(0.951099\pi\)
\(884\) 19.6360 2.36649i 0.660432 0.0795937i
\(885\) 0 0
\(886\) −3.78434 + 18.4949i −0.127137 + 0.621347i
\(887\) 32.0649 + 11.6707i 1.07663 + 0.391863i 0.818654 0.574288i \(-0.194721\pi\)
0.257980 + 0.966150i \(0.416943\pi\)
\(888\) 0 0
\(889\) −3.83231 + 21.7341i −0.128532 + 0.728939i
\(890\) 19.9646 15.8442i 0.669214 0.531097i
\(891\) 0 0
\(892\) −1.36671 + 5.86013i −0.0457609 + 0.196212i
\(893\) 16.6533 + 2.93643i 0.557283 + 0.0982640i
\(894\) 0 0
\(895\) −13.4431 4.89290i −0.449354 0.163552i
\(896\) −13.9953 + 11.3542i −0.467549 + 0.379318i
\(897\) 0 0
\(898\) 15.0980 + 9.27530i 0.503828 + 0.309521i
\(899\) 53.8839 + 31.1099i 1.79713 + 1.03757i
\(900\) 0 0
\(901\) 24.3917 14.0825i 0.812605 0.469158i
\(902\) −2.26562 0.0618596i −0.0754369 0.00205970i
\(903\) 0 0
\(904\) 12.2252 + 17.2611i 0.406603 + 0.574095i
\(905\) −0.729690 4.13828i −0.0242557 0.137561i
\(906\) 0 0
\(907\) 0.685743 0.817237i 0.0227697 0.0271359i −0.754539 0.656255i \(-0.772140\pi\)
0.777309 + 0.629119i \(0.216584\pi\)
\(908\) 3.30095 + 10.8838i 0.109546 + 0.361192i
\(909\) 0 0
\(910\) −18.5183 + 2.74644i −0.613877 + 0.0910438i
\(911\) −2.39685 + 0.872383i −0.0794113 + 0.0289033i −0.381420 0.924402i \(-0.624565\pi\)
0.302009 + 0.953305i \(0.402343\pi\)
\(912\) 0 0
\(913\) −1.37636 + 1.15490i −0.0455508 + 0.0382216i
\(914\) 8.10018 + 24.2991i 0.267930 + 0.803741i
\(915\) 0 0
\(916\) −17.1072 + 40.0530i −0.565237 + 1.32339i
\(917\) 8.22758i 0.271699i
\(918\) 0 0
\(919\) 3.85703 0.127232 0.0636159 0.997974i \(-0.479737\pi\)
0.0636159 + 0.997974i \(0.479737\pi\)
\(920\) −15.0450 + 4.11810i −0.496018 + 0.135770i
\(921\) 0 0
\(922\) 9.36384 3.12147i 0.308382 0.102800i
\(923\) −12.4986 14.8952i −0.411396 0.490283i
\(924\) 0 0
\(925\) −1.67355 4.59804i −0.0550259 0.151182i
\(926\) −39.9282 + 5.92173i −1.31212 + 0.194600i
\(927\) 0 0
\(928\) −33.1895 36.6286i −1.08950 1.20239i
\(929\) −23.6191 19.8188i −0.774919 0.650234i 0.167045 0.985949i \(-0.446578\pi\)
−0.941964 + 0.335715i \(0.891022\pi\)
\(930\) 0 0
\(931\) 19.0616 3.36108i 0.624719 0.110155i
\(932\) 46.9228 + 2.56423i 1.53701 + 0.0839942i
\(933\) 0 0
\(934\) 0.769863 + 0.0210200i 0.0251907 + 0.000687797i
\(935\) −0.551933 0.955975i −0.0180501 0.0312637i
\(936\) 0 0
\(937\) 3.69048 6.39210i 0.120563 0.208821i −0.799427 0.600763i \(-0.794863\pi\)
0.919990 + 0.391942i \(0.128197\pi\)
\(938\) 0.269795 0.439164i 0.00880913 0.0143392i
\(939\) 0 0
\(940\) 16.7852 8.50531i 0.547473 0.277413i
\(941\) 13.1119 36.0246i 0.427435 1.17437i −0.519929 0.854209i \(-0.674042\pi\)
0.947364 0.320158i \(-0.103736\pi\)
\(942\) 0 0
\(943\) 3.99256 22.6429i 0.130016 0.737355i
\(944\) −4.74105 + 9.61137i −0.154308 + 0.312823i
\(945\) 0 0
\(946\) −1.65538 2.08588i −0.0538212 0.0678178i
\(947\) 21.8272 + 3.84873i 0.709289 + 0.125067i 0.516642 0.856201i \(-0.327182\pi\)
0.192647 + 0.981268i \(0.438293\pi\)
\(948\) 0 0
\(949\) 16.8328 46.2477i 0.546416 1.50126i
\(950\) −1.01256 + 4.94861i −0.0328519 + 0.160554i
\(951\) 0 0
\(952\) 9.09922 9.19759i 0.294907 0.298095i
\(953\) −22.3908 + 38.7819i −0.725308 + 1.25627i 0.233540 + 0.972347i \(0.424969\pi\)
−0.958847 + 0.283922i \(0.908364\pi\)
\(954\) 0 0
\(955\) 22.7008 13.1063i 0.734580 0.424110i
\(956\) −37.4375 + 28.0803i −1.21082 + 0.908182i
\(957\) 0 0
\(958\) 7.92042 8.93228i 0.255897 0.288589i
\(959\) 5.21595 + 29.5811i 0.168432 + 0.955224i
\(960\) 0 0
\(961\) 15.0947 + 12.6659i 0.486925 + 0.408579i
\(962\) 10.6360 26.9128i 0.342918 0.867704i
\(963\) 0 0
\(964\) −5.73547 5.37241i −0.184727 0.173034i
\(965\) 11.9471 + 32.8244i 0.384591 + 1.05666i
\(966\) 0 0
\(967\) 32.4852 27.2583i 1.04465 0.876567i 0.0521310 0.998640i \(-0.483399\pi\)
0.992521 + 0.122073i \(0.0389542\pi\)
\(968\) −30.9078 + 2.87160i −0.993415 + 0.0922966i
\(969\) 0 0
\(970\) 10.9820 + 20.2803i 0.352611 + 0.651163i
\(971\) 9.33492i 0.299572i 0.988718 + 0.149786i \(0.0478584\pi\)
−0.988718 + 0.149786i \(0.952142\pi\)
\(972\) 0 0
\(973\) 25.7843i 0.826608i
\(974\) 18.6555 10.1021i 0.597760 0.323693i
\(975\) 0 0
\(976\) −4.16286 + 3.98424i −0.133250 + 0.127533i
\(977\) −0.274142 + 0.230032i −0.00877057 + 0.00735938i −0.647162 0.762352i \(-0.724044\pi\)
0.638392 + 0.769712i \(0.279600\pi\)
\(978\) 0 0
\(979\) −0.406885 1.11791i −0.0130041 0.0357285i
\(980\) 14.7242 15.7192i 0.470348 0.502133i
\(981\) 0 0
\(982\) 19.3032 + 7.62865i 0.615990 + 0.243440i
\(983\) 6.53130 + 5.48041i 0.208316 + 0.174798i 0.740976 0.671531i \(-0.234363\pi\)
−0.532660 + 0.846329i \(0.678808\pi\)
\(984\) 0 0
\(985\) 3.56571 + 20.2221i 0.113613 + 0.644331i
\(986\) 26.5506 + 23.5429i 0.845542 + 0.749758i
\(987\) 0 0
\(988\) −23.8976 + 17.9246i −0.760283 + 0.570256i
\(989\) 23.3950 13.5071i 0.743917 0.429501i
\(990\) 0 0
\(991\) −25.9790 + 44.9969i −0.825249 + 1.42937i 0.0764798 + 0.997071i \(0.475632\pi\)
−0.901729 + 0.432302i \(0.857701\pi\)
\(992\) −21.4529 34.0929i −0.681129 1.08245i
\(993\) 0 0
\(994\) −12.4614 2.54981i −0.395253 0.0808750i
\(995\) −10.2004 + 28.0255i −0.323375 + 0.888467i
\(996\) 0 0
\(997\) 44.7921 + 7.89805i 1.41858 + 0.250134i 0.829755 0.558128i \(-0.188480\pi\)
0.588824 + 0.808262i \(0.299591\pi\)
\(998\) −19.1885 + 15.2282i −0.607401 + 0.482042i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.4 204
3.2 odd 2 216.2.t.a.133.31 yes 204
8.5 even 2 inner 648.2.t.a.397.26 204
12.11 even 2 864.2.bf.a.241.17 204
24.5 odd 2 216.2.t.a.133.9 yes 204
24.11 even 2 864.2.bf.a.241.18 204
27.13 even 9 inner 648.2.t.a.253.26 204
27.14 odd 18 216.2.t.a.13.9 204
108.95 even 18 864.2.bf.a.337.18 204
216.13 even 18 inner 648.2.t.a.253.4 204
216.149 odd 18 216.2.t.a.13.31 yes 204
216.203 even 18 864.2.bf.a.337.17 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.9 204 27.14 odd 18
216.2.t.a.13.31 yes 204 216.149 odd 18
216.2.t.a.133.9 yes 204 24.5 odd 2
216.2.t.a.133.31 yes 204 3.2 odd 2
648.2.t.a.253.4 204 216.13 even 18 inner
648.2.t.a.253.26 204 27.13 even 9 inner
648.2.t.a.397.4 204 1.1 even 1 trivial
648.2.t.a.397.26 204 8.5 even 2 inner
864.2.bf.a.241.17 204 12.11 even 2
864.2.bf.a.241.18 204 24.11 even 2
864.2.bf.a.337.17 204 216.203 even 18
864.2.bf.a.337.18 204 108.95 even 18