Properties

Label 855.2.dl.b.298.13
Level $855$
Weight $2$
Character 855.298
Analytic conductor $6.827$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 298.13
Character \(\chi\) \(=\) 855.298
Dual form 855.2.dl.b.307.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.693370 + 0.0606620i) q^{2} +(-1.49253 - 0.263174i) q^{4} +(1.33943 - 1.79051i) q^{5} +(0.0498847 + 0.186172i) q^{7} +(-2.36352 - 0.633303i) q^{8} +(1.03734 - 1.16023i) q^{10} +(-1.69491 - 2.93568i) q^{11} +(-0.912547 + 1.95696i) q^{13} +(0.0232950 + 0.132112i) q^{14} +(1.24794 + 0.454214i) q^{16} +(0.604786 - 6.91273i) q^{17} +(-2.43830 + 3.61313i) q^{19} +(-2.47036 + 2.31989i) q^{20} +(-0.997118 - 2.13833i) q^{22} +(-4.28034 + 2.99713i) q^{23} +(-1.41184 - 4.79653i) q^{25} +(-0.751446 + 1.30154i) q^{26} +(-0.0254589 - 0.290997i) q^{28} +(-5.09429 - 4.27462i) q^{29} +(-1.89191 - 1.09230i) q^{31} +(5.27301 + 2.45884i) q^{32} +(0.838680 - 4.75639i) q^{34} +(0.400160 + 0.160046i) q^{35} +(-5.09701 - 5.09701i) q^{37} +(-1.90982 + 2.35732i) q^{38} +(-4.29971 + 3.38363i) q^{40} +(2.93503 - 8.06394i) q^{41} +(0.670512 - 0.957590i) q^{43} +(1.75712 + 4.82765i) q^{44} +(-3.14967 + 1.81846i) q^{46} +(-6.07749 + 0.531712i) q^{47} +(6.03001 - 3.48143i) q^{49} +(-0.687959 - 3.41142i) q^{50} +(1.87703 - 2.68067i) q^{52} +(6.81158 + 9.72794i) q^{53} +(-7.52658 - 0.897386i) q^{55} -0.471614i q^{56} +(-3.27292 - 3.27292i) q^{58} +(4.80729 - 4.03379i) q^{59} +(-1.65436 + 9.38236i) q^{61} +(-1.24553 - 0.872132i) q^{62} +(1.20677 + 0.696726i) q^{64} +(2.28166 + 4.25514i) q^{65} +(-0.768076 - 8.77915i) q^{67} +(-2.72191 + 10.1583i) q^{68} +(0.267750 + 0.135246i) q^{70} +(-2.15751 + 0.380428i) q^{71} +(-3.66082 - 7.85066i) q^{73} +(-3.22492 - 3.84331i) q^{74} +(4.59012 - 4.75102i) q^{76} +(0.461992 - 0.461992i) q^{77} +(7.22404 + 2.62934i) q^{79} +(2.48481 - 1.62606i) q^{80} +(2.52424 - 5.41325i) q^{82} +(-2.59137 + 0.694355i) q^{83} +(-11.5672 - 10.3420i) q^{85} +(0.523002 - 0.623290i) q^{86} +(2.14679 + 8.01192i) q^{88} +(-0.466220 + 0.169690i) q^{89} +(-0.409855 - 0.0722684i) q^{91} +(7.17732 - 3.34684i) q^{92} -4.24620 q^{94} +(3.20340 + 9.20534i) q^{95} +(2.57139 + 0.224967i) q^{97} +(4.39221 - 2.04812i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{7} - 36 q^{16} - 120 q^{20} + 24 q^{22} - 24 q^{23} - 24 q^{25} + 24 q^{26} - 72 q^{28} + 12 q^{32} + 132 q^{38} - 132 q^{40} + 72 q^{41} - 108 q^{43} - 24 q^{47} - 36 q^{53} - 144 q^{58}+ \cdots - 192 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.693370 + 0.0606620i 0.490287 + 0.0428945i 0.329619 0.944114i \(-0.393080\pi\)
0.160668 + 0.987009i \(0.448635\pi\)
\(3\) 0 0
\(4\) −1.49253 0.263174i −0.746267 0.131587i
\(5\) 1.33943 1.79051i 0.599013 0.800740i
\(6\) 0 0
\(7\) 0.0498847 + 0.186172i 0.0188547 + 0.0703665i 0.974712 0.223464i \(-0.0717365\pi\)
−0.955858 + 0.293831i \(0.905070\pi\)
\(8\) −2.36352 0.633303i −0.835630 0.223906i
\(9\) 0 0
\(10\) 1.03734 1.16023i 0.328035 0.366897i
\(11\) −1.69491 2.93568i −0.511036 0.885140i −0.999918 0.0127903i \(-0.995929\pi\)
0.488882 0.872350i \(-0.337405\pi\)
\(12\) 0 0
\(13\) −0.912547 + 1.95696i −0.253095 + 0.542764i −0.991270 0.131845i \(-0.957910\pi\)
0.738175 + 0.674609i \(0.235688\pi\)
\(14\) 0.0232950 + 0.132112i 0.00622585 + 0.0353085i
\(15\) 0 0
\(16\) 1.24794 + 0.454214i 0.311986 + 0.113554i
\(17\) 0.604786 6.91273i 0.146682 1.67658i −0.464869 0.885379i \(-0.653899\pi\)
0.611551 0.791205i \(-0.290546\pi\)
\(18\) 0 0
\(19\) −2.43830 + 3.61313i −0.559384 + 0.828909i
\(20\) −2.47036 + 2.31989i −0.552390 + 0.518743i
\(21\) 0 0
\(22\) −0.997118 2.13833i −0.212586 0.455893i
\(23\) −4.28034 + 2.99713i −0.892513 + 0.624945i −0.927246 0.374452i \(-0.877831\pi\)
0.0347330 + 0.999397i \(0.488942\pi\)
\(24\) 0 0
\(25\) −1.41184 4.79653i −0.282368 0.959306i
\(26\) −0.751446 + 1.30154i −0.147371 + 0.255253i
\(27\) 0 0
\(28\) −0.0254589 0.290997i −0.00481129 0.0549932i
\(29\) −5.09429 4.27462i −0.945986 0.793776i 0.0326312 0.999467i \(-0.489611\pi\)
−0.978617 + 0.205691i \(0.934056\pi\)
\(30\) 0 0
\(31\) −1.89191 1.09230i −0.339798 0.196182i 0.320385 0.947287i \(-0.396188\pi\)
−0.660182 + 0.751105i \(0.729521\pi\)
\(32\) 5.27301 + 2.45884i 0.932145 + 0.434666i
\(33\) 0 0
\(34\) 0.838680 4.75639i 0.143833 0.815715i
\(35\) 0.400160 + 0.160046i 0.0676395 + 0.0270528i
\(36\) 0 0
\(37\) −5.09701 5.09701i −0.837943 0.837943i 0.150645 0.988588i \(-0.451865\pi\)
−0.988588 + 0.150645i \(0.951865\pi\)
\(38\) −1.90982 + 2.35732i −0.309814 + 0.382408i
\(39\) 0 0
\(40\) −4.29971 + 3.38363i −0.679843 + 0.534999i
\(41\) 2.93503 8.06394i 0.458375 1.25938i −0.468319 0.883560i \(-0.655140\pi\)
0.926694 0.375816i \(-0.122638\pi\)
\(42\) 0 0
\(43\) 0.670512 0.957590i 0.102252 0.146031i −0.764765 0.644309i \(-0.777145\pi\)
0.867017 + 0.498278i \(0.166034\pi\)
\(44\) 1.75712 + 4.82765i 0.264896 + 0.727796i
\(45\) 0 0
\(46\) −3.14967 + 1.81846i −0.464394 + 0.268118i
\(47\) −6.07749 + 0.531712i −0.886493 + 0.0775581i −0.521300 0.853374i \(-0.674553\pi\)
−0.365193 + 0.930932i \(0.618997\pi\)
\(48\) 0 0
\(49\) 6.03001 3.48143i 0.861429 0.497347i
\(50\) −0.687959 3.41142i −0.0972921 0.482447i
\(51\) 0 0
\(52\) 1.87703 2.68067i 0.260297 0.371743i
\(53\) 6.81158 + 9.72794i 0.935642 + 1.33624i 0.941771 + 0.336254i \(0.109160\pi\)
−0.00612942 + 0.999981i \(0.501951\pi\)
\(54\) 0 0
\(55\) −7.52658 0.897386i −1.01488 0.121004i
\(56\) 0.471614i 0.0630220i
\(57\) 0 0
\(58\) −3.27292 3.27292i −0.429755 0.429755i
\(59\) 4.80729 4.03379i 0.625856 0.525155i −0.273782 0.961792i \(-0.588275\pi\)
0.899638 + 0.436636i \(0.143830\pi\)
\(60\) 0 0
\(61\) −1.65436 + 9.38236i −0.211820 + 1.20129i 0.674521 + 0.738255i \(0.264350\pi\)
−0.886341 + 0.463033i \(0.846761\pi\)
\(62\) −1.24553 0.872132i −0.158183 0.110761i
\(63\) 0 0
\(64\) 1.20677 + 0.696726i 0.150846 + 0.0870908i
\(65\) 2.28166 + 4.25514i 0.283005 + 0.527785i
\(66\) 0 0
\(67\) −0.768076 8.77915i −0.0938355 1.07254i −0.886451 0.462822i \(-0.846837\pi\)
0.792616 0.609722i \(-0.208719\pi\)
\(68\) −2.72191 + 10.1583i −0.330081 + 1.23188i
\(69\) 0 0
\(70\) 0.267750 + 0.135246i 0.0320023 + 0.0161650i
\(71\) −2.15751 + 0.380428i −0.256050 + 0.0451485i −0.300199 0.953876i \(-0.597053\pi\)
0.0441498 + 0.999025i \(0.485942\pi\)
\(72\) 0 0
\(73\) −3.66082 7.85066i −0.428467 0.918850i −0.995465 0.0951309i \(-0.969673\pi\)
0.566998 0.823719i \(-0.308105\pi\)
\(74\) −3.22492 3.84331i −0.374889 0.446775i
\(75\) 0 0
\(76\) 4.59012 4.75102i 0.526523 0.544980i
\(77\) 0.461992 0.461992i 0.0526488 0.0526488i
\(78\) 0 0
\(79\) 7.22404 + 2.62934i 0.812768 + 0.295823i 0.714767 0.699363i \(-0.246533\pi\)
0.0980014 + 0.995186i \(0.468755\pi\)
\(80\) 2.48481 1.62606i 0.277810 0.181799i
\(81\) 0 0
\(82\) 2.52424 5.41325i 0.278756 0.597793i
\(83\) −2.59137 + 0.694355i −0.284440 + 0.0762154i −0.398218 0.917291i \(-0.630371\pi\)
0.113778 + 0.993506i \(0.463705\pi\)
\(84\) 0 0
\(85\) −11.5672 10.3420i −1.25464 1.12175i
\(86\) 0.523002 0.623290i 0.0563968 0.0672111i
\(87\) 0 0
\(88\) 2.14679 + 8.01192i 0.228848 + 0.854073i
\(89\) −0.466220 + 0.169690i −0.0494192 + 0.0179871i −0.366611 0.930374i \(-0.619482\pi\)
0.317192 + 0.948361i \(0.397260\pi\)
\(90\) 0 0
\(91\) −0.409855 0.0722684i −0.0429644 0.00757579i
\(92\) 7.17732 3.34684i 0.748288 0.348932i
\(93\) 0 0
\(94\) −4.24620 −0.437963
\(95\) 3.20340 + 9.20534i 0.328662 + 0.944448i
\(96\) 0 0
\(97\) 2.57139 + 0.224967i 0.261085 + 0.0228420i 0.216947 0.976183i \(-0.430390\pi\)
0.0441382 + 0.999025i \(0.485946\pi\)
\(98\) 4.39221 2.04812i 0.443681 0.206892i
\(99\) 0 0
\(100\) 0.844894 + 7.53054i 0.0844894 + 0.753054i
\(101\) −12.7562 + 4.64289i −1.26929 + 0.461985i −0.886877 0.462005i \(-0.847130\pi\)
−0.382416 + 0.923990i \(0.624908\pi\)
\(102\) 0 0
\(103\) 11.4209 + 3.06022i 1.12533 + 0.301532i 0.773040 0.634357i \(-0.218735\pi\)
0.352294 + 0.935890i \(0.385402\pi\)
\(104\) 3.39617 4.04740i 0.333022 0.396880i
\(105\) 0 0
\(106\) 4.13283 + 7.15826i 0.401415 + 0.695272i
\(107\) 9.71954 2.60434i 0.939624 0.251771i 0.243670 0.969858i \(-0.421649\pi\)
0.695954 + 0.718087i \(0.254982\pi\)
\(108\) 0 0
\(109\) −1.00018 5.67232i −0.0958002 0.543310i −0.994499 0.104744i \(-0.966598\pi\)
0.898699 0.438566i \(-0.144513\pi\)
\(110\) −5.16426 1.07880i −0.492393 0.102859i
\(111\) 0 0
\(112\) −0.0223088 + 0.254991i −0.00210799 + 0.0240944i
\(113\) 2.77599 2.77599i 0.261143 0.261143i −0.564375 0.825518i \(-0.690883\pi\)
0.825518 + 0.564375i \(0.190883\pi\)
\(114\) 0 0
\(115\) −0.366851 + 11.6784i −0.0342090 + 1.08902i
\(116\) 6.47843 + 7.72069i 0.601507 + 0.716848i
\(117\) 0 0
\(118\) 3.57793 2.50529i 0.329375 0.230631i
\(119\) 1.31713 0.232245i 0.120741 0.0212899i
\(120\) 0 0
\(121\) −0.245467 + 0.425161i −0.0223151 + 0.0386510i
\(122\) −1.71624 + 6.40509i −0.155381 + 0.579890i
\(123\) 0 0
\(124\) 2.53628 + 2.12819i 0.227765 + 0.191117i
\(125\) −10.4793 3.89673i −0.937296 0.348534i
\(126\) 0 0
\(127\) 17.0692 + 7.95952i 1.51465 + 0.706293i 0.989475 0.144701i \(-0.0462222\pi\)
0.525175 + 0.850994i \(0.324000\pi\)
\(128\) −8.73738 6.11798i −0.772283 0.540758i
\(129\) 0 0
\(130\) 1.32391 + 3.08880i 0.116115 + 0.270905i
\(131\) 10.7812 9.04652i 0.941959 0.790398i −0.0359658 0.999353i \(-0.511451\pi\)
0.977925 + 0.208955i \(0.0670063\pi\)
\(132\) 0 0
\(133\) −0.794299 0.273703i −0.0688744 0.0237331i
\(134\) 6.13379i 0.529879i
\(135\) 0 0
\(136\) −5.80727 + 15.9554i −0.497970 + 1.36816i
\(137\) 4.11959 + 5.88338i 0.351960 + 0.502651i 0.955625 0.294587i \(-0.0951822\pi\)
−0.603665 + 0.797238i \(0.706293\pi\)
\(138\) 0 0
\(139\) 4.96460 + 13.6401i 0.421092 + 1.15694i 0.951082 + 0.308937i \(0.0999733\pi\)
−0.529990 + 0.848004i \(0.677804\pi\)
\(140\) −0.555133 0.344186i −0.0469173 0.0290891i
\(141\) 0 0
\(142\) −1.51903 + 0.132898i −0.127474 + 0.0111526i
\(143\) 7.29170 0.637941i 0.609762 0.0533473i
\(144\) 0 0
\(145\) −14.4772 + 3.39580i −1.20227 + 0.282006i
\(146\) −2.06207 5.66548i −0.170658 0.468879i
\(147\) 0 0
\(148\) 6.26606 + 8.94885i 0.515067 + 0.735591i
\(149\) 2.75049 7.55690i 0.225329 0.619086i −0.774582 0.632474i \(-0.782040\pi\)
0.999910 + 0.0133883i \(0.00426177\pi\)
\(150\) 0 0
\(151\) 13.6744i 1.11281i −0.830913 0.556403i \(-0.812181\pi\)
0.830913 0.556403i \(-0.187819\pi\)
\(152\) 8.05116 6.99552i 0.653035 0.567411i
\(153\) 0 0
\(154\) 0.348356 0.292306i 0.0280714 0.0235547i
\(155\) −4.48986 + 1.92443i −0.360634 + 0.154574i
\(156\) 0 0
\(157\) 12.3093 + 8.61903i 0.982386 + 0.687874i 0.950211 0.311608i \(-0.100868\pi\)
0.0321750 + 0.999482i \(0.489757\pi\)
\(158\) 4.84943 + 2.26133i 0.385800 + 0.179902i
\(159\) 0 0
\(160\) 11.4654 6.14791i 0.906421 0.486035i
\(161\) −0.771506 0.647371i −0.0608032 0.0510200i
\(162\) 0 0
\(163\) −3.70896 + 13.8420i −0.290508 + 1.08419i 0.654211 + 0.756312i \(0.273001\pi\)
−0.944720 + 0.327880i \(0.893666\pi\)
\(164\) −6.50286 + 11.2633i −0.507788 + 0.879514i
\(165\) 0 0
\(166\) −1.83890 + 0.324247i −0.142726 + 0.0251665i
\(167\) −6.23499 + 4.36579i −0.482478 + 0.337835i −0.789378 0.613907i \(-0.789597\pi\)
0.306900 + 0.951742i \(0.400708\pi\)
\(168\) 0 0
\(169\) 5.35928 + 6.38694i 0.412252 + 0.491303i
\(170\) −7.39300 7.87253i −0.567018 0.603796i
\(171\) 0 0
\(172\) −1.25277 + 1.25277i −0.0955232 + 0.0955232i
\(173\) −1.27326 + 14.5535i −0.0968045 + 1.10648i 0.780047 + 0.625720i \(0.215195\pi\)
−0.876852 + 0.480760i \(0.840361\pi\)
\(174\) 0 0
\(175\) 0.822553 0.502119i 0.0621791 0.0379566i
\(176\) −0.781730 4.43341i −0.0589251 0.334181i
\(177\) 0 0
\(178\) −0.333556 + 0.0893761i −0.0250011 + 0.00669903i
\(179\) 1.76075 + 3.04972i 0.131605 + 0.227946i 0.924295 0.381678i \(-0.124654\pi\)
−0.792690 + 0.609624i \(0.791320\pi\)
\(180\) 0 0
\(181\) 12.5411 14.9460i 0.932176 1.11092i −0.0614406 0.998111i \(-0.519569\pi\)
0.993616 0.112813i \(-0.0359861\pi\)
\(182\) −0.279797 0.0749713i −0.0207399 0.00555724i
\(183\) 0 0
\(184\) 12.0148 4.37301i 0.885740 0.322383i
\(185\) −15.9533 + 2.29913i −1.17291 + 0.169036i
\(186\) 0 0
\(187\) −21.3186 + 9.94103i −1.55897 + 0.726960i
\(188\) 9.21079 + 0.805840i 0.671766 + 0.0587719i
\(189\) 0 0
\(190\) 1.66273 + 6.57703i 0.120627 + 0.477148i
\(191\) −20.1484 −1.45789 −0.728943 0.684575i \(-0.759988\pi\)
−0.728943 + 0.684575i \(0.759988\pi\)
\(192\) 0 0
\(193\) 5.50289 2.56604i 0.396107 0.184708i −0.214351 0.976757i \(-0.568764\pi\)
0.610457 + 0.792049i \(0.290986\pi\)
\(194\) 1.76928 + 0.311971i 0.127027 + 0.0223982i
\(195\) 0 0
\(196\) −9.91621 + 3.60920i −0.708301 + 0.257800i
\(197\) 4.33432 + 16.1759i 0.308808 + 1.15249i 0.929618 + 0.368525i \(0.120137\pi\)
−0.620810 + 0.783961i \(0.713196\pi\)
\(198\) 0 0
\(199\) −6.31500 + 7.52592i −0.447658 + 0.533498i −0.941930 0.335809i \(-0.890990\pi\)
0.494272 + 0.869307i \(0.335435\pi\)
\(200\) 0.299248 + 12.2308i 0.0211600 + 0.864849i
\(201\) 0 0
\(202\) −9.12644 + 2.44542i −0.642134 + 0.172059i
\(203\) 0.541688 1.16165i 0.0380191 0.0815321i
\(204\) 0 0
\(205\) −10.5073 16.0563i −0.733859 1.12142i
\(206\) 7.73326 + 2.81468i 0.538802 + 0.196108i
\(207\) 0 0
\(208\) −2.02769 + 2.02769i −0.140595 + 0.140595i
\(209\) 14.7397 + 1.03411i 1.01957 + 0.0715307i
\(210\) 0 0
\(211\) 1.37685 + 1.64086i 0.0947859 + 0.112961i 0.811352 0.584557i \(-0.198732\pi\)
−0.716566 + 0.697519i \(0.754287\pi\)
\(212\) −7.60637 16.3119i −0.522407 1.12031i
\(213\) 0 0
\(214\) 6.89722 1.21617i 0.471485 0.0831354i
\(215\) −0.816467 2.48319i −0.0556826 0.169352i
\(216\) 0 0
\(217\) 0.108978 0.406711i 0.00739790 0.0276093i
\(218\) −0.349403 3.99369i −0.0236645 0.270487i
\(219\) 0 0
\(220\) 10.9975 + 3.32018i 0.741451 + 0.223846i
\(221\) 12.9761 + 7.49173i 0.872865 + 0.503949i
\(222\) 0 0
\(223\) −14.7242 10.3100i −0.986008 0.690410i −0.0349391 0.999389i \(-0.511124\pi\)
−0.951069 + 0.308979i \(0.900013\pi\)
\(224\) −0.194726 + 1.10435i −0.0130107 + 0.0737873i
\(225\) 0 0
\(226\) 2.09318 1.75639i 0.139237 0.116833i
\(227\) 4.14462 + 4.14462i 0.275088 + 0.275088i 0.831144 0.556057i \(-0.187686\pi\)
−0.556057 + 0.831144i \(0.687686\pi\)
\(228\) 0 0
\(229\) 22.4455i 1.48324i −0.670821 0.741619i \(-0.734058\pi\)
0.670821 0.741619i \(-0.265942\pi\)
\(230\) −0.962801 + 8.07523i −0.0634852 + 0.532465i
\(231\) 0 0
\(232\) 9.33332 + 13.3294i 0.612762 + 0.875115i
\(233\) 2.04942 2.92687i 0.134262 0.191746i −0.746391 0.665507i \(-0.768215\pi\)
0.880653 + 0.473762i \(0.157104\pi\)
\(234\) 0 0
\(235\) −7.18836 + 11.5940i −0.468917 + 0.756309i
\(236\) −8.23663 + 4.75542i −0.536159 + 0.309551i
\(237\) 0 0
\(238\) 0.927346 0.0811323i 0.0601109 0.00525903i
\(239\) 8.64517 4.99129i 0.559210 0.322860i −0.193619 0.981077i \(-0.562022\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(240\) 0 0
\(241\) −10.2338 28.1170i −0.659215 1.81118i −0.580467 0.814284i \(-0.697130\pi\)
−0.0787480 0.996895i \(-0.525092\pi\)
\(242\) −0.195990 + 0.279903i −0.0125987 + 0.0179929i
\(243\) 0 0
\(244\) 4.93839 13.5681i 0.316148 0.868609i
\(245\) 1.84327 15.4599i 0.117762 0.987697i
\(246\) 0 0
\(247\) −4.84570 8.06880i −0.308325 0.513406i
\(248\) 3.77981 + 3.77981i 0.240018 + 0.240018i
\(249\) 0 0
\(250\) −7.02964 3.33757i −0.444594 0.211086i
\(251\) 4.56260 25.8758i 0.287989 1.63327i −0.406420 0.913686i \(-0.633223\pi\)
0.694409 0.719580i \(-0.255666\pi\)
\(252\) 0 0
\(253\) 16.0534 + 7.48583i 1.00927 + 0.470630i
\(254\) 11.3525 + 6.55434i 0.712316 + 0.411256i
\(255\) 0 0
\(256\) −7.82200 6.56344i −0.488875 0.410215i
\(257\) 0.137726 + 1.57421i 0.00859109 + 0.0981966i 0.999280 0.0379515i \(-0.0120833\pi\)
−0.990688 + 0.136148i \(0.956528\pi\)
\(258\) 0 0
\(259\) 0.694659 1.20318i 0.0431640 0.0747623i
\(260\) −2.28561 6.95142i −0.141748 0.431109i
\(261\) 0 0
\(262\) 8.02415 5.61857i 0.495734 0.347116i
\(263\) −2.57794 5.52841i −0.158963 0.340896i 0.810654 0.585525i \(-0.199112\pi\)
−0.969617 + 0.244629i \(0.921334\pi\)
\(264\) 0 0
\(265\) 26.5416 + 0.833741i 1.63044 + 0.0512163i
\(266\) −0.534139 0.237961i −0.0327502 0.0145904i
\(267\) 0 0
\(268\) −1.16406 + 13.3053i −0.0711066 + 0.812752i
\(269\) −15.1223 5.50406i −0.922022 0.335588i −0.162979 0.986630i \(-0.552110\pi\)
−0.759042 + 0.651041i \(0.774333\pi\)
\(270\) 0 0
\(271\) −1.31423 7.45337i −0.0798338 0.452760i −0.998352 0.0573820i \(-0.981725\pi\)
0.918518 0.395378i \(-0.129386\pi\)
\(272\) 3.89460 8.35200i 0.236145 0.506414i
\(273\) 0 0
\(274\) 2.49950 + 4.32926i 0.151000 + 0.261540i
\(275\) −11.6881 + 12.2744i −0.704820 + 0.740175i
\(276\) 0 0
\(277\) 13.1779 + 3.53100i 0.791782 + 0.212157i 0.631973 0.774990i \(-0.282245\pi\)
0.159809 + 0.987148i \(0.448912\pi\)
\(278\) 2.61487 + 9.75882i 0.156829 + 0.585295i
\(279\) 0 0
\(280\) −0.844428 0.631695i −0.0504642 0.0377510i
\(281\) −26.3845 4.65230i −1.57397 0.277533i −0.682593 0.730799i \(-0.739148\pi\)
−0.891376 + 0.453265i \(0.850259\pi\)
\(282\) 0 0
\(283\) −7.52421 0.658283i −0.447268 0.0391309i −0.138703 0.990334i \(-0.544293\pi\)
−0.308565 + 0.951203i \(0.599849\pi\)
\(284\) 3.32028 0.197022
\(285\) 0 0
\(286\) 5.09454 0.301247
\(287\) 1.64770 + 0.144155i 0.0972604 + 0.00850919i
\(288\) 0 0
\(289\) −30.6784 5.40943i −1.80461 0.318202i
\(290\) −10.2440 + 1.47633i −0.601551 + 0.0866932i
\(291\) 0 0
\(292\) 3.39781 + 12.6808i 0.198842 + 0.742088i
\(293\) 11.7580 + 3.15055i 0.686911 + 0.184057i 0.585361 0.810773i \(-0.300953\pi\)
0.101551 + 0.994830i \(0.467620\pi\)
\(294\) 0 0
\(295\) −0.783499 14.0105i −0.0456171 0.815722i
\(296\) 8.81892 + 15.2748i 0.512589 + 0.887831i
\(297\) 0 0
\(298\) 2.36552 5.07288i 0.137031 0.293864i
\(299\) −1.95926 11.1115i −0.113307 0.642594i
\(300\) 0 0
\(301\) 0.211725 + 0.0770617i 0.0122036 + 0.00444176i
\(302\) 0.829515 9.48140i 0.0477332 0.545593i
\(303\) 0 0
\(304\) −4.68399 + 3.40147i −0.268645 + 0.195088i
\(305\) 14.5833 + 15.5292i 0.835037 + 0.889199i
\(306\) 0 0
\(307\) 12.1779 + 26.1155i 0.695027 + 1.49049i 0.863269 + 0.504744i \(0.168413\pi\)
−0.168242 + 0.985746i \(0.553809\pi\)
\(308\) −0.811122 + 0.567954i −0.0462180 + 0.0323622i
\(309\) 0 0
\(310\) −3.22987 + 1.06198i −0.183444 + 0.0603162i
\(311\) −9.26325 + 16.0444i −0.525271 + 0.909795i 0.474296 + 0.880365i \(0.342703\pi\)
−0.999567 + 0.0294301i \(0.990631\pi\)
\(312\) 0 0
\(313\) −0.277135 3.16767i −0.0156646 0.179047i −0.999996 0.00272050i \(-0.999134\pi\)
0.984332 0.176327i \(-0.0564215\pi\)
\(314\) 8.01202 + 6.72288i 0.452144 + 0.379394i
\(315\) 0 0
\(316\) −10.0902 5.82555i −0.567616 0.327713i
\(317\) −4.76570 2.22228i −0.267669 0.124816i 0.284151 0.958780i \(-0.408288\pi\)
−0.551819 + 0.833964i \(0.686066\pi\)
\(318\) 0 0
\(319\) −3.91451 + 22.2003i −0.219171 + 1.24298i
\(320\) 2.86388 1.22751i 0.160096 0.0686196i
\(321\) 0 0
\(322\) −0.495668 0.495668i −0.0276225 0.0276225i
\(323\) 23.5020 + 19.0405i 1.30768 + 1.05944i
\(324\) 0 0
\(325\) 10.6750 + 1.61414i 0.592142 + 0.0895366i
\(326\) −3.41137 + 9.37265i −0.188938 + 0.519103i
\(327\) 0 0
\(328\) −12.0439 + 17.2005i −0.665014 + 0.949739i
\(329\) −0.402164 1.10494i −0.0221720 0.0609171i
\(330\) 0 0
\(331\) 10.1471 5.85845i 0.557737 0.322010i −0.194500 0.980903i \(-0.562308\pi\)
0.752237 + 0.658893i \(0.228975\pi\)
\(332\) 4.05044 0.354368i 0.222297 0.0194485i
\(333\) 0 0
\(334\) −4.58799 + 2.64888i −0.251044 + 0.144940i
\(335\) −16.7479 10.3838i −0.915037 0.567330i
\(336\) 0 0
\(337\) 7.24603 10.3484i 0.394716 0.563713i −0.571776 0.820410i \(-0.693745\pi\)
0.966492 + 0.256697i \(0.0826342\pi\)
\(338\) 3.32852 + 4.75362i 0.181047 + 0.258563i
\(339\) 0 0
\(340\) 14.5427 + 18.4800i 0.788691 + 1.00222i
\(341\) 7.40539i 0.401024i
\(342\) 0 0
\(343\) 1.90296 + 1.90296i 0.102750 + 0.102750i
\(344\) −2.19121 + 1.83864i −0.118142 + 0.0991331i
\(345\) 0 0
\(346\) −1.76569 + 10.0137i −0.0949239 + 0.538340i
\(347\) 15.5150 + 10.8637i 0.832890 + 0.583196i 0.910369 0.413798i \(-0.135798\pi\)
−0.0774785 + 0.996994i \(0.524687\pi\)
\(348\) 0 0
\(349\) −28.7967 16.6258i −1.54145 0.889959i −0.998747 0.0500357i \(-0.984066\pi\)
−0.542706 0.839923i \(-0.682600\pi\)
\(350\) 0.600793 0.298256i 0.0321137 0.0159425i
\(351\) 0 0
\(352\) −1.71892 19.6474i −0.0916189 1.04721i
\(353\) −0.0162728 + 0.0607309i −0.000866114 + 0.00323238i −0.966358 0.257202i \(-0.917199\pi\)
0.965491 + 0.260435i \(0.0838659\pi\)
\(354\) 0 0
\(355\) −2.20869 + 4.37260i −0.117225 + 0.232074i
\(356\) 0.740506 0.130571i 0.0392468 0.00692026i
\(357\) 0 0
\(358\) 1.03585 + 2.22139i 0.0547465 + 0.117404i
\(359\) −16.1846 19.2880i −0.854190 1.01798i −0.999591 0.0286106i \(-0.990892\pi\)
0.145401 0.989373i \(-0.453553\pi\)
\(360\) 0 0
\(361\) −7.10942 17.6198i −0.374180 0.927356i
\(362\) 9.60230 9.60230i 0.504686 0.504686i
\(363\) 0 0
\(364\) 0.592702 + 0.215726i 0.0310661 + 0.0113071i
\(365\) −18.9601 3.96070i −0.992417 0.207313i
\(366\) 0 0
\(367\) 5.40005 11.5804i 0.281880 0.604494i −0.713484 0.700671i \(-0.752884\pi\)
0.995364 + 0.0961775i \(0.0306617\pi\)
\(368\) −6.70297 + 1.79605i −0.349416 + 0.0936258i
\(369\) 0 0
\(370\) −11.2010 + 0.626388i −0.582314 + 0.0325644i
\(371\) −1.47128 + 1.75340i −0.0763850 + 0.0910322i
\(372\) 0 0
\(373\) −0.429109 1.60146i −0.0222184 0.0829203i 0.953926 0.300041i \(-0.0970003\pi\)
−0.976145 + 0.217120i \(0.930334\pi\)
\(374\) −15.3847 + 5.59958i −0.795525 + 0.289548i
\(375\) 0 0
\(376\) 14.7010 + 2.59218i 0.758146 + 0.133682i
\(377\) 13.0140 6.06855i 0.670257 0.312546i
\(378\) 0 0
\(379\) 16.9664 0.871503 0.435752 0.900067i \(-0.356483\pi\)
0.435752 + 0.900067i \(0.356483\pi\)
\(380\) −2.35858 14.5823i −0.120993 0.748058i
\(381\) 0 0
\(382\) −13.9703 1.22224i −0.714781 0.0625353i
\(383\) 13.1219 6.11883i 0.670496 0.312658i −0.0573936 0.998352i \(-0.518279\pi\)
0.727890 + 0.685694i \(0.240501\pi\)
\(384\) 0 0
\(385\) −0.208393 1.44601i −0.0106207 0.0736953i
\(386\) 3.97120 1.44540i 0.202129 0.0735688i
\(387\) 0 0
\(388\) −3.77868 1.01249i −0.191833 0.0514016i
\(389\) 19.9850 23.8172i 1.01328 1.20758i 0.0351924 0.999381i \(-0.488796\pi\)
0.978087 0.208198i \(-0.0667600\pi\)
\(390\) 0 0
\(391\) 18.1297 + 31.4015i 0.916856 + 1.58804i
\(392\) −16.4568 + 4.40959i −0.831195 + 0.222718i
\(393\) 0 0
\(394\) 2.02403 + 11.4788i 0.101969 + 0.578295i
\(395\) 14.3840 9.41289i 0.723736 0.473614i
\(396\) 0 0
\(397\) 2.67575 30.5840i 0.134292 1.53497i −0.567971 0.823049i \(-0.692271\pi\)
0.702263 0.711918i \(-0.252173\pi\)
\(398\) −4.83517 + 4.83517i −0.242365 + 0.242365i
\(399\) 0 0
\(400\) 0.416759 6.62708i 0.0208380 0.331354i
\(401\) 11.4635 + 13.6616i 0.572458 + 0.682229i 0.972134 0.234428i \(-0.0753217\pi\)
−0.399676 + 0.916657i \(0.630877\pi\)
\(402\) 0 0
\(403\) 3.86404 2.70563i 0.192482 0.134777i
\(404\) 20.2610 3.57256i 1.00802 0.177742i
\(405\) 0 0
\(406\) 0.446059 0.772596i 0.0221375 0.0383433i
\(407\) −6.32418 + 23.6022i −0.313478 + 1.16992i
\(408\) 0 0
\(409\) −19.0657 15.9980i −0.942738 0.791051i 0.0353220 0.999376i \(-0.488754\pi\)
−0.978060 + 0.208325i \(0.933199\pi\)
\(410\) −6.31141 11.7704i −0.311699 0.581296i
\(411\) 0 0
\(412\) −16.2407 7.57316i −0.800121 0.373103i
\(413\) 0.990791 + 0.693759i 0.0487536 + 0.0341377i
\(414\) 0 0
\(415\) −2.22772 + 5.56991i −0.109354 + 0.273416i
\(416\) −9.62373 + 8.07527i −0.471842 + 0.395923i
\(417\) 0 0
\(418\) 10.1573 + 1.61116i 0.496811 + 0.0788043i
\(419\) 1.33645i 0.0652901i 0.999467 + 0.0326450i \(0.0103931\pi\)
−0.999467 + 0.0326450i \(0.989607\pi\)
\(420\) 0 0
\(421\) −4.21707 + 11.5863i −0.205527 + 0.564681i −0.999037 0.0438762i \(-0.986029\pi\)
0.793510 + 0.608558i \(0.208252\pi\)
\(422\) 0.855125 + 1.22125i 0.0416268 + 0.0594493i
\(423\) 0 0
\(424\) −9.93855 27.3059i −0.482659 1.32609i
\(425\) −34.0110 + 6.85879i −1.64978 + 0.332700i
\(426\) 0 0
\(427\) −1.82926 + 0.160040i −0.0885243 + 0.00774487i
\(428\) −15.1921 + 1.32914i −0.734340 + 0.0642464i
\(429\) 0 0
\(430\) −0.415479 1.77129i −0.0200362 0.0854194i
\(431\) −2.50275 6.87626i −0.120553 0.331218i 0.864708 0.502276i \(-0.167504\pi\)
−0.985261 + 0.171058i \(0.945281\pi\)
\(432\) 0 0
\(433\) −7.55138 10.7845i −0.362896 0.518270i 0.595636 0.803255i \(-0.296900\pi\)
−0.958532 + 0.284985i \(0.908011\pi\)
\(434\) 0.100234 0.275390i 0.00481138 0.0132192i
\(435\) 0 0
\(436\) 8.72935i 0.418060i
\(437\) −0.392269 22.7733i −0.0187648 1.08940i
\(438\) 0 0
\(439\) −8.41002 + 7.05684i −0.401388 + 0.336805i −0.821030 0.570885i \(-0.806600\pi\)
0.419642 + 0.907690i \(0.362156\pi\)
\(440\) 17.2209 + 6.88759i 0.820973 + 0.328353i
\(441\) 0 0
\(442\) 8.54275 + 5.98170i 0.406337 + 0.284520i
\(443\) −27.9554 13.0358i −1.32820 0.619351i −0.376513 0.926411i \(-0.622877\pi\)
−0.951690 + 0.307060i \(0.900655\pi\)
\(444\) 0 0
\(445\) −0.320638 + 1.06206i −0.0151997 + 0.0503464i
\(446\) −9.58392 8.04186i −0.453812 0.380793i
\(447\) 0 0
\(448\) −0.0695120 + 0.259422i −0.00328414 + 0.0122566i
\(449\) 1.99156 3.44949i 0.0939877 0.162791i −0.815198 0.579182i \(-0.803372\pi\)
0.909186 + 0.416391i \(0.136705\pi\)
\(450\) 0 0
\(451\) −28.6478 + 5.05137i −1.34897 + 0.237860i
\(452\) −4.87383 + 3.41269i −0.229245 + 0.160519i
\(453\) 0 0
\(454\) 2.62233 + 3.12517i 0.123072 + 0.146672i
\(455\) −0.678370 + 0.637049i −0.0318025 + 0.0298653i
\(456\) 0 0
\(457\) −6.68640 + 6.68640i −0.312777 + 0.312777i −0.845984 0.533208i \(-0.820986\pi\)
0.533208 + 0.845984i \(0.320986\pi\)
\(458\) 1.36159 15.5630i 0.0636228 0.727212i
\(459\) 0 0
\(460\) 3.62100 17.3339i 0.168830 0.808198i
\(461\) −1.82416 10.3453i −0.0849594 0.481829i −0.997365 0.0725423i \(-0.976889\pi\)
0.912406 0.409286i \(-0.134222\pi\)
\(462\) 0 0
\(463\) −6.18856 + 1.65822i −0.287607 + 0.0770640i −0.399738 0.916629i \(-0.630899\pi\)
0.112131 + 0.993693i \(0.464232\pi\)
\(464\) −4.41579 7.64838i −0.204998 0.355067i
\(465\) 0 0
\(466\) 1.59855 1.90508i 0.0740516 0.0882512i
\(467\) −26.8967 7.20694i −1.24463 0.333497i −0.424369 0.905489i \(-0.639504\pi\)
−0.820259 + 0.571992i \(0.806171\pi\)
\(468\) 0 0
\(469\) 1.59612 0.580940i 0.0737020 0.0268253i
\(470\) −5.68751 + 7.60286i −0.262345 + 0.350694i
\(471\) 0 0
\(472\) −13.9167 + 6.48947i −0.640569 + 0.298702i
\(473\) −3.94764 0.345373i −0.181513 0.0158803i
\(474\) 0 0
\(475\) 20.7730 + 6.59421i 0.953129 + 0.302563i
\(476\) −2.02698 −0.0929065
\(477\) 0 0
\(478\) 6.29708 2.93638i 0.288022 0.134307i
\(479\) 10.9665 + 1.93369i 0.501073 + 0.0883527i 0.418471 0.908230i \(-0.362566\pi\)
0.0826015 + 0.996583i \(0.473677\pi\)
\(480\) 0 0
\(481\) 14.6259 5.32340i 0.666884 0.242726i
\(482\) −5.39015 20.1163i −0.245515 0.916273i
\(483\) 0 0
\(484\) 0.478258 0.569966i 0.0217390 0.0259076i
\(485\) 3.84701 4.30276i 0.174684 0.195378i
\(486\) 0 0
\(487\) −12.7948 + 3.42834i −0.579786 + 0.155353i −0.536781 0.843722i \(-0.680360\pi\)
−0.0430050 + 0.999075i \(0.513693\pi\)
\(488\) 9.85199 21.1277i 0.445979 0.956404i
\(489\) 0 0
\(490\) 2.21590 10.6076i 0.100104 0.479203i
\(491\) −2.89857 1.05499i −0.130810 0.0476111i 0.275785 0.961219i \(-0.411062\pi\)
−0.406596 + 0.913608i \(0.633284\pi\)
\(492\) 0 0
\(493\) −32.6302 + 32.6302i −1.46959 + 1.46959i
\(494\) −2.87039 5.88862i −0.129145 0.264941i
\(495\) 0 0
\(496\) −1.86486 2.22246i −0.0837348 0.0997913i
\(497\) −0.178452 0.382692i −0.00800467 0.0171661i
\(498\) 0 0
\(499\) −2.91253 + 0.513558i −0.130383 + 0.0229900i −0.238459 0.971153i \(-0.576642\pi\)
0.108076 + 0.994143i \(0.465531\pi\)
\(500\) 14.6152 + 8.57387i 0.653611 + 0.383435i
\(501\) 0 0
\(502\) 4.73325 17.6647i 0.211255 0.788415i
\(503\) 1.52791 + 17.4641i 0.0681261 + 0.778684i 0.951024 + 0.309119i \(0.100034\pi\)
−0.882897 + 0.469566i \(0.844410\pi\)
\(504\) 0 0
\(505\) −8.77300 + 29.0590i −0.390393 + 1.29311i
\(506\) 10.6768 + 6.16428i 0.474644 + 0.274036i
\(507\) 0 0
\(508\) −23.3817 16.3720i −1.03739 0.726391i
\(509\) 1.28121 7.26613i 0.0567888 0.322066i −0.943158 0.332344i \(-0.892161\pi\)
0.999947 + 0.0102782i \(0.00327171\pi\)
\(510\) 0 0
\(511\) 1.27896 1.07317i 0.0565777 0.0474743i
\(512\) 10.0591 + 10.0591i 0.444556 + 0.444556i
\(513\) 0 0
\(514\) 1.09987i 0.0485130i
\(515\) 20.7769 16.3502i 0.915538 0.720477i
\(516\) 0 0
\(517\) 11.8618 + 16.9403i 0.521680 + 0.745036i
\(518\) 0.554643 0.792113i 0.0243696 0.0348034i
\(519\) 0 0
\(520\) −2.69796 11.5021i −0.118313 0.504400i
\(521\) 25.0077 14.4382i 1.09561 0.632549i 0.160543 0.987029i \(-0.448675\pi\)
0.935064 + 0.354480i \(0.115342\pi\)
\(522\) 0 0
\(523\) 38.3013 3.35093i 1.67480 0.146526i 0.790190 0.612862i \(-0.209982\pi\)
0.884608 + 0.466336i \(0.154426\pi\)
\(524\) −18.4721 + 10.6649i −0.806959 + 0.465898i
\(525\) 0 0
\(526\) −1.45210 3.98961i −0.0633146 0.173955i
\(527\) −8.69495 + 12.4177i −0.378758 + 0.540923i
\(528\) 0 0
\(529\) 1.47210 4.04455i 0.0640041 0.175850i
\(530\) 18.3526 + 2.18816i 0.797185 + 0.0950475i
\(531\) 0 0
\(532\) 1.11349 + 0.617550i 0.0482757 + 0.0267742i
\(533\) 13.1025 + 13.1025i 0.567531 + 0.567531i
\(534\) 0 0
\(535\) 8.35558 20.8913i 0.361243 0.903208i
\(536\) −3.74450 + 21.2361i −0.161738 + 0.917260i
\(537\) 0 0
\(538\) −10.1514 4.73370i −0.437660 0.204084i
\(539\) −20.4407 11.8014i −0.880443 0.508324i
\(540\) 0 0
\(541\) −19.1442 16.0639i −0.823072 0.690639i 0.130617 0.991433i \(-0.458304\pi\)
−0.953689 + 0.300793i \(0.902749\pi\)
\(542\) −0.459111 5.24767i −0.0197205 0.225407i
\(543\) 0 0
\(544\) 20.1864 34.9638i 0.865484 1.49906i
\(545\) −11.4960 5.80686i −0.492435 0.248738i
\(546\) 0 0
\(547\) −5.56779 + 3.89861i −0.238062 + 0.166693i −0.686519 0.727111i \(-0.740862\pi\)
0.448458 + 0.893804i \(0.351973\pi\)
\(548\) −4.60027 9.86531i −0.196514 0.421425i
\(549\) 0 0
\(550\) −8.84878 + 7.80168i −0.377313 + 0.332665i
\(551\) 27.8661 7.98355i 1.18714 0.340111i
\(552\) 0 0
\(553\) −0.129140 + 1.47608i −0.00549161 + 0.0627694i
\(554\) 8.92295 + 3.24769i 0.379100 + 0.137981i
\(555\) 0 0
\(556\) −3.82011 21.6649i −0.162009 0.918797i
\(557\) 11.5689 24.8095i 0.490188 1.05121i −0.493236 0.869895i \(-0.664186\pi\)
0.983425 0.181317i \(-0.0580360\pi\)
\(558\) 0 0
\(559\) 1.26209 + 2.18601i 0.0533809 + 0.0924585i
\(560\) 0.426682 + 0.381488i 0.0180306 + 0.0161208i
\(561\) 0 0
\(562\) −18.0120 4.82631i −0.759791 0.203585i
\(563\) −4.81614 17.9741i −0.202976 0.757517i −0.990057 0.140667i \(-0.955075\pi\)
0.787081 0.616850i \(-0.211592\pi\)
\(564\) 0 0
\(565\) −1.25218 8.68868i −0.0526796 0.365536i
\(566\) −5.17713 0.912867i −0.217611 0.0383707i
\(567\) 0 0
\(568\) 5.34025 + 0.467211i 0.224072 + 0.0196037i
\(569\) −7.34466 −0.307904 −0.153952 0.988078i \(-0.549200\pi\)
−0.153952 + 0.988078i \(0.549200\pi\)
\(570\) 0 0
\(571\) −20.8079 −0.870783 −0.435392 0.900241i \(-0.643390\pi\)
−0.435392 + 0.900241i \(0.643390\pi\)
\(572\) −11.0510 0.966837i −0.462065 0.0404255i
\(573\) 0 0
\(574\) 1.13372 + 0.199905i 0.0473205 + 0.00834388i
\(575\) 20.4190 + 16.2993i 0.851530 + 0.679730i
\(576\) 0 0
\(577\) 7.04295 + 26.2847i 0.293202 + 1.09424i 0.942635 + 0.333826i \(0.108340\pi\)
−0.649433 + 0.760419i \(0.724994\pi\)
\(578\) −20.9433 5.61175i −0.871127 0.233418i
\(579\) 0 0
\(580\) 22.5014 1.25833i 0.934319 0.0522493i
\(581\) −0.258539 0.447804i −0.0107260 0.0185780i
\(582\) 0 0
\(583\) 17.0131 36.4846i 0.704609 1.51104i
\(584\) 3.68057 + 20.8736i 0.152303 + 0.863755i
\(585\) 0 0
\(586\) 7.96154 + 2.89776i 0.328888 + 0.119706i
\(587\) −3.63509 + 41.5493i −0.150036 + 1.71492i 0.432096 + 0.901828i \(0.357774\pi\)
−0.582132 + 0.813094i \(0.697781\pi\)
\(588\) 0 0
\(589\) 8.55965 4.17238i 0.352694 0.171920i
\(590\) 0.306649 9.76198i 0.0126246 0.401894i
\(591\) 0 0
\(592\) −4.04564 8.67591i −0.166275 0.356578i
\(593\) −27.3514 + 19.1517i −1.12319 + 0.786465i −0.979156 0.203108i \(-0.934896\pi\)
−0.144032 + 0.989573i \(0.546007\pi\)
\(594\) 0 0
\(595\) 1.34837 2.66941i 0.0552778 0.109435i
\(596\) −6.09398 + 10.5551i −0.249619 + 0.432353i
\(597\) 0 0
\(598\) −0.684444 7.82323i −0.0279890 0.319915i
\(599\) 17.9102 + 15.0284i 0.731790 + 0.614044i 0.930619 0.365990i \(-0.119269\pi\)
−0.198829 + 0.980034i \(0.563714\pi\)
\(600\) 0 0
\(601\) 29.9305 + 17.2804i 1.22089 + 0.704880i 0.965107 0.261854i \(-0.0843340\pi\)
0.255781 + 0.966735i \(0.417667\pi\)
\(602\) 0.142129 + 0.0662759i 0.00579275 + 0.00270120i
\(603\) 0 0
\(604\) −3.59874 + 20.4095i −0.146431 + 0.830450i
\(605\) 0.432467 + 1.00898i 0.0175823 + 0.0410210i
\(606\) 0 0
\(607\) −21.4554 21.4554i −0.870849 0.870849i 0.121716 0.992565i \(-0.461160\pi\)
−0.992565 + 0.121716i \(0.961160\pi\)
\(608\) −21.7413 + 13.0567i −0.881726 + 0.529518i
\(609\) 0 0
\(610\) 9.16958 + 11.6521i 0.371265 + 0.471781i
\(611\) 4.50545 12.3786i 0.182271 0.500786i
\(612\) 0 0
\(613\) −5.38799 + 7.69485i −0.217619 + 0.310792i −0.913087 0.407765i \(-0.866308\pi\)
0.695468 + 0.718557i \(0.255197\pi\)
\(614\) 6.85954 + 18.8464i 0.276829 + 0.760580i
\(615\) 0 0
\(616\) −1.38451 + 0.799345i −0.0557833 + 0.0322065i
\(617\) −5.01638 + 0.438877i −0.201952 + 0.0176685i −0.187683 0.982230i \(-0.560098\pi\)
−0.0142691 + 0.999898i \(0.504542\pi\)
\(618\) 0 0
\(619\) 33.8862 19.5642i 1.36200 0.786352i 0.372112 0.928188i \(-0.378634\pi\)
0.989890 + 0.141836i \(0.0453005\pi\)
\(620\) 7.20772 1.69066i 0.289469 0.0678985i
\(621\) 0 0
\(622\) −7.39614 + 10.5628i −0.296558 + 0.423529i
\(623\) −0.0548488 0.0783323i −0.00219747 0.00313832i
\(624\) 0 0
\(625\) −21.0134 + 13.5439i −0.840537 + 0.541754i
\(626\) 2.21318i 0.0884564i
\(627\) 0 0
\(628\) −16.1037 16.1037i −0.642607 0.642607i
\(629\) −38.3169 + 32.1517i −1.52779 + 1.28197i
\(630\) 0 0
\(631\) −8.00188 + 45.3809i −0.318550 + 1.80659i 0.233037 + 0.972468i \(0.425134\pi\)
−0.551587 + 0.834117i \(0.685978\pi\)
\(632\) −15.4090 10.7895i −0.612937 0.429183i
\(633\) 0 0
\(634\) −3.16959 1.82996i −0.125880 0.0726771i
\(635\) 37.1147 19.9014i 1.47285 0.789762i
\(636\) 0 0
\(637\) 1.31036 + 14.9775i 0.0519183 + 0.593429i
\(638\) −4.06092 + 15.1556i −0.160773 + 0.600014i
\(639\) 0 0
\(640\) −22.6574 + 7.44973i −0.895614 + 0.294476i
\(641\) −19.6668 + 3.46778i −0.776790 + 0.136969i −0.547968 0.836499i \(-0.684599\pi\)
−0.228822 + 0.973468i \(0.573487\pi\)
\(642\) 0 0
\(643\) 9.29147 + 19.9256i 0.366420 + 0.785790i 0.999927 + 0.0120533i \(0.00383678\pi\)
−0.633508 + 0.773737i \(0.718385\pi\)
\(644\) 0.981128 + 1.16926i 0.0386619 + 0.0460754i
\(645\) 0 0
\(646\) 15.1405 + 14.6278i 0.595696 + 0.575522i
\(647\) −7.34110 + 7.34110i −0.288608 + 0.288608i −0.836530 0.547921i \(-0.815419\pi\)
0.547921 + 0.836530i \(0.315419\pi\)
\(648\) 0 0
\(649\) −19.9899 7.27571i −0.784670 0.285597i
\(650\) 7.30381 + 1.76677i 0.286479 + 0.0692983i
\(651\) 0 0
\(652\) 9.17861 19.6836i 0.359462 0.770869i
\(653\) 15.4299 4.13442i 0.603817 0.161792i 0.0560567 0.998428i \(-0.482147\pi\)
0.547760 + 0.836635i \(0.315481\pi\)
\(654\) 0 0
\(655\) −1.75714 31.4211i −0.0686571 1.22772i
\(656\) 7.32551 8.73021i 0.286013 0.340857i
\(657\) 0 0
\(658\) −0.211821 0.790526i −0.00825764 0.0308179i
\(659\) −27.1741 + 9.89056i −1.05855 + 0.385281i −0.811884 0.583819i \(-0.801558\pi\)
−0.246668 + 0.969100i \(0.579336\pi\)
\(660\) 0 0
\(661\) 22.3546 + 3.94173i 0.869495 + 0.153315i 0.590559 0.806994i \(-0.298907\pi\)
0.278936 + 0.960310i \(0.410018\pi\)
\(662\) 7.39111 3.44653i 0.287263 0.133953i
\(663\) 0 0
\(664\) 6.56448 0.254751
\(665\) −1.55398 + 1.05559i −0.0602607 + 0.0409341i
\(666\) 0 0
\(667\) 34.6169 + 3.02858i 1.34037 + 0.117267i
\(668\) 10.4549 4.87520i 0.404512 0.188627i
\(669\) 0 0
\(670\) −10.9826 8.21580i −0.424295 0.317404i
\(671\) 30.3476 11.0456i 1.17156 0.426411i
\(672\) 0 0
\(673\) −17.1565 4.59706i −0.661333 0.177204i −0.0874854 0.996166i \(-0.527883\pi\)
−0.573848 + 0.818962i \(0.694550\pi\)
\(674\) 5.65193 6.73571i 0.217704 0.259450i
\(675\) 0 0
\(676\) −6.31803 10.9431i −0.243001 0.420890i
\(677\) −0.307337 + 0.0823506i −0.0118119 + 0.00316499i −0.264720 0.964325i \(-0.585280\pi\)
0.252908 + 0.967490i \(0.418613\pi\)
\(678\) 0 0
\(679\) 0.0863903 + 0.489944i 0.00331536 + 0.0188023i
\(680\) 20.7897 + 31.7691i 0.797250 + 1.21829i
\(681\) 0 0
\(682\) −0.449226 + 5.13468i −0.0172017 + 0.196617i
\(683\) 17.2283 17.2283i 0.659224 0.659224i −0.295973 0.955196i \(-0.595644\pi\)
0.955196 + 0.295973i \(0.0956437\pi\)
\(684\) 0 0
\(685\) 16.0521 + 0.504240i 0.613321 + 0.0192660i
\(686\) 1.20402 + 1.43490i 0.0459697 + 0.0547846i
\(687\) 0 0
\(688\) 1.27171 0.890463i 0.0484836 0.0339486i
\(689\) −25.2531 + 4.45280i −0.962066 + 0.169638i
\(690\) 0 0
\(691\) −12.6992 + 21.9956i −0.483099 + 0.836751i −0.999812 0.0194073i \(-0.993822\pi\)
0.516713 + 0.856159i \(0.327155\pi\)
\(692\) 5.73049 21.3865i 0.217840 0.812992i
\(693\) 0 0
\(694\) 10.0986 + 8.47376i 0.383339 + 0.321660i
\(695\) 31.0725 + 9.38088i 1.17865 + 0.355837i
\(696\) 0 0
\(697\) −53.9688 25.1661i −2.04421 0.953233i
\(698\) −18.9582 13.2747i −0.717579 0.502455i
\(699\) 0 0
\(700\) −1.35983 + 0.532955i −0.0513968 + 0.0201438i
\(701\) −11.7708 + 9.87690i −0.444578 + 0.373045i −0.837419 0.546561i \(-0.815937\pi\)
0.392841 + 0.919606i \(0.371492\pi\)
\(702\) 0 0
\(703\) 30.8442 5.98813i 1.16331 0.225847i
\(704\) 4.72357i 0.178026i
\(705\) 0 0
\(706\) −0.0149671 + 0.0411219i −0.000563296 + 0.00154764i
\(707\) −1.50072 2.14325i −0.0564404 0.0806052i
\(708\) 0 0
\(709\) 16.6116 + 45.6401i 0.623863 + 1.71405i 0.697329 + 0.716751i \(0.254372\pi\)
−0.0734667 + 0.997298i \(0.523406\pi\)
\(710\) −1.79669 + 2.89785i −0.0674284 + 0.108754i
\(711\) 0 0
\(712\) 1.20938 0.105807i 0.0453235 0.00396530i
\(713\) 11.3718 0.994902i 0.425877 0.0372594i
\(714\) 0 0
\(715\) 8.62450 13.9103i 0.322538 0.520217i
\(716\) −1.82538 5.01519i −0.0682176 0.187426i
\(717\) 0 0
\(718\) −10.0519 14.3555i −0.375132 0.535744i
\(719\) −13.1205 + 36.0482i −0.489311 + 1.34437i 0.411994 + 0.911187i \(0.364832\pi\)
−0.901305 + 0.433185i \(0.857390\pi\)
\(720\) 0 0
\(721\) 2.27891i 0.0848711i
\(722\) −3.86061 12.6483i −0.143677 0.470720i
\(723\) 0 0
\(724\) −22.6515 + 19.0068i −0.841835 + 0.706383i
\(725\) −13.3110 + 30.4700i −0.494359 + 1.13163i
\(726\) 0 0
\(727\) 18.6808 + 13.0804i 0.692831 + 0.485126i 0.866178 0.499735i \(-0.166569\pi\)
−0.173347 + 0.984861i \(0.555458\pi\)
\(728\) 0.922931 + 0.430370i 0.0342061 + 0.0159506i
\(729\) 0 0
\(730\) −12.9061 3.89639i −0.477676 0.144212i
\(731\) −6.21405 5.21421i −0.229835 0.192854i
\(732\) 0 0
\(733\) −11.7454 + 43.8346i −0.433828 + 1.61907i 0.310028 + 0.950727i \(0.399661\pi\)
−0.743856 + 0.668340i \(0.767005\pi\)
\(734\) 4.44672 7.70195i 0.164132 0.284284i
\(735\) 0 0
\(736\) −29.9398 + 5.27919i −1.10359 + 0.194593i
\(737\) −24.4709 + 17.1347i −0.901398 + 0.631166i
\(738\) 0 0
\(739\) 15.2269 + 18.1467i 0.560131 + 0.667538i 0.969574 0.244797i \(-0.0787214\pi\)
−0.409443 + 0.912336i \(0.634277\pi\)
\(740\) 24.4160 + 0.766969i 0.897548 + 0.0281944i
\(741\) 0 0
\(742\) −1.12651 + 1.12651i −0.0413553 + 0.0413553i
\(743\) 0.871715 9.96374i 0.0319801 0.365534i −0.963295 0.268444i \(-0.913491\pi\)
0.995276 0.0970908i \(-0.0309537\pi\)
\(744\) 0 0
\(745\) −9.84660 15.0467i −0.360752 0.551270i
\(746\) −0.200384 1.13643i −0.00733657 0.0416078i
\(747\) 0 0
\(748\) 34.4350 9.22682i 1.25907 0.337366i
\(749\) 0.969714 + 1.67959i 0.0354326 + 0.0613710i
\(750\) 0 0
\(751\) −5.60626 + 6.68129i −0.204576 + 0.243804i −0.858571 0.512695i \(-0.828647\pi\)
0.653995 + 0.756499i \(0.273092\pi\)
\(752\) −7.82588 2.09694i −0.285380 0.0764675i
\(753\) 0 0
\(754\) 9.39167 3.41829i 0.342025 0.124487i
\(755\) −24.4841 18.3159i −0.891067 0.666584i
\(756\) 0 0
\(757\) 38.7126 18.0520i 1.40703 0.656111i 0.437085 0.899420i \(-0.356011\pi\)
0.969949 + 0.243309i \(0.0782331\pi\)
\(758\) 11.7640 + 1.02921i 0.427286 + 0.0373827i
\(759\) 0 0
\(760\) −1.74154 23.7857i −0.0631722 0.862798i
\(761\) −27.7115 −1.00454 −0.502270 0.864711i \(-0.667502\pi\)
−0.502270 + 0.864711i \(0.667502\pi\)
\(762\) 0 0
\(763\) 1.00614 0.469169i 0.0364246 0.0169850i
\(764\) 30.0721 + 5.30253i 1.08797 + 0.191839i
\(765\) 0 0
\(766\) 9.46949 3.44661i 0.342147 0.124531i
\(767\) 3.50711 + 13.0887i 0.126634 + 0.472606i
\(768\) 0 0
\(769\) 7.06802 8.42334i 0.254879 0.303753i −0.623398 0.781905i \(-0.714248\pi\)
0.878278 + 0.478151i \(0.158693\pi\)
\(770\) −0.0567757 1.01526i −0.00204605 0.0365874i
\(771\) 0 0
\(772\) −8.88856 + 2.38168i −0.319906 + 0.0857186i
\(773\) 5.67290 12.1656i 0.204040 0.437566i −0.777484 0.628902i \(-0.783504\pi\)
0.981524 + 0.191337i \(0.0612823\pi\)
\(774\) 0 0
\(775\) −2.56816 + 10.6168i −0.0922510 + 0.381365i
\(776\) −5.93505 2.16018i −0.213056 0.0775460i
\(777\) 0 0
\(778\) 15.3018 15.3018i 0.548596 0.548596i
\(779\) 21.9796 + 30.2669i 0.787500 + 1.08443i
\(780\) 0 0
\(781\) 4.77361 + 5.68897i 0.170813 + 0.203567i
\(782\) 10.6657 + 22.8726i 0.381404 + 0.817924i
\(783\) 0 0
\(784\) 9.10642 1.60571i 0.325229 0.0573467i
\(785\) 31.9199 10.4952i 1.13927 0.374590i
\(786\) 0 0
\(787\) −10.7805 + 40.2335i −0.384284 + 1.43417i 0.455008 + 0.890487i \(0.349636\pi\)
−0.839292 + 0.543681i \(0.817030\pi\)
\(788\) −2.21204 25.2838i −0.0788008 0.900698i
\(789\) 0 0
\(790\) 10.5444 5.65405i 0.375153 0.201162i
\(791\) 0.655292 + 0.378333i 0.0232995 + 0.0134520i
\(792\) 0 0
\(793\) −16.8512 11.7994i −0.598405 0.419008i
\(794\) 3.71057 21.0437i 0.131683 0.746813i
\(795\) 0 0
\(796\) 11.4060 9.57075i 0.404274 0.339226i
\(797\) 33.9874 + 33.9874i 1.20389 + 1.20389i 0.972972 + 0.230923i \(0.0741744\pi\)
0.230923 + 0.972972i \(0.425826\pi\)
\(798\) 0 0
\(799\) 42.3337i 1.49766i
\(800\) 4.34929 28.7636i 0.153771 1.01695i
\(801\) 0 0
\(802\) 7.11968 + 10.1680i 0.251405 + 0.359043i
\(803\) −16.8422 + 24.0532i −0.594349 + 0.848818i
\(804\) 0 0
\(805\) −2.19250 + 0.514279i −0.0772756 + 0.0181259i
\(806\) 2.84334 1.64160i 0.100152 0.0578230i
\(807\) 0 0
\(808\) 33.0900 2.89500i 1.16410 0.101846i
\(809\) 32.3657 18.6864i 1.13792 0.656977i 0.192004 0.981394i \(-0.438501\pi\)
0.945914 + 0.324417i \(0.105168\pi\)
\(810\) 0 0
\(811\) −3.85011 10.5781i −0.135196 0.371447i 0.853559 0.520997i \(-0.174440\pi\)
−0.988754 + 0.149550i \(0.952217\pi\)
\(812\) −1.11420 + 1.59125i −0.0391009 + 0.0558419i
\(813\) 0 0
\(814\) −5.81675 + 15.9814i −0.203877 + 0.560147i
\(815\) 19.8164 + 25.1814i 0.694137 + 0.882066i
\(816\) 0 0
\(817\) 1.82499 + 4.75754i 0.0638484 + 0.166445i
\(818\) −12.2491 12.2491i −0.428280 0.428280i
\(819\) 0 0
\(820\) 11.4568 + 26.7298i 0.400090 + 0.933446i
\(821\) −3.16955 + 17.9754i −0.110618 + 0.627346i 0.878209 + 0.478277i \(0.158739\pi\)
−0.988827 + 0.149069i \(0.952372\pi\)
\(822\) 0 0
\(823\) 20.3408 + 9.48508i 0.709036 + 0.330629i 0.743462 0.668778i \(-0.233182\pi\)
−0.0344257 + 0.999407i \(0.510960\pi\)
\(824\) −25.0554 14.4658i −0.872847 0.503938i
\(825\) 0 0
\(826\) 0.644900 + 0.541135i 0.0224389 + 0.0188285i
\(827\) −1.92661 22.0212i −0.0669946 0.765752i −0.953176 0.302415i \(-0.902207\pi\)
0.886182 0.463338i \(-0.153348\pi\)
\(828\) 0 0
\(829\) −5.19218 + 8.99311i −0.180332 + 0.312344i −0.941994 0.335631i \(-0.891050\pi\)
0.761662 + 0.647975i \(0.224384\pi\)
\(830\) −1.88251 + 3.72687i −0.0653430 + 0.129362i
\(831\) 0 0
\(832\) −2.46470 + 1.72580i −0.0854480 + 0.0598313i
\(833\) −20.4193 43.7893i −0.707487 1.51721i
\(834\) 0 0
\(835\) −0.534375 + 17.0115i −0.0184928 + 0.588706i
\(836\) −21.7273 5.42254i −0.751455 0.187543i
\(837\) 0 0
\(838\) −0.0810720 + 0.926657i −0.00280059 + 0.0320108i
\(839\) −36.6781 13.3497i −1.26627 0.460885i −0.380402 0.924821i \(-0.624214\pi\)
−0.885868 + 0.463937i \(0.846436\pi\)
\(840\) 0 0
\(841\) 2.64364 + 14.9928i 0.0911601 + 0.516995i
\(842\) −3.62683 + 7.77777i −0.124989 + 0.268040i
\(843\) 0 0
\(844\) −1.62316 2.81139i −0.0558713 0.0967720i
\(845\) 18.6143 1.04095i 0.640350 0.0358099i
\(846\) 0 0
\(847\) −0.0913982 0.0244901i −0.00314048 0.000841489i
\(848\) 4.08189 + 15.2338i 0.140173 + 0.523132i
\(849\) 0 0
\(850\) −23.9983 + 2.69250i −0.823134 + 0.0923520i
\(851\) 37.0933 + 6.54055i 1.27154 + 0.224207i
\(852\) 0 0
\(853\) 23.2647 + 2.03539i 0.796567 + 0.0696906i 0.478170 0.878267i \(-0.341300\pi\)
0.318396 + 0.947958i \(0.396856\pi\)
\(854\) −1.27807 −0.0437345
\(855\) 0 0
\(856\) −24.6217 −0.841551
\(857\) −33.0886 2.89487i −1.13028 0.0988870i −0.493368 0.869821i \(-0.664234\pi\)
−0.636916 + 0.770934i \(0.719790\pi\)
\(858\) 0 0
\(859\) 22.5330 + 3.97318i 0.768817 + 0.135563i 0.544282 0.838903i \(-0.316802\pi\)
0.224536 + 0.974466i \(0.427913\pi\)
\(860\) 0.565095 + 3.92111i 0.0192696 + 0.133709i
\(861\) 0 0
\(862\) −1.31821 4.91961i −0.0448983 0.167563i
\(863\) −7.05432 1.89020i −0.240132 0.0643431i 0.136746 0.990606i \(-0.456336\pi\)
−0.376878 + 0.926263i \(0.623002\pi\)
\(864\) 0 0
\(865\) 24.3527 + 21.7732i 0.828016 + 0.740311i
\(866\) −4.58169 7.93572i −0.155692 0.269667i
\(867\) 0 0
\(868\) −0.269689 + 0.578349i −0.00915383 + 0.0196305i
\(869\) −4.52525 25.6640i −0.153509 0.870590i
\(870\) 0 0
\(871\) 17.8814 + 6.50829i 0.605887 + 0.220525i
\(872\) −1.22834 + 14.0400i −0.0415970 + 0.475456i
\(873\) 0 0
\(874\) 1.10949 15.8141i 0.0375290 0.534921i
\(875\) 0.202706 2.14534i 0.00685271 0.0725258i
\(876\) 0 0
\(877\) −2.22531 4.77219i −0.0751433 0.161145i 0.865148 0.501517i \(-0.167225\pi\)
−0.940291 + 0.340372i \(0.889447\pi\)
\(878\) −6.25934 + 4.38283i −0.211242 + 0.147913i
\(879\) 0 0
\(880\) −8.98514 4.53857i −0.302889 0.152995i
\(881\) 22.9016 39.6667i 0.771574 1.33641i −0.165126 0.986272i \(-0.552803\pi\)
0.936700 0.350133i \(-0.113864\pi\)
\(882\) 0 0
\(883\) −4.29218 49.0599i −0.144443 1.65100i −0.629857 0.776711i \(-0.716886\pi\)
0.485413 0.874285i \(-0.338669\pi\)
\(884\) −17.3956 14.5966i −0.585077 0.490938i
\(885\) 0 0
\(886\) −18.5927 10.7345i −0.624633 0.360632i
\(887\) 48.6214 + 22.6726i 1.63255 + 0.761270i 0.999913 0.0131801i \(-0.00419547\pi\)
0.632635 + 0.774450i \(0.281973\pi\)
\(888\) 0 0
\(889\) −0.630348 + 3.57488i −0.0211412 + 0.119898i
\(890\) −0.286748 + 0.716949i −0.00961180 + 0.0240322i
\(891\) 0 0
\(892\) 19.2631 + 19.2631i 0.644976 + 0.644976i
\(893\) 12.8976 23.2552i 0.431601 0.778207i
\(894\) 0 0
\(895\) 7.81895 + 0.932245i 0.261359 + 0.0311615i
\(896\) 0.703137 1.93185i 0.0234902 0.0645387i
\(897\) 0 0
\(898\) 1.59014 2.27096i 0.0530637 0.0757829i
\(899\) 4.96880 + 13.6517i 0.165719 + 0.455309i
\(900\) 0 0
\(901\) 71.3662 41.2033i 2.37755 1.37268i
\(902\) −20.1699 + 1.76464i −0.671585 + 0.0587560i
\(903\) 0 0
\(904\) −8.31914 + 4.80306i −0.276691 + 0.159747i
\(905\) −9.96282 42.4741i −0.331175 1.41189i
\(906\) 0 0
\(907\) −22.8022 + 32.5649i −0.757135 + 1.08130i 0.236824 + 0.971553i \(0.423893\pi\)
−0.993959 + 0.109749i \(0.964995\pi\)
\(908\) −5.09523 7.27674i −0.169091 0.241487i
\(909\) 0 0
\(910\) −0.509006 + 0.400559i −0.0168734 + 0.0132784i
\(911\) 25.0202i 0.828956i −0.910059 0.414478i \(-0.863964\pi\)
0.910059 0.414478i \(-0.136036\pi\)
\(912\) 0 0
\(913\) 6.43055 + 6.43055i 0.212820 + 0.212820i
\(914\) −5.04176 + 4.23054i −0.166767 + 0.139934i
\(915\) 0 0
\(916\) −5.90706 + 33.5006i −0.195175 + 1.10689i
\(917\) 2.22203 + 1.55588i 0.0733779 + 0.0513797i
\(918\) 0 0
\(919\) −35.2152 20.3315i −1.16164 0.670675i −0.209946 0.977713i \(-0.567329\pi\)
−0.951697 + 0.307038i \(0.900662\pi\)
\(920\) 8.26305 27.3699i 0.272425 0.902358i
\(921\) 0 0
\(922\) −0.637248 7.28378i −0.0209866 0.239878i
\(923\) 1.22435 4.56933i 0.0402999 0.150401i
\(924\) 0 0
\(925\) −17.2518 + 31.6441i −0.567236 + 1.04045i
\(926\) −4.39155 + 0.774349i −0.144315 + 0.0254467i
\(927\) 0 0
\(928\) −16.3516 35.0662i −0.536768 1.15110i
\(929\) 7.31492 + 8.71758i 0.239995 + 0.286014i 0.872575 0.488480i \(-0.162449\pi\)
−0.632580 + 0.774495i \(0.718004\pi\)
\(930\) 0 0
\(931\) −2.12410 + 30.2759i −0.0696146 + 0.992254i
\(932\) −3.82910 + 3.82910i −0.125426 + 0.125426i
\(933\) 0 0
\(934\) −18.2121 6.62868i −0.595919 0.216897i
\(935\) −10.7554 + 51.4865i −0.351738 + 1.68379i
\(936\) 0 0
\(937\) −15.0899 + 32.3604i −0.492965 + 1.05717i 0.489719 + 0.871880i \(0.337099\pi\)
−0.982684 + 0.185287i \(0.940678\pi\)
\(938\) 1.14194 0.305983i 0.0372858 0.00999069i
\(939\) 0 0
\(940\) 13.7801 15.4126i 0.449457 0.502705i
\(941\) 33.0108 39.3407i 1.07612 1.28247i 0.118964 0.992899i \(-0.462043\pi\)
0.957156 0.289572i \(-0.0935130\pi\)
\(942\) 0 0
\(943\) 11.6057 + 43.3131i 0.377934 + 1.41047i
\(944\) 7.83143 2.85041i 0.254891 0.0927729i
\(945\) 0 0
\(946\) −2.71622 0.478943i −0.0883120 0.0155718i
\(947\) 5.20308 2.42624i 0.169077 0.0788421i −0.336237 0.941777i \(-0.609154\pi\)
0.505314 + 0.862935i \(0.331377\pi\)
\(948\) 0 0
\(949\) 18.7041 0.607161
\(950\) 14.0033 + 5.83236i 0.454328 + 0.189227i
\(951\) 0 0
\(952\) −3.26014 0.285225i −0.105662 0.00924421i
\(953\) −12.4628 + 5.81151i −0.403710 + 0.188253i −0.613858 0.789416i \(-0.710383\pi\)
0.210148 + 0.977670i \(0.432606\pi\)
\(954\) 0 0
\(955\) −26.9874 + 36.0758i −0.873292 + 1.16739i
\(956\) −14.2168 + 5.17449i −0.459804 + 0.167355i
\(957\) 0 0
\(958\) 7.48655 + 2.00602i 0.241879 + 0.0648114i
\(959\) −0.889818 + 1.06044i −0.0287337 + 0.0342435i
\(960\) 0 0
\(961\) −13.1138 22.7137i −0.423025 0.732701i
\(962\) 10.4641 2.80385i 0.337376 0.0903996i
\(963\) 0 0
\(964\) 7.87457 + 44.6589i 0.253623 + 1.43837i
\(965\) 2.77624 13.2900i 0.0893702 0.427820i
\(966\) 0 0
\(967\) 4.82286 55.1255i 0.155093 1.77272i −0.377175 0.926142i \(-0.623104\pi\)
0.532268 0.846576i \(-0.321340\pi\)
\(968\) 0.849420 0.849420i 0.0273014 0.0273014i
\(969\) 0 0
\(970\) 2.92841 2.75004i 0.0940257 0.0882984i
\(971\) 34.8261 + 41.5041i 1.11762 + 1.33193i 0.937380 + 0.348309i \(0.113244\pi\)
0.180243 + 0.983622i \(0.442312\pi\)
\(972\) 0 0
\(973\) −2.29176 + 1.60471i −0.0734704 + 0.0514445i
\(974\) −9.07947 + 1.60096i −0.290925 + 0.0512979i
\(975\) 0 0
\(976\) −6.32616 + 10.9572i −0.202495 + 0.350732i
\(977\) −8.65086 + 32.2855i −0.276766 + 1.03290i 0.677883 + 0.735170i \(0.262897\pi\)
−0.954649 + 0.297734i \(0.903769\pi\)
\(978\) 0 0
\(979\) 1.28836 + 1.08106i 0.0411761 + 0.0345508i
\(980\) −6.81979 + 22.5893i −0.217850 + 0.721590i
\(981\) 0 0
\(982\) −1.94578 0.907332i −0.0620923 0.0289541i
\(983\) 0.145200 + 0.101670i 0.00463116 + 0.00324277i 0.575890 0.817527i \(-0.304656\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(984\) 0 0
\(985\) 34.7687 + 13.9059i 1.10782 + 0.443079i
\(986\) −24.6042 + 20.6454i −0.783559 + 0.657484i
\(987\) 0 0
\(988\) 5.10887 + 13.3182i 0.162535 + 0.423709i
\(989\) 6.10843i 0.194237i
\(990\) 0 0
\(991\) 14.2937 39.2716i 0.454054 1.24750i −0.475793 0.879557i \(-0.657839\pi\)
0.929847 0.367946i \(-0.119939\pi\)
\(992\) −7.29029 10.4116i −0.231467 0.330569i
\(993\) 0 0
\(994\) −0.100518 0.276172i −0.00318825 0.00875965i
\(995\) 5.01671 + 21.3875i 0.159040 + 0.678030i
\(996\) 0 0
\(997\) −3.50226 + 0.306408i −0.110918 + 0.00970404i −0.142479 0.989798i \(-0.545507\pi\)
0.0315617 + 0.999502i \(0.489952\pi\)
\(998\) −2.05062 + 0.179406i −0.0649111 + 0.00567899i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.b.298.13 240
3.2 odd 2 285.2.bh.a.13.8 240
5.2 odd 4 inner 855.2.dl.b.127.8 240
15.2 even 4 285.2.bh.a.127.13 yes 240
19.3 odd 18 inner 855.2.dl.b.478.8 240
57.41 even 18 285.2.bh.a.193.13 yes 240
95.22 even 36 inner 855.2.dl.b.307.13 240
285.212 odd 36 285.2.bh.a.22.8 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.bh.a.13.8 240 3.2 odd 2
285.2.bh.a.22.8 yes 240 285.212 odd 36
285.2.bh.a.127.13 yes 240 15.2 even 4
285.2.bh.a.193.13 yes 240 57.41 even 18
855.2.dl.b.127.8 240 5.2 odd 4 inner
855.2.dl.b.298.13 240 1.1 even 1 trivial
855.2.dl.b.307.13 240 95.22 even 36 inner
855.2.dl.b.478.8 240 19.3 odd 18 inner