Properties

Label 855.2.dl.b.127.8
Level $855$
Weight $2$
Character 855.127
Analytic conductor $6.827$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 127.8
Character \(\chi\) \(=\) 855.127
Dual form 855.2.dl.b.478.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0606620 + 0.693370i) q^{2} +(1.49253 + 0.263174i) q^{4} +(-1.87105 - 1.22441i) q^{5} +(-0.186172 + 0.0498847i) q^{7} +(-0.633303 + 2.36352i) q^{8} +(0.962473 - 1.22305i) q^{10} +(-1.69491 - 2.93568i) q^{11} +(1.95696 + 0.912547i) q^{13} +(-0.0232950 - 0.132112i) q^{14} +(1.24794 + 0.454214i) q^{16} +(6.91273 + 0.604786i) q^{17} +(2.43830 - 3.61313i) q^{19} +(-2.47036 - 2.31989i) q^{20} +(2.13833 - 0.997118i) q^{22} +(2.99713 + 4.28034i) q^{23} +(2.00162 + 4.58187i) q^{25} +(-0.751446 + 1.30154i) q^{26} +(-0.290997 + 0.0254589i) q^{28} +(5.09429 + 4.27462i) q^{29} +(-1.89191 - 1.09230i) q^{31} +(-2.45884 + 5.27301i) q^{32} +(-0.838680 + 4.75639i) q^{34} +(0.409417 + 0.134615i) q^{35} +(5.09701 - 5.09701i) q^{37} +(2.35732 + 1.90982i) q^{38} +(4.07886 - 3.64682i) q^{40} +(2.93503 - 8.06394i) q^{41} +(-0.957590 - 0.670512i) q^{43} +(-1.75712 - 4.82765i) q^{44} +(-3.14967 + 1.81846i) q^{46} +(-0.531712 - 6.07749i) q^{47} +(-6.03001 + 3.48143i) q^{49} +(-3.29835 + 1.10992i) q^{50} +(2.68067 + 1.87703i) q^{52} +(9.72794 - 6.81158i) q^{53} +(-0.423224 + 7.56806i) q^{55} -0.471614i q^{56} +(-3.27292 + 3.27292i) q^{58} +(-4.80729 + 4.03379i) q^{59} +(-1.65436 + 9.38236i) q^{61} +(0.872132 - 1.24553i) q^{62} +(-1.20677 - 0.696726i) q^{64} +(-2.54423 - 4.10355i) q^{65} +(8.77915 - 0.768076i) q^{67} +(10.1583 + 2.72191i) q^{68} +(-0.118174 + 0.275711i) q^{70} +(-2.15751 + 0.380428i) q^{71} +(-7.85066 + 3.66082i) q^{73} +(3.22492 + 3.84331i) q^{74} +(4.59012 - 4.75102i) q^{76} +(0.461992 + 0.461992i) q^{77} +(-7.22404 - 2.62934i) q^{79} +(-1.77881 - 2.37786i) q^{80} +(5.41325 + 2.52424i) q^{82} +(0.694355 + 2.59137i) q^{83} +(-12.1935 - 9.59563i) q^{85} +(0.523002 - 0.623290i) q^{86} +(8.01192 - 2.14679i) q^{88} +(0.466220 - 0.169690i) q^{89} +(-0.409855 - 0.0722684i) q^{91} +(3.34684 + 7.17732i) q^{92} +4.24620 q^{94} +(-8.98613 + 3.77484i) q^{95} +(-0.224967 + 2.57139i) q^{97} +(-2.04812 - 4.39221i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{7} - 36 q^{16} - 120 q^{20} + 24 q^{22} - 24 q^{23} - 24 q^{25} + 24 q^{26} - 72 q^{28} + 12 q^{32} + 132 q^{38} - 132 q^{40} + 72 q^{41} - 108 q^{43} - 24 q^{47} - 36 q^{53} - 144 q^{58}+ \cdots - 192 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0606620 + 0.693370i −0.0428945 + 0.490287i 0.944114 + 0.329619i \(0.106920\pi\)
−0.987009 + 0.160668i \(0.948635\pi\)
\(3\) 0 0
\(4\) 1.49253 + 0.263174i 0.746267 + 0.131587i
\(5\) −1.87105 1.22441i −0.836757 0.547575i
\(6\) 0 0
\(7\) −0.186172 + 0.0498847i −0.0703665 + 0.0188547i −0.293831 0.955858i \(-0.594930\pi\)
0.223464 + 0.974712i \(0.428263\pi\)
\(8\) −0.633303 + 2.36352i −0.223906 + 0.835630i
\(9\) 0 0
\(10\) 0.962473 1.22305i 0.304361 0.386763i
\(11\) −1.69491 2.93568i −0.511036 0.885140i −0.999918 0.0127903i \(-0.995929\pi\)
0.488882 0.872350i \(-0.337405\pi\)
\(12\) 0 0
\(13\) 1.95696 + 0.912547i 0.542764 + 0.253095i 0.674609 0.738175i \(-0.264312\pi\)
−0.131845 + 0.991270i \(0.542090\pi\)
\(14\) −0.0232950 0.132112i −0.00622585 0.0353085i
\(15\) 0 0
\(16\) 1.24794 + 0.454214i 0.311986 + 0.113554i
\(17\) 6.91273 + 0.604786i 1.67658 + 0.146682i 0.885379 0.464869i \(-0.153899\pi\)
0.791205 + 0.611551i \(0.209454\pi\)
\(18\) 0 0
\(19\) 2.43830 3.61313i 0.559384 0.828909i
\(20\) −2.47036 2.31989i −0.552390 0.518743i
\(21\) 0 0
\(22\) 2.13833 0.997118i 0.455893 0.212586i
\(23\) 2.99713 + 4.28034i 0.624945 + 0.892513i 0.999397 0.0347330i \(-0.0110581\pi\)
−0.374452 + 0.927246i \(0.622169\pi\)
\(24\) 0 0
\(25\) 2.00162 + 4.58187i 0.400324 + 0.916374i
\(26\) −0.751446 + 1.30154i −0.147371 + 0.255253i
\(27\) 0 0
\(28\) −0.290997 + 0.0254589i −0.0549932 + 0.00481129i
\(29\) 5.09429 + 4.27462i 0.945986 + 0.793776i 0.978617 0.205691i \(-0.0659442\pi\)
−0.0326312 + 0.999467i \(0.510389\pi\)
\(30\) 0 0
\(31\) −1.89191 1.09230i −0.339798 0.196182i 0.320385 0.947287i \(-0.396188\pi\)
−0.660182 + 0.751105i \(0.729521\pi\)
\(32\) −2.45884 + 5.27301i −0.434666 + 0.932145i
\(33\) 0 0
\(34\) −0.838680 + 4.75639i −0.143833 + 0.815715i
\(35\) 0.409417 + 0.134615i 0.0692040 + 0.0227542i
\(36\) 0 0
\(37\) 5.09701 5.09701i 0.837943 0.837943i −0.150645 0.988588i \(-0.548135\pi\)
0.988588 + 0.150645i \(0.0481351\pi\)
\(38\) 2.35732 + 1.90982i 0.382408 + 0.309814i
\(39\) 0 0
\(40\) 4.07886 3.64682i 0.644925 0.576613i
\(41\) 2.93503 8.06394i 0.458375 1.25938i −0.468319 0.883560i \(-0.655140\pi\)
0.926694 0.375816i \(-0.122638\pi\)
\(42\) 0 0
\(43\) −0.957590 0.670512i −0.146031 0.102252i 0.498278 0.867017i \(-0.333966\pi\)
−0.644309 + 0.764765i \(0.722855\pi\)
\(44\) −1.75712 4.82765i −0.264896 0.727796i
\(45\) 0 0
\(46\) −3.14967 + 1.81846i −0.464394 + 0.268118i
\(47\) −0.531712 6.07749i −0.0775581 0.886493i −0.930932 0.365193i \(-0.881003\pi\)
0.853374 0.521300i \(-0.174553\pi\)
\(48\) 0 0
\(49\) −6.03001 + 3.48143i −0.861429 + 0.497347i
\(50\) −3.29835 + 1.10992i −0.466457 + 0.156966i
\(51\) 0 0
\(52\) 2.68067 + 1.87703i 0.371743 + 0.260297i
\(53\) 9.72794 6.81158i 1.33624 0.935642i 0.336254 0.941771i \(-0.390840\pi\)
0.999981 + 0.00612942i \(0.00195107\pi\)
\(54\) 0 0
\(55\) −0.423224 + 7.56806i −0.0570675 + 1.02048i
\(56\) 0.471614i 0.0630220i
\(57\) 0 0
\(58\) −3.27292 + 3.27292i −0.429755 + 0.429755i
\(59\) −4.80729 + 4.03379i −0.625856 + 0.525155i −0.899638 0.436636i \(-0.856170\pi\)
0.273782 + 0.961792i \(0.411725\pi\)
\(60\) 0 0
\(61\) −1.65436 + 9.38236i −0.211820 + 1.20129i 0.674521 + 0.738255i \(0.264350\pi\)
−0.886341 + 0.463033i \(0.846761\pi\)
\(62\) 0.872132 1.24553i 0.110761 0.158183i
\(63\) 0 0
\(64\) −1.20677 0.696726i −0.150846 0.0870908i
\(65\) −2.54423 4.10355i −0.315573 0.508983i
\(66\) 0 0
\(67\) 8.77915 0.768076i 1.07254 0.0938355i 0.462822 0.886451i \(-0.346837\pi\)
0.609722 + 0.792616i \(0.291281\pi\)
\(68\) 10.1583 + 2.72191i 1.23188 + 0.330081i
\(69\) 0 0
\(70\) −0.118174 + 0.275711i −0.0141245 + 0.0329538i
\(71\) −2.15751 + 0.380428i −0.256050 + 0.0451485i −0.300199 0.953876i \(-0.597053\pi\)
0.0441498 + 0.999025i \(0.485942\pi\)
\(72\) 0 0
\(73\) −7.85066 + 3.66082i −0.918850 + 0.428467i −0.823719 0.566998i \(-0.808105\pi\)
−0.0951309 + 0.995465i \(0.530327\pi\)
\(74\) 3.22492 + 3.84331i 0.374889 + 0.446775i
\(75\) 0 0
\(76\) 4.59012 4.75102i 0.526523 0.544980i
\(77\) 0.461992 + 0.461992i 0.0526488 + 0.0526488i
\(78\) 0 0
\(79\) −7.22404 2.62934i −0.812768 0.295823i −0.0980014 0.995186i \(-0.531245\pi\)
−0.714767 + 0.699363i \(0.753467\pi\)
\(80\) −1.77881 2.37786i −0.198877 0.265852i
\(81\) 0 0
\(82\) 5.41325 + 2.52424i 0.597793 + 0.278756i
\(83\) 0.694355 + 2.59137i 0.0762154 + 0.284440i 0.993506 0.113778i \(-0.0362954\pi\)
−0.917291 + 0.398218i \(0.869629\pi\)
\(84\) 0 0
\(85\) −12.1935 9.59563i −1.32257 1.04079i
\(86\) 0.523002 0.623290i 0.0563968 0.0672111i
\(87\) 0 0
\(88\) 8.01192 2.14679i 0.854073 0.228848i
\(89\) 0.466220 0.169690i 0.0494192 0.0179871i −0.317192 0.948361i \(-0.602740\pi\)
0.366611 + 0.930374i \(0.380518\pi\)
\(90\) 0 0
\(91\) −0.409855 0.0722684i −0.0429644 0.00757579i
\(92\) 3.34684 + 7.17732i 0.348932 + 0.748288i
\(93\) 0 0
\(94\) 4.24620 0.437963
\(95\) −8.98613 + 3.77484i −0.921958 + 0.387291i
\(96\) 0 0
\(97\) −0.224967 + 2.57139i −0.0228420 + 0.261085i 0.976183 + 0.216947i \(0.0696098\pi\)
−0.999025 + 0.0441382i \(0.985946\pi\)
\(98\) −2.04812 4.39221i −0.206892 0.443681i
\(99\) 0 0
\(100\) 1.78166 + 7.36537i 0.178166 + 0.736537i
\(101\) −12.7562 + 4.64289i −1.26929 + 0.461985i −0.886877 0.462005i \(-0.847130\pi\)
−0.382416 + 0.923990i \(0.624908\pi\)
\(102\) 0 0
\(103\) 3.06022 11.4209i 0.301532 1.12533i −0.634357 0.773040i \(-0.718735\pi\)
0.935890 0.352294i \(-0.114598\pi\)
\(104\) −3.39617 + 4.04740i −0.333022 + 0.396880i
\(105\) 0 0
\(106\) 4.13283 + 7.15826i 0.401415 + 0.695272i
\(107\) 2.60434 + 9.71954i 0.251771 + 0.939624i 0.969858 + 0.243670i \(0.0783514\pi\)
−0.718087 + 0.695954i \(0.754982\pi\)
\(108\) 0 0
\(109\) 1.00018 + 5.67232i 0.0958002 + 0.543310i 0.994499 + 0.104744i \(0.0334023\pi\)
−0.898699 + 0.438566i \(0.855487\pi\)
\(110\) −5.22179 0.752544i −0.497878 0.0717523i
\(111\) 0 0
\(112\) −0.254991 0.0223088i −0.0240944 0.00210799i
\(113\) −2.77599 2.77599i −0.261143 0.261143i 0.564375 0.825518i \(-0.309117\pi\)
−0.825518 + 0.564375i \(0.809117\pi\)
\(114\) 0 0
\(115\) −0.366851 11.6784i −0.0342090 1.08902i
\(116\) 6.47843 + 7.72069i 0.601507 + 0.716848i
\(117\) 0 0
\(118\) −2.50529 3.57793i −0.230631 0.329375i
\(119\) −1.31713 + 0.232245i −0.120741 + 0.0212899i
\(120\) 0 0
\(121\) −0.245467 + 0.425161i −0.0223151 + 0.0386510i
\(122\) −6.40509 1.71624i −0.579890 0.155381i
\(123\) 0 0
\(124\) −2.53628 2.12819i −0.227765 0.191117i
\(125\) 1.86498 11.0237i 0.166809 0.985989i
\(126\) 0 0
\(127\) −7.95952 + 17.0692i −0.706293 + 1.51465i 0.144701 + 0.989475i \(0.453778\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(128\) −6.11798 + 8.73738i −0.540758 + 0.772283i
\(129\) 0 0
\(130\) 2.99961 1.51516i 0.263084 0.132889i
\(131\) 10.7812 9.04652i 0.941959 0.790398i −0.0359658 0.999353i \(-0.511451\pi\)
0.977925 + 0.208955i \(0.0670063\pi\)
\(132\) 0 0
\(133\) −0.273703 + 0.794299i −0.0237331 + 0.0688744i
\(134\) 6.13379i 0.529879i
\(135\) 0 0
\(136\) −5.80727 + 15.9554i −0.497970 + 1.36816i
\(137\) −5.88338 + 4.11959i −0.502651 + 0.351960i −0.797238 0.603665i \(-0.793707\pi\)
0.294587 + 0.955625i \(0.404818\pi\)
\(138\) 0 0
\(139\) −4.96460 13.6401i −0.421092 1.15694i −0.951082 0.308937i \(-0.900027\pi\)
0.529990 0.848004i \(-0.322196\pi\)
\(140\) 0.575641 + 0.308666i 0.0486505 + 0.0260870i
\(141\) 0 0
\(142\) −0.132898 1.51903i −0.0111526 0.127474i
\(143\) −0.637941 7.29170i −0.0533473 0.609762i
\(144\) 0 0
\(145\) −4.29775 14.2355i −0.356908 1.18220i
\(146\) −2.06207 5.66548i −0.170658 0.468879i
\(147\) 0 0
\(148\) 8.94885 6.26606i 0.735591 0.515067i
\(149\) −2.75049 + 7.55690i −0.225329 + 0.619086i −0.999910 0.0133883i \(-0.995738\pi\)
0.774582 + 0.632474i \(0.217960\pi\)
\(150\) 0 0
\(151\) 13.6744i 1.11281i −0.830913 0.556403i \(-0.812181\pi\)
0.830913 0.556403i \(-0.187819\pi\)
\(152\) 6.99552 + 8.05116i 0.567411 + 0.653035i
\(153\) 0 0
\(154\) −0.348356 + 0.292306i −0.0280714 + 0.0235547i
\(155\) 2.20243 + 4.36022i 0.176904 + 0.350221i
\(156\) 0 0
\(157\) −8.61903 + 12.3093i −0.687874 + 0.982386i 0.311608 + 0.950211i \(0.399132\pi\)
−0.999482 + 0.0321750i \(0.989757\pi\)
\(158\) 2.26133 4.84943i 0.179902 0.385800i
\(159\) 0 0
\(160\) 11.0570 6.85540i 0.874129 0.541967i
\(161\) −0.771506 0.647371i −0.0608032 0.0510200i
\(162\) 0 0
\(163\) 13.8420 + 3.70896i 1.08419 + 0.290508i 0.756312 0.654211i \(-0.226999\pi\)
0.327880 + 0.944720i \(0.393666\pi\)
\(164\) 6.50286 11.2633i 0.507788 0.879514i
\(165\) 0 0
\(166\) −1.83890 + 0.324247i −0.142726 + 0.0251665i
\(167\) −4.36579 6.23499i −0.337835 0.482478i 0.613907 0.789378i \(-0.289597\pi\)
−0.951742 + 0.306900i \(0.900708\pi\)
\(168\) 0 0
\(169\) −5.35928 6.38694i −0.412252 0.491303i
\(170\) 7.39300 7.87253i 0.567018 0.603796i
\(171\) 0 0
\(172\) −1.25277 1.25277i −0.0955232 0.0955232i
\(173\) 14.5535 + 1.27326i 1.10648 + 0.0968045i 0.625720 0.780047i \(-0.284805\pi\)
0.480760 + 0.876852i \(0.340361\pi\)
\(174\) 0 0
\(175\) −0.601212 0.753167i −0.0454473 0.0569341i
\(176\) −0.781730 4.43341i −0.0589251 0.334181i
\(177\) 0 0
\(178\) 0.0893761 + 0.333556i 0.00669903 + 0.0250011i
\(179\) −1.76075 3.04972i −0.131605 0.227946i 0.792690 0.609624i \(-0.208680\pi\)
−0.924295 + 0.381678i \(0.875346\pi\)
\(180\) 0 0
\(181\) 12.5411 14.9460i 0.932176 1.11092i −0.0614406 0.998111i \(-0.519569\pi\)
0.993616 0.112813i \(-0.0359861\pi\)
\(182\) 0.0749713 0.279797i 0.00555724 0.0207399i
\(183\) 0 0
\(184\) −12.0148 + 4.37301i −0.885740 + 0.322383i
\(185\) −15.7776 + 3.29588i −1.15999 + 0.242318i
\(186\) 0 0
\(187\) −9.94103 21.3186i −0.726960 1.55897i
\(188\) 0.805840 9.21079i 0.0587719 0.671766i
\(189\) 0 0
\(190\) −2.07225 6.45970i −0.150337 0.468636i
\(191\) −20.1484 −1.45789 −0.728943 0.684575i \(-0.759988\pi\)
−0.728943 + 0.684575i \(0.759988\pi\)
\(192\) 0 0
\(193\) −2.56604 5.50289i −0.184708 0.396107i 0.792049 0.610457i \(-0.209014\pi\)
−0.976757 + 0.214351i \(0.931236\pi\)
\(194\) −1.76928 0.311971i −0.127027 0.0223982i
\(195\) 0 0
\(196\) −9.91621 + 3.60920i −0.708301 + 0.257800i
\(197\) −16.1759 + 4.33432i −1.15249 + 0.308808i −0.783961 0.620810i \(-0.786804\pi\)
−0.368525 + 0.929618i \(0.620137\pi\)
\(198\) 0 0
\(199\) 6.31500 7.52592i 0.447658 0.533498i −0.494272 0.869307i \(-0.664565\pi\)
0.941930 + 0.335809i \(0.109010\pi\)
\(200\) −12.0970 + 1.82916i −0.855384 + 0.129341i
\(201\) 0 0
\(202\) −2.44542 9.12644i −0.172059 0.642134i
\(203\) −1.16165 0.541688i −0.0815321 0.0380191i
\(204\) 0 0
\(205\) −15.3652 + 11.4943i −1.07315 + 0.802797i
\(206\) 7.73326 + 2.81468i 0.538802 + 0.196108i
\(207\) 0 0
\(208\) 2.02769 + 2.02769i 0.140595 + 0.140595i
\(209\) −14.7397 1.03411i −1.01957 0.0715307i
\(210\) 0 0
\(211\) 1.37685 + 1.64086i 0.0947859 + 0.112961i 0.811352 0.584557i \(-0.198732\pi\)
−0.716566 + 0.697519i \(0.754287\pi\)
\(212\) 16.3119 7.60637i 1.12031 0.522407i
\(213\) 0 0
\(214\) −6.89722 + 1.21617i −0.471485 + 0.0831354i
\(215\) 0.970711 + 2.42705i 0.0662019 + 0.165523i
\(216\) 0 0
\(217\) 0.406711 + 0.108978i 0.0276093 + 0.00739790i
\(218\) −3.99369 + 0.349403i −0.270487 + 0.0236645i
\(219\) 0 0
\(220\) −2.62339 + 11.1842i −0.176869 + 0.754039i
\(221\) 12.9761 + 7.49173i 0.872865 + 0.503949i
\(222\) 0 0
\(223\) −10.3100 + 14.7242i −0.690410 + 0.986008i 0.308979 + 0.951069i \(0.400013\pi\)
−0.999389 + 0.0349391i \(0.988876\pi\)
\(224\) 0.194726 1.10435i 0.0130107 0.0737873i
\(225\) 0 0
\(226\) 2.09318 1.75639i 0.139237 0.116833i
\(227\) −4.14462 + 4.14462i −0.275088 + 0.275088i −0.831144 0.556057i \(-0.812314\pi\)
0.556057 + 0.831144i \(0.312314\pi\)
\(228\) 0 0
\(229\) 22.4455i 1.48324i 0.670821 + 0.741619i \(0.265942\pi\)
−0.670821 + 0.741619i \(0.734058\pi\)
\(230\) 8.11973 + 0.454075i 0.535399 + 0.0299408i
\(231\) 0 0
\(232\) −13.3294 + 9.33332i −0.875115 + 0.612762i
\(233\) −2.92687 2.04942i −0.191746 0.134262i 0.473762 0.880653i \(-0.342896\pi\)
−0.665507 + 0.746391i \(0.731785\pi\)
\(234\) 0 0
\(235\) −6.44651 + 12.0223i −0.420524 + 0.784248i
\(236\) −8.23663 + 4.75542i −0.536159 + 0.309551i
\(237\) 0 0
\(238\) −0.0811323 0.927346i −0.00525903 0.0601109i
\(239\) −8.64517 + 4.99129i −0.559210 + 0.322860i −0.752828 0.658217i \(-0.771311\pi\)
0.193619 + 0.981077i \(0.437978\pi\)
\(240\) 0 0
\(241\) −10.2338 28.1170i −0.659215 1.81118i −0.580467 0.814284i \(-0.697130\pi\)
−0.0787480 0.996895i \(-0.525092\pi\)
\(242\) −0.279903 0.195990i −0.0179929 0.0125987i
\(243\) 0 0
\(244\) −4.93839 + 13.5681i −0.316148 + 0.868609i
\(245\) 15.5451 + 0.869320i 0.993141 + 0.0555388i
\(246\) 0 0
\(247\) 8.06880 4.84570i 0.513406 0.308325i
\(248\) 3.77981 3.77981i 0.240018 0.240018i
\(249\) 0 0
\(250\) 7.53036 + 1.96184i 0.476262 + 0.124078i
\(251\) 4.56260 25.8758i 0.287989 1.63327i −0.406420 0.913686i \(-0.633223\pi\)
0.694409 0.719580i \(-0.255666\pi\)
\(252\) 0 0
\(253\) 7.48583 16.0534i 0.470630 1.00927i
\(254\) −11.3525 6.55434i −0.712316 0.411256i
\(255\) 0 0
\(256\) −7.82200 6.56344i −0.488875 0.410215i
\(257\) −1.57421 + 0.137726i −0.0981966 + 0.00859109i −0.136148 0.990688i \(-0.543472\pi\)
0.0379515 + 0.999280i \(0.487917\pi\)
\(258\) 0 0
\(259\) −0.694659 + 1.20318i −0.0431640 + 0.0747623i
\(260\) −2.71740 6.79426i −0.168526 0.421362i
\(261\) 0 0
\(262\) 5.61857 + 8.02415i 0.347116 + 0.495734i
\(263\) −5.52841 + 2.57794i −0.340896 + 0.158963i −0.585525 0.810654i \(-0.699112\pi\)
0.244629 + 0.969617i \(0.421334\pi\)
\(264\) 0 0
\(265\) −26.5416 + 0.833741i −1.63044 + 0.0512163i
\(266\) −0.534139 0.237961i −0.0327502 0.0145904i
\(267\) 0 0
\(268\) 13.3053 + 1.16406i 0.812752 + 0.0711066i
\(269\) 15.1223 + 5.50406i 0.922022 + 0.335588i 0.759042 0.651041i \(-0.225667\pi\)
0.162979 + 0.986630i \(0.447890\pi\)
\(270\) 0 0
\(271\) −1.31423 7.45337i −0.0798338 0.452760i −0.998352 0.0573820i \(-0.981725\pi\)
0.918518 0.395378i \(-0.129386\pi\)
\(272\) 8.35200 + 3.89460i 0.506414 + 0.236145i
\(273\) 0 0
\(274\) −2.49950 4.32926i −0.151000 0.261540i
\(275\) 10.0583 13.6420i 0.606539 0.822643i
\(276\) 0 0
\(277\) −3.53100 + 13.1779i −0.212157 + 0.791782i 0.774990 + 0.631973i \(0.217755\pi\)
−0.987148 + 0.159809i \(0.948912\pi\)
\(278\) 9.75882 2.61487i 0.585295 0.156829i
\(279\) 0 0
\(280\) −0.577451 + 0.882411i −0.0345093 + 0.0527341i
\(281\) −26.3845 4.65230i −1.57397 0.277533i −0.682593 0.730799i \(-0.739148\pi\)
−0.891376 + 0.453265i \(0.850259\pi\)
\(282\) 0 0
\(283\) −0.658283 + 7.52421i −0.0391309 + 0.447268i 0.951203 + 0.308565i \(0.0998488\pi\)
−0.990334 + 0.138703i \(0.955707\pi\)
\(284\) −3.32028 −0.197022
\(285\) 0 0
\(286\) 5.09454 0.301247
\(287\) −0.144155 + 1.64770i −0.00850919 + 0.0972604i
\(288\) 0 0
\(289\) 30.6784 + 5.40943i 1.80461 + 0.318202i
\(290\) 10.1312 2.11637i 0.594924 0.124278i
\(291\) 0 0
\(292\) −12.6808 + 3.39781i −0.742088 + 0.198842i
\(293\) 3.15055 11.7580i 0.184057 0.686911i −0.810773 0.585361i \(-0.800953\pi\)
0.994830 0.101551i \(-0.0323804\pi\)
\(294\) 0 0
\(295\) 13.9337 1.66130i 0.811251 0.0967246i
\(296\) 8.81892 + 15.2748i 0.512589 + 0.887831i
\(297\) 0 0
\(298\) −5.07288 2.36552i −0.293864 0.137031i
\(299\) 1.95926 + 11.1115i 0.113307 + 0.642594i
\(300\) 0 0
\(301\) 0.211725 + 0.0770617i 0.0122036 + 0.00444176i
\(302\) 9.48140 + 0.829515i 0.545593 + 0.0477332i
\(303\) 0 0
\(304\) 4.68399 3.40147i 0.268645 0.195088i
\(305\) 14.5833 15.5292i 0.835037 0.889199i
\(306\) 0 0
\(307\) −26.1155 + 12.1779i −1.49049 + 0.695027i −0.985746 0.168242i \(-0.946191\pi\)
−0.504744 + 0.863269i \(0.668413\pi\)
\(308\) 0.567954 + 0.811122i 0.0323622 + 0.0462180i
\(309\) 0 0
\(310\) −3.15685 + 1.26260i −0.179297 + 0.0717108i
\(311\) −9.26325 + 16.0444i −0.525271 + 0.909795i 0.474296 + 0.880365i \(0.342703\pi\)
−0.999567 + 0.0294301i \(0.990631\pi\)
\(312\) 0 0
\(313\) −3.16767 + 0.277135i −0.179047 + 0.0156646i −0.176327 0.984332i \(-0.556422\pi\)
−0.00272050 + 0.999996i \(0.500866\pi\)
\(314\) −8.01202 6.72288i −0.452144 0.379394i
\(315\) 0 0
\(316\) −10.0902 5.82555i −0.567616 0.327713i
\(317\) 2.22228 4.76570i 0.124816 0.267669i −0.833964 0.551819i \(-0.813934\pi\)
0.958780 + 0.284151i \(0.0917116\pi\)
\(318\) 0 0
\(319\) 3.91451 22.2003i 0.219171 1.24298i
\(320\) 1.40483 + 2.78119i 0.0785325 + 0.155473i
\(321\) 0 0
\(322\) 0.495668 0.495668i 0.0276225 0.0276225i
\(323\) 19.0405 23.5020i 1.05944 1.30768i
\(324\) 0 0
\(325\) −0.264072 + 10.7931i −0.0146481 + 0.598694i
\(326\) −3.41137 + 9.37265i −0.188938 + 0.519103i
\(327\) 0 0
\(328\) 17.2005 + 12.0439i 0.949739 + 0.665014i
\(329\) 0.402164 + 1.10494i 0.0221720 + 0.0609171i
\(330\) 0 0
\(331\) 10.1471 5.85845i 0.557737 0.322010i −0.194500 0.980903i \(-0.562308\pi\)
0.752237 + 0.658893i \(0.228975\pi\)
\(332\) 0.354368 + 4.05044i 0.0194485 + 0.222297i
\(333\) 0 0
\(334\) 4.58799 2.64888i 0.251044 0.144940i
\(335\) −17.3666 9.31221i −0.948841 0.508781i
\(336\) 0 0
\(337\) 10.3484 + 7.24603i 0.563713 + 0.394716i 0.820410 0.571776i \(-0.193745\pi\)
−0.256697 + 0.966492i \(0.582634\pi\)
\(338\) 4.75362 3.32852i 0.258563 0.181047i
\(339\) 0 0
\(340\) −15.6739 17.5308i −0.850038 0.950742i
\(341\) 7.40539i 0.401024i
\(342\) 0 0
\(343\) 1.90296 1.90296i 0.102750 0.102750i
\(344\) 2.19121 1.83864i 0.118142 0.0991331i
\(345\) 0 0
\(346\) −1.76569 + 10.0137i −0.0949239 + 0.538340i
\(347\) −10.8637 + 15.5150i −0.583196 + 0.832890i −0.996994 0.0774785i \(-0.975313\pi\)
0.413798 + 0.910369i \(0.364202\pi\)
\(348\) 0 0
\(349\) 28.7967 + 16.6258i 1.54145 + 0.889959i 0.998747 + 0.0500357i \(0.0159335\pi\)
0.542706 + 0.839923i \(0.317400\pi\)
\(350\) 0.558694 0.371173i 0.0298635 0.0198401i
\(351\) 0 0
\(352\) 19.6474 1.71892i 1.04721 0.0916189i
\(353\) 0.0607309 + 0.0162728i 0.00323238 + 0.000866114i 0.260435 0.965491i \(-0.416134\pi\)
−0.257202 + 0.966358i \(0.582801\pi\)
\(354\) 0 0
\(355\) 4.50261 + 1.92989i 0.238973 + 0.102428i
\(356\) 0.740506 0.130571i 0.0392468 0.00692026i
\(357\) 0 0
\(358\) 2.22139 1.03585i 0.117404 0.0547465i
\(359\) 16.1846 + 19.2880i 0.854190 + 1.01798i 0.999591 + 0.0286106i \(0.00910829\pi\)
−0.145401 + 0.989373i \(0.546447\pi\)
\(360\) 0 0
\(361\) −7.10942 17.6198i −0.374180 0.927356i
\(362\) 9.60230 + 9.60230i 0.504686 + 0.504686i
\(363\) 0 0
\(364\) −0.592702 0.215726i −0.0310661 0.0113071i
\(365\) 19.1713 + 2.76289i 1.00347 + 0.144616i
\(366\) 0 0
\(367\) 11.5804 + 5.40005i 0.604494 + 0.281880i 0.700671 0.713484i \(-0.252884\pi\)
−0.0961775 + 0.995364i \(0.530662\pi\)
\(368\) 1.79605 + 6.70297i 0.0936258 + 0.349416i
\(369\) 0 0
\(370\) −1.32817 11.1396i −0.0690481 0.579122i
\(371\) −1.47128 + 1.75340i −0.0763850 + 0.0910322i
\(372\) 0 0
\(373\) −1.60146 + 0.429109i −0.0829203 + 0.0222184i −0.300041 0.953926i \(-0.597000\pi\)
0.217120 + 0.976145i \(0.430334\pi\)
\(374\) 15.3847 5.59958i 0.795525 0.289548i
\(375\) 0 0
\(376\) 14.7010 + 2.59218i 0.758146 + 0.133682i
\(377\) 6.06855 + 13.0140i 0.312546 + 0.670257i
\(378\) 0 0
\(379\) −16.9664 −0.871503 −0.435752 0.900067i \(-0.643517\pi\)
−0.435752 + 0.900067i \(0.643517\pi\)
\(380\) −14.4055 + 3.26917i −0.738989 + 0.167705i
\(381\) 0 0
\(382\) 1.22224 13.9703i 0.0625353 0.714781i
\(383\) −6.11883 13.1219i −0.312658 0.670496i 0.685694 0.727890i \(-0.259499\pi\)
−0.998352 + 0.0573936i \(0.981721\pi\)
\(384\) 0 0
\(385\) −0.298738 1.43008i −0.0152251 0.0728834i
\(386\) 3.97120 1.44540i 0.202129 0.0735688i
\(387\) 0 0
\(388\) −1.01249 + 3.77868i −0.0514016 + 0.191833i
\(389\) −19.9850 + 23.8172i −1.01328 + 1.20758i −0.0351924 + 0.999381i \(0.511204\pi\)
−0.978087 + 0.208198i \(0.933240\pi\)
\(390\) 0 0
\(391\) 18.1297 + 31.4015i 0.916856 + 1.58804i
\(392\) −4.40959 16.4568i −0.222718 0.831195i
\(393\) 0 0
\(394\) −2.02403 11.4788i −0.101969 0.578295i
\(395\) 10.2971 + 13.7648i 0.518104 + 0.692584i
\(396\) 0 0
\(397\) 30.5840 + 2.67575i 1.53497 + 0.134292i 0.823049 0.567971i \(-0.192271\pi\)
0.711918 + 0.702263i \(0.247827\pi\)
\(398\) 4.83517 + 4.83517i 0.242365 + 0.242365i
\(399\) 0 0
\(400\) 0.416759 + 6.62708i 0.0208380 + 0.331354i
\(401\) 11.4635 + 13.6616i 0.572458 + 0.682229i 0.972134 0.234428i \(-0.0753217\pi\)
−0.399676 + 0.916657i \(0.630877\pi\)
\(402\) 0 0
\(403\) −2.70563 3.86404i −0.134777 0.192482i
\(404\) −20.2610 + 3.57256i −1.00802 + 0.177742i
\(405\) 0 0
\(406\) 0.446059 0.772596i 0.0221375 0.0383433i
\(407\) −23.6022 6.32418i −1.16992 0.313478i
\(408\) 0 0
\(409\) 19.0657 + 15.9980i 0.942738 + 0.791051i 0.978060 0.208325i \(-0.0668012\pi\)
−0.0353220 + 0.999376i \(0.511246\pi\)
\(410\) −7.03772 11.3510i −0.347568 0.560587i
\(411\) 0 0
\(412\) 7.57316 16.2407i 0.373103 0.800121i
\(413\) 0.693759 0.990791i 0.0341377 0.0487536i
\(414\) 0 0
\(415\) 1.87374 5.69875i 0.0919782 0.279740i
\(416\) −9.62373 + 8.07527i −0.471842 + 0.395923i
\(417\) 0 0
\(418\) 1.61116 10.1573i 0.0788043 0.496811i
\(419\) 1.33645i 0.0652901i −0.999467 0.0326450i \(-0.989607\pi\)
0.999467 0.0326450i \(-0.0103931\pi\)
\(420\) 0 0
\(421\) −4.21707 + 11.5863i −0.205527 + 0.564681i −0.999037 0.0438762i \(-0.986029\pi\)
0.793510 + 0.608558i \(0.208252\pi\)
\(422\) −1.22125 + 0.855125i −0.0594493 + 0.0416268i
\(423\) 0 0
\(424\) 9.93855 + 27.3059i 0.482659 + 1.32609i
\(425\) 11.0656 + 32.8838i 0.536761 + 1.59510i
\(426\) 0 0
\(427\) −0.160040 1.82926i −0.00774487 0.0885243i
\(428\) 1.32914 + 15.1921i 0.0642464 + 0.734340i
\(429\) 0 0
\(430\) −1.74173 + 0.525832i −0.0839935 + 0.0253579i
\(431\) −2.50275 6.87626i −0.120553 0.331218i 0.864708 0.502276i \(-0.167504\pi\)
−0.985261 + 0.171058i \(0.945281\pi\)
\(432\) 0 0
\(433\) −10.7845 + 7.55138i −0.518270 + 0.362896i −0.803255 0.595636i \(-0.796900\pi\)
0.284985 + 0.958532i \(0.408011\pi\)
\(434\) −0.100234 + 0.275390i −0.00481138 + 0.0132192i
\(435\) 0 0
\(436\) 8.72935i 0.418060i
\(437\) 22.7733 0.392269i 1.08940 0.0187648i
\(438\) 0 0
\(439\) 8.41002 7.05684i 0.401388 0.336805i −0.419642 0.907690i \(-0.637844\pi\)
0.821030 + 0.570885i \(0.193400\pi\)
\(440\) −17.6192 5.79317i −0.839963 0.276179i
\(441\) 0 0
\(442\) −5.98170 + 8.54275i −0.284520 + 0.406337i
\(443\) −13.0358 + 27.9554i −0.619351 + 1.32820i 0.307060 + 0.951690i \(0.400655\pi\)
−0.926411 + 0.376513i \(0.877123\pi\)
\(444\) 0 0
\(445\) −1.08009 0.253348i −0.0512011 0.0120098i
\(446\) −9.58392 8.04186i −0.453812 0.380793i
\(447\) 0 0
\(448\) 0.259422 + 0.0695120i 0.0122566 + 0.00328414i
\(449\) −1.99156 + 3.44949i −0.0939877 + 0.162791i −0.909186 0.416391i \(-0.863295\pi\)
0.815198 + 0.579182i \(0.196628\pi\)
\(450\) 0 0
\(451\) −28.6478 + 5.05137i −1.34897 + 0.237860i
\(452\) −3.41269 4.87383i −0.160519 0.229245i
\(453\) 0 0
\(454\) −2.62233 3.12517i −0.123072 0.146672i
\(455\) 0.678370 + 0.637049i 0.0318025 + 0.0298653i
\(456\) 0 0
\(457\) −6.68640 6.68640i −0.312777 0.312777i 0.533208 0.845984i \(-0.320986\pi\)
−0.845984 + 0.533208i \(0.820986\pi\)
\(458\) −15.5630 1.36159i −0.727212 0.0636228i
\(459\) 0 0
\(460\) 2.52592 17.5270i 0.117772 0.817201i
\(461\) −1.82416 10.3453i −0.0849594 0.481829i −0.997365 0.0725423i \(-0.976889\pi\)
0.912406 0.409286i \(-0.134222\pi\)
\(462\) 0 0
\(463\) 1.65822 + 6.18856i 0.0770640 + 0.287607i 0.993693 0.112131i \(-0.0357677\pi\)
−0.916629 + 0.399738i \(0.869101\pi\)
\(464\) 4.41579 + 7.64838i 0.204998 + 0.355067i
\(465\) 0 0
\(466\) 1.59855 1.90508i 0.0740516 0.0882512i
\(467\) 7.20694 26.8967i 0.333497 1.24463i −0.571992 0.820259i \(-0.693829\pi\)
0.905489 0.424369i \(-0.139504\pi\)
\(468\) 0 0
\(469\) −1.59612 + 0.580940i −0.0737020 + 0.0268253i
\(470\) −7.94484 5.19911i −0.366468 0.239817i
\(471\) 0 0
\(472\) −6.48947 13.9167i −0.298702 0.640569i
\(473\) −0.345373 + 3.94764i −0.0158803 + 0.181513i
\(474\) 0 0
\(475\) 21.4354 + 3.93984i 0.983525 + 0.180772i
\(476\) −2.02698 −0.0929065
\(477\) 0 0
\(478\) −2.93638 6.29708i −0.134307 0.288022i
\(479\) −10.9665 1.93369i −0.501073 0.0883527i −0.0826015 0.996583i \(-0.526323\pi\)
−0.418471 + 0.908230i \(0.637434\pi\)
\(480\) 0 0
\(481\) 14.6259 5.32340i 0.666884 0.242726i
\(482\) 20.1163 5.39015i 0.916273 0.245515i
\(483\) 0 0
\(484\) −0.478258 + 0.569966i −0.0217390 + 0.0259076i
\(485\) 3.56937 4.53573i 0.162077 0.205957i
\(486\) 0 0
\(487\) −3.42834 12.7948i −0.155353 0.579786i −0.999075 0.0430050i \(-0.986307\pi\)
0.843722 0.536781i \(-0.180360\pi\)
\(488\) −21.1277 9.85199i −0.956404 0.445979i
\(489\) 0 0
\(490\) −1.54576 + 10.7258i −0.0698302 + 0.484542i
\(491\) −2.89857 1.05499i −0.130810 0.0476111i 0.275785 0.961219i \(-0.411062\pi\)
−0.406596 + 0.913608i \(0.633284\pi\)
\(492\) 0 0
\(493\) 32.6302 + 32.6302i 1.46959 + 1.46959i
\(494\) 2.87039 + 5.88862i 0.129145 + 0.264941i
\(495\) 0 0
\(496\) −1.86486 2.22246i −0.0837348 0.0997913i
\(497\) 0.382692 0.178452i 0.0171661 0.00800467i
\(498\) 0 0
\(499\) 2.91253 0.513558i 0.130383 0.0229900i −0.108076 0.994143i \(-0.534469\pi\)
0.238459 + 0.971153i \(0.423358\pi\)
\(500\) 5.68470 15.9624i 0.254227 0.713861i
\(501\) 0 0
\(502\) 17.6647 + 4.73325i 0.788415 + 0.211255i
\(503\) 17.4641 1.52791i 0.778684 0.0681261i 0.309119 0.951024i \(-0.399966\pi\)
0.469566 + 0.882897i \(0.344410\pi\)
\(504\) 0 0
\(505\) 29.5523 + 6.93186i 1.31506 + 0.308464i
\(506\) 10.6768 + 6.16428i 0.474644 + 0.274036i
\(507\) 0 0
\(508\) −16.3720 + 23.3817i −0.726391 + 1.03739i
\(509\) −1.28121 + 7.26613i −0.0567888 + 0.322066i −0.999947 0.0102782i \(-0.996728\pi\)
0.943158 + 0.332344i \(0.107839\pi\)
\(510\) 0 0
\(511\) 1.27896 1.07317i 0.0565777 0.0474743i
\(512\) −10.0591 + 10.0591i −0.444556 + 0.444556i
\(513\) 0 0
\(514\) 1.09987i 0.0485130i
\(515\) −19.7097 + 17.6220i −0.868513 + 0.776519i
\(516\) 0 0
\(517\) −16.9403 + 11.8618i −0.745036 + 0.521680i
\(518\) −0.792113 0.554643i −0.0348034 0.0243696i
\(519\) 0 0
\(520\) 11.3101 3.41455i 0.495980 0.149738i
\(521\) 25.0077 14.4382i 1.09561 0.632549i 0.160543 0.987029i \(-0.448675\pi\)
0.935064 + 0.354480i \(0.115342\pi\)
\(522\) 0 0
\(523\) −3.35093 38.3013i −0.146526 1.67480i −0.612862 0.790190i \(-0.709982\pi\)
0.466336 0.884608i \(-0.345574\pi\)
\(524\) 18.4721 10.6649i 0.806959 0.465898i
\(525\) 0 0
\(526\) −1.45210 3.98961i −0.0633146 0.173955i
\(527\) −12.4177 8.69495i −0.540923 0.378758i
\(528\) 0 0
\(529\) −1.47210 + 4.04455i −0.0640041 + 0.175850i
\(530\) 1.03198 18.4537i 0.0448262 0.801579i
\(531\) 0 0
\(532\) −0.617550 + 1.11349i −0.0267742 + 0.0482757i
\(533\) 13.1025 13.1025i 0.567531 0.567531i
\(534\) 0 0
\(535\) 7.02790 21.3745i 0.303843 0.924100i
\(536\) −3.74450 + 21.2361i −0.161738 + 0.917260i
\(537\) 0 0
\(538\) −4.73370 + 10.1514i −0.204084 + 0.437660i
\(539\) 20.4407 + 11.8014i 0.880443 + 0.508324i
\(540\) 0 0
\(541\) −19.1442 16.0639i −0.823072 0.690639i 0.130617 0.991433i \(-0.458304\pi\)
−0.953689 + 0.300793i \(0.902749\pi\)
\(542\) 5.24767 0.459111i 0.225407 0.0197205i
\(543\) 0 0
\(544\) −20.1864 + 34.9638i −0.865484 + 1.49906i
\(545\) 5.07388 11.8378i 0.217341 0.507076i
\(546\) 0 0
\(547\) −3.89861 5.56779i −0.166693 0.238062i 0.727111 0.686519i \(-0.240862\pi\)
−0.893804 + 0.448458i \(0.851973\pi\)
\(548\) −9.86531 + 4.60027i −0.421425 + 0.196514i
\(549\) 0 0
\(550\) 8.84878 + 7.80168i 0.377313 + 0.332665i
\(551\) 27.8661 7.98355i 1.18714 0.340111i
\(552\) 0 0
\(553\) 1.47608 + 0.129140i 0.0627694 + 0.00549161i
\(554\) −8.92295 3.24769i −0.379100 0.137981i
\(555\) 0 0
\(556\) −3.82011 21.6649i −0.162009 0.918797i
\(557\) 24.8095 + 11.5689i 1.05121 + 0.490188i 0.869895 0.493236i \(-0.164186\pi\)
0.181317 + 0.983425i \(0.441964\pi\)
\(558\) 0 0
\(559\) −1.26209 2.18601i −0.0533809 0.0924585i
\(560\) 0.449784 + 0.353955i 0.0190069 + 0.0149573i
\(561\) 0 0
\(562\) 4.82631 18.0120i 0.203585 0.759791i
\(563\) −17.9741 + 4.81614i −0.757517 + 0.202976i −0.616850 0.787081i \(-0.711592\pi\)
−0.140667 + 0.990057i \(0.544925\pi\)
\(564\) 0 0
\(565\) 1.79504 + 8.59296i 0.0755179 + 0.361509i
\(566\) −5.17713 0.912867i −0.217611 0.0383707i
\(567\) 0 0
\(568\) 0.467211 5.34025i 0.0196037 0.224072i
\(569\) 7.34466 0.307904 0.153952 0.988078i \(-0.450800\pi\)
0.153952 + 0.988078i \(0.450800\pi\)
\(570\) 0 0
\(571\) −20.8079 −0.870783 −0.435392 0.900241i \(-0.643390\pi\)
−0.435392 + 0.900241i \(0.643390\pi\)
\(572\) 0.966837 11.0510i 0.0404255 0.462065i
\(573\) 0 0
\(574\) −1.13372 0.199905i −0.0473205 0.00834388i
\(575\) −13.6129 + 22.3001i −0.567695 + 0.929977i
\(576\) 0 0
\(577\) −26.2847 + 7.04295i −1.09424 + 0.293202i −0.760419 0.649433i \(-0.775006\pi\)
−0.333826 + 0.942635i \(0.608340\pi\)
\(578\) −5.61175 + 20.9433i −0.233418 + 0.871127i
\(579\) 0 0
\(580\) −2.66811 22.3780i −0.110787 0.929198i
\(581\) −0.258539 0.447804i −0.0107260 0.0185780i
\(582\) 0 0
\(583\) −36.4846 17.0131i −1.51104 0.704609i
\(584\) −3.68057 20.8736i −0.152303 0.863755i
\(585\) 0 0
\(586\) 7.96154 + 2.89776i 0.328888 + 0.119706i
\(587\) −41.5493 3.63509i −1.71492 0.150036i −0.813094 0.582132i \(-0.802219\pi\)
−0.901828 + 0.432096i \(0.857774\pi\)
\(588\) 0 0
\(589\) −8.55965 + 4.17238i −0.352694 + 0.171920i
\(590\) 0.306649 + 9.76198i 0.0126246 + 0.401894i
\(591\) 0 0
\(592\) 8.67591 4.04564i 0.356578 0.166275i
\(593\) 19.1517 + 27.3514i 0.786465 + 1.12319i 0.989573 + 0.144032i \(0.0460067\pi\)
−0.203108 + 0.979156i \(0.565104\pi\)
\(594\) 0 0
\(595\) 2.74877 + 1.17817i 0.112689 + 0.0483003i
\(596\) −6.09398 + 10.5551i −0.249619 + 0.432353i
\(597\) 0 0
\(598\) −7.82323 + 0.684444i −0.319915 + 0.0279890i
\(599\) −17.9102 15.0284i −0.731790 0.614044i 0.198829 0.980034i \(-0.436286\pi\)
−0.930619 + 0.365990i \(0.880731\pi\)
\(600\) 0 0
\(601\) 29.9305 + 17.2804i 1.22089 + 0.704880i 0.965107 0.261854i \(-0.0843340\pi\)
0.255781 + 0.966735i \(0.417667\pi\)
\(602\) −0.0662759 + 0.142129i −0.00270120 + 0.00579275i
\(603\) 0 0
\(604\) 3.59874 20.4095i 0.146431 0.830450i
\(605\) 0.979852 0.494942i 0.0398366 0.0201223i
\(606\) 0 0
\(607\) 21.4554 21.4554i 0.870849 0.870849i −0.121716 0.992565i \(-0.538840\pi\)
0.992565 + 0.121716i \(0.0388398\pi\)
\(608\) 13.0567 + 21.7413i 0.529518 + 0.881726i
\(609\) 0 0
\(610\) 9.88283 + 11.0536i 0.400144 + 0.447549i
\(611\) 4.50545 12.3786i 0.182271 0.500786i
\(612\) 0 0
\(613\) 7.69485 + 5.38799i 0.310792 + 0.217619i 0.718557 0.695468i \(-0.244803\pi\)
−0.407765 + 0.913087i \(0.633692\pi\)
\(614\) −6.85954 18.8464i −0.276829 0.760580i
\(615\) 0 0
\(616\) −1.38451 + 0.799345i −0.0557833 + 0.0322065i
\(617\) −0.438877 5.01638i −0.0176685 0.201952i −0.999898 0.0142691i \(-0.995458\pi\)
0.982230 0.187683i \(-0.0600977\pi\)
\(618\) 0 0
\(619\) −33.8862 + 19.5642i −1.36200 + 0.786352i −0.989890 0.141836i \(-0.954699\pi\)
−0.372112 + 0.928188i \(0.621366\pi\)
\(620\) 2.13971 + 7.08740i 0.0859327 + 0.284637i
\(621\) 0 0
\(622\) −10.5628 7.39614i −0.423529 0.296558i
\(623\) −0.0783323 + 0.0548488i −0.00313832 + 0.00219747i
\(624\) 0 0
\(625\) −16.9870 + 18.3423i −0.679481 + 0.733693i
\(626\) 2.21318i 0.0884564i
\(627\) 0 0
\(628\) −16.1037 + 16.1037i −0.642607 + 0.642607i
\(629\) 38.3169 32.1517i 1.52779 1.28197i
\(630\) 0 0
\(631\) −8.00188 + 45.3809i −0.318550 + 1.80659i 0.233037 + 0.972468i \(0.425134\pi\)
−0.551587 + 0.834117i \(0.685978\pi\)
\(632\) 10.7895 15.4090i 0.429183 0.612937i
\(633\) 0 0
\(634\) 3.16959 + 1.82996i 0.125880 + 0.0726771i
\(635\) 35.7924 22.1916i 1.42038 0.880646i
\(636\) 0 0
\(637\) −14.9775 + 1.31036i −0.593429 + 0.0519183i
\(638\) 15.1556 + 4.06092i 0.600014 + 0.160773i
\(639\) 0 0
\(640\) 22.1452 8.85710i 0.875366 0.350108i
\(641\) −19.6668 + 3.46778i −0.776790 + 0.136969i −0.547968 0.836499i \(-0.684599\pi\)
−0.228822 + 0.973468i \(0.573487\pi\)
\(642\) 0 0
\(643\) 19.9256 9.29147i 0.785790 0.366420i 0.0120533 0.999927i \(-0.496163\pi\)
0.773737 + 0.633508i \(0.218385\pi\)
\(644\) −0.981128 1.16926i −0.0386619 0.0460754i
\(645\) 0 0
\(646\) 15.1405 + 14.6278i 0.595696 + 0.575522i
\(647\) −7.34110 7.34110i −0.288608 0.288608i 0.547921 0.836530i \(-0.315419\pi\)
−0.836530 + 0.547921i \(0.815419\pi\)
\(648\) 0 0
\(649\) 19.9899 + 7.27571i 0.784670 + 0.285597i
\(650\) −7.46760 0.837832i −0.292903 0.0328625i
\(651\) 0 0
\(652\) 19.6836 + 9.17861i 0.770869 + 0.359462i
\(653\) −4.13442 15.4299i −0.161792 0.603817i −0.998428 0.0560567i \(-0.982147\pi\)
0.836635 0.547760i \(-0.184519\pi\)
\(654\) 0 0
\(655\) −31.2488 + 3.72577i −1.22099 + 0.145578i
\(656\) 7.32551 8.73021i 0.286013 0.340857i
\(657\) 0 0
\(658\) −0.790526 + 0.211821i −0.0308179 + 0.00825764i
\(659\) 27.1741 9.89056i 1.05855 0.385281i 0.246668 0.969100i \(-0.420664\pi\)
0.811884 + 0.583819i \(0.198442\pi\)
\(660\) 0 0
\(661\) 22.3546 + 3.94173i 0.869495 + 0.153315i 0.590559 0.806994i \(-0.298907\pi\)
0.278936 + 0.960310i \(0.410018\pi\)
\(662\) 3.44653 + 7.39111i 0.133953 + 0.287263i
\(663\) 0 0
\(664\) −6.56448 −0.254751
\(665\) 1.48466 1.15104i 0.0575727 0.0446355i
\(666\) 0 0
\(667\) −3.02858 + 34.6169i −0.117267 + 1.34037i
\(668\) −4.87520 10.4549i −0.188627 0.404512i
\(669\) 0 0
\(670\) 7.51030 11.4766i 0.290148 0.443380i
\(671\) 30.3476 11.0456i 1.17156 0.426411i
\(672\) 0 0
\(673\) −4.59706 + 17.1565i −0.177204 + 0.661333i 0.818962 + 0.573848i \(0.194550\pi\)
−0.996166 + 0.0874854i \(0.972117\pi\)
\(674\) −5.65193 + 6.73571i −0.217704 + 0.259450i
\(675\) 0 0
\(676\) −6.31803 10.9431i −0.243001 0.420890i
\(677\) −0.0823506 0.307337i −0.00316499 0.0118119i 0.964325 0.264720i \(-0.0852796\pi\)
−0.967490 + 0.252908i \(0.918613\pi\)
\(678\) 0 0
\(679\) −0.0863903 0.489944i −0.00331536 0.0188023i
\(680\) 30.4016 22.7427i 1.16585 0.872142i
\(681\) 0 0
\(682\) −5.13468 0.449226i −0.196617 0.0172017i
\(683\) −17.2283 17.2283i −0.659224 0.659224i 0.295973 0.955196i \(-0.404356\pi\)
−0.955196 + 0.295973i \(0.904356\pi\)
\(684\) 0 0
\(685\) 16.0521 0.504240i 0.613321 0.0192660i
\(686\) 1.20402 + 1.43490i 0.0459697 + 0.0547846i
\(687\) 0 0
\(688\) −0.890463 1.27171i −0.0339486 0.0484836i
\(689\) 25.2531 4.45280i 0.962066 0.169638i
\(690\) 0 0
\(691\) −12.6992 + 21.9956i −0.483099 + 0.836751i −0.999812 0.0194073i \(-0.993822\pi\)
0.516713 + 0.856159i \(0.327155\pi\)
\(692\) 21.3865 + 5.73049i 0.812992 + 0.217840i
\(693\) 0 0
\(694\) −10.0986 8.47376i −0.383339 0.321660i
\(695\) −7.41218 + 31.6000i −0.281160 + 1.19866i
\(696\) 0 0
\(697\) 25.1661 53.9688i 0.953233 2.04421i
\(698\) −13.2747 + 18.9582i −0.502455 + 0.717579i
\(699\) 0 0
\(700\) −0.699115 1.28235i −0.0264241 0.0484683i
\(701\) −11.7708 + 9.87690i −0.444578 + 0.373045i −0.837419 0.546561i \(-0.815937\pi\)
0.392841 + 0.919606i \(0.371492\pi\)
\(702\) 0 0
\(703\) −5.98813 30.8442i −0.225847 1.16331i
\(704\) 4.72357i 0.178026i
\(705\) 0 0
\(706\) −0.0149671 + 0.0411219i −0.000563296 + 0.00154764i
\(707\) 2.14325 1.50072i 0.0806052 0.0564404i
\(708\) 0 0
\(709\) −16.6116 45.6401i −0.623863 1.71405i −0.697329 0.716751i \(-0.745628\pi\)
0.0734667 0.997298i \(-0.476594\pi\)
\(710\) −1.61127 + 3.00490i −0.0604697 + 0.112772i
\(711\) 0 0
\(712\) 0.105807 + 1.20938i 0.00396530 + 0.0453235i
\(713\) −0.994902 11.3718i −0.0372594 0.425877i
\(714\) 0 0
\(715\) −7.73444 + 14.4242i −0.289252 + 0.539434i
\(716\) −1.82538 5.01519i −0.0682176 0.187426i
\(717\) 0 0
\(718\) −14.3555 + 10.0519i −0.535744 + 0.375132i
\(719\) 13.1205 36.0482i 0.489311 1.34437i −0.411994 0.911187i \(-0.635168\pi\)
0.901305 0.433185i \(-0.142610\pi\)
\(720\) 0 0
\(721\) 2.27891i 0.0848711i
\(722\) 12.6483 3.86061i 0.470720 0.143677i
\(723\) 0 0
\(724\) 22.6515 19.0068i 0.841835 0.706383i
\(725\) −9.38890 + 31.8975i −0.348695 + 1.18464i
\(726\) 0 0
\(727\) −13.0804 + 18.6808i −0.485126 + 0.692831i −0.984861 0.173347i \(-0.944542\pi\)
0.499735 + 0.866178i \(0.333431\pi\)
\(728\) 0.430370 0.922931i 0.0159506 0.0342061i
\(729\) 0 0
\(730\) −3.07868 + 13.1252i −0.113947 + 0.485785i
\(731\) −6.21405 5.21421i −0.229835 0.192854i
\(732\) 0 0
\(733\) 43.8346 + 11.7454i 1.61907 + 0.433828i 0.950727 0.310028i \(-0.100339\pi\)
0.668340 + 0.743856i \(0.267005\pi\)
\(734\) −4.44672 + 7.70195i −0.164132 + 0.284284i
\(735\) 0 0
\(736\) −29.9398 + 5.27919i −1.10359 + 0.194593i
\(737\) −17.1347 24.4709i −0.631166 0.901398i
\(738\) 0 0
\(739\) −15.2269 18.1467i −0.560131 0.667538i 0.409443 0.912336i \(-0.365723\pi\)
−0.969574 + 0.244797i \(0.921279\pi\)
\(740\) −24.4160 + 0.766969i −0.897548 + 0.0281944i
\(741\) 0 0
\(742\) −1.12651 1.12651i −0.0413553 0.0413553i
\(743\) −9.96374 0.871715i −0.365534 0.0319801i −0.0970908 0.995276i \(-0.530954\pi\)
−0.268444 + 0.963295i \(0.586509\pi\)
\(744\) 0 0
\(745\) 14.3991 10.7716i 0.527541 0.394640i
\(746\) −0.200384 1.13643i −0.00733657 0.0416078i
\(747\) 0 0
\(748\) −9.22682 34.4350i −0.337366 1.25907i
\(749\) −0.969714 1.67959i −0.0354326 0.0613710i
\(750\) 0 0
\(751\) −5.60626 + 6.68129i −0.204576 + 0.243804i −0.858571 0.512695i \(-0.828647\pi\)
0.653995 + 0.756499i \(0.273092\pi\)
\(752\) 2.09694 7.82588i 0.0764675 0.285380i
\(753\) 0 0
\(754\) −9.39167 + 3.41829i −0.342025 + 0.124487i
\(755\) −16.7431 + 25.5854i −0.609344 + 0.931147i
\(756\) 0 0
\(757\) 18.0520 + 38.7126i 0.656111 + 1.40703i 0.899420 + 0.437085i \(0.143989\pi\)
−0.243309 + 0.969949i \(0.578233\pi\)
\(758\) 1.02921 11.7640i 0.0373827 0.427286i
\(759\) 0 0
\(760\) −3.23097 23.6295i −0.117200 0.857132i
\(761\) −27.7115 −1.00454 −0.502270 0.864711i \(-0.667502\pi\)
−0.502270 + 0.864711i \(0.667502\pi\)
\(762\) 0 0
\(763\) −0.469169 1.00614i −0.0169850 0.0364246i
\(764\) −30.0721 5.30253i −1.08797 0.191839i
\(765\) 0 0
\(766\) 9.46949 3.44661i 0.342147 0.124531i
\(767\) −13.0887 + 3.50711i −0.472606 + 0.126634i
\(768\) 0 0
\(769\) −7.06802 + 8.42334i −0.254879 + 0.303753i −0.878278 0.478151i \(-0.841307\pi\)
0.623398 + 0.781905i \(0.285752\pi\)
\(770\) 1.00969 0.120385i 0.0363868 0.00433837i
\(771\) 0 0
\(772\) −2.38168 8.88856i −0.0857186 0.319906i
\(773\) −12.1656 5.67290i −0.437566 0.204040i 0.191337 0.981524i \(-0.438718\pi\)
−0.628902 + 0.777484i \(0.716496\pi\)
\(774\) 0 0
\(775\) 1.21787 10.8549i 0.0437471 0.389918i
\(776\) −5.93505 2.16018i −0.213056 0.0775460i
\(777\) 0 0
\(778\) −15.3018 15.3018i −0.548596 0.548596i
\(779\) −21.9796 30.2669i −0.787500 1.08443i
\(780\) 0 0
\(781\) 4.77361 + 5.68897i 0.170813 + 0.203567i
\(782\) −22.8726 + 10.6657i −0.817924 + 0.381404i
\(783\) 0 0
\(784\) −9.10642 + 1.60571i −0.325229 + 0.0573467i
\(785\) 31.1982 12.4779i 1.11351 0.445356i
\(786\) 0 0
\(787\) −40.2335 10.7805i −1.43417 0.384284i −0.543681 0.839292i \(-0.682970\pi\)
−0.890487 + 0.455008i \(0.849636\pi\)
\(788\) −25.2838 + 2.21204i −0.900698 + 0.0788008i
\(789\) 0 0
\(790\) −10.1688 + 6.30471i −0.361788 + 0.224311i
\(791\) 0.655292 + 0.378333i 0.0232995 + 0.0134520i
\(792\) 0 0
\(793\) −11.7994 + 16.8512i −0.419008 + 0.598405i
\(794\) −3.71057 + 21.0437i −0.131683 + 0.746813i
\(795\) 0 0
\(796\) 11.4060 9.57075i 0.404274 0.339226i
\(797\) −33.9874 + 33.9874i −1.20389 + 1.20389i −0.230923 + 0.972972i \(0.574174\pi\)
−0.972972 + 0.230923i \(0.925826\pi\)
\(798\) 0 0
\(799\) 42.3337i 1.49766i
\(800\) −29.0819 0.711540i −1.02820 0.0251567i
\(801\) 0 0
\(802\) −10.1680 + 7.11968i −0.359043 + 0.251405i
\(803\) 24.0532 + 16.8422i 0.848818 + 0.594349i
\(804\) 0 0
\(805\) 0.650873 + 2.15590i 0.0229403 + 0.0759856i
\(806\) 2.84334 1.64160i 0.100152 0.0578230i
\(807\) 0 0
\(808\) −2.89500 33.0900i −0.101846 1.16410i
\(809\) −32.3657 + 18.6864i −1.13792 + 0.656977i −0.945914 0.324417i \(-0.894832\pi\)
−0.192004 + 0.981394i \(0.561499\pi\)
\(810\) 0 0
\(811\) −3.85011 10.5781i −0.135196 0.371447i 0.853559 0.520997i \(-0.174440\pi\)
−0.988754 + 0.149550i \(0.952217\pi\)
\(812\) −1.59125 1.11420i −0.0558419 0.0391009i
\(813\) 0 0
\(814\) 5.81675 15.9814i 0.203877 0.560147i
\(815\) −21.3578 23.8880i −0.748130 0.836760i
\(816\) 0 0
\(817\) −4.75754 + 1.82499i −0.166445 + 0.0638484i
\(818\) −12.2491 + 12.2491i −0.428280 + 0.428280i
\(819\) 0 0
\(820\) −25.9581 + 13.1119i −0.906494 + 0.457888i
\(821\) −3.16955 + 17.9754i −0.110618 + 0.627346i 0.878209 + 0.478277i \(0.158739\pi\)
−0.988827 + 0.149069i \(0.952372\pi\)
\(822\) 0 0
\(823\) 9.48508 20.3408i 0.330629 0.709036i −0.668778 0.743462i \(-0.733182\pi\)
0.999407 + 0.0344257i \(0.0109602\pi\)
\(824\) 25.0554 + 14.4658i 0.872847 + 0.503938i
\(825\) 0 0
\(826\) 0.644900 + 0.541135i 0.0224389 + 0.0188285i
\(827\) 22.0212 1.92661i 0.765752 0.0669946i 0.302415 0.953176i \(-0.402207\pi\)
0.463338 + 0.886182i \(0.346652\pi\)
\(828\) 0 0
\(829\) 5.19218 8.99311i 0.180332 0.312344i −0.761662 0.647975i \(-0.775616\pi\)
0.941994 + 0.335631i \(0.108950\pi\)
\(830\) 3.83767 + 1.64489i 0.133208 + 0.0570950i
\(831\) 0 0
\(832\) −1.72580 2.46470i −0.0598313 0.0854480i
\(833\) −43.7893 + 20.4193i −1.51721 + 0.707487i
\(834\) 0 0
\(835\) 0.534375 + 17.0115i 0.0184928 + 0.588706i
\(836\) −21.7273 5.42254i −0.751455 0.187543i
\(837\) 0 0
\(838\) 0.926657 + 0.0810720i 0.0320108 + 0.00280059i
\(839\) 36.6781 + 13.3497i 1.26627 + 0.460885i 0.885868 0.463937i \(-0.153564\pi\)
0.380402 + 0.924821i \(0.375786\pi\)
\(840\) 0 0
\(841\) 2.64364 + 14.9928i 0.0911601 + 0.516995i
\(842\) −7.77777 3.62683i −0.268040 0.124989i
\(843\) 0 0
\(844\) 1.62316 + 2.81139i 0.0558713 + 0.0967720i
\(845\) 2.20719 + 18.5122i 0.0759298 + 0.636840i
\(846\) 0 0
\(847\) 0.0244901 0.0913982i 0.000841489 0.00314048i
\(848\) 15.2338 4.08189i 0.523132 0.140173i
\(849\) 0 0
\(850\) −23.4719 + 5.67777i −0.805079 + 0.194746i
\(851\) 37.0933 + 6.54055i 1.27154 + 0.224207i
\(852\) 0 0
\(853\) 2.03539 23.2647i 0.0696906 0.796567i −0.878267 0.478170i \(-0.841300\pi\)
0.947958 0.318396i \(-0.103144\pi\)
\(854\) 1.27807 0.0437345
\(855\) 0 0
\(856\) −24.6217 −0.841551
\(857\) 2.89487 33.0886i 0.0988870 1.13028i −0.770934 0.636916i \(-0.780210\pi\)
0.869821 0.493368i \(-0.164234\pi\)
\(858\) 0 0
\(859\) −22.5330 3.97318i −0.768817 0.135563i −0.224536 0.974466i \(-0.572087\pi\)
−0.544282 + 0.838903i \(0.683198\pi\)
\(860\) 0.810083 + 3.87791i 0.0276236 + 0.132236i
\(861\) 0 0
\(862\) 4.91961 1.31821i 0.167563 0.0448983i
\(863\) −1.89020 + 7.05432i −0.0643431 + 0.240132i −0.990606 0.136746i \(-0.956336\pi\)
0.926263 + 0.376878i \(0.123002\pi\)
\(864\) 0 0
\(865\) −25.6712 20.2018i −0.872848 0.686883i
\(866\) −4.58169 7.93572i −0.155692 0.269667i
\(867\) 0 0
\(868\) 0.578349 + 0.269689i 0.0196305 + 0.00915383i
\(869\) 4.52525 + 25.6640i 0.153509 + 0.870590i
\(870\) 0 0
\(871\) 17.8814 + 6.50829i 0.605887 + 0.220525i
\(872\) −14.0400 1.22834i −0.475456 0.0415970i
\(873\) 0 0
\(874\) −1.10949 + 15.8141i −0.0375290 + 0.534921i
\(875\) 0.202706 + 2.14534i 0.00685271 + 0.0725258i
\(876\) 0 0
\(877\) 4.77219 2.22531i 0.161145 0.0751433i −0.340372 0.940291i \(-0.610553\pi\)
0.501517 + 0.865148i \(0.332775\pi\)
\(878\) 4.38283 + 6.25934i 0.147913 + 0.211242i
\(879\) 0 0
\(880\) −3.96568 + 9.25228i −0.133683 + 0.311894i
\(881\) 22.9016 39.6667i 0.771574 1.33641i −0.165126 0.986272i \(-0.552803\pi\)
0.936700 0.350133i \(-0.113864\pi\)
\(882\) 0 0
\(883\) −49.0599 + 4.29218i −1.65100 + 0.144443i −0.874285 0.485413i \(-0.838669\pi\)
−0.776711 + 0.629857i \(0.783114\pi\)
\(884\) 17.3956 + 14.5966i 0.585077 + 0.490938i
\(885\) 0 0
\(886\) −18.5927 10.7345i −0.624633 0.360632i
\(887\) −22.6726 + 48.6214i −0.761270 + 1.63255i 0.0131801 + 0.999913i \(0.495805\pi\)
−0.774450 + 0.632635i \(0.781973\pi\)
\(888\) 0 0
\(889\) 0.630348 3.57488i 0.0211412 0.119898i
\(890\) 0.241184 0.733532i 0.00808451 0.0245881i
\(891\) 0 0
\(892\) −19.2631 + 19.2631i −0.644976 + 0.644976i
\(893\) −23.2552 12.8976i −0.778207 0.431601i
\(894\) 0 0
\(895\) −0.439664 + 7.86205i −0.0146964 + 0.262799i
\(896\) 0.703137 1.93185i 0.0234902 0.0645387i
\(897\) 0 0
\(898\) −2.27096 1.59014i −0.0757829 0.0530637i
\(899\) −4.96880 13.6517i −0.165719 0.455309i
\(900\) 0 0
\(901\) 71.3662 41.2033i 2.37755 1.37268i
\(902\) −1.76464 20.1699i −0.0587560 0.671585i
\(903\) 0 0
\(904\) 8.31914 4.80306i 0.276691 0.159747i
\(905\) −41.7651 + 12.6090i −1.38832 + 0.419137i
\(906\) 0 0
\(907\) −32.5649 22.8022i −1.08130 0.757135i −0.109749 0.993959i \(-0.535005\pi\)
−0.971553 + 0.236824i \(0.923893\pi\)
\(908\) −7.27674 + 5.09523i −0.241487 + 0.169091i
\(909\) 0 0
\(910\) −0.482862 + 0.431717i −0.0160067 + 0.0143113i
\(911\) 25.0202i 0.828956i −0.910059 0.414478i \(-0.863964\pi\)
0.910059 0.414478i \(-0.136036\pi\)
\(912\) 0 0
\(913\) 6.43055 6.43055i 0.212820 0.212820i
\(914\) 5.04176 4.23054i 0.166767 0.139934i
\(915\) 0 0
\(916\) −5.90706 + 33.5006i −0.195175 + 1.10689i
\(917\) −1.55588 + 2.22203i −0.0513797 + 0.0733779i
\(918\) 0 0
\(919\) 35.2152 + 20.3315i 1.16164 + 0.670675i 0.951697 0.307038i \(-0.0993377\pi\)
0.209946 + 0.977713i \(0.432671\pi\)
\(920\) 27.8345 + 6.52893i 0.917677 + 0.215252i
\(921\) 0 0
\(922\) 7.28378 0.637248i 0.239878 0.0209866i
\(923\) −4.56933 1.22435i −0.150401 0.0402999i
\(924\) 0 0
\(925\) 33.5561 + 13.1515i 1.10332 + 0.432420i
\(926\) −4.39155 + 0.774349i −0.144315 + 0.0254467i
\(927\) 0 0
\(928\) −35.0662 + 16.3516i −1.15110 + 0.536768i
\(929\) −7.31492 8.71758i −0.239995 0.286014i 0.632580 0.774495i \(-0.281996\pi\)
−0.872575 + 0.488480i \(0.837551\pi\)
\(930\) 0 0
\(931\) −2.12410 + 30.2759i −0.0696146 + 0.992254i
\(932\) −3.82910 3.82910i −0.125426 0.125426i
\(933\) 0 0
\(934\) 18.2121 + 6.62868i 0.595919 + 0.216897i
\(935\) −7.50269 + 52.0600i −0.245364 + 1.70254i
\(936\) 0 0
\(937\) −32.3604 15.0899i −1.05717 0.492965i −0.185287 0.982684i \(-0.559322\pi\)
−0.871880 + 0.489719i \(0.837099\pi\)
\(938\) −0.305983 1.14194i −0.00999069 0.0372858i
\(939\) 0 0
\(940\) −12.7856 + 16.2471i −0.417020 + 0.529923i
\(941\) 33.0108 39.3407i 1.07612 1.28247i 0.118964 0.992899i \(-0.462043\pi\)
0.957156 0.289572i \(-0.0935130\pi\)
\(942\) 0 0
\(943\) 43.3131 11.6057i 1.41047 0.377934i
\(944\) −7.83143 + 2.85041i −0.254891 + 0.0927729i
\(945\) 0 0
\(946\) −2.71622 0.478943i −0.0883120 0.0155718i
\(947\) 2.42624 + 5.20308i 0.0788421 + 0.169077i 0.941777 0.336237i \(-0.109154\pi\)
−0.862935 + 0.505314i \(0.831377\pi\)
\(948\) 0 0
\(949\) −18.7041 −0.607161
\(950\) −4.03208 + 14.6237i −0.130818 + 0.474455i
\(951\) 0 0
\(952\) 0.285225 3.26014i 0.00924421 0.105662i
\(953\) 5.81151 + 12.4628i 0.188253 + 0.403710i 0.977670 0.210148i \(-0.0673945\pi\)
−0.789416 + 0.613858i \(0.789617\pi\)
\(954\) 0 0
\(955\) 37.6985 + 24.6700i 1.21990 + 0.798301i
\(956\) −14.2168 + 5.17449i −0.459804 + 0.167355i
\(957\) 0 0
\(958\) 2.00602 7.48655i 0.0648114 0.241879i
\(959\) 0.889818 1.06044i 0.0287337 0.0342435i
\(960\) 0 0
\(961\) −13.1138 22.7137i −0.423025 0.732701i
\(962\) 2.80385 + 10.4641i 0.0903996 + 0.337376i
\(963\) 0 0
\(964\) −7.87457 44.6589i −0.253623 1.43837i
\(965\) −1.93664 + 13.4380i −0.0623426 + 0.432586i
\(966\) 0 0
\(967\) 55.1255 + 4.82286i 1.77272 + 0.155093i 0.926142 0.377175i \(-0.123104\pi\)
0.846576 + 0.532268i \(0.178660\pi\)
\(968\) −0.849420 0.849420i −0.0273014 0.0273014i
\(969\) 0 0
\(970\) 2.92841 + 2.75004i 0.0940257 + 0.0882984i
\(971\) 34.8261 + 41.5041i 1.11762 + 1.33193i 0.937380 + 0.348309i \(0.113244\pi\)
0.180243 + 0.983622i \(0.442312\pi\)
\(972\) 0 0
\(973\) 1.60471 + 2.29176i 0.0514445 + 0.0734704i
\(974\) 9.07947 1.60096i 0.290925 0.0512979i
\(975\) 0 0
\(976\) −6.32616 + 10.9572i −0.202495 + 0.350732i
\(977\) −32.2855 8.65086i −1.03290 0.276766i −0.297734 0.954649i \(-0.596231\pi\)
−0.735170 + 0.677883i \(0.762897\pi\)
\(978\) 0 0
\(979\) −1.28836 1.08106i −0.0411761 0.0345508i
\(980\) 22.9728 + 5.38856i 0.733840 + 0.172131i
\(981\) 0 0
\(982\) 0.907332 1.94578i 0.0289541 0.0620923i
\(983\) 0.101670 0.145200i 0.00324277 0.00463116i −0.817527 0.575890i \(-0.804656\pi\)
0.820770 + 0.571259i \(0.193545\pi\)
\(984\) 0 0
\(985\) 35.5729 + 11.6963i 1.13345 + 0.372675i
\(986\) −24.6042 + 20.6454i −0.783559 + 0.657484i
\(987\) 0 0
\(988\) 13.3182 5.10887i 0.423709 0.162535i
\(989\) 6.10843i 0.194237i
\(990\) 0 0
\(991\) 14.2937 39.2716i 0.454054 1.24750i −0.475793 0.879557i \(-0.657839\pi\)
0.929847 0.367946i \(-0.119939\pi\)
\(992\) 10.4116 7.29029i 0.330569 0.231467i
\(993\) 0 0
\(994\) 0.100518 + 0.276172i 0.00318825 + 0.00875965i
\(995\) −21.0305 + 6.34917i −0.666711 + 0.201282i
\(996\) 0 0
\(997\) −0.306408 3.50226i −0.00970404 0.110918i 0.989798 0.142479i \(-0.0455075\pi\)
−0.999502 + 0.0315617i \(0.989952\pi\)
\(998\) 0.179406 + 2.05062i 0.00567899 + 0.0649111i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.b.127.8 240
3.2 odd 2 285.2.bh.a.127.13 yes 240
5.3 odd 4 inner 855.2.dl.b.298.13 240
15.8 even 4 285.2.bh.a.13.8 240
19.3 odd 18 inner 855.2.dl.b.307.13 240
57.41 even 18 285.2.bh.a.22.8 yes 240
95.3 even 36 inner 855.2.dl.b.478.8 240
285.98 odd 36 285.2.bh.a.193.13 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.bh.a.13.8 240 15.8 even 4
285.2.bh.a.22.8 yes 240 57.41 even 18
285.2.bh.a.127.13 yes 240 3.2 odd 2
285.2.bh.a.193.13 yes 240 285.98 odd 36
855.2.dl.b.127.8 240 1.1 even 1 trivial
855.2.dl.b.298.13 240 5.3 odd 4 inner
855.2.dl.b.307.13 240 19.3 odd 18 inner
855.2.dl.b.478.8 240 95.3 even 36 inner