Properties

Label 2-855-95.13-c1-0-42
Degree $2$
Conductor $855$
Sign $-0.676 + 0.736i$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.693 + 0.0606i)2-s + (−1.49 − 0.263i)4-s + (1.33 − 1.79i)5-s + (0.0498 + 0.186i)7-s + (−2.36 − 0.633i)8-s + (1.03 − 1.16i)10-s + (−1.69 − 2.93i)11-s + (−0.912 + 1.95i)13-s + (0.0232 + 0.132i)14-s + (1.24 + 0.454i)16-s + (0.604 − 6.91i)17-s + (−2.43 + 3.61i)19-s + (−2.47 + 2.31i)20-s + (−0.997 − 2.13i)22-s + (−4.28 + 2.99i)23-s + ⋯
L(s)  = 1  + (0.490 + 0.0428i)2-s + (−0.746 − 0.131i)4-s + (0.599 − 0.800i)5-s + (0.0188 + 0.0703i)7-s + (−0.835 − 0.223i)8-s + (0.328 − 0.366i)10-s + (−0.511 − 0.885i)11-s + (−0.253 + 0.542i)13-s + (0.00622 + 0.0353i)14-s + (0.311 + 0.113i)16-s + (0.146 − 1.67i)17-s + (−0.559 + 0.828i)19-s + (−0.552 + 0.518i)20-s + (−0.212 − 0.455i)22-s + (−0.892 + 0.624i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.676 + 0.736i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.676 + 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $-0.676 + 0.736i$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{855} (298, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ -0.676 + 0.736i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.420587 - 0.957381i\)
\(L(\frac12)\) \(\approx\) \(0.420587 - 0.957381i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.33 + 1.79i)T \)
19 \( 1 + (2.43 - 3.61i)T \)
good2 \( 1 + (-0.693 - 0.0606i)T + (1.96 + 0.347i)T^{2} \)
7 \( 1 + (-0.0498 - 0.186i)T + (-6.06 + 3.5i)T^{2} \)
11 \( 1 + (1.69 + 2.93i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.912 - 1.95i)T + (-8.35 - 9.95i)T^{2} \)
17 \( 1 + (-0.604 + 6.91i)T + (-16.7 - 2.95i)T^{2} \)
23 \( 1 + (4.28 - 2.99i)T + (7.86 - 21.6i)T^{2} \)
29 \( 1 + (5.09 + 4.27i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (1.89 + 1.09i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (5.09 + 5.09i)T + 37iT^{2} \)
41 \( 1 + (-2.93 + 8.06i)T + (-31.4 - 26.3i)T^{2} \)
43 \( 1 + (-0.670 + 0.957i)T + (-14.7 - 40.4i)T^{2} \)
47 \( 1 + (6.07 - 0.531i)T + (46.2 - 8.16i)T^{2} \)
53 \( 1 + (-6.81 - 9.72i)T + (-18.1 + 49.8i)T^{2} \)
59 \( 1 + (-4.80 + 4.03i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.65 - 9.38i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (0.768 + 8.77i)T + (-65.9 + 11.6i)T^{2} \)
71 \( 1 + (2.15 - 0.380i)T + (66.7 - 24.2i)T^{2} \)
73 \( 1 + (3.66 + 7.85i)T + (-46.9 + 55.9i)T^{2} \)
79 \( 1 + (-7.22 - 2.62i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (2.59 - 0.694i)T + (71.8 - 41.5i)T^{2} \)
89 \( 1 + (0.466 - 0.169i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-2.57 - 0.224i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.642456597855654747001994327541, −9.140642455630810718400221893934, −8.359867233514902822650144275074, −7.33067158754900401042307421610, −5.82509976633339571675553624737, −5.58713659489274024207565782264, −4.54801929841322327215373086852, −3.62548296527813932927339056064, −2.16495262584180378388477435947, −0.41951916003426682211018909147, 2.02448390636267079297510970640, 3.17161149517443311063208624440, 4.18850683310097786538082041746, 5.18248396025350584150651971531, 6.00973523453968679203165292079, 6.93696956081374518747337632844, 7.996778024644558910432332065830, 8.788711156137644420045146415854, 9.905376606542425045651203270294, 10.28944381635150169335645404606

Graph of the $Z$-function along the critical line