Properties

Label 8512.2.a.bj.1.3
Level $8512$
Weight $2$
Character 8512.1
Self dual yes
Analytic conductor $67.969$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8512,2,Mod(1,8512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8512.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8512, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-1,0,-5,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 266)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.39138\) of defining polynomial
Character \(\chi\) \(=\) 8512.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71871 q^{3} +0.391382 q^{5} +1.00000 q^{7} -0.0460370 q^{9} +3.06406 q^{11} -2.78276 q^{13} +0.672673 q^{15} -6.22018 q^{17} -1.00000 q^{19} +1.71871 q^{21} +4.78276 q^{23} -4.84682 q^{25} -5.23525 q^{27} -7.82880 q^{29} -1.34535 q^{31} +5.26622 q^{33} +0.391382 q^{35} +3.82880 q^{37} -4.78276 q^{39} -4.39138 q^{41} +5.82880 q^{43} -0.0180181 q^{45} +5.71871 q^{47} +1.00000 q^{49} -10.6907 q^{51} -7.15613 q^{53} +1.19922 q^{55} -1.71871 q^{57} -7.17415 q^{59} -8.50147 q^{61} -0.0460370 q^{63} -1.08913 q^{65} +12.2202 q^{67} +8.22018 q^{69} -0.935945 q^{71} -4.12811 q^{73} -8.33028 q^{75} +3.06406 q^{77} -2.95396 q^{79} -8.85977 q^{81} -13.5655 q^{83} -2.43447 q^{85} -13.4554 q^{87} +1.06406 q^{89} -2.78276 q^{91} -2.31226 q^{93} -0.391382 q^{95} +4.50147 q^{97} -0.141060 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} - 5 q^{5} + 3 q^{7} + 6 q^{9} + 3 q^{11} + 4 q^{13} + 2 q^{15} + 6 q^{17} - 3 q^{19} - q^{21} + 2 q^{23} + 4 q^{25} - 28 q^{27} - 5 q^{29} - 4 q^{31} - 15 q^{33} - 5 q^{35} - 7 q^{37} - 2 q^{39}+ \cdots + 55 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71871 0.992298 0.496149 0.868238i \(-0.334747\pi\)
0.496149 + 0.868238i \(0.334747\pi\)
\(4\) 0 0
\(5\) 0.391382 0.175032 0.0875158 0.996163i \(-0.472107\pi\)
0.0875158 + 0.996163i \(0.472107\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −0.0460370 −0.0153457
\(10\) 0 0
\(11\) 3.06406 0.923847 0.461924 0.886920i \(-0.347159\pi\)
0.461924 + 0.886920i \(0.347159\pi\)
\(12\) 0 0
\(13\) −2.78276 −0.771800 −0.385900 0.922541i \(-0.626109\pi\)
−0.385900 + 0.922541i \(0.626109\pi\)
\(14\) 0 0
\(15\) 0.672673 0.173683
\(16\) 0 0
\(17\) −6.22018 −1.50862 −0.754308 0.656521i \(-0.772028\pi\)
−0.754308 + 0.656521i \(0.772028\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.71871 0.375053
\(22\) 0 0
\(23\) 4.78276 0.997275 0.498638 0.866811i \(-0.333834\pi\)
0.498638 + 0.866811i \(0.333834\pi\)
\(24\) 0 0
\(25\) −4.84682 −0.969364
\(26\) 0 0
\(27\) −5.23525 −1.00752
\(28\) 0 0
\(29\) −7.82880 −1.45377 −0.726886 0.686758i \(-0.759033\pi\)
−0.726886 + 0.686758i \(0.759033\pi\)
\(30\) 0 0
\(31\) −1.34535 −0.241631 −0.120816 0.992675i \(-0.538551\pi\)
−0.120816 + 0.992675i \(0.538551\pi\)
\(32\) 0 0
\(33\) 5.26622 0.916731
\(34\) 0 0
\(35\) 0.391382 0.0661557
\(36\) 0 0
\(37\) 3.82880 0.629451 0.314726 0.949183i \(-0.398088\pi\)
0.314726 + 0.949183i \(0.398088\pi\)
\(38\) 0 0
\(39\) −4.78276 −0.765855
\(40\) 0 0
\(41\) −4.39138 −0.685819 −0.342909 0.939368i \(-0.611412\pi\)
−0.342909 + 0.939368i \(0.611412\pi\)
\(42\) 0 0
\(43\) 5.82880 0.888884 0.444442 0.895808i \(-0.353402\pi\)
0.444442 + 0.895808i \(0.353402\pi\)
\(44\) 0 0
\(45\) −0.0180181 −0.00268598
\(46\) 0 0
\(47\) 5.71871 0.834160 0.417080 0.908870i \(-0.363054\pi\)
0.417080 + 0.908870i \(0.363054\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −10.6907 −1.49700
\(52\) 0 0
\(53\) −7.15613 −0.982970 −0.491485 0.870886i \(-0.663546\pi\)
−0.491485 + 0.870886i \(0.663546\pi\)
\(54\) 0 0
\(55\) 1.19922 0.161702
\(56\) 0 0
\(57\) −1.71871 −0.227649
\(58\) 0 0
\(59\) −7.17415 −0.933994 −0.466997 0.884259i \(-0.654664\pi\)
−0.466997 + 0.884259i \(0.654664\pi\)
\(60\) 0 0
\(61\) −8.50147 −1.08850 −0.544251 0.838922i \(-0.683186\pi\)
−0.544251 + 0.838922i \(0.683186\pi\)
\(62\) 0 0
\(63\) −0.0460370 −0.00580012
\(64\) 0 0
\(65\) −1.08913 −0.135089
\(66\) 0 0
\(67\) 12.2202 1.49293 0.746467 0.665423i \(-0.231749\pi\)
0.746467 + 0.665423i \(0.231749\pi\)
\(68\) 0 0
\(69\) 8.22018 0.989594
\(70\) 0 0
\(71\) −0.935945 −0.111076 −0.0555381 0.998457i \(-0.517687\pi\)
−0.0555381 + 0.998457i \(0.517687\pi\)
\(72\) 0 0
\(73\) −4.12811 −0.483159 −0.241579 0.970381i \(-0.577665\pi\)
−0.241579 + 0.970381i \(0.577665\pi\)
\(74\) 0 0
\(75\) −8.33028 −0.961897
\(76\) 0 0
\(77\) 3.06406 0.349181
\(78\) 0 0
\(79\) −2.95396 −0.332347 −0.166173 0.986097i \(-0.553141\pi\)
−0.166173 + 0.986097i \(0.553141\pi\)
\(80\) 0 0
\(81\) −8.85977 −0.984419
\(82\) 0 0
\(83\) −13.5655 −1.48901 −0.744505 0.667617i \(-0.767315\pi\)
−0.744505 + 0.667617i \(0.767315\pi\)
\(84\) 0 0
\(85\) −2.43447 −0.264055
\(86\) 0 0
\(87\) −13.4554 −1.44257
\(88\) 0 0
\(89\) 1.06406 0.112790 0.0563948 0.998409i \(-0.482039\pi\)
0.0563948 + 0.998409i \(0.482039\pi\)
\(90\) 0 0
\(91\) −2.78276 −0.291713
\(92\) 0 0
\(93\) −2.31226 −0.239770
\(94\) 0 0
\(95\) −0.391382 −0.0401550
\(96\) 0 0
\(97\) 4.50147 0.457055 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(98\) 0 0
\(99\) −0.141060 −0.0141771
\(100\) 0 0
\(101\) −17.1311 −1.70460 −0.852302 0.523050i \(-0.824794\pi\)
−0.852302 + 0.523050i \(0.824794\pi\)
\(102\) 0 0
\(103\) 2.09207 0.206138 0.103069 0.994674i \(-0.467134\pi\)
0.103069 + 0.994674i \(0.467134\pi\)
\(104\) 0 0
\(105\) 0.672673 0.0656461
\(106\) 0 0
\(107\) −14.0921 −1.36233 −0.681166 0.732129i \(-0.738527\pi\)
−0.681166 + 0.732129i \(0.738527\pi\)
\(108\) 0 0
\(109\) −15.1561 −1.45169 −0.725847 0.687856i \(-0.758552\pi\)
−0.725847 + 0.687856i \(0.758552\pi\)
\(110\) 0 0
\(111\) 6.58060 0.624603
\(112\) 0 0
\(113\) 19.7857 1.86128 0.930642 0.365932i \(-0.119250\pi\)
0.930642 + 0.365932i \(0.119250\pi\)
\(114\) 0 0
\(115\) 1.87189 0.174555
\(116\) 0 0
\(117\) 0.128110 0.0118438
\(118\) 0 0
\(119\) −6.22018 −0.570203
\(120\) 0 0
\(121\) −1.61157 −0.146506
\(122\) 0 0
\(123\) −7.54751 −0.680536
\(124\) 0 0
\(125\) −3.85387 −0.344701
\(126\) 0 0
\(127\) −2.50147 −0.221970 −0.110985 0.993822i \(-0.535401\pi\)
−0.110985 + 0.993822i \(0.535401\pi\)
\(128\) 0 0
\(129\) 10.0180 0.882037
\(130\) 0 0
\(131\) −15.4374 −1.34877 −0.674387 0.738378i \(-0.735592\pi\)
−0.674387 + 0.738378i \(0.735592\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −2.04899 −0.176349
\(136\) 0 0
\(137\) 13.9209 1.18934 0.594670 0.803970i \(-0.297283\pi\)
0.594670 + 0.803970i \(0.297283\pi\)
\(138\) 0 0
\(139\) 10.8748 0.922392 0.461196 0.887298i \(-0.347421\pi\)
0.461196 + 0.887298i \(0.347421\pi\)
\(140\) 0 0
\(141\) 9.82880 0.827734
\(142\) 0 0
\(143\) −8.52654 −0.713025
\(144\) 0 0
\(145\) −3.06406 −0.254456
\(146\) 0 0
\(147\) 1.71871 0.141757
\(148\) 0 0
\(149\) 1.77982 0.145808 0.0729041 0.997339i \(-0.476773\pi\)
0.0729041 + 0.997339i \(0.476773\pi\)
\(150\) 0 0
\(151\) −5.30931 −0.432065 −0.216033 0.976386i \(-0.569312\pi\)
−0.216033 + 0.976386i \(0.569312\pi\)
\(152\) 0 0
\(153\) 0.286359 0.0231507
\(154\) 0 0
\(155\) −0.526544 −0.0422931
\(156\) 0 0
\(157\) −15.3763 −1.22716 −0.613582 0.789631i \(-0.710272\pi\)
−0.613582 + 0.789631i \(0.710272\pi\)
\(158\) 0 0
\(159\) −12.2993 −0.975399
\(160\) 0 0
\(161\) 4.78276 0.376935
\(162\) 0 0
\(163\) 17.9389 1.40508 0.702541 0.711643i \(-0.252049\pi\)
0.702541 + 0.711643i \(0.252049\pi\)
\(164\) 0 0
\(165\) 2.06111 0.160457
\(166\) 0 0
\(167\) 13.5295 1.04694 0.523472 0.852043i \(-0.324637\pi\)
0.523472 + 0.852043i \(0.324637\pi\)
\(168\) 0 0
\(169\) −5.25622 −0.404325
\(170\) 0 0
\(171\) 0.0460370 0.00352054
\(172\) 0 0
\(173\) 8.12811 0.617969 0.308984 0.951067i \(-0.400011\pi\)
0.308984 + 0.951067i \(0.400011\pi\)
\(174\) 0 0
\(175\) −4.84682 −0.366385
\(176\) 0 0
\(177\) −12.3303 −0.926800
\(178\) 0 0
\(179\) −11.4735 −0.857566 −0.428783 0.903407i \(-0.641058\pi\)
−0.428783 + 0.903407i \(0.641058\pi\)
\(180\) 0 0
\(181\) −16.3123 −1.21248 −0.606240 0.795282i \(-0.707323\pi\)
−0.606240 + 0.795282i \(0.707323\pi\)
\(182\) 0 0
\(183\) −14.6116 −1.08012
\(184\) 0 0
\(185\) 1.49853 0.110174
\(186\) 0 0
\(187\) −19.0590 −1.39373
\(188\) 0 0
\(189\) −5.23525 −0.380809
\(190\) 0 0
\(191\) 15.4735 1.11962 0.559810 0.828621i \(-0.310874\pi\)
0.559810 + 0.828621i \(0.310874\pi\)
\(192\) 0 0
\(193\) 7.00295 0.504083 0.252042 0.967716i \(-0.418898\pi\)
0.252042 + 0.967716i \(0.418898\pi\)
\(194\) 0 0
\(195\) −1.87189 −0.134049
\(196\) 0 0
\(197\) 10.4404 0.743845 0.371923 0.928264i \(-0.378699\pi\)
0.371923 + 0.928264i \(0.378699\pi\)
\(198\) 0 0
\(199\) 6.83175 0.484290 0.242145 0.970240i \(-0.422149\pi\)
0.242145 + 0.970240i \(0.422149\pi\)
\(200\) 0 0
\(201\) 21.0029 1.48143
\(202\) 0 0
\(203\) −7.82880 −0.549474
\(204\) 0 0
\(205\) −1.71871 −0.120040
\(206\) 0 0
\(207\) −0.220184 −0.0153039
\(208\) 0 0
\(209\) −3.06406 −0.211945
\(210\) 0 0
\(211\) −9.30931 −0.640879 −0.320440 0.947269i \(-0.603831\pi\)
−0.320440 + 0.947269i \(0.603831\pi\)
\(212\) 0 0
\(213\) −1.60862 −0.110221
\(214\) 0 0
\(215\) 2.28129 0.155583
\(216\) 0 0
\(217\) −1.34535 −0.0913280
\(218\) 0 0
\(219\) −7.09502 −0.479437
\(220\) 0 0
\(221\) 17.3093 1.16435
\(222\) 0 0
\(223\) 2.31226 0.154840 0.0774201 0.996999i \(-0.475332\pi\)
0.0774201 + 0.996999i \(0.475332\pi\)
\(224\) 0 0
\(225\) 0.223133 0.0148755
\(226\) 0 0
\(227\) 12.4404 0.825696 0.412848 0.910800i \(-0.364534\pi\)
0.412848 + 0.910800i \(0.364534\pi\)
\(228\) 0 0
\(229\) −15.6086 −1.03145 −0.515723 0.856755i \(-0.672477\pi\)
−0.515723 + 0.856755i \(0.672477\pi\)
\(230\) 0 0
\(231\) 5.26622 0.346492
\(232\) 0 0
\(233\) −5.28424 −0.346182 −0.173091 0.984906i \(-0.555375\pi\)
−0.173091 + 0.984906i \(0.555375\pi\)
\(234\) 0 0
\(235\) 2.23820 0.146004
\(236\) 0 0
\(237\) −5.07700 −0.329787
\(238\) 0 0
\(239\) −1.87189 −0.121082 −0.0605412 0.998166i \(-0.519283\pi\)
−0.0605412 + 0.998166i \(0.519283\pi\)
\(240\) 0 0
\(241\) −22.4835 −1.44829 −0.724143 0.689649i \(-0.757765\pi\)
−0.724143 + 0.689649i \(0.757765\pi\)
\(242\) 0 0
\(243\) 0.478388 0.0306886
\(244\) 0 0
\(245\) 0.391382 0.0250045
\(246\) 0 0
\(247\) 2.78276 0.177063
\(248\) 0 0
\(249\) −23.3152 −1.47754
\(250\) 0 0
\(251\) 11.6936 0.738096 0.369048 0.929410i \(-0.379684\pi\)
0.369048 + 0.929410i \(0.379684\pi\)
\(252\) 0 0
\(253\) 14.6547 0.921330
\(254\) 0 0
\(255\) −4.18415 −0.262022
\(256\) 0 0
\(257\) −2.82585 −0.176272 −0.0881359 0.996108i \(-0.528091\pi\)
−0.0881359 + 0.996108i \(0.528091\pi\)
\(258\) 0 0
\(259\) 3.82880 0.237910
\(260\) 0 0
\(261\) 0.360415 0.0223091
\(262\) 0 0
\(263\) 29.4433 1.81555 0.907776 0.419455i \(-0.137779\pi\)
0.907776 + 0.419455i \(0.137779\pi\)
\(264\) 0 0
\(265\) −2.80078 −0.172051
\(266\) 0 0
\(267\) 1.82880 0.111921
\(268\) 0 0
\(269\) 10.4404 0.636560 0.318280 0.947997i \(-0.396895\pi\)
0.318280 + 0.947997i \(0.396895\pi\)
\(270\) 0 0
\(271\) 4.29931 0.261164 0.130582 0.991437i \(-0.458315\pi\)
0.130582 + 0.991437i \(0.458315\pi\)
\(272\) 0 0
\(273\) −4.78276 −0.289466
\(274\) 0 0
\(275\) −14.8509 −0.895544
\(276\) 0 0
\(277\) 28.7526 1.72758 0.863789 0.503854i \(-0.168085\pi\)
0.863789 + 0.503854i \(0.168085\pi\)
\(278\) 0 0
\(279\) 0.0619357 0.00370799
\(280\) 0 0
\(281\) −20.6547 −1.23215 −0.616077 0.787686i \(-0.711279\pi\)
−0.616077 + 0.787686i \(0.711279\pi\)
\(282\) 0 0
\(283\) −9.30931 −0.553381 −0.276690 0.960959i \(-0.589238\pi\)
−0.276690 + 0.960959i \(0.589238\pi\)
\(284\) 0 0
\(285\) −0.672673 −0.0398457
\(286\) 0 0
\(287\) −4.39138 −0.259215
\(288\) 0 0
\(289\) 21.6907 1.27592
\(290\) 0 0
\(291\) 7.73673 0.453535
\(292\) 0 0
\(293\) −1.65760 −0.0968382 −0.0484191 0.998827i \(-0.515418\pi\)
−0.0484191 + 0.998827i \(0.515418\pi\)
\(294\) 0 0
\(295\) −2.80783 −0.163478
\(296\) 0 0
\(297\) −16.0411 −0.930799
\(298\) 0 0
\(299\) −13.3093 −0.769697
\(300\) 0 0
\(301\) 5.82880 0.335967
\(302\) 0 0
\(303\) −29.4433 −1.69147
\(304\) 0 0
\(305\) −3.32733 −0.190522
\(306\) 0 0
\(307\) −31.0880 −1.77428 −0.887142 0.461496i \(-0.847313\pi\)
−0.887142 + 0.461496i \(0.847313\pi\)
\(308\) 0 0
\(309\) 3.59567 0.204550
\(310\) 0 0
\(311\) −11.8468 −0.671772 −0.335886 0.941903i \(-0.609036\pi\)
−0.335886 + 0.941903i \(0.609036\pi\)
\(312\) 0 0
\(313\) 34.6606 1.95913 0.979565 0.201127i \(-0.0644605\pi\)
0.979565 + 0.201127i \(0.0644605\pi\)
\(314\) 0 0
\(315\) −0.0180181 −0.00101520
\(316\) 0 0
\(317\) 16.4654 0.924791 0.462396 0.886674i \(-0.346990\pi\)
0.462396 + 0.886674i \(0.346990\pi\)
\(318\) 0 0
\(319\) −23.9879 −1.34306
\(320\) 0 0
\(321\) −24.2202 −1.35184
\(322\) 0 0
\(323\) 6.22018 0.346100
\(324\) 0 0
\(325\) 13.4876 0.748155
\(326\) 0 0
\(327\) −26.0490 −1.44051
\(328\) 0 0
\(329\) 5.71871 0.315283
\(330\) 0 0
\(331\) −3.09502 −0.170118 −0.0850589 0.996376i \(-0.527108\pi\)
−0.0850589 + 0.996376i \(0.527108\pi\)
\(332\) 0 0
\(333\) −0.176267 −0.00965935
\(334\) 0 0
\(335\) 4.78276 0.261310
\(336\) 0 0
\(337\) −24.5324 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(338\) 0 0
\(339\) 34.0059 1.84695
\(340\) 0 0
\(341\) −4.12221 −0.223230
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 3.21724 0.173210
\(346\) 0 0
\(347\) 5.56553 0.298773 0.149387 0.988779i \(-0.452270\pi\)
0.149387 + 0.988779i \(0.452270\pi\)
\(348\) 0 0
\(349\) −25.1311 −1.34523 −0.672617 0.739990i \(-0.734830\pi\)
−0.672617 + 0.739990i \(0.734830\pi\)
\(350\) 0 0
\(351\) 14.5685 0.777608
\(352\) 0 0
\(353\) −3.52949 −0.187856 −0.0939280 0.995579i \(-0.529942\pi\)
−0.0939280 + 0.995579i \(0.529942\pi\)
\(354\) 0 0
\(355\) −0.366312 −0.0194418
\(356\) 0 0
\(357\) −10.6907 −0.565811
\(358\) 0 0
\(359\) −24.9669 −1.31770 −0.658852 0.752273i \(-0.728958\pi\)
−0.658852 + 0.752273i \(0.728958\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −2.76981 −0.145378
\(364\) 0 0
\(365\) −1.61567 −0.0845680
\(366\) 0 0
\(367\) 15.2842 0.797831 0.398915 0.916988i \(-0.369387\pi\)
0.398915 + 0.916988i \(0.369387\pi\)
\(368\) 0 0
\(369\) 0.202166 0.0105243
\(370\) 0 0
\(371\) −7.15613 −0.371528
\(372\) 0 0
\(373\) 17.0519 0.882916 0.441458 0.897282i \(-0.354461\pi\)
0.441458 + 0.897282i \(0.354461\pi\)
\(374\) 0 0
\(375\) −6.62369 −0.342046
\(376\) 0 0
\(377\) 21.7857 1.12202
\(378\) 0 0
\(379\) 17.0029 0.873383 0.436691 0.899611i \(-0.356150\pi\)
0.436691 + 0.899611i \(0.356150\pi\)
\(380\) 0 0
\(381\) −4.29931 −0.220260
\(382\) 0 0
\(383\) −29.2231 −1.49323 −0.746616 0.665255i \(-0.768323\pi\)
−0.746616 + 0.665255i \(0.768323\pi\)
\(384\) 0 0
\(385\) 1.19922 0.0611178
\(386\) 0 0
\(387\) −0.268341 −0.0136405
\(388\) 0 0
\(389\) 26.4404 1.34058 0.670290 0.742099i \(-0.266170\pi\)
0.670290 + 0.742099i \(0.266170\pi\)
\(390\) 0 0
\(391\) −29.7497 −1.50451
\(392\) 0 0
\(393\) −26.5324 −1.33838
\(394\) 0 0
\(395\) −1.15613 −0.0581712
\(396\) 0 0
\(397\) −18.5074 −0.928858 −0.464429 0.885610i \(-0.653740\pi\)
−0.464429 + 0.885610i \(0.653740\pi\)
\(398\) 0 0
\(399\) −1.71871 −0.0860431
\(400\) 0 0
\(401\) −32.2261 −1.60929 −0.804647 0.593754i \(-0.797645\pi\)
−0.804647 + 0.593754i \(0.797645\pi\)
\(402\) 0 0
\(403\) 3.74378 0.186491
\(404\) 0 0
\(405\) −3.46756 −0.172304
\(406\) 0 0
\(407\) 11.7317 0.581517
\(408\) 0 0
\(409\) 19.3763 0.958097 0.479049 0.877788i \(-0.340982\pi\)
0.479049 + 0.877788i \(0.340982\pi\)
\(410\) 0 0
\(411\) 23.9259 1.18018
\(412\) 0 0
\(413\) −7.17415 −0.353017
\(414\) 0 0
\(415\) −5.30931 −0.260624
\(416\) 0 0
\(417\) 18.6907 0.915287
\(418\) 0 0
\(419\) 27.5354 1.34519 0.672596 0.740010i \(-0.265179\pi\)
0.672596 + 0.740010i \(0.265179\pi\)
\(420\) 0 0
\(421\) 16.4345 0.800967 0.400484 0.916304i \(-0.368842\pi\)
0.400484 + 0.916304i \(0.368842\pi\)
\(422\) 0 0
\(423\) −0.263272 −0.0128007
\(424\) 0 0
\(425\) 30.1481 1.46240
\(426\) 0 0
\(427\) −8.50147 −0.411415
\(428\) 0 0
\(429\) −14.6547 −0.707533
\(430\) 0 0
\(431\) −40.9979 −1.97480 −0.987399 0.158249i \(-0.949415\pi\)
−0.987399 + 0.158249i \(0.949415\pi\)
\(432\) 0 0
\(433\) −22.4835 −1.08049 −0.540243 0.841509i \(-0.681668\pi\)
−0.540243 + 0.841509i \(0.681668\pi\)
\(434\) 0 0
\(435\) −5.26622 −0.252496
\(436\) 0 0
\(437\) −4.78276 −0.228791
\(438\) 0 0
\(439\) 18.9109 0.902567 0.451283 0.892381i \(-0.350966\pi\)
0.451283 + 0.892381i \(0.350966\pi\)
\(440\) 0 0
\(441\) −0.0460370 −0.00219224
\(442\) 0 0
\(443\) −10.0850 −0.479154 −0.239577 0.970877i \(-0.577009\pi\)
−0.239577 + 0.970877i \(0.577009\pi\)
\(444\) 0 0
\(445\) 0.416452 0.0197417
\(446\) 0 0
\(447\) 3.05899 0.144685
\(448\) 0 0
\(449\) 17.9138 0.845406 0.422703 0.906268i \(-0.361081\pi\)
0.422703 + 0.906268i \(0.361081\pi\)
\(450\) 0 0
\(451\) −13.4554 −0.633592
\(452\) 0 0
\(453\) −9.12516 −0.428737
\(454\) 0 0
\(455\) −1.08913 −0.0510590
\(456\) 0 0
\(457\) 23.8527 1.11578 0.557892 0.829914i \(-0.311611\pi\)
0.557892 + 0.829914i \(0.311611\pi\)
\(458\) 0 0
\(459\) 32.5642 1.51997
\(460\) 0 0
\(461\) −22.2512 −1.03634 −0.518170 0.855278i \(-0.673386\pi\)
−0.518170 + 0.855278i \(0.673386\pi\)
\(462\) 0 0
\(463\) −27.8778 −1.29559 −0.647795 0.761814i \(-0.724309\pi\)
−0.647795 + 0.761814i \(0.724309\pi\)
\(464\) 0 0
\(465\) −0.904977 −0.0419673
\(466\) 0 0
\(467\) −24.0980 −1.11512 −0.557561 0.830136i \(-0.688263\pi\)
−0.557561 + 0.830136i \(0.688263\pi\)
\(468\) 0 0
\(469\) 12.2202 0.564276
\(470\) 0 0
\(471\) −26.4274 −1.21771
\(472\) 0 0
\(473\) 17.8598 0.821193
\(474\) 0 0
\(475\) 4.84682 0.222387
\(476\) 0 0
\(477\) 0.329447 0.0150843
\(478\) 0 0
\(479\) 8.92382 0.407740 0.203870 0.978998i \(-0.434648\pi\)
0.203870 + 0.978998i \(0.434648\pi\)
\(480\) 0 0
\(481\) −10.6547 −0.485810
\(482\) 0 0
\(483\) 8.22018 0.374031
\(484\) 0 0
\(485\) 1.76180 0.0799991
\(486\) 0 0
\(487\) 41.0578 1.86051 0.930254 0.366916i \(-0.119586\pi\)
0.930254 + 0.366916i \(0.119586\pi\)
\(488\) 0 0
\(489\) 30.8318 1.39426
\(490\) 0 0
\(491\) −20.8807 −0.942334 −0.471167 0.882044i \(-0.656167\pi\)
−0.471167 + 0.882044i \(0.656167\pi\)
\(492\) 0 0
\(493\) 48.6966 2.19318
\(494\) 0 0
\(495\) −0.0552084 −0.00248143
\(496\) 0 0
\(497\) −0.935945 −0.0419829
\(498\) 0 0
\(499\) 12.8619 0.575777 0.287889 0.957664i \(-0.407047\pi\)
0.287889 + 0.957664i \(0.407047\pi\)
\(500\) 0 0
\(501\) 23.2533 1.03888
\(502\) 0 0
\(503\) 22.9179 1.02186 0.510930 0.859622i \(-0.329301\pi\)
0.510930 + 0.859622i \(0.329301\pi\)
\(504\) 0 0
\(505\) −6.70479 −0.298359
\(506\) 0 0
\(507\) −9.03392 −0.401210
\(508\) 0 0
\(509\) 17.6936 0.784257 0.392128 0.919910i \(-0.371739\pi\)
0.392128 + 0.919910i \(0.371739\pi\)
\(510\) 0 0
\(511\) −4.12811 −0.182617
\(512\) 0 0
\(513\) 5.23525 0.231142
\(514\) 0 0
\(515\) 0.818801 0.0360807
\(516\) 0 0
\(517\) 17.5224 0.770636
\(518\) 0 0
\(519\) 13.9699 0.613209
\(520\) 0 0
\(521\) −13.3152 −0.583350 −0.291675 0.956518i \(-0.594213\pi\)
−0.291675 + 0.956518i \(0.594213\pi\)
\(522\) 0 0
\(523\) −44.4404 −1.94324 −0.971621 0.236544i \(-0.923985\pi\)
−0.971621 + 0.236544i \(0.923985\pi\)
\(524\) 0 0
\(525\) −8.33028 −0.363563
\(526\) 0 0
\(527\) 8.36830 0.364529
\(528\) 0 0
\(529\) −0.125161 −0.00544179
\(530\) 0 0
\(531\) 0.330276 0.0143328
\(532\) 0 0
\(533\) 12.2202 0.529315
\(534\) 0 0
\(535\) −5.51539 −0.238451
\(536\) 0 0
\(537\) −19.7195 −0.850961
\(538\) 0 0
\(539\) 3.06406 0.131978
\(540\) 0 0
\(541\) −18.5626 −0.798068 −0.399034 0.916936i \(-0.630654\pi\)
−0.399034 + 0.916936i \(0.630654\pi\)
\(542\) 0 0
\(543\) −28.0360 −1.20314
\(544\) 0 0
\(545\) −5.93184 −0.254092
\(546\) 0 0
\(547\) −26.2762 −1.12349 −0.561745 0.827310i \(-0.689870\pi\)
−0.561745 + 0.827310i \(0.689870\pi\)
\(548\) 0 0
\(549\) 0.391382 0.0167038
\(550\) 0 0
\(551\) 7.82880 0.333518
\(552\) 0 0
\(553\) −2.95396 −0.125615
\(554\) 0 0
\(555\) 2.57553 0.109325
\(556\) 0 0
\(557\) −32.6045 −1.38150 −0.690749 0.723095i \(-0.742719\pi\)
−0.690749 + 0.723095i \(0.742719\pi\)
\(558\) 0 0
\(559\) −16.2202 −0.686041
\(560\) 0 0
\(561\) −32.7569 −1.38300
\(562\) 0 0
\(563\) 35.4182 1.49270 0.746351 0.665553i \(-0.231804\pi\)
0.746351 + 0.665553i \(0.231804\pi\)
\(564\) 0 0
\(565\) 7.74378 0.325783
\(566\) 0 0
\(567\) −8.85977 −0.372075
\(568\) 0 0
\(569\) −13.6936 −0.574067 −0.287034 0.957921i \(-0.592669\pi\)
−0.287034 + 0.957921i \(0.592669\pi\)
\(570\) 0 0
\(571\) −17.9389 −0.750719 −0.375360 0.926879i \(-0.622481\pi\)
−0.375360 + 0.926879i \(0.622481\pi\)
\(572\) 0 0
\(573\) 26.5944 1.11100
\(574\) 0 0
\(575\) −23.1812 −0.966723
\(576\) 0 0
\(577\) −45.3873 −1.88950 −0.944749 0.327796i \(-0.893694\pi\)
−0.944749 + 0.327796i \(0.893694\pi\)
\(578\) 0 0
\(579\) 12.0360 0.500201
\(580\) 0 0
\(581\) −13.5655 −0.562793
\(582\) 0 0
\(583\) −21.9268 −0.908114
\(584\) 0 0
\(585\) 0.0501401 0.00207304
\(586\) 0 0
\(587\) −34.3483 −1.41771 −0.708853 0.705356i \(-0.750787\pi\)
−0.708853 + 0.705356i \(0.750787\pi\)
\(588\) 0 0
\(589\) 1.34535 0.0554340
\(590\) 0 0
\(591\) 17.9440 0.738116
\(592\) 0 0
\(593\) 6.56258 0.269493 0.134746 0.990880i \(-0.456978\pi\)
0.134746 + 0.990880i \(0.456978\pi\)
\(594\) 0 0
\(595\) −2.43447 −0.0998036
\(596\) 0 0
\(597\) 11.7418 0.480560
\(598\) 0 0
\(599\) 8.62958 0.352595 0.176298 0.984337i \(-0.443588\pi\)
0.176298 + 0.984337i \(0.443588\pi\)
\(600\) 0 0
\(601\) 10.4404 0.425872 0.212936 0.977066i \(-0.431697\pi\)
0.212936 + 0.977066i \(0.431697\pi\)
\(602\) 0 0
\(603\) −0.562581 −0.0229101
\(604\) 0 0
\(605\) −0.630739 −0.0256432
\(606\) 0 0
\(607\) 1.43152 0.0581037 0.0290518 0.999578i \(-0.490751\pi\)
0.0290518 + 0.999578i \(0.490751\pi\)
\(608\) 0 0
\(609\) −13.4554 −0.545242
\(610\) 0 0
\(611\) −15.9138 −0.643804
\(612\) 0 0
\(613\) 41.0950 1.65981 0.829906 0.557903i \(-0.188394\pi\)
0.829906 + 0.557903i \(0.188394\pi\)
\(614\) 0 0
\(615\) −2.95396 −0.119115
\(616\) 0 0
\(617\) 27.1440 1.09278 0.546388 0.837532i \(-0.316002\pi\)
0.546388 + 0.837532i \(0.316002\pi\)
\(618\) 0 0
\(619\) 1.83585 0.0737892 0.0368946 0.999319i \(-0.488253\pi\)
0.0368946 + 0.999319i \(0.488253\pi\)
\(620\) 0 0
\(621\) −25.0390 −1.00478
\(622\) 0 0
\(623\) 1.06406 0.0426305
\(624\) 0 0
\(625\) 22.7258 0.909030
\(626\) 0 0
\(627\) −5.26622 −0.210313
\(628\) 0 0
\(629\) −23.8159 −0.949600
\(630\) 0 0
\(631\) −43.5714 −1.73455 −0.867276 0.497828i \(-0.834131\pi\)
−0.867276 + 0.497828i \(0.834131\pi\)
\(632\) 0 0
\(633\) −16.0000 −0.635943
\(634\) 0 0
\(635\) −0.979033 −0.0388517
\(636\) 0 0
\(637\) −2.78276 −0.110257
\(638\) 0 0
\(639\) 0.0430881 0.00170454
\(640\) 0 0
\(641\) 43.6275 1.72318 0.861591 0.507604i \(-0.169469\pi\)
0.861591 + 0.507604i \(0.169469\pi\)
\(642\) 0 0
\(643\) 14.6907 0.579344 0.289672 0.957126i \(-0.406454\pi\)
0.289672 + 0.957126i \(0.406454\pi\)
\(644\) 0 0
\(645\) 3.92088 0.154384
\(646\) 0 0
\(647\) −19.6145 −0.771126 −0.385563 0.922681i \(-0.625993\pi\)
−0.385563 + 0.922681i \(0.625993\pi\)
\(648\) 0 0
\(649\) −21.9820 −0.862868
\(650\) 0 0
\(651\) −2.31226 −0.0906245
\(652\) 0 0
\(653\) −42.1700 −1.65024 −0.825121 0.564957i \(-0.808893\pi\)
−0.825121 + 0.564957i \(0.808893\pi\)
\(654\) 0 0
\(655\) −6.04193 −0.236078
\(656\) 0 0
\(657\) 0.190046 0.00741439
\(658\) 0 0
\(659\) 34.1900 1.33186 0.665928 0.746016i \(-0.268036\pi\)
0.665928 + 0.746016i \(0.268036\pi\)
\(660\) 0 0
\(661\) 31.1370 1.21109 0.605544 0.795812i \(-0.292956\pi\)
0.605544 + 0.795812i \(0.292956\pi\)
\(662\) 0 0
\(663\) 29.7497 1.15538
\(664\) 0 0
\(665\) −0.391382 −0.0151772
\(666\) 0 0
\(667\) −37.4433 −1.44981
\(668\) 0 0
\(669\) 3.97410 0.153648
\(670\) 0 0
\(671\) −26.0490 −1.00561
\(672\) 0 0
\(673\) −48.6045 −1.87357 −0.936783 0.349910i \(-0.886212\pi\)
−0.936783 + 0.349910i \(0.886212\pi\)
\(674\) 0 0
\(675\) 25.3743 0.976658
\(676\) 0 0
\(677\) −9.81585 −0.377254 −0.188627 0.982049i \(-0.560404\pi\)
−0.188627 + 0.982049i \(0.560404\pi\)
\(678\) 0 0
\(679\) 4.50147 0.172751
\(680\) 0 0
\(681\) 21.3814 0.819336
\(682\) 0 0
\(683\) −12.6606 −0.484443 −0.242221 0.970221i \(-0.577876\pi\)
−0.242221 + 0.970221i \(0.577876\pi\)
\(684\) 0 0
\(685\) 5.44839 0.208172
\(686\) 0 0
\(687\) −26.8267 −1.02350
\(688\) 0 0
\(689\) 19.9138 0.758656
\(690\) 0 0
\(691\) 45.4073 1.72737 0.863687 0.504028i \(-0.168149\pi\)
0.863687 + 0.504028i \(0.168149\pi\)
\(692\) 0 0
\(693\) −0.141060 −0.00535842
\(694\) 0 0
\(695\) 4.25622 0.161448
\(696\) 0 0
\(697\) 27.3152 1.03464
\(698\) 0 0
\(699\) −9.08207 −0.343516
\(700\) 0 0
\(701\) 11.1871 0.422531 0.211265 0.977429i \(-0.432242\pi\)
0.211265 + 0.977429i \(0.432242\pi\)
\(702\) 0 0
\(703\) −3.82880 −0.144406
\(704\) 0 0
\(705\) 3.84682 0.144880
\(706\) 0 0
\(707\) −17.1311 −0.644280
\(708\) 0 0
\(709\) −13.4014 −0.503300 −0.251650 0.967818i \(-0.580973\pi\)
−0.251650 + 0.967818i \(0.580973\pi\)
\(710\) 0 0
\(711\) 0.135992 0.00510008
\(712\) 0 0
\(713\) −6.43447 −0.240973
\(714\) 0 0
\(715\) −3.33714 −0.124802
\(716\) 0 0
\(717\) −3.21724 −0.120150
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 2.09207 0.0779129
\(722\) 0 0
\(723\) −38.6425 −1.43713
\(724\) 0 0
\(725\) 37.9448 1.40923
\(726\) 0 0
\(727\) 42.4153 1.57310 0.786548 0.617529i \(-0.211866\pi\)
0.786548 + 0.617529i \(0.211866\pi\)
\(728\) 0 0
\(729\) 27.4015 1.01487
\(730\) 0 0
\(731\) −36.2562 −1.34098
\(732\) 0 0
\(733\) 43.9628 1.62380 0.811902 0.583794i \(-0.198432\pi\)
0.811902 + 0.583794i \(0.198432\pi\)
\(734\) 0 0
\(735\) 0.672673 0.0248119
\(736\) 0 0
\(737\) 37.4433 1.37924
\(738\) 0 0
\(739\) 1.57258 0.0578483 0.0289242 0.999582i \(-0.490792\pi\)
0.0289242 + 0.999582i \(0.490792\pi\)
\(740\) 0 0
\(741\) 4.78276 0.175699
\(742\) 0 0
\(743\) −37.0460 −1.35909 −0.679544 0.733635i \(-0.737822\pi\)
−0.679544 + 0.733635i \(0.737822\pi\)
\(744\) 0 0
\(745\) 0.696589 0.0255210
\(746\) 0 0
\(747\) 0.624516 0.0228499
\(748\) 0 0
\(749\) −14.0921 −0.514913
\(750\) 0 0
\(751\) −15.7367 −0.574241 −0.287121 0.957894i \(-0.592698\pi\)
−0.287121 + 0.957894i \(0.592698\pi\)
\(752\) 0 0
\(753\) 20.0980 0.732411
\(754\) 0 0
\(755\) −2.07797 −0.0756251
\(756\) 0 0
\(757\) −33.3512 −1.21217 −0.606086 0.795399i \(-0.707261\pi\)
−0.606086 + 0.795399i \(0.707261\pi\)
\(758\) 0 0
\(759\) 25.1871 0.914234
\(760\) 0 0
\(761\) 20.0059 0.725213 0.362607 0.931942i \(-0.381887\pi\)
0.362607 + 0.931942i \(0.381887\pi\)
\(762\) 0 0
\(763\) −15.1561 −0.548689
\(764\) 0 0
\(765\) 0.112076 0.00405211
\(766\) 0 0
\(767\) 19.9640 0.720857
\(768\) 0 0
\(769\) 55.0029 1.98346 0.991729 0.128353i \(-0.0409691\pi\)
0.991729 + 0.128353i \(0.0409691\pi\)
\(770\) 0 0
\(771\) −4.85682 −0.174914
\(772\) 0 0
\(773\) −32.7526 −1.17803 −0.589015 0.808122i \(-0.700484\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(774\) 0 0
\(775\) 6.52065 0.234229
\(776\) 0 0
\(777\) 6.58060 0.236078
\(778\) 0 0
\(779\) 4.39138 0.157338
\(780\) 0 0
\(781\) −2.86779 −0.102617
\(782\) 0 0
\(783\) 40.9858 1.46471
\(784\) 0 0
\(785\) −6.01802 −0.214792
\(786\) 0 0
\(787\) 16.2993 0.581008 0.290504 0.956874i \(-0.406177\pi\)
0.290504 + 0.956874i \(0.406177\pi\)
\(788\) 0 0
\(789\) 50.6045 1.80157
\(790\) 0 0
\(791\) 19.7857 0.703499
\(792\) 0 0
\(793\) 23.6576 0.840106
\(794\) 0 0
\(795\) −4.81373 −0.170726
\(796\) 0 0
\(797\) −9.50949 −0.336843 −0.168422 0.985715i \(-0.553867\pi\)
−0.168422 + 0.985715i \(0.553867\pi\)
\(798\) 0 0
\(799\) −35.5714 −1.25843
\(800\) 0 0
\(801\) −0.0489859 −0.00173083
\(802\) 0 0
\(803\) −12.6488 −0.446365
\(804\) 0 0
\(805\) 1.87189 0.0659754
\(806\) 0 0
\(807\) 17.9440 0.631657
\(808\) 0 0
\(809\) −20.0129 −0.703618 −0.351809 0.936072i \(-0.614433\pi\)
−0.351809 + 0.936072i \(0.614433\pi\)
\(810\) 0 0
\(811\) 49.8527 1.75057 0.875283 0.483611i \(-0.160675\pi\)
0.875283 + 0.483611i \(0.160675\pi\)
\(812\) 0 0
\(813\) 7.38926 0.259153
\(814\) 0 0
\(815\) 7.02097 0.245934
\(816\) 0 0
\(817\) −5.82880 −0.203924
\(818\) 0 0
\(819\) 0.128110 0.00447653
\(820\) 0 0
\(821\) 2.68479 0.0936999 0.0468500 0.998902i \(-0.485082\pi\)
0.0468500 + 0.998902i \(0.485082\pi\)
\(822\) 0 0
\(823\) 28.4764 0.992625 0.496313 0.868144i \(-0.334687\pi\)
0.496313 + 0.868144i \(0.334687\pi\)
\(824\) 0 0
\(825\) −25.5244 −0.888646
\(826\) 0 0
\(827\) −29.0390 −1.00978 −0.504892 0.863182i \(-0.668468\pi\)
−0.504892 + 0.863182i \(0.668468\pi\)
\(828\) 0 0
\(829\) 19.7136 0.684683 0.342342 0.939576i \(-0.388780\pi\)
0.342342 + 0.939576i \(0.388780\pi\)
\(830\) 0 0
\(831\) 49.4174 1.71427
\(832\) 0 0
\(833\) −6.22018 −0.215517
\(834\) 0 0
\(835\) 5.29521 0.183248
\(836\) 0 0
\(837\) 7.04322 0.243449
\(838\) 0 0
\(839\) 18.9109 0.652876 0.326438 0.945219i \(-0.394152\pi\)
0.326438 + 0.945219i \(0.394152\pi\)
\(840\) 0 0
\(841\) 32.2901 1.11345
\(842\) 0 0
\(843\) −35.4994 −1.22266
\(844\) 0 0
\(845\) −2.05719 −0.0707696
\(846\) 0 0
\(847\) −1.61157 −0.0553741
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) 18.3123 0.627736
\(852\) 0 0
\(853\) 23.7928 0.814649 0.407324 0.913284i \(-0.366462\pi\)
0.407324 + 0.913284i \(0.366462\pi\)
\(854\) 0 0
\(855\) 0.0180181 0.000616205 0
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) −12.9669 −0.442425 −0.221213 0.975226i \(-0.571001\pi\)
−0.221213 + 0.975226i \(0.571001\pi\)
\(860\) 0 0
\(861\) −7.54751 −0.257219
\(862\) 0 0
\(863\) −23.0519 −0.784697 −0.392348 0.919817i \(-0.628337\pi\)
−0.392348 + 0.919817i \(0.628337\pi\)
\(864\) 0 0
\(865\) 3.18120 0.108164
\(866\) 0 0
\(867\) 37.2800 1.26610
\(868\) 0 0
\(869\) −9.05111 −0.307038
\(870\) 0 0
\(871\) −34.0059 −1.15225
\(872\) 0 0
\(873\) −0.207234 −0.00701382
\(874\) 0 0
\(875\) −3.85387 −0.130285
\(876\) 0 0
\(877\) −17.8468 −0.602644 −0.301322 0.953522i \(-0.597428\pi\)
−0.301322 + 0.953522i \(0.597428\pi\)
\(878\) 0 0
\(879\) −2.84894 −0.0960923
\(880\) 0 0
\(881\) 6.71069 0.226089 0.113044 0.993590i \(-0.463940\pi\)
0.113044 + 0.993590i \(0.463940\pi\)
\(882\) 0 0
\(883\) 13.3144 0.448064 0.224032 0.974582i \(-0.428078\pi\)
0.224032 + 0.974582i \(0.428078\pi\)
\(884\) 0 0
\(885\) −4.82585 −0.162219
\(886\) 0 0
\(887\) −17.2733 −0.579980 −0.289990 0.957030i \(-0.593652\pi\)
−0.289990 + 0.957030i \(0.593652\pi\)
\(888\) 0 0
\(889\) −2.50147 −0.0838968
\(890\) 0 0
\(891\) −27.1468 −0.909453
\(892\) 0 0
\(893\) −5.71871 −0.191369
\(894\) 0 0
\(895\) −4.49051 −0.150101
\(896\) 0 0
\(897\) −22.8748 −0.763769
\(898\) 0 0
\(899\) 10.5324 0.351277
\(900\) 0 0
\(901\) 44.5124 1.48292
\(902\) 0 0
\(903\) 10.0180 0.333379
\(904\) 0 0
\(905\) −6.38433 −0.212222
\(906\) 0 0
\(907\) 6.99705 0.232333 0.116167 0.993230i \(-0.462939\pi\)
0.116167 + 0.993230i \(0.462939\pi\)
\(908\) 0 0
\(909\) 0.788663 0.0261583
\(910\) 0 0
\(911\) −24.1050 −0.798635 −0.399318 0.916813i \(-0.630753\pi\)
−0.399318 + 0.916813i \(0.630753\pi\)
\(912\) 0 0
\(913\) −41.5655 −1.37562
\(914\) 0 0
\(915\) −5.71871 −0.189055
\(916\) 0 0
\(917\) −15.4374 −0.509789
\(918\) 0 0
\(919\) 55.3011 1.82422 0.912108 0.409951i \(-0.134454\pi\)
0.912108 + 0.409951i \(0.134454\pi\)
\(920\) 0 0
\(921\) −53.4312 −1.76062
\(922\) 0 0
\(923\) 2.60451 0.0857286
\(924\) 0 0
\(925\) −18.5575 −0.610167
\(926\) 0 0
\(927\) −0.0963128 −0.00316333
\(928\) 0 0
\(929\) 4.60451 0.151069 0.0755346 0.997143i \(-0.475934\pi\)
0.0755346 + 0.997143i \(0.475934\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −20.3612 −0.666597
\(934\) 0 0
\(935\) −7.45935 −0.243947
\(936\) 0 0
\(937\) 45.7195 1.49359 0.746796 0.665053i \(-0.231591\pi\)
0.746796 + 0.665053i \(0.231591\pi\)
\(938\) 0 0
\(939\) 59.5714 1.94404
\(940\) 0 0
\(941\) −32.5324 −1.06053 −0.530264 0.847833i \(-0.677907\pi\)
−0.530264 + 0.847833i \(0.677907\pi\)
\(942\) 0 0
\(943\) −21.0029 −0.683950
\(944\) 0 0
\(945\) −2.04899 −0.0666535
\(946\) 0 0
\(947\) −35.0641 −1.13943 −0.569714 0.821843i \(-0.692946\pi\)
−0.569714 + 0.821843i \(0.692946\pi\)
\(948\) 0 0
\(949\) 11.4876 0.372902
\(950\) 0 0
\(951\) 28.2993 0.917668
\(952\) 0 0
\(953\) 15.9941 0.518100 0.259050 0.965864i \(-0.416591\pi\)
0.259050 + 0.965864i \(0.416591\pi\)
\(954\) 0 0
\(955\) 6.05604 0.195969
\(956\) 0 0
\(957\) −41.2282 −1.33272
\(958\) 0 0
\(959\) 13.9209 0.449529
\(960\) 0 0
\(961\) −29.1900 −0.941614
\(962\) 0 0
\(963\) 0.648757 0.0209059
\(964\) 0 0
\(965\) 2.74083 0.0882305
\(966\) 0 0
\(967\) −16.0721 −0.516843 −0.258422 0.966032i \(-0.583202\pi\)
−0.258422 + 0.966032i \(0.583202\pi\)
\(968\) 0 0
\(969\) 10.6907 0.343434
\(970\) 0 0
\(971\) 34.6715 1.11266 0.556331 0.830961i \(-0.312209\pi\)
0.556331 + 0.830961i \(0.312209\pi\)
\(972\) 0 0
\(973\) 10.8748 0.348631
\(974\) 0 0
\(975\) 23.1812 0.742393
\(976\) 0 0
\(977\) −12.5685 −0.402101 −0.201051 0.979581i \(-0.564436\pi\)
−0.201051 + 0.979581i \(0.564436\pi\)
\(978\) 0 0
\(979\) 3.26032 0.104200
\(980\) 0 0
\(981\) 0.697743 0.0222772
\(982\) 0 0
\(983\) −1.56553 −0.0499326 −0.0249663 0.999688i \(-0.507948\pi\)
−0.0249663 + 0.999688i \(0.507948\pi\)
\(984\) 0 0
\(985\) 4.08618 0.130196
\(986\) 0 0
\(987\) 9.82880 0.312854
\(988\) 0 0
\(989\) 27.8778 0.886462
\(990\) 0 0
\(991\) 42.6355 1.35436 0.677180 0.735817i \(-0.263202\pi\)
0.677180 + 0.735817i \(0.263202\pi\)
\(992\) 0 0
\(993\) −5.31945 −0.168808
\(994\) 0 0
\(995\) 2.67383 0.0847660
\(996\) 0 0
\(997\) −61.2721 −1.94051 −0.970254 0.242090i \(-0.922167\pi\)
−0.970254 + 0.242090i \(0.922167\pi\)
\(998\) 0 0
\(999\) −20.0447 −0.634188
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8512.2.a.bj.1.3 3
4.3 odd 2 8512.2.a.bm.1.1 3
8.3 odd 2 266.2.a.d.1.3 3
8.5 even 2 2128.2.a.s.1.1 3
24.11 even 2 2394.2.a.ba.1.3 3
40.19 odd 2 6650.2.a.cd.1.1 3
56.27 even 2 1862.2.a.r.1.1 3
152.75 even 2 5054.2.a.r.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
266.2.a.d.1.3 3 8.3 odd 2
1862.2.a.r.1.1 3 56.27 even 2
2128.2.a.s.1.1 3 8.5 even 2
2394.2.a.ba.1.3 3 24.11 even 2
5054.2.a.r.1.1 3 152.75 even 2
6650.2.a.cd.1.1 3 40.19 odd 2
8512.2.a.bj.1.3 3 1.1 even 1 trivial
8512.2.a.bm.1.1 3 4.3 odd 2