Properties

Label 8512.2.a.bj
Level $8512$
Weight $2$
Character orbit 8512.a
Self dual yes
Analytic conductor $67.969$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 266)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + (\beta_1 - 2) q^{5} + q^{7} + ( - 2 \beta_{2} + \beta_1 + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{3} + (\beta_1 - 2) q^{5} + q^{7} + ( - 2 \beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{2} + 2 \beta_1) q^{11} + ( - 2 \beta_1 + 2) q^{13} + ( - \beta_{2} + \beta_1) q^{15} + ( - 2 \beta_{2} - 2 \beta_1 + 2) q^{17} - q^{19} + \beta_{2} q^{21} + 2 \beta_1 q^{23} + (\beta_{2} - 4 \beta_1 + 3) q^{25} + (3 \beta_{2} - \beta_1 - 8) q^{27} + ( - 2 \beta_{2} - \beta_1 - 2) q^{29} + (2 \beta_{2} - 2 \beta_1) q^{31} + (4 \beta_{2} + \beta_1 - 4) q^{33} + (\beta_1 - 2) q^{35} + (2 \beta_{2} + \beta_1 - 2) q^{37} - 2 \beta_1 q^{39} + ( - \beta_1 - 2) q^{41} + (2 \beta_{2} + \beta_1) q^{43} + (3 \beta_{2} - 3 \beta_1 + 2) q^{45} + (\beta_{2} + 4) q^{47} + q^{49} + (4 \beta_{2} - 4 \beta_1 - 8) q^{51} + ( - 3 \beta_{2} - 2) q^{53} + (3 \beta_{2} - 5 \beta_1 + 8) q^{55} - \beta_{2} q^{57} - 3 \beta_1 q^{59} + ( - \beta_{2} - 2 \beta_1 - 2) q^{61} + ( - 2 \beta_{2} + \beta_1 + 1) q^{63} + ( - 2 \beta_{2} + 6 \beta_1 - 12) q^{65} + (2 \beta_{2} + 2 \beta_1 + 4) q^{67} + (2 \beta_{2} + 2 \beta_1) q^{69} + ( - \beta_{2} + 2 \beta_1 - 4) q^{71} + (2 \beta_{2} - 4 \beta_1 + 2) q^{73} + ( - 3 \beta_{2} - 3 \beta_1 + 4) q^{75} + ( - \beta_{2} + 2 \beta_1) q^{77} + (2 \beta_{2} - \beta_1 - 4) q^{79} + ( - 9 \beta_{2} - \beta_1 + 9) q^{81} + ( - 4 \beta_1 - 4) q^{83} + (4 \beta_1 - 12) q^{85} + (\beta_{2} - 3 \beta_1 - 8) q^{87} + ( - \beta_{2} + 2 \beta_1 - 2) q^{89} + ( - 2 \beta_1 + 2) q^{91} + ( - 6 \beta_{2} + 8) q^{93} + ( - \beta_1 + 2) q^{95} + (\beta_{2} + 2 \beta_1 - 2) q^{97} + ( - 8 \beta_{2} - \beta_1 + 16) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} - 5 q^{5} + 3 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{3} - 5 q^{5} + 3 q^{7} + 6 q^{9} + 3 q^{11} + 4 q^{13} + 2 q^{15} + 6 q^{17} - 3 q^{19} - q^{21} + 2 q^{23} + 4 q^{25} - 28 q^{27} - 5 q^{29} - 4 q^{31} - 15 q^{33} - 5 q^{35} - 7 q^{37} - 2 q^{39} - 7 q^{41} - q^{43} + 11 q^{47} + 3 q^{49} - 32 q^{51} - 3 q^{53} + 16 q^{55} + q^{57} - 3 q^{59} - 7 q^{61} + 6 q^{63} - 28 q^{65} + 12 q^{67} - 9 q^{71} + 12 q^{75} + 3 q^{77} - 15 q^{79} + 35 q^{81} - 16 q^{83} - 32 q^{85} - 28 q^{87} - 3 q^{89} + 4 q^{91} + 30 q^{93} + 5 q^{95} - 5 q^{97} + 55 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.772866
−2.16425
2.39138
0 −3.40268 0 −1.22713 0 1.00000 0 8.57822 0
1.2 0 0.683969 0 −4.16425 0 1.00000 0 −2.53219 0
1.3 0 1.71871 0 0.391382 0 1.00000 0 −0.0460370 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8512.2.a.bj 3
4.b odd 2 1 8512.2.a.bm 3
8.b even 2 1 2128.2.a.s 3
8.d odd 2 1 266.2.a.d 3
24.f even 2 1 2394.2.a.ba 3
40.e odd 2 1 6650.2.a.cd 3
56.e even 2 1 1862.2.a.r 3
152.b even 2 1 5054.2.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.a.d 3 8.d odd 2 1
1862.2.a.r 3 56.e even 2 1
2128.2.a.s 3 8.b even 2 1
2394.2.a.ba 3 24.f even 2 1
5054.2.a.r 3 152.b even 2 1
6650.2.a.cd 3 40.e odd 2 1
8512.2.a.bj 3 1.a even 1 1 trivial
8512.2.a.bm 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8512))\):

\( T_{3}^{3} + T_{3}^{2} - 7T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{3} + 5T_{5}^{2} + 3T_{5} - 2 \) Copy content Toggle raw display
\( T_{11}^{3} - 3T_{11}^{2} - 25T_{11} + 76 \) Copy content Toggle raw display
\( T_{23}^{3} - 2T_{23}^{2} - 20T_{23} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 7T + 4 \) Copy content Toggle raw display
$5$ \( T^{3} + 5 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 3 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots + 224 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$29$ \( T^{3} + 5 T^{2} + \cdots - 38 \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{3} + 7 T^{2} + \cdots - 86 \) Copy content Toggle raw display
$41$ \( T^{3} + 7 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$43$ \( T^{3} + T^{2} + \cdots - 28 \) Copy content Toggle raw display
$47$ \( T^{3} - 11 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$53$ \( T^{3} + 3 T^{2} + \cdots - 238 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} + \cdots - 108 \) Copy content Toggle raw display
$61$ \( T^{3} + 7 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$71$ \( T^{3} + 9T^{2} - T - 8 \) Copy content Toggle raw display
$73$ \( T^{3} - 112T - 392 \) Copy content Toggle raw display
$79$ \( T^{3} + 15 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{3} + 16T^{2} - 448 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} + \cdots + 22 \) Copy content Toggle raw display
$97$ \( T^{3} + 5 T^{2} + \cdots - 98 \) Copy content Toggle raw display
show more
show less