Properties

Label 2-8512-1.1-c1-0-200
Degree $2$
Conductor $8512$
Sign $-1$
Analytic cond. $67.9686$
Root an. cond. $8.24431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.71·3-s + 0.391·5-s + 7-s − 0.0460·9-s + 3.06·11-s − 2.78·13-s + 0.672·15-s − 6.22·17-s − 19-s + 1.71·21-s + 4.78·23-s − 4.84·25-s − 5.23·27-s − 7.82·29-s − 1.34·31-s + 5.26·33-s + 0.391·35-s + 3.82·37-s − 4.78·39-s − 4.39·41-s + 5.82·43-s − 0.0180·45-s + 5.71·47-s + 49-s − 10.6·51-s − 7.15·53-s + 1.19·55-s + ⋯
L(s)  = 1  + 0.992·3-s + 0.175·5-s + 0.377·7-s − 0.0153·9-s + 0.923·11-s − 0.771·13-s + 0.173·15-s − 1.50·17-s − 0.229·19-s + 0.375·21-s + 0.997·23-s − 0.969·25-s − 1.00·27-s − 1.45·29-s − 0.241·31-s + 0.916·33-s + 0.0661·35-s + 0.629·37-s − 0.765·39-s − 0.685·41-s + 0.888·43-s − 0.00268·45-s + 0.834·47-s + 0.142·49-s − 1.49·51-s − 0.982·53-s + 0.161·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8512\)    =    \(2^{6} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(67.9686\)
Root analytic conductor: \(8.24431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 - 1.71T + 3T^{2} \)
5 \( 1 - 0.391T + 5T^{2} \)
11 \( 1 - 3.06T + 11T^{2} \)
13 \( 1 + 2.78T + 13T^{2} \)
17 \( 1 + 6.22T + 17T^{2} \)
23 \( 1 - 4.78T + 23T^{2} \)
29 \( 1 + 7.82T + 29T^{2} \)
31 \( 1 + 1.34T + 31T^{2} \)
37 \( 1 - 3.82T + 37T^{2} \)
41 \( 1 + 4.39T + 41T^{2} \)
43 \( 1 - 5.82T + 43T^{2} \)
47 \( 1 - 5.71T + 47T^{2} \)
53 \( 1 + 7.15T + 53T^{2} \)
59 \( 1 + 7.17T + 59T^{2} \)
61 \( 1 + 8.50T + 61T^{2} \)
67 \( 1 - 12.2T + 67T^{2} \)
71 \( 1 + 0.935T + 71T^{2} \)
73 \( 1 + 4.12T + 73T^{2} \)
79 \( 1 + 2.95T + 79T^{2} \)
83 \( 1 + 13.5T + 83T^{2} \)
89 \( 1 - 1.06T + 89T^{2} \)
97 \( 1 - 4.50T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50245093263258689196475894612, −6.91134600153018472074665403871, −6.10288505403354802736893225828, −5.35371292017920075780715973889, −4.41228469564613108722655616541, −3.92025522831354794269075256813, −2.95908749824610114709844453550, −2.24055631838275322536401146455, −1.57283399695533435773204712778, 0, 1.57283399695533435773204712778, 2.24055631838275322536401146455, 2.95908749824610114709844453550, 3.92025522831354794269075256813, 4.41228469564613108722655616541, 5.35371292017920075780715973889, 6.10288505403354802736893225828, 6.91134600153018472074665403871, 7.50245093263258689196475894612

Graph of the $Z$-function along the critical line