Properties

Label 850.4.a.s
Level $850$
Weight $4$
Character orbit 850.a
Self dual yes
Analytic conductor $50.152$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,4,Mod(1,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,10,-5,20,0,-10,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.1516235049\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 50x^{2} + 349x - 317 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_{2} - 1) q^{3} + 4 q^{4} + ( - 2 \beta_{2} - 2) q^{6} + ( - \beta_{3} + 2 \beta_{2} - \beta_1 - 5) q^{7} + 8 q^{8} + ( - 2 \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 8) q^{9}+ \cdots + (56 \beta_{4} - 13 \beta_{3} + \cdots - 1064) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{2} - 5 q^{3} + 20 q^{4} - 10 q^{6} - 26 q^{7} + 40 q^{8} + 34 q^{9} - 104 q^{11} - 20 q^{12} - 79 q^{13} - 52 q^{14} + 80 q^{16} + 85 q^{17} + 68 q^{18} - 9 q^{19} - 260 q^{21} - 208 q^{22}+ \cdots - 5008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 42x^{3} + 50x^{2} + 349x - 317 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 17 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 4\nu^{3} - 28\nu^{2} - 84\nu + 91 ) / 12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} + 34\nu^{2} - 66\nu - 133 ) / 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + 2\beta_{3} - 2\beta_{2} + 25\beta _1 - 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{4} + 4\beta_{3} + 64\beta_{2} - 16\beta _1 + 425 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.71381
5.17183
3.83916
−3.17675
0.879570
2.00000 −8.82384 4.00000 0 −17.6477 18.3177 8.00000 50.8601 0
1.2 2.00000 −5.87390 4.00000 0 −11.7478 −15.1251 8.00000 7.50273 0
1.3 2.00000 0.130417 4.00000 0 0.260834 5.61659 8.00000 −26.9830 0
1.4 2.00000 2.45415 4.00000 0 4.90829 −12.8054 8.00000 −20.9772 0
1.5 2.00000 7.11318 4.00000 0 14.2264 −22.0038 8.00000 23.5973 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 850.4.a.s 5
5.b even 2 1 850.4.a.r 5
5.c odd 4 2 170.4.c.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.4.c.a 10 5.c odd 4 2
850.4.a.r 5 5.b even 2 1
850.4.a.s 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(850))\):

\( T_{3}^{5} + 5T_{3}^{4} - 72T_{3}^{3} - 230T_{3}^{2} + 936T_{3} - 118 \) Copy content Toggle raw display
\( T_{7}^{5} + 26T_{7}^{4} - 284T_{7}^{3} - 9946T_{7}^{2} - 18846T_{7} + 438464 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 5 T^{4} + \cdots - 118 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 26 T^{4} + \cdots + 438464 \) Copy content Toggle raw display
$11$ \( T^{5} + 104 T^{4} + \cdots - 6730100 \) Copy content Toggle raw display
$13$ \( T^{5} + 79 T^{4} + \cdots - 54676180 \) Copy content Toggle raw display
$17$ \( (T - 17)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + 9 T^{4} + \cdots - 323725936 \) Copy content Toggle raw display
$23$ \( T^{5} - 28 T^{4} + \cdots - 244176896 \) Copy content Toggle raw display
$29$ \( T^{5} + 429 T^{4} + \cdots - 79797328 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 183983556422 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 81652362112 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 473106238784 \) Copy content Toggle raw display
$43$ \( T^{5} + 138 T^{4} + \cdots - 912218896 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 101704831756 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 2420910879056 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 678267250832 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 80879412314024 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 28652020483688 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 54066860182 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 392981834872 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 56359197318400 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 6713457927440 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 123503446265116 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 5118591823600 \) Copy content Toggle raw display
show more
show less