Properties

Label 2-850-1.1-c3-0-67
Degree $2$
Conductor $850$
Sign $-1$
Analytic cond. $50.1516$
Root an. cond. $7.08178$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 0.130·3-s + 4·4-s + 0.260·6-s + 5.61·7-s + 8·8-s − 26.9·9-s − 7.81·11-s + 0.521·12-s − 35.9·13-s + 11.2·14-s + 16·16-s + 17·17-s − 53.9·18-s + 103.·19-s + 0.732·21-s − 15.6·22-s − 167.·23-s + 1.04·24-s − 71.9·26-s − 7.04·27-s + 22.4·28-s − 138.·29-s − 103.·31-s + 32·32-s − 1.01·33-s + 34·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.0250·3-s + 0.5·4-s + 0.0177·6-s + 0.303·7-s + 0.353·8-s − 0.999·9-s − 0.214·11-s + 0.0125·12-s − 0.768·13-s + 0.214·14-s + 0.250·16-s + 0.242·17-s − 0.706·18-s + 1.25·19-s + 0.00761·21-s − 0.151·22-s − 1.52·23-s + 0.00887·24-s − 0.543·26-s − 0.0501·27-s + 0.151·28-s − 0.884·29-s − 0.600·31-s + 0.176·32-s − 0.00537·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(50.1516\)
Root analytic conductor: \(7.08178\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 850,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 \)
17 \( 1 - 17T \)
good3 \( 1 - 0.130T + 27T^{2} \)
7 \( 1 - 5.61T + 343T^{2} \)
11 \( 1 + 7.81T + 1.33e3T^{2} \)
13 \( 1 + 35.9T + 2.19e3T^{2} \)
19 \( 1 - 103.T + 6.85e3T^{2} \)
23 \( 1 + 167.T + 1.21e4T^{2} \)
29 \( 1 + 138.T + 2.43e4T^{2} \)
31 \( 1 + 103.T + 2.97e4T^{2} \)
37 \( 1 - 45.6T + 5.06e4T^{2} \)
41 \( 1 + 313.T + 6.89e4T^{2} \)
43 \( 1 + 147.T + 7.95e4T^{2} \)
47 \( 1 + 486.T + 1.03e5T^{2} \)
53 \( 1 - 348.T + 1.48e5T^{2} \)
59 \( 1 + 477.T + 2.05e5T^{2} \)
61 \( 1 - 865.T + 2.26e5T^{2} \)
67 \( 1 - 473.T + 3.00e5T^{2} \)
71 \( 1 + 69.8T + 3.57e5T^{2} \)
73 \( 1 - 155.T + 3.89e5T^{2} \)
79 \( 1 + 917.T + 4.93e5T^{2} \)
83 \( 1 - 232.T + 5.71e5T^{2} \)
89 \( 1 + 970.T + 7.04e5T^{2} \)
97 \( 1 + 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.528127754475387269178070601328, −8.310512575323517425972992108202, −7.68355657644644267502160402683, −6.67627061225128694409837470384, −5.57072884814288021599203963323, −5.11935895515225913326928244924, −3.82899178576225730374153843146, −2.89898130382695399192662767974, −1.78603561708107219488295041736, 0, 1.78603561708107219488295041736, 2.89898130382695399192662767974, 3.82899178576225730374153843146, 5.11935895515225913326928244924, 5.57072884814288021599203963323, 6.67627061225128694409837470384, 7.68355657644644267502160402683, 8.310512575323517425972992108202, 9.528127754475387269178070601328

Graph of the $Z$-function along the critical line