Defining parameters
Level: | \( N \) | \(=\) | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 850.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(850))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 418 | 76 | 342 |
Cusp forms | 394 | 76 | 318 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(56\) | \(8\) | \(48\) | \(53\) | \(8\) | \(45\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(50\) | \(10\) | \(40\) | \(47\) | \(10\) | \(37\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(49\) | \(10\) | \(39\) | \(46\) | \(10\) | \(36\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(53\) | \(10\) | \(43\) | \(50\) | \(10\) | \(40\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(52\) | \(7\) | \(45\) | \(49\) | \(7\) | \(42\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(52\) | \(11\) | \(41\) | \(49\) | \(11\) | \(38\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(52\) | \(12\) | \(40\) | \(49\) | \(12\) | \(37\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(54\) | \(8\) | \(46\) | \(51\) | \(8\) | \(43\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(213\) | \(41\) | \(172\) | \(201\) | \(41\) | \(160\) | \(12\) | \(0\) | \(12\) | |||||
Minus space | \(-\) | \(205\) | \(35\) | \(170\) | \(193\) | \(35\) | \(158\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(850))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(850))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(850)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 2}\)