Properties

Label 850.4.a
Level $850$
Weight $4$
Character orbit 850.a
Rep. character $\chi_{850}(1,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $23$
Sturm bound $540$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(540\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(850))\).

Total New Old
Modular forms 418 76 342
Cusp forms 394 76 318
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(56\)\(8\)\(48\)\(53\)\(8\)\(45\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(50\)\(10\)\(40\)\(47\)\(10\)\(37\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(49\)\(10\)\(39\)\(46\)\(10\)\(36\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(53\)\(10\)\(43\)\(50\)\(10\)\(40\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(52\)\(7\)\(45\)\(49\)\(7\)\(42\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(52\)\(11\)\(41\)\(49\)\(11\)\(38\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(52\)\(12\)\(40\)\(49\)\(12\)\(37\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(54\)\(8\)\(46\)\(51\)\(8\)\(43\)\(3\)\(0\)\(3\)
Plus space\(+\)\(213\)\(41\)\(172\)\(201\)\(41\)\(160\)\(12\)\(0\)\(12\)
Minus space\(-\)\(205\)\(35\)\(170\)\(193\)\(35\)\(158\)\(12\)\(0\)\(12\)

Trace form

\( 76 q - 14 q^{3} + 304 q^{4} - 20 q^{6} - 16 q^{7} + 776 q^{9} - 50 q^{11} - 56 q^{12} - 148 q^{13} + 40 q^{14} + 1216 q^{16} + 34 q^{17} + 40 q^{18} + 184 q^{19} + 232 q^{21} + 212 q^{22} + 236 q^{23} - 80 q^{24}+ \cdots - 8202 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(850))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
850.4.a.a 850.a 1.a $1$ $50.152$ \(\Q\) None 170.4.a.b \(-2\) \(-7\) \(0\) \(10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-7q^{3}+4q^{4}+14q^{6}+10q^{7}+\cdots\)
850.4.a.b 850.a 1.a $1$ $50.152$ \(\Q\) None 170.4.a.a \(2\) \(-4\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-4q^{3}+4q^{4}-8q^{6}+4q^{7}+\cdots\)
850.4.a.c 850.a 1.a $1$ $50.152$ \(\Q\) None 34.4.a.b \(2\) \(2\) \(0\) \(-24\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+4q^{4}+4q^{6}-24q^{7}+\cdots\)
850.4.a.d 850.a 1.a $1$ $50.152$ \(\Q\) None 34.4.a.a \(2\) \(2\) \(0\) \(10\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+4q^{4}+4q^{6}+10q^{7}+\cdots\)
850.4.a.e 850.a 1.a $2$ $50.152$ \(\Q(\sqrt{13}) \) None 34.4.a.c \(-4\) \(-6\) \(0\) \(6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-3-\beta )q^{3}+4q^{4}+(6+2\beta )q^{6}+\cdots\)
850.4.a.f 850.a 1.a $2$ $50.152$ \(\Q(\sqrt{19}) \) None 170.4.a.f \(-4\) \(-2\) \(0\) \(-46\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta )q^{3}+4q^{4}+(2-2\beta )q^{6}+\cdots\)
850.4.a.g 850.a 1.a $2$ $50.152$ \(\Q(\sqrt{6}) \) None 170.4.a.e \(-4\) \(4\) \(0\) \(28\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+\beta )q^{3}+4q^{4}+(-4-2\beta )q^{6}+\cdots\)
850.4.a.h 850.a 1.a $2$ $50.152$ \(\Q(\sqrt{145}) \) None 170.4.a.d \(4\) \(-3\) \(0\) \(-28\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta )q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
850.4.a.i 850.a 1.a $2$ $50.152$ \(\Q(\sqrt{43}) \) None 170.4.a.c \(4\) \(6\) \(0\) \(34\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(3+\beta )q^{3}+4q^{4}+(6+2\beta )q^{6}+\cdots\)
850.4.a.j 850.a 1.a $3$ $50.152$ 3.3.62013.1 None 170.4.a.h \(-6\) \(1\) \(0\) \(-20\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(-7+\cdots)q^{7}+\cdots\)
850.4.a.k 850.a 1.a $3$ $50.152$ 3.3.43476.1 None 850.4.a.k \(-6\) \(1\) \(0\) \(9\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}-2\beta _{1}q^{6}+(4+\cdots)q^{7}+\cdots\)
850.4.a.l 850.a 1.a $3$ $50.152$ 3.3.3732.1 None 850.4.a.l \(-6\) \(7\) \(0\) \(-5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+\beta _{2})q^{3}+4q^{4}+(-4-2\beta _{2})q^{6}+\cdots\)
850.4.a.m 850.a 1.a $3$ $50.152$ 3.3.3732.1 None 850.4.a.l \(6\) \(-7\) \(0\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2-\beta _{2})q^{3}+4q^{4}+(-4+\cdots)q^{6}+\cdots\)
850.4.a.n 850.a 1.a $3$ $50.152$ 3.3.701288.1 None 170.4.a.g \(6\) \(-7\) \(0\) \(10\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2-\beta _{1})q^{3}+4q^{4}+(-4+\cdots)q^{6}+\cdots\)
850.4.a.o 850.a 1.a $3$ $50.152$ 3.3.43476.1 None 850.4.a.k \(6\) \(-1\) \(0\) \(-9\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-\beta _{1}q^{3}+4q^{4}-2\beta _{1}q^{6}+(-4+\cdots)q^{7}+\cdots\)
850.4.a.p 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 850.4.a.p \(-10\) \(-5\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1-\beta _{1})q^{3}+4q^{4}+(2+2\beta _{1}+\cdots)q^{6}+\cdots\)
850.4.a.q 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 850.4.a.q \(-10\) \(1\) \(0\) \(-53\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}-2\beta _{1}q^{6}+(-11+\cdots)q^{7}+\cdots\)
850.4.a.r 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 170.4.c.a \(-10\) \(5\) \(0\) \(26\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+\beta _{2})q^{3}+4q^{4}+(-2-2\beta _{2}+\cdots)q^{6}+\cdots\)
850.4.a.s 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 170.4.c.a \(10\) \(-5\) \(0\) \(-26\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta _{2})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
850.4.a.t 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 850.4.a.q \(10\) \(-1\) \(0\) \(53\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-\beta _{1}q^{3}+4q^{4}-2\beta _{1}q^{6}+(11+\cdots)q^{7}+\cdots\)
850.4.a.u 850.a 1.a $5$ $50.152$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 850.4.a.p \(10\) \(5\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta _{1})q^{3}+4q^{4}+(2+2\beta _{1}+\cdots)q^{6}+\cdots\)
850.4.a.v 850.a 1.a $7$ $50.152$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 170.4.c.b \(-14\) \(-1\) \(0\) \(26\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(4+\cdots)q^{7}+\cdots\)
850.4.a.w 850.a 1.a $7$ $50.152$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 170.4.c.b \(14\) \(1\) \(0\) \(-26\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(-4+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(850))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(850)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 2}\)