Properties

Label 850.2.g.d.149.1
Level $850$
Weight $2$
Character 850.149
Analytic conductor $6.787$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(149,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.g (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 850.149
Dual form 850.2.g.d.599.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{8} +3.00000i q^{9} +(-4.00000 + 4.00000i) q^{11} +4.00000i q^{13} +1.00000 q^{16} +(4.00000 + 1.00000i) q^{17} +3.00000i q^{18} -4.00000i q^{19} +(-4.00000 + 4.00000i) q^{22} +(4.00000 + 4.00000i) q^{23} +4.00000i q^{26} +(3.00000 + 3.00000i) q^{29} +(-4.00000 - 4.00000i) q^{31} +1.00000 q^{32} +(4.00000 + 1.00000i) q^{34} +3.00000i q^{36} +(3.00000 - 3.00000i) q^{37} -4.00000i q^{38} +(1.00000 - 1.00000i) q^{41} +4.00000 q^{43} +(-4.00000 + 4.00000i) q^{44} +(4.00000 + 4.00000i) q^{46} -8.00000i q^{47} -7.00000i q^{49} +4.00000i q^{52} +4.00000 q^{53} +(3.00000 + 3.00000i) q^{58} -4.00000i q^{59} +(-9.00000 + 9.00000i) q^{61} +(-4.00000 - 4.00000i) q^{62} +1.00000 q^{64} +12.0000i q^{67} +(4.00000 + 1.00000i) q^{68} +(-4.00000 - 4.00000i) q^{71} +3.00000i q^{72} +(-5.00000 + 5.00000i) q^{73} +(3.00000 - 3.00000i) q^{74} -4.00000i q^{76} +(-8.00000 + 8.00000i) q^{79} -9.00000 q^{81} +(1.00000 - 1.00000i) q^{82} +4.00000 q^{83} +4.00000 q^{86} +(-4.00000 + 4.00000i) q^{88} +(4.00000 + 4.00000i) q^{92} -8.00000i q^{94} +(3.00000 - 3.00000i) q^{97} -7.00000i q^{98} +(-12.0000 - 12.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 8 q^{11} + 2 q^{16} + 8 q^{17} - 8 q^{22} + 8 q^{23} + 6 q^{29} - 8 q^{31} + 2 q^{32} + 8 q^{34} + 6 q^{37} + 2 q^{41} + 8 q^{43} - 8 q^{44} + 8 q^{46} + 8 q^{53} + 6 q^{58}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −4.00000 + 4.00000i −1.20605 + 1.20605i −0.233748 + 0.972297i \(0.575099\pi\)
−0.972297 + 0.233748i \(0.924901\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 + 1.00000i 0.970143 + 0.242536i
\(18\) 3.00000i 0.707107i
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 + 4.00000i −0.852803 + 0.852803i
\(23\) 4.00000 + 4.00000i 0.834058 + 0.834058i 0.988069 0.154011i \(-0.0492193\pi\)
−0.154011 + 0.988069i \(0.549219\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.00000i 0.784465i
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 + 3.00000i 0.557086 + 0.557086i 0.928477 0.371391i \(-0.121119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −4.00000 4.00000i −0.718421 0.718421i 0.249861 0.968282i \(-0.419615\pi\)
−0.968282 + 0.249861i \(0.919615\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.00000 + 1.00000i 0.685994 + 0.171499i
\(35\) 0 0
\(36\) 3.00000i 0.500000i
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 1.00000i 0.156174 0.156174i −0.624695 0.780869i \(-0.714777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −4.00000 + 4.00000i −0.603023 + 0.603023i
\(45\) 0 0
\(46\) 4.00000 + 4.00000i 0.589768 + 0.589768i
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 4.00000i 0.554700i
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 3.00000 + 3.00000i 0.393919 + 0.393919i
\(59\) 4.00000i 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 0 0
\(61\) −9.00000 + 9.00000i −1.15233 + 1.15233i −0.166248 + 0.986084i \(0.553165\pi\)
−0.986084 + 0.166248i \(0.946835\pi\)
\(62\) −4.00000 4.00000i −0.508001 0.508001i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 4.00000 + 1.00000i 0.485071 + 0.121268i
\(69\) 0 0
\(70\) 0 0
\(71\) −4.00000 4.00000i −0.474713 0.474713i 0.428723 0.903436i \(-0.358964\pi\)
−0.903436 + 0.428723i \(0.858964\pi\)
\(72\) 3.00000i 0.353553i
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 3.00000 3.00000i 0.348743 0.348743i
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 + 8.00000i −0.900070 + 0.900070i −0.995442 0.0953714i \(-0.969596\pi\)
0.0953714 + 0.995442i \(0.469596\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 1.00000 1.00000i 0.110432 0.110432i
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −4.00000 + 4.00000i −0.426401 + 0.426401i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 + 4.00000i 0.417029 + 0.417029i
\(93\) 0 0
\(94\) 8.00000i 0.825137i
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 7.00000i 0.707107i
\(99\) −12.0000 12.0000i −1.20605 1.20605i
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i −0.615338 0.788263i \(-0.710980\pi\)
0.615338 0.788263i \(-0.289020\pi\)
\(104\) 4.00000i 0.392232i
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 8.00000 8.00000i 0.773389 0.773389i −0.205308 0.978697i \(-0.565820\pi\)
0.978697 + 0.205308i \(0.0658197\pi\)
\(108\) 0 0
\(109\) −3.00000 + 3.00000i −0.287348 + 0.287348i −0.836031 0.548683i \(-0.815129\pi\)
0.548683 + 0.836031i \(0.315129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 1.00000i −0.0940721 0.0940721i 0.658505 0.752577i \(-0.271189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.00000 + 3.00000i 0.278543 + 0.278543i
\(117\) −12.0000 −1.10940
\(118\) 4.00000i 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) 21.0000i 1.90909i
\(122\) −9.00000 + 9.00000i −0.814822 + 0.814822i
\(123\) 0 0
\(124\) −4.00000 4.00000i −0.359211 0.359211i
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −4.00000 4.00000i −0.349482 0.349482i 0.510435 0.859916i \(-0.329484\pi\)
−0.859916 + 0.510435i \(0.829484\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000i 1.03664i
\(135\) 0 0
\(136\) 4.00000 + 1.00000i 0.342997 + 0.0857493i
\(137\) 8.00000i 0.683486i −0.939793 0.341743i \(-0.888983\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) 8.00000 + 8.00000i 0.678551 + 0.678551i 0.959672 0.281121i \(-0.0907063\pi\)
−0.281121 + 0.959672i \(0.590706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.00000 4.00000i −0.335673 0.335673i
\(143\) −16.0000 16.0000i −1.33799 1.33799i
\(144\) 3.00000i 0.250000i
\(145\) 0 0
\(146\) −5.00000 + 5.00000i −0.413803 + 0.413803i
\(147\) 0 0
\(148\) 3.00000 3.00000i 0.246598 0.246598i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 4.00000i 0.324443i
\(153\) −3.00000 + 12.0000i −0.242536 + 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) −8.00000 + 8.00000i −0.636446 + 0.636446i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −9.00000 −0.707107
\(163\) 4.00000 + 4.00000i 0.313304 + 0.313304i 0.846188 0.532884i \(-0.178892\pi\)
−0.532884 + 0.846188i \(0.678892\pi\)
\(164\) 1.00000 1.00000i 0.0780869 0.0780869i
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 8.00000 8.00000i 0.619059 0.619059i −0.326231 0.945290i \(-0.605779\pi\)
0.945290 + 0.326231i \(0.105779\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 12.0000 0.917663
\(172\) 4.00000 0.304997
\(173\) −5.00000 + 5.00000i −0.380143 + 0.380143i −0.871154 0.491011i \(-0.836628\pi\)
0.491011 + 0.871154i \(0.336628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 + 4.00000i −0.301511 + 0.301511i
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000i 0.298974i −0.988764 0.149487i \(-0.952238\pi\)
0.988764 0.149487i \(-0.0477622\pi\)
\(180\) 0 0
\(181\) 11.0000 11.0000i 0.817624 0.817624i −0.168140 0.985763i \(-0.553776\pi\)
0.985763 + 0.168140i \(0.0537759\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000 + 4.00000i 0.294884 + 0.294884i
\(185\) 0 0
\(186\) 0 0
\(187\) −20.0000 + 12.0000i −1.46254 + 0.877527i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −11.0000 11.0000i −0.791797 0.791797i 0.189989 0.981786i \(-0.439155\pi\)
−0.981786 + 0.189989i \(0.939155\pi\)
\(194\) 3.00000 3.00000i 0.215387 0.215387i
\(195\) 0 0
\(196\) 7.00000i 0.500000i
\(197\) −5.00000 5.00000i −0.356235 0.356235i 0.506188 0.862423i \(-0.331054\pi\)
−0.862423 + 0.506188i \(0.831054\pi\)
\(198\) −12.0000 12.0000i −0.852803 0.852803i
\(199\) −12.0000 12.0000i −0.850657 0.850657i 0.139557 0.990214i \(-0.455432\pi\)
−0.990214 + 0.139557i \(0.955432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.0000 0.844317
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 16.0000i 1.11477i
\(207\) −12.0000 + 12.0000i −0.834058 + 0.834058i
\(208\) 4.00000i 0.277350i
\(209\) 16.0000 + 16.0000i 1.10674 + 1.10674i
\(210\) 0 0
\(211\) 16.0000 16.0000i 1.10149 1.10149i 0.107254 0.994232i \(-0.465794\pi\)
0.994232 0.107254i \(-0.0342057\pi\)
\(212\) 4.00000 0.274721
\(213\) 0 0
\(214\) 8.00000 8.00000i 0.546869 0.546869i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −3.00000 + 3.00000i −0.203186 + 0.203186i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 + 16.0000i −0.269069 + 1.07628i
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.00000 1.00000i −0.0665190 0.0665190i
\(227\) −20.0000 20.0000i −1.32745 1.32745i −0.907591 0.419856i \(-0.862081\pi\)
−0.419856 0.907591i \(-0.637919\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 + 3.00000i 0.196960 + 0.196960i
\(233\) 5.00000 5.00000i 0.327561 0.327561i −0.524097 0.851658i \(-0.675597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) −12.0000 −0.784465
\(235\) 0 0
\(236\) 4.00000i 0.260378i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 21.0000 + 21.0000i 1.35273 + 1.35273i 0.882595 + 0.470134i \(0.155794\pi\)
0.470134 + 0.882595i \(0.344206\pi\)
\(242\) 21.0000i 1.34993i
\(243\) 0 0
\(244\) −9.00000 + 9.00000i −0.576166 + 0.576166i
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000 1.01806
\(248\) −4.00000 4.00000i −0.254000 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −9.00000 + 9.00000i −0.557086 + 0.557086i
\(262\) −4.00000 4.00000i −0.247121 0.247121i
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 12.0000i 0.733017i
\(269\) 13.0000 + 13.0000i 0.792624 + 0.792624i 0.981920 0.189296i \(-0.0606206\pi\)
−0.189296 + 0.981920i \(0.560621\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 4.00000 + 1.00000i 0.242536 + 0.0606339i
\(273\) 0 0
\(274\) 8.00000i 0.483298i
\(275\) 0 0
\(276\) 0 0
\(277\) −7.00000 + 7.00000i −0.420589 + 0.420589i −0.885407 0.464817i \(-0.846120\pi\)
0.464817 + 0.885407i \(0.346120\pi\)
\(278\) 8.00000 + 8.00000i 0.479808 + 0.479808i
\(279\) 12.0000 12.0000i 0.718421 0.718421i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 4.00000 + 4.00000i 0.237775 + 0.237775i 0.815928 0.578153i \(-0.196226\pi\)
−0.578153 + 0.815928i \(0.696226\pi\)
\(284\) −4.00000 4.00000i −0.237356 0.237356i
\(285\) 0 0
\(286\) −16.0000 16.0000i −0.946100 0.946100i
\(287\) 0 0
\(288\) 3.00000i 0.176777i
\(289\) 15.0000 + 8.00000i 0.882353 + 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) −5.00000 + 5.00000i −0.292603 + 0.292603i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3.00000 3.00000i 0.174371 0.174371i
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) −16.0000 + 16.0000i −0.925304 + 0.925304i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) −3.00000 + 12.0000i −0.171499 + 0.685994i
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 24.0000i −1.36092 1.36092i −0.872753 0.488162i \(-0.837667\pi\)
−0.488162 0.872753i \(-0.662333\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 2.00000i 0.112867i
\(315\) 0 0
\(316\) −8.00000 + 8.00000i −0.450035 + 0.450035i
\(317\) 15.0000 + 15.0000i 0.842484 + 0.842484i 0.989181 0.146697i \(-0.0468644\pi\)
−0.146697 + 0.989181i \(0.546864\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000 16.0000i 0.222566 0.890264i
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) 4.00000 + 4.00000i 0.221540 + 0.221540i
\(327\) 0 0
\(328\) 1.00000 1.00000i 0.0552158 0.0552158i
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 4.00000 0.219529
\(333\) 9.00000 + 9.00000i 0.493197 + 0.493197i
\(334\) 8.00000 8.00000i 0.437741 0.437741i
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −3.00000 −0.163178
\(339\) 0 0
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 12.0000 0.648886
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −5.00000 + 5.00000i −0.268802 + 0.268802i
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 4.00000i 0.214115i −0.994253 0.107058i \(-0.965857\pi\)
0.994253 0.107058i \(-0.0341429\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.00000 + 4.00000i −0.213201 + 0.213201i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 4.00000i 0.211407i
\(359\) 24.0000i 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 11.0000 11.0000i 0.578147 0.578147i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 4.00000 + 4.00000i 0.208514 + 0.208514i
\(369\) 3.00000 + 3.00000i 0.156174 + 0.156174i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) −20.0000 + 12.0000i −1.03418 + 0.620505i
\(375\) 0 0
\(376\) 8.00000i 0.412568i
\(377\) −12.0000 + 12.0000i −0.618031 + 0.618031i
\(378\) 0 0
\(379\) −12.0000 12.0000i −0.616399 0.616399i 0.328207 0.944606i \(-0.393556\pi\)
−0.944606 + 0.328207i \(0.893556\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.0000 11.0000i −0.559885 0.559885i
\(387\) 12.0000i 0.609994i
\(388\) 3.00000 3.00000i 0.152302 0.152302i
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) 12.0000 + 20.0000i 0.606866 + 1.01144i
\(392\) 7.00000i 0.353553i
\(393\) 0 0
\(394\) −5.00000 5.00000i −0.251896 0.251896i
\(395\) 0 0
\(396\) −12.0000 12.0000i −0.603023 0.603023i
\(397\) −15.0000 15.0000i −0.752828 0.752828i 0.222178 0.975006i \(-0.428683\pi\)
−0.975006 + 0.222178i \(0.928683\pi\)
\(398\) −12.0000 12.0000i −0.601506 0.601506i
\(399\) 0 0
\(400\) 0 0
\(401\) −19.0000 + 19.0000i −0.948815 + 0.948815i −0.998752 0.0499376i \(-0.984098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 16.0000 16.0000i 0.797017 0.797017i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000i 1.18964i
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.0000i 0.788263i
\(413\) 0 0
\(414\) −12.0000 + 12.0000i −0.589768 + 0.589768i
\(415\) 0 0
\(416\) 4.00000i 0.196116i
\(417\) 0 0
\(418\) 16.0000 + 16.0000i 0.782586 + 0.782586i
\(419\) 12.0000 12.0000i 0.586238 0.586238i −0.350372 0.936611i \(-0.613945\pi\)
0.936611 + 0.350372i \(0.113945\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 16.0000 16.0000i 0.778868 0.778868i
\(423\) 24.0000 1.16692
\(424\) 4.00000 0.194257
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 8.00000 8.00000i 0.386695 0.386695i
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 + 24.0000i −1.15604 + 1.15604i −0.170720 + 0.985320i \(0.554609\pi\)
−0.985320 + 0.170720i \(0.945391\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.00000 + 3.00000i −0.143674 + 0.143674i
\(437\) 16.0000 16.0000i 0.765384 0.765384i
\(438\) 0 0
\(439\) −12.0000 12.0000i −0.572729 0.572729i 0.360161 0.932890i \(-0.382722\pi\)
−0.932890 + 0.360161i \(0.882722\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) −4.00000 + 16.0000i −0.190261 + 0.761042i
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) 0 0
\(448\) 0 0
\(449\) −3.00000 + 3.00000i −0.141579 + 0.141579i −0.774344 0.632765i \(-0.781920\pi\)
0.632765 + 0.774344i \(0.281920\pi\)
\(450\) 0 0
\(451\) 8.00000i 0.376705i
\(452\) −1.00000 1.00000i −0.0470360 0.0470360i
\(453\) 0 0
\(454\) −20.0000 20.0000i −0.938647 0.938647i
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 6.00000i 0.280362i
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000i 0.931493i −0.884918 0.465746i \(-0.845786\pi\)
0.884918 0.465746i \(-0.154214\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 3.00000 + 3.00000i 0.139272 + 0.139272i
\(465\) 0 0
\(466\) 5.00000 5.00000i 0.231621 0.231621i
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) −12.0000 −0.554700
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000i 0.184115i
\(473\) −16.0000 + 16.0000i −0.735681 + 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 0 0
\(479\) 8.00000 + 8.00000i 0.365529 + 0.365529i 0.865844 0.500314i \(-0.166782\pi\)
−0.500314 + 0.865844i \(0.666782\pi\)
\(480\) 0 0
\(481\) 12.0000 + 12.0000i 0.547153 + 0.547153i
\(482\) 21.0000 + 21.0000i 0.956524 + 0.956524i
\(483\) 0 0
\(484\) 21.0000i 0.954545i
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0000 20.0000i −0.906287 0.906287i 0.0896838 0.995970i \(-0.471414\pi\)
−0.995970 + 0.0896838i \(0.971414\pi\)
\(488\) −9.00000 + 9.00000i −0.407411 + 0.407411i
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0000i 0.902587i 0.892375 + 0.451294i \(0.149037\pi\)
−0.892375 + 0.451294i \(0.850963\pi\)
\(492\) 0 0
\(493\) 9.00000 + 15.0000i 0.405340 + 0.675566i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) −4.00000 4.00000i −0.179605 0.179605i
\(497\) 0 0
\(498\) 0 0
\(499\) −8.00000 + 8.00000i −0.358129 + 0.358129i −0.863123 0.504994i \(-0.831495\pi\)
0.504994 + 0.863123i \(0.331495\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) 4.00000 + 4.00000i 0.178351 + 0.178351i 0.790637 0.612286i \(-0.209750\pi\)
−0.612286 + 0.790637i \(0.709750\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −32.0000 −1.42257
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 32.0000 + 32.0000i 1.40736 + 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.00000 1.00000i 0.0438108 0.0438108i −0.684862 0.728673i \(-0.740138\pi\)
0.728673 + 0.684862i \(0.240138\pi\)
\(522\) −9.00000 + 9.00000i −0.393919 + 0.393919i
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) −4.00000 4.00000i −0.174741 0.174741i
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) −12.0000 20.0000i −0.522728 0.871214i
\(528\) 0 0
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 4.00000 + 4.00000i 0.173259 + 0.173259i
\(534\) 0 0
\(535\) 0 0
\(536\) 12.0000i 0.518321i
\(537\) 0 0
\(538\) 13.0000 + 13.0000i 0.560470 + 0.560470i
\(539\) 28.0000 + 28.0000i 1.20605 + 1.20605i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −8.00000 −0.343629
\(543\) 0 0
\(544\) 4.00000 + 1.00000i 0.171499 + 0.0428746i
\(545\) 0 0
\(546\) 0 0
\(547\) −12.0000 + 12.0000i −0.513083 + 0.513083i −0.915470 0.402387i \(-0.868181\pi\)
0.402387 + 0.915470i \(0.368181\pi\)
\(548\) 8.00000i 0.341743i
\(549\) −27.0000 27.0000i −1.15233 1.15233i
\(550\) 0 0
\(551\) 12.0000 12.0000i 0.511217 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) −7.00000 + 7.00000i −0.297402 + 0.297402i
\(555\) 0 0
\(556\) 8.00000 + 8.00000i 0.339276 + 0.339276i
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) 12.0000 12.0000i 0.508001 0.508001i
\(559\) 16.0000i 0.676728i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 + 4.00000i 0.168133 + 0.168133i
\(567\) 0 0
\(568\) −4.00000 4.00000i −0.167836 0.167836i
\(569\) 24.0000i 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(570\) 0 0
\(571\) −24.0000 + 24.0000i −1.00437 + 1.00437i −0.00437833 + 0.999990i \(0.501394\pi\)
−0.999990 + 0.00437833i \(0.998606\pi\)
\(572\) −16.0000 16.0000i −0.668994 0.668994i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 3.00000i 0.125000i
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 15.0000 + 8.00000i 0.623918 + 0.332756i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −16.0000 + 16.0000i −0.662652 + 0.662652i
\(584\) −5.00000 + 5.00000i −0.206901 + 0.206901i
\(585\) 0 0
\(586\) 6.00000i 0.247858i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) −16.0000 + 16.0000i −0.659269 + 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 3.00000 3.00000i 0.123299 0.123299i
\(593\) −16.0000 −0.657041 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) −16.0000 + 16.0000i −0.654289 + 0.654289i
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −19.0000 + 19.0000i −0.775026 + 0.775026i −0.978980 0.203954i \(-0.934621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) −36.0000 −1.46603
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28.0000 28.0000i 1.13648 1.13648i 0.147409 0.989076i \(-0.452907\pi\)
0.989076 0.147409i \(-0.0470935\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) 32.0000 1.29458
\(612\) −3.00000 + 12.0000i −0.121268 + 0.485071i
\(613\) 26.0000i 1.05013i −0.851062 0.525065i \(-0.824041\pi\)
0.851062 0.525065i \(-0.175959\pi\)
\(614\) 12.0000i 0.484281i
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 3.00000i 0.120775 0.120775i −0.644136 0.764911i \(-0.722783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) −8.00000 + 8.00000i −0.321547 + 0.321547i −0.849360 0.527813i \(-0.823012\pi\)
0.527813 + 0.849360i \(0.323012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.0000 24.0000i −0.962312 0.962312i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 9.00000 + 9.00000i 0.359712 + 0.359712i
\(627\) 0 0
\(628\) 2.00000i 0.0798087i
\(629\) 15.0000 9.00000i 0.598089 0.358854i
\(630\) 0 0
\(631\) 40.0000i 1.59237i −0.605050 0.796187i \(-0.706847\pi\)
0.605050 0.796187i \(-0.293153\pi\)
\(632\) −8.00000 + 8.00000i −0.318223 + 0.318223i
\(633\) 0 0
\(634\) 15.0000 + 15.0000i 0.595726 + 0.595726i
\(635\) 0 0
\(636\) 0 0
\(637\) 28.0000 1.10940
\(638\) −24.0000 −0.950169
\(639\) 12.0000 12.0000i 0.474713 0.474713i
\(640\) 0 0
\(641\) 11.0000 + 11.0000i 0.434474 + 0.434474i 0.890147 0.455673i \(-0.150601\pi\)
−0.455673 + 0.890147i \(0.650601\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.00000 16.0000i 0.157378 0.629512i
\(647\) 32.0000i 1.25805i 0.777385 + 0.629025i \(0.216546\pi\)
−0.777385 + 0.629025i \(0.783454\pi\)
\(648\) −9.00000 −0.353553
\(649\) 16.0000 + 16.0000i 0.628055 + 0.628055i
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 + 4.00000i 0.156652 + 0.156652i
\(653\) 29.0000 + 29.0000i 1.13486 + 1.13486i 0.989358 + 0.145499i \(0.0464789\pi\)
0.145499 + 0.989358i \(0.453521\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 1.00000i 0.0390434 0.0390434i
\(657\) −15.0000 15.0000i −0.585206 0.585206i
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 20.0000i 0.777910i −0.921257 0.388955i \(-0.872836\pi\)
0.921257 0.388955i \(-0.127164\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 9.00000 + 9.00000i 0.348743 + 0.348743i
\(667\) 24.0000i 0.929284i
\(668\) 8.00000 8.00000i 0.309529 0.309529i
\(669\) 0 0
\(670\) 0 0
\(671\) 72.0000i 2.77953i
\(672\) 0 0
\(673\) 19.0000 + 19.0000i 0.732396 + 0.732396i 0.971094 0.238698i \(-0.0767205\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(674\) −7.00000 + 7.00000i −0.269630 + 0.269630i
\(675\) 0 0
\(676\) −3.00000 −0.115385
\(677\) 13.0000 13.0000i 0.499631 0.499631i −0.411692 0.911323i \(-0.635062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 32.0000 1.22534
\(683\) −20.0000 + 20.0000i −0.765279 + 0.765279i −0.977271 0.211993i \(-0.932005\pi\)
0.211993 + 0.977271i \(0.432005\pi\)
\(684\) 12.0000 0.458831
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 16.0000i 0.609551i
\(690\) 0 0
\(691\) −24.0000 + 24.0000i −0.913003 + 0.913003i −0.996507 0.0835044i \(-0.973389\pi\)
0.0835044 + 0.996507i \(0.473389\pi\)
\(692\) −5.00000 + 5.00000i −0.190071 + 0.190071i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.00000 3.00000i 0.189389 0.113633i
\(698\) 4.00000i 0.151402i
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −12.0000 12.0000i −0.452589 0.452589i
\(704\) −4.00000 + 4.00000i −0.150756 + 0.150756i
\(705\) 0 0
\(706\) 14.0000i 0.526897i
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 + 23.0000i 0.863783 + 0.863783i 0.991775 0.127992i \(-0.0408532\pi\)
−0.127992 + 0.991775i \(0.540853\pi\)
\(710\) 0 0
\(711\) −24.0000 24.0000i −0.900070 0.900070i
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000i 0.149487i
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) 8.00000 + 8.00000i 0.298350 + 0.298350i 0.840367 0.542018i \(-0.182339\pi\)
−0.542018 + 0.840367i \(0.682339\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) 11.0000 11.0000i 0.408812 0.408812i
\(725\) 0 0
\(726\) 0 0
\(727\) 48.0000i 1.78022i −0.455744 0.890111i \(-0.650627\pi\)
0.455744 0.890111i \(-0.349373\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 16.0000 + 4.00000i 0.591781 + 0.147945i
\(732\) 0 0
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 4.00000 + 4.00000i 0.147442 + 0.147442i
\(737\) −48.0000 48.0000i −1.76810 1.76810i
\(738\) 3.00000 + 3.00000i 0.110432 + 0.110432i
\(739\) 4.00000i 0.147142i −0.997290 0.0735712i \(-0.976560\pi\)
0.997290 0.0735712i \(-0.0234396\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 4.00000i 0.146450i
\(747\) 12.0000i 0.439057i
\(748\) −20.0000 + 12.0000i −0.731272 + 0.438763i
\(749\) 0 0
\(750\) 0 0
\(751\) 16.0000 + 16.0000i 0.583848 + 0.583848i 0.935959 0.352110i \(-0.114536\pi\)
−0.352110 + 0.935959i \(0.614536\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) −12.0000 + 12.0000i −0.437014 + 0.437014i
\(755\) 0 0
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −12.0000 12.0000i −0.435860 0.435860i
\(759\) 0 0
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.0000 11.0000i −0.395899 0.395899i
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 12.0000i 0.431331i
\(775\) 0 0
\(776\) 3.00000 3.00000i 0.107694 0.107694i
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) −4.00000 4.00000i −0.143315 0.143315i
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 12.0000 + 20.0000i 0.429119 + 0.715199i
\(783\) 0 0
\(784\) 7.00000i 0.250000i
\(785\) 0 0
\(786\) 0 0
\(787\) −12.0000 + 12.0000i −0.427754 + 0.427754i −0.887863 0.460109i \(-0.847810\pi\)
0.460109 + 0.887863i \(0.347810\pi\)
\(788\) −5.00000 5.00000i −0.178118 0.178118i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −12.0000 12.0000i −0.426401 0.426401i
\(793\) −36.0000 36.0000i −1.27840 1.27840i
\(794\) −15.0000 15.0000i −0.532330 0.532330i
\(795\) 0 0
\(796\) −12.0000 12.0000i −0.425329 0.425329i
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) 0 0
\(799\) 8.00000 32.0000i 0.283020 1.13208i
\(800\) 0 0
\(801\) 0 0
\(802\) −19.0000 + 19.0000i −0.670913 + 0.670913i
\(803\) 40.0000i 1.41157i
\(804\) 0 0
\(805\) 0 0
\(806\) 16.0000 16.0000i 0.563576 0.563576i
\(807\) 0 0
\(808\) 12.0000 0.422159
\(809\) −23.0000 + 23.0000i −0.808637 + 0.808637i −0.984428 0.175791i \(-0.943752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −4.00000 4.00000i −0.140459 0.140459i 0.633381 0.773840i \(-0.281667\pi\)
−0.773840 + 0.633381i \(0.781667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 24.0000i 0.841200i
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000i 0.559769i
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 0 0
\(821\) −19.0000 19.0000i −0.663105 0.663105i 0.293006 0.956111i \(-0.405344\pi\)
−0.956111 + 0.293006i \(0.905344\pi\)
\(822\) 0 0
\(823\) −36.0000 36.0000i −1.25488 1.25488i −0.953506 0.301376i \(-0.902554\pi\)
−0.301376 0.953506i \(-0.597446\pi\)
\(824\) 16.0000i 0.557386i
\(825\) 0 0
\(826\) 0 0
\(827\) 20.0000 + 20.0000i 0.695468 + 0.695468i 0.963430 0.267961i \(-0.0863500\pi\)
−0.267961 + 0.963430i \(0.586350\pi\)
\(828\) −12.0000 + 12.0000i −0.417029 + 0.417029i
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.00000i 0.138675i
\(833\) 7.00000 28.0000i 0.242536 0.970143i
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000 + 16.0000i 0.553372 + 0.553372i
\(837\) 0 0
\(838\) 12.0000 12.0000i 0.414533 0.414533i
\(839\) 32.0000 32.0000i 1.10476 1.10476i 0.110935 0.993828i \(-0.464615\pi\)
0.993828 0.110935i \(-0.0353845\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) −28.0000 −0.964944
\(843\) 0 0
\(844\) 16.0000 16.0000i 0.550743 0.550743i
\(845\) 0 0
\(846\) 24.0000 0.825137
\(847\) 0 0
\(848\) 4.00000 0.137361
\(849\) 0 0
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) 25.0000 25.0000i 0.855984 0.855984i −0.134878 0.990862i \(-0.543064\pi\)
0.990862 + 0.134878i \(0.0430644\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 8.00000i 0.273434 0.273434i
\(857\) 15.0000 + 15.0000i 0.512390 + 0.512390i 0.915258 0.402868i \(-0.131987\pi\)
−0.402868 + 0.915258i \(0.631987\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i 0.789188 + 0.614152i \(0.210502\pi\)
−0.789188 + 0.614152i \(0.789498\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24.0000 + 24.0000i −0.817443 + 0.817443i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.0000 0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) 64.0000i 2.17105i
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) −3.00000 + 3.00000i −0.101593 + 0.101593i
\(873\) 9.00000 + 9.00000i 0.304604 + 0.304604i
\(874\) 16.0000 16.0000i 0.541208 0.541208i
\(875\) 0 0
\(876\) 0 0
\(877\) −35.0000 35.0000i −1.18187 1.18187i −0.979260 0.202606i \(-0.935059\pi\)
−0.202606 0.979260i \(-0.564941\pi\)
\(878\) −12.0000 12.0000i −0.404980 0.404980i
\(879\) 0 0
\(880\) 0 0
\(881\) −39.0000 39.0000i −1.31394 1.31394i −0.918483 0.395460i \(-0.870585\pi\)
−0.395460 0.918483i \(-0.629415\pi\)
\(882\) 21.0000 0.707107
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) −4.00000 + 16.0000i −0.134535 + 0.538138i
\(885\) 0 0
\(886\) 4.00000i 0.134383i
\(887\) 28.0000 28.0000i 0.940148 0.940148i −0.0581593 0.998307i \(-0.518523\pi\)
0.998307 + 0.0581593i \(0.0185231\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.0000 36.0000i 1.20605 1.20605i
\(892\) −16.0000 −0.535720
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 24.0000i 0.800445i
\(900\) 0 0
\(901\) 16.0000 + 4.00000i 0.533037 + 0.133259i
\(902\) 8.00000i 0.266371i
\(903\) 0 0
\(904\) −1.00000 1.00000i −0.0332595 0.0332595i
\(905\) 0 0
\(906\) 0 0
\(907\) −20.0000 20.0000i −0.664089 0.664089i 0.292252 0.956341i \(-0.405595\pi\)
−0.956341 + 0.292252i \(0.905595\pi\)
\(908\) −20.0000 20.0000i −0.663723 0.663723i
\(909\) 36.0000i 1.19404i
\(910\) 0 0
\(911\) −4.00000 + 4.00000i −0.132526 + 0.132526i −0.770258 0.637732i \(-0.779873\pi\)
0.637732 + 0.770258i \(0.279873\pi\)
\(912\) 0 0
\(913\) −16.0000 + 16.0000i −0.529523 + 0.529523i
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) 6.00000i 0.198246i
\(917\) 0 0
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0000i 0.658665i
\(923\) 16.0000 16.0000i 0.526646 0.526646i
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000i 0.788689i
\(927\) 48.0000 1.57653
\(928\) 3.00000 + 3.00000i 0.0984798 + 0.0984798i
\(929\) −13.0000 + 13.0000i −0.426516 + 0.426516i −0.887440 0.460924i \(-0.847518\pi\)
0.460924 + 0.887440i \(0.347518\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) 5.00000 5.00000i 0.163780 0.163780i
\(933\) 0 0
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −12.0000 −0.392232
\(937\) 48.0000 1.56809 0.784046 0.620703i \(-0.213153\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.00000 1.00000i 0.0325991 0.0325991i −0.690619 0.723218i \(-0.742662\pi\)
0.723218 + 0.690619i \(0.242662\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 4.00000i 0.130189i
\(945\) 0 0
\(946\) −16.0000 + 16.0000i −0.520205 + 0.520205i
\(947\) −12.0000 + 12.0000i −0.389948 + 0.389948i −0.874669 0.484721i \(-0.838921\pi\)
0.484721 + 0.874669i \(0.338921\pi\)
\(948\) 0 0
\(949\) −20.0000 20.0000i −0.649227 0.649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000i 0.777436i 0.921357 + 0.388718i \(0.127082\pi\)
−0.921357 + 0.388718i \(0.872918\pi\)
\(954\) 12.0000i 0.388514i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 8.00000 + 8.00000i 0.258468 + 0.258468i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 12.0000 + 12.0000i 0.386896 + 0.386896i
\(963\) 24.0000 + 24.0000i 0.773389 + 0.773389i
\(964\) 21.0000 + 21.0000i 0.676364 + 0.676364i
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 21.0000i 0.674966i
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0000i 0.641831i −0.947108 0.320915i \(-0.896010\pi\)
0.947108 0.320915i \(-0.103990\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −20.0000 20.0000i −0.640841 0.640841i
\(975\) 0 0
\(976\) −9.00000 + 9.00000i −0.288083 + 0.288083i
\(977\) 8.00000 0.255943 0.127971 0.991778i \(-0.459153\pi\)
0.127971 + 0.991778i \(0.459153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −9.00000 9.00000i −0.287348 0.287348i
\(982\) 20.0000i 0.638226i
\(983\) 20.0000 20.0000i 0.637901 0.637901i −0.312136 0.950037i \(-0.601045\pi\)
0.950037 + 0.312136i \(0.101045\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 9.00000 + 15.0000i 0.286618 + 0.477697i
\(987\) 0 0
\(988\) 16.0000 0.509028
\(989\) 16.0000 + 16.0000i 0.508770 + 0.508770i
\(990\) 0 0
\(991\) −24.0000 24.0000i −0.762385 0.762385i 0.214368 0.976753i \(-0.431231\pi\)
−0.976753 + 0.214368i \(0.931231\pi\)
\(992\) −4.00000 4.00000i −0.127000 0.127000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 35.0000 + 35.0000i 1.10846 + 1.10846i 0.993353 + 0.115108i \(0.0367215\pi\)
0.115108 + 0.993353i \(0.463279\pi\)
\(998\) −8.00000 + 8.00000i −0.253236 + 0.253236i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.g.d.149.1 2
5.2 odd 4 34.2.c.b.13.1 2
5.3 odd 4 850.2.h.c.251.1 2
5.4 even 2 850.2.g.a.149.1 2
15.2 even 4 306.2.g.d.217.1 2
17.4 even 4 850.2.g.a.599.1 2
20.7 even 4 272.2.o.c.81.1 2
40.27 even 4 1088.2.o.i.897.1 2
40.37 odd 4 1088.2.o.k.897.1 2
60.47 odd 4 2448.2.be.j.1441.1 2
85.2 odd 8 578.2.a.b.1.2 2
85.4 even 4 inner 850.2.g.d.599.1 2
85.7 even 16 578.2.d.f.399.2 8
85.12 even 16 578.2.d.f.155.1 8
85.22 even 16 578.2.d.f.155.2 8
85.27 even 16 578.2.d.f.399.1 8
85.32 odd 8 578.2.a.b.1.1 2
85.37 even 16 578.2.d.f.423.2 8
85.38 odd 4 850.2.h.c.701.1 2
85.42 odd 8 578.2.b.c.577.1 2
85.47 odd 4 578.2.c.b.327.1 2
85.57 even 16 578.2.d.f.179.1 8
85.62 even 16 578.2.d.f.179.2 8
85.67 odd 4 578.2.c.b.251.1 2
85.72 odd 4 34.2.c.b.21.1 yes 2
85.77 odd 8 578.2.b.c.577.2 2
85.82 even 16 578.2.d.f.423.1 8
255.2 even 8 5202.2.a.bb.1.1 2
255.32 even 8 5202.2.a.bb.1.2 2
255.242 even 4 306.2.g.d.55.1 2
340.87 even 8 4624.2.a.l.1.2 2
340.287 even 8 4624.2.a.l.1.1 2
340.327 even 4 272.2.o.c.225.1 2
680.157 odd 4 1088.2.o.k.769.1 2
680.667 even 4 1088.2.o.i.769.1 2
1020.1007 odd 4 2448.2.be.j.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.c.b.13.1 2 5.2 odd 4
34.2.c.b.21.1 yes 2 85.72 odd 4
272.2.o.c.81.1 2 20.7 even 4
272.2.o.c.225.1 2 340.327 even 4
306.2.g.d.55.1 2 255.242 even 4
306.2.g.d.217.1 2 15.2 even 4
578.2.a.b.1.1 2 85.32 odd 8
578.2.a.b.1.2 2 85.2 odd 8
578.2.b.c.577.1 2 85.42 odd 8
578.2.b.c.577.2 2 85.77 odd 8
578.2.c.b.251.1 2 85.67 odd 4
578.2.c.b.327.1 2 85.47 odd 4
578.2.d.f.155.1 8 85.12 even 16
578.2.d.f.155.2 8 85.22 even 16
578.2.d.f.179.1 8 85.57 even 16
578.2.d.f.179.2 8 85.62 even 16
578.2.d.f.399.1 8 85.27 even 16
578.2.d.f.399.2 8 85.7 even 16
578.2.d.f.423.1 8 85.82 even 16
578.2.d.f.423.2 8 85.37 even 16
850.2.g.a.149.1 2 5.4 even 2
850.2.g.a.599.1 2 17.4 even 4
850.2.g.d.149.1 2 1.1 even 1 trivial
850.2.g.d.599.1 2 85.4 even 4 inner
850.2.h.c.251.1 2 5.3 odd 4
850.2.h.c.701.1 2 85.38 odd 4
1088.2.o.i.769.1 2 680.667 even 4
1088.2.o.i.897.1 2 40.27 even 4
1088.2.o.k.769.1 2 680.157 odd 4
1088.2.o.k.897.1 2 40.37 odd 4
2448.2.be.j.1441.1 2 60.47 odd 4
2448.2.be.j.1585.1 2 1020.1007 odd 4
4624.2.a.l.1.1 2 340.287 even 8
4624.2.a.l.1.2 2 340.87 even 8
5202.2.a.bb.1.1 2 255.2 even 8
5202.2.a.bb.1.2 2 255.32 even 8