Properties

Label 578.2.d.f.399.1
Level $578$
Weight $2$
Character 578.399
Analytic conductor $4.615$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [578,2,Mod(155,578)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(578, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("578.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 578 = 2 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 578.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.61535323683\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 399.1
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 578.399
Dual form 578.2.d.f.423.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-1.30656 - 0.541196i) q^{5} +(-0.707107 - 0.707107i) q^{8} +(2.12132 + 2.12132i) q^{9} +(-1.30656 + 0.541196i) q^{10} +(-2.16478 - 5.22625i) q^{11} -4.00000i q^{13} -1.00000 q^{16} +3.00000 q^{18} +(2.82843 - 2.82843i) q^{19} +(-0.541196 + 1.30656i) q^{20} +(-5.22625 - 2.16478i) q^{22} +(-2.16478 - 5.22625i) q^{23} +(-2.12132 - 2.12132i) q^{25} +(-2.82843 - 2.82843i) q^{26} +(3.91969 + 1.62359i) q^{29} +(-2.16478 + 5.22625i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(2.12132 - 2.12132i) q^{36} +(-1.62359 + 3.91969i) q^{37} -4.00000i q^{38} +(0.541196 + 1.30656i) q^{40} +(1.30656 - 0.541196i) q^{41} +(2.82843 + 2.82843i) q^{43} +(-5.22625 + 2.16478i) q^{44} +(-1.62359 - 3.91969i) q^{45} +(-5.22625 - 2.16478i) q^{46} -8.00000i q^{47} +(-4.94975 + 4.94975i) q^{49} -3.00000 q^{50} -4.00000 q^{52} +(-2.82843 + 2.82843i) q^{53} +8.00000i q^{55} +(3.91969 - 1.62359i) q^{58} +(2.82843 + 2.82843i) q^{59} +(11.7591 - 4.87076i) q^{61} +(2.16478 + 5.22625i) q^{62} +1.00000i q^{64} +(-2.16478 + 5.22625i) q^{65} +12.0000 q^{67} +(2.16478 - 5.22625i) q^{71} -3.00000i q^{72} +(6.53281 + 2.70598i) q^{73} +(1.62359 + 3.91969i) q^{74} +(-2.82843 - 2.82843i) q^{76} +(4.32957 + 10.4525i) q^{79} +(1.30656 + 0.541196i) q^{80} +9.00000i q^{81} +(0.541196 - 1.30656i) q^{82} +(2.82843 - 2.82843i) q^{83} +4.00000 q^{86} +(-2.16478 + 5.22625i) q^{88} +(-3.91969 - 1.62359i) q^{90} +(-5.22625 + 2.16478i) q^{92} +(-5.65685 - 5.65685i) q^{94} +(-5.22625 + 2.16478i) q^{95} +(-3.91969 - 1.62359i) q^{97} +7.00000i q^{98} +(6.49435 - 15.6788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{16} + 24 q^{18} - 24 q^{50} - 32 q^{52} + 96 q^{67} + 32 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/578\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(4\) 1.00000i 0.500000i
\(5\) −1.30656 0.541196i −0.584313 0.242030i 0.0708890 0.997484i \(-0.477416\pi\)
−0.655202 + 0.755454i \(0.727416\pi\)
\(6\) 0 0
\(7\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.12132 + 2.12132i 0.707107 + 0.707107i
\(10\) −1.30656 + 0.541196i −0.413171 + 0.171141i
\(11\) −2.16478 5.22625i −0.652707 1.57577i −0.808834 0.588037i \(-0.799901\pi\)
0.156127 0.987737i \(-0.450099\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) 3.00000 0.707107
\(19\) 2.82843 2.82843i 0.648886 0.648886i −0.303838 0.952724i \(-0.598268\pi\)
0.952724 + 0.303838i \(0.0982682\pi\)
\(20\) −0.541196 + 1.30656i −0.121015 + 0.292156i
\(21\) 0 0
\(22\) −5.22625 2.16478i −1.11424 0.461534i
\(23\) −2.16478 5.22625i −0.451389 1.08975i −0.971794 0.235830i \(-0.924219\pi\)
0.520406 0.853919i \(-0.325781\pi\)
\(24\) 0 0
\(25\) −2.12132 2.12132i −0.424264 0.424264i
\(26\) −2.82843 2.82843i −0.554700 0.554700i
\(27\) 0 0
\(28\) 0 0
\(29\) 3.91969 + 1.62359i 0.727868 + 0.301493i 0.715676 0.698433i \(-0.246119\pi\)
0.0121924 + 0.999926i \(0.496119\pi\)
\(30\) 0 0
\(31\) −2.16478 + 5.22625i −0.388807 + 0.938663i 0.601387 + 0.798958i \(0.294615\pi\)
−0.990193 + 0.139704i \(0.955385\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 2.12132 2.12132i 0.353553 0.353553i
\(37\) −1.62359 + 3.91969i −0.266916 + 0.644393i −0.999335 0.0364615i \(-0.988391\pi\)
0.732419 + 0.680854i \(0.238391\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 0.541196 + 1.30656i 0.0855706 + 0.206586i
\(41\) 1.30656 0.541196i 0.204051 0.0845206i −0.278317 0.960489i \(-0.589777\pi\)
0.482368 + 0.875969i \(0.339777\pi\)
\(42\) 0 0
\(43\) 2.82843 + 2.82843i 0.431331 + 0.431331i 0.889081 0.457750i \(-0.151344\pi\)
−0.457750 + 0.889081i \(0.651344\pi\)
\(44\) −5.22625 + 2.16478i −0.787887 + 0.326354i
\(45\) −1.62359 3.91969i −0.242030 0.584313i
\(46\) −5.22625 2.16478i −0.770569 0.319180i
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −4.94975 + 4.94975i −0.707107 + 0.707107i
\(50\) −3.00000 −0.424264
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −2.82843 + 2.82843i −0.388514 + 0.388514i −0.874157 0.485643i \(-0.838586\pi\)
0.485643 + 0.874157i \(0.338586\pi\)
\(54\) 0 0
\(55\) 8.00000i 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 3.91969 1.62359i 0.514680 0.213188i
\(59\) 2.82843 + 2.82843i 0.368230 + 0.368230i 0.866831 0.498601i \(-0.166153\pi\)
−0.498601 + 0.866831i \(0.666153\pi\)
\(60\) 0 0
\(61\) 11.7591 4.87076i 1.50559 0.623638i 0.530951 0.847402i \(-0.321835\pi\)
0.974643 + 0.223765i \(0.0718348\pi\)
\(62\) 2.16478 + 5.22625i 0.274928 + 0.663735i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.16478 + 5.22625i −0.268508 + 0.648237i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.16478 5.22625i 0.256913 0.620242i −0.741819 0.670601i \(-0.766036\pi\)
0.998731 + 0.0503587i \(0.0160364\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 6.53281 + 2.70598i 0.764608 + 0.316711i 0.730686 0.682713i \(-0.239200\pi\)
0.0339219 + 0.999424i \(0.489200\pi\)
\(74\) 1.62359 + 3.91969i 0.188738 + 0.455655i
\(75\) 0 0
\(76\) −2.82843 2.82843i −0.324443 0.324443i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.32957 + 10.4525i 0.487115 + 1.17600i 0.956165 + 0.292827i \(0.0945961\pi\)
−0.469051 + 0.883171i \(0.655404\pi\)
\(80\) 1.30656 + 0.541196i 0.146078 + 0.0605076i
\(81\) 9.00000i 1.00000i
\(82\) 0.541196 1.30656i 0.0597651 0.144286i
\(83\) 2.82843 2.82843i 0.310460 0.310460i −0.534628 0.845088i \(-0.679548\pi\)
0.845088 + 0.534628i \(0.179548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −2.16478 + 5.22625i −0.230767 + 0.557120i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −3.91969 1.62359i −0.413171 0.171141i
\(91\) 0 0
\(92\) −5.22625 + 2.16478i −0.544874 + 0.225694i
\(93\) 0 0
\(94\) −5.65685 5.65685i −0.583460 0.583460i
\(95\) −5.22625 + 2.16478i −0.536202 + 0.222102i
\(96\) 0 0
\(97\) −3.91969 1.62359i −0.397984 0.164850i 0.174709 0.984620i \(-0.444101\pi\)
−0.572693 + 0.819770i \(0.694101\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 6.49435 15.6788i 0.652707 1.57577i
\(100\) −2.12132 + 2.12132i −0.212132 + 0.212132i
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) −2.82843 + 2.82843i −0.277350 + 0.277350i
\(105\) 0 0
\(106\) 4.00000i 0.388514i
\(107\) 10.4525 + 4.32957i 1.01048 + 0.418555i 0.825630 0.564211i \(-0.190820\pi\)
0.184851 + 0.982767i \(0.440820\pi\)
\(108\) 0 0
\(109\) 3.91969 1.62359i 0.375438 0.155512i −0.186982 0.982363i \(-0.559871\pi\)
0.562420 + 0.826852i \(0.309871\pi\)
\(110\) 5.65685 + 5.65685i 0.539360 + 0.539360i
\(111\) 0 0
\(112\) 0 0
\(113\) −0.541196 1.30656i −0.0509114 0.122911i 0.896378 0.443291i \(-0.146189\pi\)
−0.947289 + 0.320380i \(0.896189\pi\)
\(114\) 0 0
\(115\) 8.00000i 0.746004i
\(116\) 1.62359 3.91969i 0.150746 0.363934i
\(117\) 8.48528 8.48528i 0.784465 0.784465i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −14.8492 + 14.8492i −1.34993 + 1.34993i
\(122\) 4.87076 11.7591i 0.440978 1.06462i
\(123\) 0 0
\(124\) 5.22625 + 2.16478i 0.469331 + 0.194403i
\(125\) 4.32957 + 10.4525i 0.387248 + 0.934900i
\(126\) 0 0
\(127\) 5.65685 + 5.65685i 0.501965 + 0.501965i 0.912048 0.410083i \(-0.134500\pi\)
−0.410083 + 0.912048i \(0.634500\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 2.16478 + 5.22625i 0.189864 + 0.458373i
\(131\) 5.22625 + 2.16478i 0.456620 + 0.189138i 0.599124 0.800656i \(-0.295516\pi\)
−0.142505 + 0.989794i \(0.545516\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.48528 8.48528i 0.733017 0.733017i
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 4.32957 10.4525i 0.367229 0.886570i −0.626973 0.779041i \(-0.715706\pi\)
0.994202 0.107529i \(-0.0342937\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.16478 5.22625i −0.181665 0.438577i
\(143\) −20.9050 + 8.65914i −1.74816 + 0.724113i
\(144\) −2.12132 2.12132i −0.176777 0.176777i
\(145\) −4.24264 4.24264i −0.352332 0.352332i
\(146\) 6.53281 2.70598i 0.540660 0.223949i
\(147\) 0 0
\(148\) 3.91969 + 1.62359i 0.322196 + 0.133458i
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 5.65685 5.65685i 0.454369 0.454369i
\(156\) 0 0
\(157\) 2.00000i 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 10.4525 + 4.32957i 0.831557 + 0.344442i
\(159\) 0 0
\(160\) 1.30656 0.541196i 0.103293 0.0427853i
\(161\) 0 0
\(162\) 6.36396 + 6.36396i 0.500000 + 0.500000i
\(163\) −5.22625 + 2.16478i −0.409352 + 0.169559i −0.577850 0.816143i \(-0.696108\pi\)
0.168498 + 0.985702i \(0.446108\pi\)
\(164\) −0.541196 1.30656i −0.0422603 0.102025i
\(165\) 0 0
\(166\) 4.00000i 0.310460i
\(167\) 4.32957 10.4525i 0.335032 0.808839i −0.663145 0.748491i \(-0.730779\pi\)
0.998177 0.0603483i \(-0.0192211\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 12.0000 0.917663
\(172\) 2.82843 2.82843i 0.215666 0.215666i
\(173\) −2.70598 + 6.53281i −0.205732 + 0.496681i −0.992743 0.120259i \(-0.961628\pi\)
0.787011 + 0.616939i \(0.211628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.16478 + 5.22625i 0.163177 + 0.393944i
\(177\) 0 0
\(178\) 0 0
\(179\) −2.82843 2.82843i −0.211407 0.211407i 0.593458 0.804865i \(-0.297762\pi\)
−0.804865 + 0.593458i \(0.797762\pi\)
\(180\) −3.91969 + 1.62359i −0.292156 + 0.121015i
\(181\) 5.95316 + 14.3722i 0.442495 + 1.06828i 0.975071 + 0.221894i \(0.0712241\pi\)
−0.532576 + 0.846382i \(0.678776\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.16478 + 5.22625i −0.159590 + 0.385284i
\(185\) 4.24264 4.24264i 0.311925 0.311925i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −2.16478 + 5.22625i −0.157050 + 0.379152i
\(191\) 8.00000i 0.578860i −0.957199 0.289430i \(-0.906534\pi\)
0.957199 0.289430i \(-0.0934657\pi\)
\(192\) 0 0
\(193\) 5.95316 + 14.3722i 0.428518 + 1.03453i 0.979758 + 0.200186i \(0.0641548\pi\)
−0.551240 + 0.834347i \(0.685845\pi\)
\(194\) −3.91969 + 1.62359i −0.281417 + 0.116567i
\(195\) 0 0
\(196\) 4.94975 + 4.94975i 0.353553 + 0.353553i
\(197\) −6.53281 + 2.70598i −0.465444 + 0.192793i −0.603065 0.797692i \(-0.706054\pi\)
0.137622 + 0.990485i \(0.456054\pi\)
\(198\) −6.49435 15.6788i −0.461534 1.11424i
\(199\) −15.6788 6.49435i −1.11144 0.460372i −0.250005 0.968245i \(-0.580432\pi\)
−0.861433 + 0.507872i \(0.830432\pi\)
\(200\) 3.00000i 0.212132i
\(201\) 0 0
\(202\) −8.48528 + 8.48528i −0.597022 + 0.597022i
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) −11.3137 + 11.3137i −0.788263 + 0.788263i
\(207\) 6.49435 15.6788i 0.451389 1.08975i
\(208\) 4.00000i 0.277350i
\(209\) −20.9050 8.65914i −1.44603 0.598965i
\(210\) 0 0
\(211\) 20.9050 8.65914i 1.43916 0.596120i 0.479566 0.877506i \(-0.340794\pi\)
0.959595 + 0.281386i \(0.0907943\pi\)
\(212\) 2.82843 + 2.82843i 0.194257 + 0.194257i
\(213\) 0 0
\(214\) 10.4525 4.32957i 0.714518 0.295963i
\(215\) −2.16478 5.22625i −0.147637 0.356427i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.62359 3.91969i 0.109963 0.265475i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) 0 0
\(222\) 0 0
\(223\) 11.3137 11.3137i 0.757622 0.757622i −0.218267 0.975889i \(-0.570040\pi\)
0.975889 + 0.218267i \(0.0700404\pi\)
\(224\) 0 0
\(225\) 9.00000i 0.600000i
\(226\) −1.30656 0.541196i −0.0869113 0.0359998i
\(227\) −10.8239 26.1313i −0.718409 1.73439i −0.677833 0.735216i \(-0.737081\pi\)
−0.0405762 0.999176i \(-0.512919\pi\)
\(228\) 0 0
\(229\) −4.24264 4.24264i −0.280362 0.280362i 0.552892 0.833253i \(-0.313524\pi\)
−0.833253 + 0.552892i \(0.813524\pi\)
\(230\) 5.65685 + 5.65685i 0.373002 + 0.373002i
\(231\) 0 0
\(232\) −1.62359 3.91969i −0.106594 0.257340i
\(233\) 6.53281 + 2.70598i 0.427979 + 0.177275i 0.586266 0.810118i \(-0.300597\pi\)
−0.158287 + 0.987393i \(0.550597\pi\)
\(234\) 12.0000i 0.784465i
\(235\) −4.32957 + 10.4525i −0.282430 + 0.681846i
\(236\) 2.82843 2.82843i 0.184115 0.184115i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −11.3651 + 27.4378i −0.732092 + 1.76743i −0.0965924 + 0.995324i \(0.530794\pi\)
−0.635499 + 0.772101i \(0.719206\pi\)
\(242\) 21.0000i 1.34993i
\(243\) 0 0
\(244\) −4.87076 11.7591i −0.311819 0.752797i
\(245\) 9.14594 3.78837i 0.584313 0.242030i
\(246\) 0 0
\(247\) −11.3137 11.3137i −0.719874 0.719874i
\(248\) 5.22625 2.16478i 0.331867 0.137464i
\(249\) 0 0
\(250\) 10.4525 + 4.32957i 0.661074 + 0.273826i
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 0 0
\(253\) −22.6274 + 22.6274i −1.42257 + 1.42257i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.7279 12.7279i 0.793946 0.793946i −0.188187 0.982133i \(-0.560261\pi\)
0.982133 + 0.188187i \(0.0602612\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 5.22625 + 2.16478i 0.324118 + 0.134254i
\(261\) 4.87076 + 11.7591i 0.301493 + 0.727868i
\(262\) 5.22625 2.16478i 0.322879 0.133741i
\(263\) −16.9706 16.9706i −1.04645 1.04645i −0.998867 0.0475824i \(-0.984848\pi\)
−0.0475824 0.998867i \(-0.515152\pi\)
\(264\) 0 0
\(265\) 5.22625 2.16478i 0.321046 0.132982i
\(266\) 0 0
\(267\) 0 0
\(268\) 12.0000i 0.733017i
\(269\) −7.03555 + 16.9853i −0.428965 + 1.03561i 0.550651 + 0.834735i \(0.314379\pi\)
−0.979616 + 0.200878i \(0.935621\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 5.65685 5.65685i 0.341743 0.341743i
\(275\) −6.49435 + 15.6788i −0.391624 + 0.945465i
\(276\) 0 0
\(277\) −9.14594 3.78837i −0.549526 0.227621i 0.0906048 0.995887i \(-0.471120\pi\)
−0.640131 + 0.768266i \(0.721120\pi\)
\(278\) −4.32957 10.4525i −0.259670 0.626900i
\(279\) −15.6788 + 6.49435i −0.938663 + 0.388807i
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 2.16478 + 5.22625i 0.128683 + 0.310668i 0.975069 0.221901i \(-0.0712263\pi\)
−0.846386 + 0.532570i \(0.821226\pi\)
\(284\) −5.22625 2.16478i −0.310121 0.128456i
\(285\) 0 0
\(286\) −8.65914 + 20.9050i −0.512026 + 1.23614i
\(287\) 0 0
\(288\) −3.00000 −0.176777
\(289\) 0 0
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) 2.70598 6.53281i 0.158356 0.382304i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) −2.16478 5.22625i −0.126039 0.304284i
\(296\) 3.91969 1.62359i 0.227827 0.0943692i
\(297\) 0 0
\(298\) 7.07107 + 7.07107i 0.409616 + 0.409616i
\(299\) −20.9050 + 8.65914i −1.20897 + 0.500771i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −2.82843 + 2.82843i −0.162221 + 0.162221i
\(305\) −18.0000 −1.03068
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.00000i 0.454369i
\(311\) −31.3575 12.9887i −1.77812 0.736522i −0.993130 0.117015i \(-0.962667\pi\)
−0.784991 0.619507i \(-0.787333\pi\)
\(312\) 0 0
\(313\) 11.7591 4.87076i 0.664662 0.275312i −0.0247370 0.999694i \(-0.507875\pi\)
0.689399 + 0.724382i \(0.257875\pi\)
\(314\) −1.41421 1.41421i −0.0798087 0.0798087i
\(315\) 0 0
\(316\) 10.4525 4.32957i 0.587999 0.243557i
\(317\) −8.11794 19.5984i −0.455949 1.10076i −0.970023 0.243013i \(-0.921864\pi\)
0.514074 0.857746i \(-0.328136\pi\)
\(318\) 0 0
\(319\) 24.0000i 1.34374i
\(320\) 0.541196 1.30656i 0.0302538 0.0730391i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.00000 0.500000
\(325\) −8.48528 + 8.48528i −0.470679 + 0.470679i
\(326\) −2.16478 + 5.22625i −0.119896 + 0.289455i
\(327\) 0 0
\(328\) −1.30656 0.541196i −0.0721429 0.0298826i
\(329\) 0 0
\(330\) 0 0
\(331\) 14.1421 + 14.1421i 0.777322 + 0.777322i 0.979375 0.202053i \(-0.0647612\pi\)
−0.202053 + 0.979375i \(0.564761\pi\)
\(332\) −2.82843 2.82843i −0.155230 0.155230i
\(333\) −11.7591 + 4.87076i −0.644393 + 0.266916i
\(334\) −4.32957 10.4525i −0.236903 0.571936i
\(335\) −15.6788 6.49435i −0.856622 0.354824i
\(336\) 0 0
\(337\) −3.78837 + 9.14594i −0.206366 + 0.498211i −0.992846 0.119405i \(-0.961901\pi\)
0.786480 + 0.617616i \(0.211901\pi\)
\(338\) −2.12132 + 2.12132i −0.115385 + 0.115385i
\(339\) 0 0
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 8.48528 8.48528i 0.458831 0.458831i
\(343\) 0 0
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 2.70598 + 6.53281i 0.145474 + 0.351206i
\(347\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(348\) 0 0
\(349\) −2.82843 2.82843i −0.151402 0.151402i 0.627342 0.778744i \(-0.284143\pi\)
−0.778744 + 0.627342i \(0.784143\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.22625 + 2.16478i 0.278560 + 0.115383i
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) −5.65685 + 5.65685i −0.300235 + 0.300235i
\(356\) 0 0
\(357\) 0 0
\(358\) −4.00000 −0.211407
\(359\) 16.9706 16.9706i 0.895672 0.895672i −0.0993777 0.995050i \(-0.531685\pi\)
0.995050 + 0.0993777i \(0.0316852\pi\)
\(360\) −1.62359 + 3.91969i −0.0855706 + 0.206586i
\(361\) 3.00000i 0.157895i
\(362\) 14.3722 + 5.95316i 0.755386 + 0.312891i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.07107 7.07107i −0.370117 0.370117i
\(366\) 0 0
\(367\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(368\) 2.16478 + 5.22625i 0.112847 + 0.272437i
\(369\) 3.91969 + 1.62359i 0.204051 + 0.0845206i
\(370\) 6.00000i 0.311925i
\(371\) 0 0
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.65685 + 5.65685i −0.291730 + 0.291730i
\(377\) 6.49435 15.6788i 0.334476 0.807497i
\(378\) 0 0
\(379\) 15.6788 + 6.49435i 0.805364 + 0.333593i 0.747102 0.664709i \(-0.231444\pi\)
0.0582611 + 0.998301i \(0.481444\pi\)
\(380\) 2.16478 + 5.22625i 0.111051 + 0.268101i
\(381\) 0 0
\(382\) −5.65685 5.65685i −0.289430 0.289430i
\(383\) 16.9706 + 16.9706i 0.867155 + 0.867155i 0.992157 0.125001i \(-0.0398935\pi\)
−0.125001 + 0.992157i \(0.539894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.3722 + 5.95316i 0.731525 + 0.303008i
\(387\) 12.0000i 0.609994i
\(388\) −1.62359 + 3.91969i −0.0824252 + 0.198992i
\(389\) 4.24264 4.24264i 0.215110 0.215110i −0.591324 0.806434i \(-0.701394\pi\)
0.806434 + 0.591324i \(0.201394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.00000 0.353553
\(393\) 0 0
\(394\) −2.70598 + 6.53281i −0.136325 + 0.329118i
\(395\) 16.0000i 0.805047i
\(396\) −15.6788 6.49435i −0.787887 0.326354i
\(397\) −8.11794 19.5984i −0.407428 0.983618i −0.985812 0.167853i \(-0.946317\pi\)
0.578384 0.815765i \(-0.303683\pi\)
\(398\) −15.6788 + 6.49435i −0.785905 + 0.325533i
\(399\) 0 0
\(400\) 2.12132 + 2.12132i 0.106066 + 0.106066i
\(401\) 24.8247 10.2827i 1.23969 0.513495i 0.336070 0.941837i \(-0.390902\pi\)
0.903617 + 0.428342i \(0.140902\pi\)
\(402\) 0 0
\(403\) 20.9050 + 8.65914i 1.04135 + 0.431342i
\(404\) 12.0000i 0.597022i
\(405\) 4.87076 11.7591i 0.242030 0.584313i
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) −1.41421 + 1.41421i −0.0698430 + 0.0698430i
\(411\) 0 0
\(412\) 16.0000i 0.788263i
\(413\) 0 0
\(414\) −6.49435 15.6788i −0.319180 0.770569i
\(415\) −5.22625 + 2.16478i −0.256547 + 0.106265i
\(416\) 2.82843 + 2.82843i 0.138675 + 0.138675i
\(417\) 0 0
\(418\) −20.9050 + 8.65914i −1.02250 + 0.423532i
\(419\) −6.49435 15.6788i −0.317270 0.765957i −0.999397 0.0347236i \(-0.988945\pi\)
0.682127 0.731234i \(-0.261055\pi\)
\(420\) 0 0
\(421\) 28.0000i 1.36464i 0.731055 + 0.682318i \(0.239028\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) 8.65914 20.9050i 0.421520 1.01764i
\(423\) 16.9706 16.9706i 0.825137 0.825137i
\(424\) 4.00000 0.194257
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 4.32957 10.4525i 0.209278 0.505241i
\(429\) 0 0
\(430\) −5.22625 2.16478i −0.252032 0.104395i
\(431\) 12.9887 + 31.3575i 0.625644 + 1.51044i 0.844985 + 0.534790i \(0.179609\pi\)
−0.219341 + 0.975648i \(0.570391\pi\)
\(432\) 0 0
\(433\) −9.89949 9.89949i −0.475739 0.475739i 0.428027 0.903766i \(-0.359209\pi\)
−0.903766 + 0.428027i \(0.859209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.62359 3.91969i −0.0777558 0.187719i
\(437\) −20.9050 8.65914i −1.00002 0.414223i
\(438\) 0 0
\(439\) 6.49435 15.6788i 0.309959 0.748306i −0.689747 0.724050i \(-0.742278\pi\)
0.999706 0.0242559i \(-0.00772166\pi\)
\(440\) 5.65685 5.65685i 0.269680 0.269680i
\(441\) −21.0000 −1.00000
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000i 0.757622i
\(447\) 0 0
\(448\) 0 0
\(449\) 3.91969 1.62359i 0.184982 0.0766219i −0.288270 0.957549i \(-0.593080\pi\)
0.473252 + 0.880927i \(0.343080\pi\)
\(450\) −6.36396 6.36396i −0.300000 0.300000i
\(451\) −5.65685 5.65685i −0.266371 0.266371i
\(452\) −1.30656 + 0.541196i −0.0614556 + 0.0254557i
\(453\) 0 0
\(454\) −26.1313 10.8239i −1.22640 0.507992i
\(455\) 0 0
\(456\) 0 0
\(457\) 15.5563 15.5563i 0.727695 0.727695i −0.242465 0.970160i \(-0.577956\pi\)
0.970160 + 0.242465i \(0.0779559\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) 8.00000 0.373002
\(461\) −14.1421 + 14.1421i −0.658665 + 0.658665i −0.955064 0.296399i \(-0.904214\pi\)
0.296399 + 0.955064i \(0.404214\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) −3.91969 1.62359i −0.181967 0.0753732i
\(465\) 0 0
\(466\) 6.53281 2.70598i 0.302627 0.125352i
\(467\) 19.7990 + 19.7990i 0.916188 + 0.916188i 0.996750 0.0805616i \(-0.0256714\pi\)
−0.0805616 + 0.996750i \(0.525671\pi\)
\(468\) −8.48528 8.48528i −0.392232 0.392232i
\(469\) 0 0
\(470\) 4.32957 + 10.4525i 0.199708 + 0.482138i
\(471\) 0 0
\(472\) 4.00000i 0.184115i
\(473\) 8.65914 20.9050i 0.398148 0.961213i
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 4.32957 10.4525i 0.197823 0.477587i −0.793574 0.608473i \(-0.791782\pi\)
0.991397 + 0.130886i \(0.0417823\pi\)
\(480\) 0 0
\(481\) 15.6788 + 6.49435i 0.714890 + 0.296117i
\(482\) 11.3651 + 27.4378i 0.517667 + 1.24976i
\(483\) 0 0
\(484\) 14.8492 + 14.8492i 0.674966 + 0.674966i
\(485\) 4.24264 + 4.24264i 0.192648 + 0.192648i
\(486\) 0 0
\(487\) 10.8239 + 26.1313i 0.490479 + 1.18412i 0.954477 + 0.298284i \(0.0964144\pi\)
−0.463998 + 0.885836i \(0.653586\pi\)
\(488\) −11.7591 4.87076i −0.532308 0.220489i
\(489\) 0 0
\(490\) 3.78837 9.14594i 0.171141 0.413171i
\(491\) −14.1421 + 14.1421i −0.638226 + 0.638226i −0.950118 0.311892i \(-0.899037\pi\)
0.311892 + 0.950118i \(0.399037\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −16.0000 −0.719874
\(495\) −16.9706 + 16.9706i −0.762770 + 0.762770i
\(496\) 2.16478 5.22625i 0.0972017 0.234666i
\(497\) 0 0
\(498\) 0 0
\(499\) −4.32957 10.4525i −0.193818 0.467918i 0.796856 0.604169i \(-0.206495\pi\)
−0.990674 + 0.136251i \(0.956495\pi\)
\(500\) 10.4525 4.32957i 0.467450 0.193624i
\(501\) 0 0
\(502\) −8.48528 8.48528i −0.378717 0.378717i
\(503\) −5.22625 + 2.16478i −0.233027 + 0.0965230i −0.496142 0.868242i \(-0.665250\pi\)
0.263115 + 0.964765i \(0.415250\pi\)
\(504\) 0 0
\(505\) 15.6788 + 6.49435i 0.697695 + 0.288995i
\(506\) 32.0000i 1.42257i
\(507\) 0 0
\(508\) 5.65685 5.65685i 0.250982 0.250982i
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 18.0000i 0.793946i
\(515\) 20.9050 + 8.65914i 0.921185 + 0.381567i
\(516\) 0 0
\(517\) −41.8100 + 17.3183i −1.83880 + 0.761657i
\(518\) 0 0
\(519\) 0 0
\(520\) 5.22625 2.16478i 0.229186 0.0949321i
\(521\) 0.541196 + 1.30656i 0.0237102 + 0.0572416i 0.935291 0.353879i \(-0.115138\pi\)
−0.911581 + 0.411121i \(0.865138\pi\)
\(522\) 11.7591 + 4.87076i 0.514680 + 0.213188i
\(523\) 36.0000i 1.57417i 0.616844 + 0.787085i \(0.288411\pi\)
−0.616844 + 0.787085i \(0.711589\pi\)
\(524\) 2.16478 5.22625i 0.0945690 0.228310i
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) −6.36396 + 6.36396i −0.276694 + 0.276694i
\(530\) 2.16478 5.22625i 0.0940322 0.227014i
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) −2.16478 5.22625i −0.0937672 0.226374i
\(534\) 0 0
\(535\) −11.3137 11.3137i −0.489134 0.489134i
\(536\) −8.48528 8.48528i −0.366508 0.366508i
\(537\) 0 0
\(538\) 7.03555 + 16.9853i 0.303324 + 0.732289i
\(539\) 36.5838 + 15.1535i 1.57577 + 0.652707i
\(540\) 0 0
\(541\) −4.87076 + 11.7591i −0.209411 + 0.505562i −0.993331 0.115300i \(-0.963217\pi\)
0.783920 + 0.620862i \(0.213217\pi\)
\(542\) 5.65685 5.65685i 0.242983 0.242983i
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 6.49435 15.6788i 0.277678 0.670375i −0.722092 0.691797i \(-0.756819\pi\)
0.999771 + 0.0214218i \(0.00681930\pi\)
\(548\) 8.00000i 0.341743i
\(549\) 35.2772 + 14.6123i 1.50559 + 0.623638i
\(550\) 6.49435 + 15.6788i 0.276920 + 0.668544i
\(551\) 15.6788 6.49435i 0.667937 0.276669i
\(552\) 0 0
\(553\) 0 0
\(554\) −9.14594 + 3.78837i −0.388574 + 0.160953i
\(555\) 0 0
\(556\) −10.4525 4.32957i −0.443285 0.183615i
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) −6.49435 + 15.6788i −0.274928 + 0.663735i
\(559\) 11.3137 11.3137i 0.478519 0.478519i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.82843 + 2.82843i −0.119204 + 0.119204i −0.764192 0.644988i \(-0.776862\pi\)
0.644988 + 0.764192i \(0.276862\pi\)
\(564\) 0 0
\(565\) 2.00000i 0.0841406i
\(566\) 5.22625 + 2.16478i 0.219676 + 0.0909927i
\(567\) 0 0
\(568\) −5.22625 + 2.16478i −0.219289 + 0.0908323i
\(569\) 16.9706 + 16.9706i 0.711443 + 0.711443i 0.966837 0.255394i \(-0.0822052\pi\)
−0.255394 + 0.966837i \(0.582205\pi\)
\(570\) 0 0
\(571\) 31.3575 12.9887i 1.31227 0.543560i 0.386725 0.922195i \(-0.373606\pi\)
0.925546 + 0.378635i \(0.123606\pi\)
\(572\) 8.65914 + 20.9050i 0.362057 + 0.874082i
\(573\) 0 0
\(574\) 0 0
\(575\) −6.49435 + 15.6788i −0.270833 + 0.653849i
\(576\) −2.12132 + 2.12132i −0.0883883 + 0.0883883i
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −4.24264 + 4.24264i −0.176166 + 0.176166i
\(581\) 0 0
\(582\) 0 0
\(583\) 20.9050 + 8.65914i 0.865797 + 0.358625i
\(584\) −2.70598 6.53281i −0.111974 0.270330i
\(585\) −15.6788 + 6.49435i −0.648237 + 0.268508i
\(586\) −4.24264 4.24264i −0.175262 0.175262i
\(587\) 8.48528 + 8.48528i 0.350225 + 0.350225i 0.860193 0.509968i \(-0.170343\pi\)
−0.509968 + 0.860193i \(0.670343\pi\)
\(588\) 0 0
\(589\) 8.65914 + 20.9050i 0.356794 + 0.861376i
\(590\) −5.22625 2.16478i −0.215161 0.0891228i
\(591\) 0 0
\(592\) 1.62359 3.91969i 0.0667291 0.161098i
\(593\) −11.3137 + 11.3137i −0.464598 + 0.464598i −0.900159 0.435561i \(-0.856550\pi\)
0.435561 + 0.900159i \(0.356550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) −8.65914 + 20.9050i −0.354098 + 0.854869i
\(599\) 40.0000i 1.63436i 0.576386 + 0.817178i \(0.304463\pi\)
−0.576386 + 0.817178i \(0.695537\pi\)
\(600\) 0 0
\(601\) 10.2827 + 24.8247i 0.419441 + 1.01262i 0.982510 + 0.186210i \(0.0596206\pi\)
−0.563069 + 0.826410i \(0.690379\pi\)
\(602\) 0 0
\(603\) 25.4558 + 25.4558i 1.03664 + 1.03664i
\(604\) 0 0
\(605\) 27.4378 11.3651i 1.11551 0.462058i
\(606\) 0 0
\(607\) −36.5838 15.1535i −1.48489 0.615061i −0.514691 0.857376i \(-0.672093\pi\)
−0.970198 + 0.242314i \(0.922093\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) −12.7279 + 12.7279i −0.515339 + 0.515339i
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) −8.48528 + 8.48528i −0.342438 + 0.342438i
\(615\) 0 0
\(616\) 0 0
\(617\) 3.91969 + 1.62359i 0.157801 + 0.0653632i 0.460186 0.887823i \(-0.347783\pi\)
−0.302385 + 0.953186i \(0.597783\pi\)
\(618\) 0 0
\(619\) 10.4525 4.32957i 0.420122 0.174020i −0.162600 0.986692i \(-0.551988\pi\)
0.582721 + 0.812672i \(0.301988\pi\)
\(620\) −5.65685 5.65685i −0.227185 0.227185i
\(621\) 0 0
\(622\) −31.3575 + 12.9887i −1.25732 + 0.520800i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 4.87076 11.7591i 0.194675 0.469987i
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) −28.2843 + 28.2843i −1.12598 + 1.12598i −0.135155 + 0.990825i \(0.543153\pi\)
−0.990825 + 0.135155i \(0.956847\pi\)
\(632\) 4.32957 10.4525i 0.172221 0.415778i
\(633\) 0 0
\(634\) −19.5984 8.11794i −0.778354 0.322405i
\(635\) −4.32957 10.4525i −0.171814 0.414795i
\(636\) 0 0
\(637\) 19.7990 + 19.7990i 0.784465 + 0.784465i
\(638\) −16.9706 16.9706i −0.671871 0.671871i
\(639\) 15.6788 6.49435i 0.620242 0.256913i
\(640\) −0.541196 1.30656i −0.0213927 0.0516464i
\(641\) −14.3722 5.95316i −0.567667 0.235136i 0.0803426 0.996767i \(-0.474399\pi\)
−0.648010 + 0.761632i \(0.724399\pi\)
\(642\) 0 0
\(643\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 6.36396 6.36396i 0.250000 0.250000i
\(649\) 8.65914 20.9050i 0.339901 0.820593i
\(650\) 12.0000i 0.470679i
\(651\) 0 0
\(652\) 2.16478 + 5.22625i 0.0847795 + 0.204676i
\(653\) 37.8903 15.6947i 1.48276 0.614181i 0.513035 0.858368i \(-0.328521\pi\)
0.969728 + 0.244187i \(0.0785211\pi\)
\(654\) 0 0
\(655\) −5.65685 5.65685i −0.221032 0.221032i
\(656\) −1.30656 + 0.541196i −0.0510127 + 0.0211302i
\(657\) 8.11794 + 19.5984i 0.316711 + 0.764608i
\(658\) 0 0
\(659\) 20.0000i 0.779089i 0.921008 + 0.389545i \(0.127368\pi\)
−0.921008 + 0.389545i \(0.872632\pi\)
\(660\) 0 0
\(661\) 14.1421 14.1421i 0.550065 0.550065i −0.376394 0.926460i \(-0.622836\pi\)
0.926460 + 0.376394i \(0.122836\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) −4.87076 + 11.7591i −0.188738 + 0.455655i
\(667\) 24.0000i 0.929284i
\(668\) −10.4525 4.32957i −0.404420 0.167516i
\(669\) 0 0
\(670\) −15.6788 + 6.49435i −0.605723 + 0.250899i
\(671\) −50.9117 50.9117i −1.96542 1.96542i
\(672\) 0 0
\(673\) −24.8247 + 10.2827i −0.956922 + 0.396370i −0.805828 0.592150i \(-0.798279\pi\)
−0.151094 + 0.988519i \(0.548279\pi\)
\(674\) 3.78837 + 9.14594i 0.145923 + 0.352288i
\(675\) 0 0
\(676\) 3.00000i 0.115385i
\(677\) 7.03555 16.9853i 0.270398 0.652799i −0.729102 0.684405i \(-0.760062\pi\)
0.999500 + 0.0316059i \(0.0100622\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 22.6274 22.6274i 0.866449 0.866449i
\(683\) −10.8239 + 26.1313i −0.414166 + 0.999885i 0.569841 + 0.821755i \(0.307005\pi\)
−0.984007 + 0.178130i \(0.942995\pi\)
\(684\) 12.0000i 0.458831i
\(685\) −10.4525 4.32957i −0.399370 0.165424i
\(686\) 0 0
\(687\) 0 0
\(688\) −2.82843 2.82843i −0.107833 0.107833i
\(689\) 11.3137 + 11.3137i 0.431018 + 0.431018i
\(690\) 0 0
\(691\) −12.9887 31.3575i −0.494114 1.19290i −0.952609 0.304199i \(-0.901611\pi\)
0.458495 0.888697i \(-0.348389\pi\)
\(692\) 6.53281 + 2.70598i 0.248340 + 0.102866i
\(693\) 0 0
\(694\) 0 0
\(695\) −11.3137 + 11.3137i −0.429153 + 0.429153i
\(696\) 0 0
\(697\) 0 0
\(698\) −4.00000 −0.151402
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 6.49435 + 15.6788i 0.244939 + 0.591335i
\(704\) 5.22625 2.16478i 0.196972 0.0815884i
\(705\) 0 0
\(706\) −9.89949 9.89949i −0.372572 0.372572i
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0509 + 12.4475i 1.12859 + 0.467476i 0.867300 0.497785i \(-0.165853\pi\)
0.261287 + 0.965261i \(0.415853\pi\)
\(710\) 8.00000i 0.300235i
\(711\) −12.9887 + 31.3575i −0.487115 + 1.17600i
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 32.0000 1.19673
\(716\) −2.82843 + 2.82843i −0.105703 + 0.105703i
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) −10.4525 4.32957i −0.389813 0.161466i 0.179164 0.983819i \(-0.442661\pi\)
−0.568977 + 0.822353i \(0.692661\pi\)
\(720\) 1.62359 + 3.91969i 0.0605076 + 0.146078i
\(721\) 0 0
\(722\) 2.12132 + 2.12132i 0.0789474 + 0.0789474i
\(723\) 0 0
\(724\) 14.3722 5.95316i 0.534138 0.221247i
\(725\) −4.87076 11.7591i −0.180896 0.436721i
\(726\) 0 0
\(727\) 48.0000i 1.78022i −0.455744 0.890111i \(-0.650627\pi\)
0.455744 0.890111i \(-0.349373\pi\)
\(728\) 0 0
\(729\) −19.0919 + 19.0919i −0.707107 + 0.707107i
\(730\) −10.0000 −0.370117
\(731\) 0 0
\(732\) 0 0
\(733\) 25.4558 25.4558i 0.940233 0.940233i −0.0580789 0.998312i \(-0.518498\pi\)
0.998312 + 0.0580789i \(0.0184975\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 5.22625 + 2.16478i 0.192642 + 0.0797950i
\(737\) −25.9774 62.7150i −0.956890 2.31014i
\(738\) 3.91969 1.62359i 0.144286 0.0597651i
\(739\) 2.82843 + 2.82843i 0.104045 + 0.104045i 0.757213 0.653168i \(-0.226560\pi\)
−0.653168 + 0.757213i \(0.726560\pi\)
\(740\) −4.24264 4.24264i −0.155963 0.155963i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(744\) 0 0
\(745\) 5.41196 13.0656i 0.198279 0.478688i
\(746\) −2.82843 + 2.82843i −0.103556 + 0.103556i
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.65914 + 20.9050i −0.315976 + 0.762835i 0.683483 + 0.729966i \(0.260464\pi\)
−0.999460 + 0.0328684i \(0.989536\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) −6.49435 15.6788i −0.236510 0.570987i
\(755\) 0 0
\(756\) 0 0
\(757\) 15.5563 + 15.5563i 0.565405 + 0.565405i 0.930838 0.365433i \(-0.119079\pi\)
−0.365433 + 0.930838i \(0.619079\pi\)
\(758\) 15.6788 6.49435i 0.569478 0.235886i
\(759\) 0 0
\(760\) 5.22625 + 2.16478i 0.189576 + 0.0785250i
\(761\) 8.00000i 0.290000i 0.989432 + 0.145000i \(0.0463182\pi\)
−0.989432 + 0.145000i \(0.953682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 11.3137 11.3137i 0.408514 0.408514i
\(768\) 0 0
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.3722 5.95316i 0.517267 0.214259i
\(773\) 4.24264 + 4.24264i 0.152597 + 0.152597i 0.779277 0.626680i \(-0.215587\pi\)
−0.626680 + 0.779277i \(0.715587\pi\)
\(774\) 8.48528 + 8.48528i 0.304997 + 0.304997i
\(775\) 15.6788 6.49435i 0.563198 0.233284i
\(776\) 1.62359 + 3.91969i 0.0582834 + 0.140709i
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) 2.16478 5.22625i 0.0775615 0.187250i
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 4.94975 4.94975i 0.176777 0.176777i
\(785\) −1.08239 + 2.61313i −0.0386322 + 0.0932665i
\(786\) 0 0
\(787\) −15.6788 6.49435i −0.558887 0.231499i 0.0853148 0.996354i \(-0.472810\pi\)
−0.644202 + 0.764855i \(0.722810\pi\)
\(788\) 2.70598 + 6.53281i 0.0963966 + 0.232722i
\(789\) 0 0
\(790\) −11.3137 11.3137i −0.402524 0.402524i
\(791\) 0 0
\(792\) −15.6788 + 6.49435i −0.557120 + 0.230767i
\(793\) −19.4831 47.0363i −0.691864 1.67031i
\(794\) −19.5984 8.11794i −0.695523 0.288095i
\(795\) 0 0
\(796\) −6.49435 + 15.6788i −0.230186 + 0.555719i
\(797\) 8.48528 8.48528i 0.300564 0.300564i −0.540670 0.841235i \(-0.681829\pi\)
0.841235 + 0.540670i \(0.181829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 3.00000 0.106066
\(801\) 0 0
\(802\) 10.2827 24.8247i 0.363096 0.876591i
\(803\) 40.0000i 1.41157i
\(804\) 0 0
\(805\) 0 0
\(806\) 20.9050 8.65914i 0.736347 0.305005i
\(807\) 0 0
\(808\) 8.48528 + 8.48528i 0.298511 + 0.298511i
\(809\) −30.0509 + 12.4475i −1.05654 + 0.437631i −0.842220 0.539133i \(-0.818752\pi\)
−0.214315 + 0.976765i \(0.568752\pi\)
\(810\) −4.87076 11.7591i −0.171141 0.413171i
\(811\) 5.22625 + 2.16478i 0.183519 + 0.0760159i 0.472551 0.881304i \(-0.343333\pi\)
−0.289032 + 0.957319i \(0.593333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 16.9706 16.9706i 0.594818 0.594818i
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) −7.07107 + 7.07107i −0.247234 + 0.247234i
\(819\) 0 0
\(820\) 2.00000i 0.0698430i
\(821\) −24.8247 10.2827i −0.866388 0.358870i −0.0951854 0.995460i \(-0.530344\pi\)
−0.771202 + 0.636590i \(0.780344\pi\)
\(822\) 0 0
\(823\) −47.0363 + 19.4831i −1.63958 + 0.679137i −0.996256 0.0864560i \(-0.972446\pi\)
−0.643326 + 0.765593i \(0.722446\pi\)
\(824\) 11.3137 + 11.3137i 0.394132 + 0.394132i
\(825\) 0 0
\(826\) 0 0
\(827\) −10.8239 26.1313i −0.376385 0.908673i −0.992637 0.121124i \(-0.961350\pi\)
0.616253 0.787548i \(-0.288650\pi\)
\(828\) −15.6788 6.49435i −0.544874 0.225694i
\(829\) 30.0000i 1.04194i −0.853574 0.520972i \(-0.825570\pi\)
0.853574 0.520972i \(-0.174430\pi\)
\(830\) −2.16478 + 5.22625i −0.0751408 + 0.181406i
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −11.3137 + 11.3137i −0.391527 + 0.391527i
\(836\) −8.65914 + 20.9050i −0.299483 + 0.723015i
\(837\) 0 0
\(838\) −15.6788 6.49435i −0.541614 0.224344i
\(839\) 17.3183 + 41.8100i 0.597893 + 1.44344i 0.875724 + 0.482812i \(0.160385\pi\)
−0.277831 + 0.960630i \(0.589615\pi\)
\(840\) 0 0
\(841\) −7.77817 7.77817i −0.268213 0.268213i
\(842\) 19.7990 + 19.7990i 0.682318 + 0.682318i
\(843\) 0 0
\(844\) −8.65914 20.9050i −0.298060 0.719580i
\(845\) 3.91969 + 1.62359i 0.134841 + 0.0558531i
\(846\) 24.0000i 0.825137i
\(847\) 0 0
\(848\) 2.82843 2.82843i 0.0971286 0.0971286i
\(849\) 0 0
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) 13.5299 32.6641i 0.463255 1.11840i −0.503798 0.863822i \(-0.668064\pi\)
0.967053 0.254575i \(-0.0819356\pi\)
\(854\) 0 0
\(855\) −15.6788 6.49435i −0.536202 0.222102i
\(856\) −4.32957 10.4525i −0.147982 0.357259i
\(857\) −19.5984 + 8.11794i −0.669470 + 0.277304i −0.691417 0.722456i \(-0.743013\pi\)
0.0219473 + 0.999759i \(0.493013\pi\)
\(858\) 0 0
\(859\) 25.4558 + 25.4558i 0.868542 + 0.868542i 0.992311 0.123769i \(-0.0394981\pi\)
−0.123769 + 0.992311i \(0.539498\pi\)
\(860\) −5.22625 + 2.16478i −0.178214 + 0.0738185i
\(861\) 0 0
\(862\) 31.3575 + 12.9887i 1.06804 + 0.442397i
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) 7.07107 7.07107i 0.240424 0.240424i
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) 45.2548 45.2548i 1.53517 1.53517i
\(870\) 0 0
\(871\) 48.0000i 1.62642i
\(872\) −3.91969 1.62359i −0.132737 0.0549816i
\(873\) −4.87076 11.7591i −0.164850 0.397984i
\(874\) −20.9050 + 8.65914i −0.707122 + 0.292900i
\(875\) 0 0
\(876\) 0 0
\(877\) −45.7297 + 18.9419i −1.54418 + 0.639621i −0.982252 0.187564i \(-0.939941\pi\)
−0.561930 + 0.827185i \(0.689941\pi\)
\(878\) −6.49435 15.6788i −0.219174 0.529132i
\(879\) 0 0
\(880\) 8.00000i 0.269680i
\(881\) −21.1066 + 50.9560i −0.711101 + 1.71675i −0.0138695 + 0.999904i \(0.504415\pi\)
−0.697232 + 0.716846i \(0.745585\pi\)
\(882\) −14.8492 + 14.8492i −0.500000 + 0.500000i
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.82843 2.82843i 0.0950229 0.0950229i
\(887\) −15.1535 + 36.5838i −0.508804 + 1.22836i 0.435768 + 0.900059i \(0.356477\pi\)
−0.944572 + 0.328303i \(0.893523\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 47.0363 19.4831i 1.57577 0.652707i
\(892\) −11.3137 11.3137i −0.378811 0.378811i
\(893\) −22.6274 22.6274i −0.757198 0.757198i
\(894\) 0 0
\(895\) 2.16478 + 5.22625i 0.0723608 + 0.174694i
\(896\) 0 0
\(897\) 0 0
\(898\) 1.62359 3.91969i 0.0541798 0.130802i
\(899\) −16.9706 + 16.9706i −0.566000 + 0.566000i
\(900\) −9.00000 −0.300000
\(901\) 0 0
\(902\) −8.00000 −0.266371
\(903\) 0 0
\(904\) −0.541196 + 1.30656i −0.0179999 + 0.0434556i
\(905\) 22.0000i 0.731305i
\(906\) 0 0
\(907\) −10.8239 26.1313i −0.359402 0.867674i −0.995384 0.0959702i \(-0.969405\pi\)
0.635982 0.771704i \(-0.280595\pi\)
\(908\) −26.1313 + 10.8239i −0.867196 + 0.359204i
\(909\) −25.4558 25.4558i −0.844317 0.844317i
\(910\) 0 0
\(911\) 5.22625 2.16478i 0.173153 0.0717225i −0.294423 0.955675i \(-0.595127\pi\)
0.467576 + 0.883953i \(0.345127\pi\)
\(912\) 0 0
\(913\) −20.9050 8.65914i −0.691855 0.286576i
\(914\) 22.0000i 0.727695i
\(915\) 0 0
\(916\) −4.24264 + 4.24264i −0.140181 + 0.140181i
\(917\) 0 0
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 5.65685 5.65685i 0.186501 0.186501i
\(921\) 0 0
\(922\) 20.0000i 0.658665i
\(923\) −20.9050 8.65914i −0.688097 0.285019i
\(924\) 0 0
\(925\) 11.7591 4.87076i 0.386636 0.160150i
\(926\) 16.9706 + 16.9706i 0.557687 + 0.557687i
\(927\) −33.9411 33.9411i −1.11477 1.11477i
\(928\) −3.91969 + 1.62359i −0.128670 + 0.0532969i
\(929\) 7.03555 + 16.9853i 0.230829 + 0.557270i 0.996275 0.0862294i \(-0.0274818\pi\)
−0.765446 + 0.643500i \(0.777482\pi\)
\(930\) 0 0
\(931\) 28.0000i 0.917663i
\(932\) 2.70598 6.53281i 0.0886373 0.213989i
\(933\) 0 0
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −12.0000 −0.392232
\(937\) 33.9411 33.9411i 1.10881 1.10881i 0.115501 0.993307i \(-0.463153\pi\)
0.993307 0.115501i \(-0.0368473\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 10.4525 + 4.32957i 0.340923 + 0.141215i
\(941\) −0.541196 1.30656i −0.0176425 0.0425927i 0.914813 0.403878i \(-0.132338\pi\)
−0.932455 + 0.361285i \(0.882338\pi\)
\(942\) 0 0
\(943\) −5.65685 5.65685i −0.184213 0.184213i
\(944\) −2.82843 2.82843i −0.0920575 0.0920575i
\(945\) 0 0
\(946\) −8.65914 20.9050i −0.281533 0.679680i
\(947\) 15.6788 + 6.49435i 0.509491 + 0.211038i 0.622594 0.782545i \(-0.286079\pi\)
−0.113103 + 0.993583i \(0.536079\pi\)
\(948\) 0 0
\(949\) 10.8239 26.1313i 0.351359 0.848257i
\(950\) −8.48528 + 8.48528i −0.275299 + 0.275299i
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) −8.48528 + 8.48528i −0.274721 + 0.274721i
\(955\) −4.32957 + 10.4525i −0.140102 + 0.338235i
\(956\) 0 0
\(957\) 0 0
\(958\) −4.32957 10.4525i −0.139882 0.337705i
\(959\) 0 0
\(960\) 0 0
\(961\) −0.707107 0.707107i −0.0228099 0.0228099i
\(962\) 15.6788 6.49435i 0.505503 0.209386i
\(963\) 12.9887 + 31.3575i 0.418555 + 1.01048i
\(964\) 27.4378 + 11.3651i 0.883713 + 0.366046i
\(965\) 22.0000i 0.708205i
\(966\) 0 0
\(967\) 22.6274 22.6274i 0.727649 0.727649i −0.242502 0.970151i \(-0.577968\pi\)
0.970151 + 0.242502i \(0.0779682\pi\)
\(968\) 21.0000 0.674966
\(969\) 0 0
\(970\) 6.00000 0.192648
\(971\) −14.1421 + 14.1421i −0.453843 + 0.453843i −0.896628 0.442785i \(-0.853990\pi\)
0.442785 + 0.896628i \(0.353990\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 26.1313 + 10.8239i 0.837300 + 0.346821i
\(975\) 0 0
\(976\) −11.7591 + 4.87076i −0.376399 + 0.155909i
\(977\) 5.65685 + 5.65685i 0.180979 + 0.180979i 0.791782 0.610803i \(-0.209153\pi\)
−0.610803 + 0.791782i \(0.709153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.78837 9.14594i −0.121015 0.292156i
\(981\) 11.7591 + 4.87076i 0.375438 + 0.155512i
\(982\) 20.0000i 0.638226i
\(983\) −10.8239 + 26.1313i −0.345229 + 0.833458i 0.651940 + 0.758271i \(0.273955\pi\)
−0.997169 + 0.0751871i \(0.976045\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) −11.3137 + 11.3137i −0.359937 + 0.359937i
\(989\) 8.65914 20.9050i 0.275345 0.664741i
\(990\) 24.0000i 0.762770i
\(991\) −31.3575 12.9887i −0.996104 0.412600i −0.175737 0.984437i \(-0.556231\pi\)
−0.820367 + 0.571837i \(0.806231\pi\)
\(992\) −2.16478 5.22625i −0.0687320 0.165934i
\(993\) 0 0
\(994\) 0 0
\(995\) 16.9706 + 16.9706i 0.538003 + 0.538003i
\(996\) 0 0
\(997\) −18.9419 45.7297i −0.599895 1.44827i −0.873688 0.486486i \(-0.838279\pi\)
0.273794 0.961788i \(-0.411721\pi\)
\(998\) −10.4525 4.32957i −0.330868 0.137050i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 578.2.d.f.399.1 8
17.2 even 8 inner 578.2.d.f.423.2 8
17.3 odd 16 578.2.c.b.327.1 2
17.4 even 4 inner 578.2.d.f.179.1 8
17.5 odd 16 578.2.c.b.251.1 2
17.6 odd 16 578.2.b.c.577.2 2
17.7 odd 16 578.2.a.b.1.2 2
17.8 even 8 inner 578.2.d.f.155.1 8
17.9 even 8 inner 578.2.d.f.155.2 8
17.10 odd 16 578.2.a.b.1.1 2
17.11 odd 16 578.2.b.c.577.1 2
17.12 odd 16 34.2.c.b.13.1 2
17.13 even 4 inner 578.2.d.f.179.2 8
17.14 odd 16 34.2.c.b.21.1 yes 2
17.15 even 8 inner 578.2.d.f.423.1 8
17.16 even 2 inner 578.2.d.f.399.2 8
51.14 even 16 306.2.g.d.55.1 2
51.29 even 16 306.2.g.d.217.1 2
51.41 even 16 5202.2.a.bb.1.1 2
51.44 even 16 5202.2.a.bb.1.2 2
68.7 even 16 4624.2.a.l.1.2 2
68.27 even 16 4624.2.a.l.1.1 2
68.31 even 16 272.2.o.c.225.1 2
68.63 even 16 272.2.o.c.81.1 2
85.12 even 16 850.2.g.a.149.1 2
85.14 odd 16 850.2.h.c.701.1 2
85.29 odd 16 850.2.h.c.251.1 2
85.48 even 16 850.2.g.a.599.1 2
85.63 even 16 850.2.g.d.149.1 2
85.82 even 16 850.2.g.d.599.1 2
136.29 odd 16 1088.2.o.k.897.1 2
136.99 even 16 1088.2.o.i.769.1 2
136.131 even 16 1088.2.o.i.897.1 2
136.133 odd 16 1088.2.o.k.769.1 2
204.131 odd 16 2448.2.be.j.1441.1 2
204.167 odd 16 2448.2.be.j.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.c.b.13.1 2 17.12 odd 16
34.2.c.b.21.1 yes 2 17.14 odd 16
272.2.o.c.81.1 2 68.63 even 16
272.2.o.c.225.1 2 68.31 even 16
306.2.g.d.55.1 2 51.14 even 16
306.2.g.d.217.1 2 51.29 even 16
578.2.a.b.1.1 2 17.10 odd 16
578.2.a.b.1.2 2 17.7 odd 16
578.2.b.c.577.1 2 17.11 odd 16
578.2.b.c.577.2 2 17.6 odd 16
578.2.c.b.251.1 2 17.5 odd 16
578.2.c.b.327.1 2 17.3 odd 16
578.2.d.f.155.1 8 17.8 even 8 inner
578.2.d.f.155.2 8 17.9 even 8 inner
578.2.d.f.179.1 8 17.4 even 4 inner
578.2.d.f.179.2 8 17.13 even 4 inner
578.2.d.f.399.1 8 1.1 even 1 trivial
578.2.d.f.399.2 8 17.16 even 2 inner
578.2.d.f.423.1 8 17.15 even 8 inner
578.2.d.f.423.2 8 17.2 even 8 inner
850.2.g.a.149.1 2 85.12 even 16
850.2.g.a.599.1 2 85.48 even 16
850.2.g.d.149.1 2 85.63 even 16
850.2.g.d.599.1 2 85.82 even 16
850.2.h.c.251.1 2 85.29 odd 16
850.2.h.c.701.1 2 85.14 odd 16
1088.2.o.i.769.1 2 136.99 even 16
1088.2.o.i.897.1 2 136.131 even 16
1088.2.o.k.769.1 2 136.133 odd 16
1088.2.o.k.897.1 2 136.29 odd 16
2448.2.be.j.1441.1 2 204.131 odd 16
2448.2.be.j.1585.1 2 204.167 odd 16
4624.2.a.l.1.1 2 68.27 even 16
4624.2.a.l.1.2 2 68.7 even 16
5202.2.a.bb.1.1 2 51.41 even 16
5202.2.a.bb.1.2 2 51.44 even 16