Properties

Label 272.2.o.c.225.1
Level $272$
Weight $2$
Character 272.225
Analytic conductor $2.172$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(81,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 225.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 272.225
Dual form 272.2.o.c.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{5} +3.00000i q^{9} +(4.00000 + 4.00000i) q^{11} +4.00000 q^{13} +(-1.00000 - 4.00000i) q^{17} +4.00000i q^{19} +(-4.00000 - 4.00000i) q^{23} +3.00000i q^{25} +(-3.00000 + 3.00000i) q^{29} +(4.00000 - 4.00000i) q^{31} +(3.00000 - 3.00000i) q^{37} +(1.00000 + 1.00000i) q^{41} -4.00000i q^{43} +(-3.00000 - 3.00000i) q^{45} -8.00000 q^{47} -7.00000i q^{49} +4.00000i q^{53} -8.00000 q^{55} +4.00000i q^{59} +(-9.00000 - 9.00000i) q^{61} +(-4.00000 + 4.00000i) q^{65} +12.0000 q^{67} +(4.00000 - 4.00000i) q^{71} +(5.00000 - 5.00000i) q^{73} +(-8.00000 - 8.00000i) q^{79} -9.00000 q^{81} -4.00000i q^{83} +(5.00000 + 3.00000i) q^{85} +(-4.00000 - 4.00000i) q^{95} +(3.00000 - 3.00000i) q^{97} +(-12.0000 + 12.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 8 q^{11} + 8 q^{13} - 2 q^{17} - 8 q^{23} - 6 q^{29} + 8 q^{31} + 6 q^{37} + 2 q^{41} - 6 q^{45} - 16 q^{47} - 16 q^{55} - 18 q^{61} - 8 q^{65} + 24 q^{67} + 8 q^{71} + 10 q^{73} - 16 q^{79}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0 0
\(5\) −1.00000 + 1.00000i −0.447214 + 0.447214i −0.894427 0.447214i \(-0.852416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 4.00000 + 4.00000i 1.20605 + 1.20605i 0.972297 + 0.233748i \(0.0750991\pi\)
0.233748 + 0.972297i \(0.424901\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 4.00000i −0.242536 0.970143i
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 4.00000i −0.834058 0.834058i 0.154011 0.988069i \(-0.450781\pi\)
−0.988069 + 0.154011i \(0.950781\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 + 3.00000i −0.557086 + 0.557086i −0.928477 0.371391i \(-0.878881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 4.00000 4.00000i 0.718421 0.718421i −0.249861 0.968282i \(-0.580385\pi\)
0.968282 + 0.249861i \(0.0803848\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) −3.00000 3.00000i −0.447214 0.447214i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000i 0.549442i 0.961524 + 0.274721i \(0.0885855\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) −9.00000 9.00000i −1.15233 1.15233i −0.986084 0.166248i \(-0.946835\pi\)
−0.166248 0.986084i \(-0.553165\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 + 4.00000i −0.496139 + 0.496139i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000 4.00000i 0.474713 0.474713i −0.428723 0.903436i \(-0.641036\pi\)
0.903436 + 0.428723i \(0.141036\pi\)
\(72\) 0 0
\(73\) 5.00000 5.00000i 0.585206 0.585206i −0.351123 0.936329i \(-0.614200\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 8.00000i −0.900070 0.900070i 0.0953714 0.995442i \(-0.469596\pi\)
−0.995442 + 0.0953714i \(0.969596\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 5.00000 + 3.00000i 0.542326 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 4.00000i −0.410391 0.410391i
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 0 0
\(99\) −12.0000 + 12.0000i −1.20605 + 1.20605i
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 + 8.00000i −0.773389 + 0.773389i −0.978697 0.205308i \(-0.934180\pi\)
0.205308 + 0.978697i \(0.434180\pi\)
\(108\) 0 0
\(109\) 3.00000 + 3.00000i 0.287348 + 0.287348i 0.836031 0.548683i \(-0.184871\pi\)
−0.548683 + 0.836031i \(0.684871\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 1.00000i −0.0940721 0.0940721i 0.658505 0.752577i \(-0.271189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 0 0
\(117\) 12.0000i 1.10940i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 21.0000i 1.90909i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.00000 8.00000i −0.715542 0.715542i
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 4.00000i 0.349482 0.349482i −0.510435 0.859916i \(-0.670516\pi\)
0.859916 + 0.510435i \(0.170516\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 8.00000 8.00000i 0.678551 0.678551i −0.281121 0.959672i \(-0.590706\pi\)
0.959672 + 0.281121i \(0.0907063\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.0000 + 16.0000i 1.33799 + 1.33799i
\(144\) 0 0
\(145\) 6.00000i 0.498273i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 12.0000 3.00000i 0.970143 0.242536i
\(154\) 0 0
\(155\) 8.00000i 0.642575i
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 4.00000i −0.313304 0.313304i 0.532884 0.846188i \(-0.321108\pi\)
−0.846188 + 0.532884i \(0.821108\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 + 8.00000i −0.619059 + 0.619059i −0.945290 0.326231i \(-0.894221\pi\)
0.326231 + 0.945290i \(0.394221\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) 5.00000 5.00000i 0.380143 0.380143i −0.491011 0.871154i \(-0.663372\pi\)
0.871154 + 0.491011i \(0.163372\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000i 0.298974i 0.988764 + 0.149487i \(0.0477622\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) 11.0000 + 11.0000i 0.817624 + 0.817624i 0.985763 0.168140i \(-0.0537759\pi\)
−0.168140 + 0.985763i \(0.553776\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000i 0.441129i
\(186\) 0 0
\(187\) 12.0000 20.0000i 0.877527 1.46254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −11.0000 11.0000i −0.791797 0.791797i 0.189989 0.981786i \(-0.439155\pi\)
−0.981786 + 0.189989i \(0.939155\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 + 5.00000i 0.356235 + 0.356235i 0.862423 0.506188i \(-0.168946\pi\)
−0.506188 + 0.862423i \(0.668946\pi\)
\(198\) 0 0
\(199\) −12.0000 + 12.0000i −0.850657 + 0.850657i −0.990214 0.139557i \(-0.955432\pi\)
0.139557 + 0.990214i \(0.455432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) 12.0000 12.0000i 0.834058 0.834058i
\(208\) 0 0
\(209\) −16.0000 + 16.0000i −1.10674 + 1.10674i
\(210\) 0 0
\(211\) −16.0000 16.0000i −1.10149 1.10149i −0.994232 0.107254i \(-0.965794\pi\)
−0.107254 0.994232i \(-0.534206\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 + 4.00000i 0.272798 + 0.272798i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 16.0000i −0.269069 1.07628i
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 0 0
\(225\) −9.00000 −0.600000
\(226\) 0 0
\(227\) −20.0000 20.0000i −1.32745 1.32745i −0.907591 0.419856i \(-0.862081\pi\)
−0.419856 0.907591i \(-0.637919\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.00000 + 5.00000i −0.327561 + 0.327561i −0.851658 0.524097i \(-0.824403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) 8.00000 8.00000i 0.521862 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 21.0000 21.0000i 1.35273 1.35273i 0.470134 0.882595i \(-0.344206\pi\)
0.882595 0.470134i \(-0.155794\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.00000 + 7.00000i 0.447214 + 0.447214i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 32.0000i 2.01182i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000i 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −9.00000 9.00000i −0.557086 0.557086i
\(262\) 0 0
\(263\) 24.0000i 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) −4.00000 4.00000i −0.245718 0.245718i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.0000 + 13.0000i −0.792624 + 0.792624i −0.981920 0.189296i \(-0.939379\pi\)
0.189296 + 0.981920i \(0.439379\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 + 12.0000i −0.723627 + 0.723627i
\(276\) 0 0
\(277\) −7.00000 + 7.00000i −0.420589 + 0.420589i −0.885407 0.464817i \(-0.846120\pi\)
0.464817 + 0.885407i \(0.346120\pi\)
\(278\) 0 0
\(279\) 12.0000 + 12.0000i 0.718421 + 0.718421i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −4.00000 4.00000i −0.237775 0.237775i 0.578153 0.815928i \(-0.303774\pi\)
−0.815928 + 0.578153i \(0.803774\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −4.00000 4.00000i −0.232889 0.232889i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.0000 16.0000i −0.925304 0.925304i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.0000 1.03068
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 24.0000i 1.36092 1.36092i 0.488162 0.872753i \(-0.337667\pi\)
0.872753 0.488162i \(-0.162333\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.0000 15.0000i −0.842484 0.842484i 0.146697 0.989181i \(-0.453136\pi\)
−0.989181 + 0.146697i \(0.953136\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0000 4.00000i 0.890264 0.222566i
\(324\) 0 0
\(325\) 12.0000i 0.665640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 0 0
\(333\) 9.00000 + 9.00000i 0.493197 + 0.493197i
\(334\) 0 0
\(335\) −12.0000 + 12.0000i −0.655630 + 0.655630i
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 4.00000i 0.214115i −0.994253 0.107058i \(-0.965857\pi\)
0.994253 0.107058i \(-0.0341429\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 8.00000i 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000i 1.26667i 0.773877 + 0.633336i \(0.218315\pi\)
−0.773877 + 0.633336i \(0.781685\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000i 0.523424i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) −3.00000 + 3.00000i −0.156174 + 0.156174i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 + 12.0000i −0.618031 + 0.618031i
\(378\) 0 0
\(379\) −12.0000 + 12.0000i −0.616399 + 0.616399i −0.944606 0.328207i \(-0.893556\pi\)
0.328207 + 0.944606i \(0.393556\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000i 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) −12.0000 + 20.0000i −0.606866 + 1.01144i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 15.0000 + 15.0000i 0.752828 + 0.752828i 0.975006 0.222178i \(-0.0713165\pi\)
−0.222178 + 0.975006i \(0.571317\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.0000 19.0000i −0.948815 0.948815i 0.0499376 0.998752i \(-0.484098\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 0 0
\(403\) 16.0000 16.0000i 0.797017 0.797017i
\(404\) 0 0
\(405\) 9.00000 9.00000i 0.447214 0.447214i
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 + 4.00000i 0.196352 + 0.196352i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 + 12.0000i 0.586238 + 0.586238i 0.936611 0.350372i \(-0.113945\pi\)
−0.350372 + 0.936611i \(0.613945\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 24.0000i 1.16692i
\(424\) 0 0
\(425\) 12.0000 3.00000i 0.582086 0.145521i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 + 24.0000i 1.15604 + 1.15604i 0.985320 + 0.170720i \(0.0546093\pi\)
0.170720 + 0.985320i \(0.445391\pi\)
\(432\) 0 0
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0000 16.0000i 0.765384 0.765384i
\(438\) 0 0
\(439\) −12.0000 + 12.0000i −0.572729 + 0.572729i −0.932890 0.360161i \(-0.882722\pi\)
0.360161 + 0.932890i \(0.382722\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.00000 + 3.00000i 0.141579 + 0.141579i 0.774344 0.632765i \(-0.218080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(450\) 0 0
\(451\) 8.00000i 0.376705i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000i 0.931493i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.0000 16.0000i 0.735681 0.735681i
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 8.00000 8.00000i 0.365529 0.365529i −0.500314 0.865844i \(-0.666782\pi\)
0.865844 + 0.500314i \(0.166782\pi\)
\(480\) 0 0
\(481\) 12.0000 12.0000i 0.547153 0.547153i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.00000i 0.272446i
\(486\) 0 0
\(487\) −20.0000 20.0000i −0.906287 0.906287i 0.0896838 0.995970i \(-0.471414\pi\)
−0.995970 + 0.0896838i \(0.971414\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0000i 0.902587i 0.892375 + 0.451294i \(0.149037\pi\)
−0.892375 + 0.451294i \(0.850963\pi\)
\(492\) 0 0
\(493\) 15.0000 + 9.00000i 0.675566 + 0.405340i
\(494\) 0 0
\(495\) 24.0000i 1.07872i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.00000 8.00000i −0.358129 0.358129i 0.504994 0.863123i \(-0.331495\pi\)
−0.863123 + 0.504994i \(0.831495\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.00000 4.00000i −0.178351 0.178351i 0.612286 0.790637i \(-0.290250\pi\)
−0.790637 + 0.612286i \(0.790250\pi\)
\(504\) 0 0
\(505\) −12.0000 + 12.0000i −0.533993 + 0.533993i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.0000 + 16.0000i −0.705044 + 0.705044i
\(516\) 0 0
\(517\) −32.0000 32.0000i −1.40736 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.00000 + 1.00000i 0.0438108 + 0.0438108i 0.728673 0.684862i \(-0.240138\pi\)
−0.684862 + 0.728673i \(0.740138\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20.0000 12.0000i −0.871214 0.522728i
\(528\) 0 0
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 4.00000 + 4.00000i 0.173259 + 0.173259i
\(534\) 0 0
\(535\) 16.0000i 0.691740i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 28.0000 28.0000i 1.20605 1.20605i
\(540\) 0 0
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 12.0000 12.0000i 0.513083 0.513083i −0.402387 0.915470i \(-0.631819\pi\)
0.915470 + 0.402387i \(0.131819\pi\)
\(548\) 0 0
\(549\) 27.0000 27.0000i 1.15233 1.15233i
\(550\) 0 0
\(551\) −12.0000 12.0000i −0.511217 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.0000 1.18640 0.593199 0.805056i \(-0.297865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(558\) 0 0
\(559\) 16.0000i 0.676728i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000i 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.0000i 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(570\) 0 0
\(571\) 24.0000 + 24.0000i 1.00437 + 1.00437i 0.999990 + 0.00437833i \(0.00139367\pi\)
0.00437833 + 0.999990i \(0.498606\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 12.0000i 0.500435 0.500435i
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −16.0000 + 16.0000i −0.662652 + 0.662652i
\(584\) 0 0
\(585\) −12.0000 12.0000i −0.496139 0.496139i
\(586\) 0 0
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 16.0000 + 16.0000i 0.659269 + 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.0000i 0.657041i −0.944497 0.328521i \(-0.893450\pi\)
0.944497 0.328521i \(-0.106550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −19.0000 19.0000i −0.775026 0.775026i 0.203954 0.978980i \(-0.434621\pi\)
−0.978980 + 0.203954i \(0.934621\pi\)
\(602\) 0 0
\(603\) 36.0000i 1.46603i
\(604\) 0 0
\(605\) −21.0000 21.0000i −0.853771 0.853771i
\(606\) 0 0
\(607\) −28.0000 + 28.0000i −1.13648 + 1.13648i −0.147409 + 0.989076i \(0.547093\pi\)
−0.989076 + 0.147409i \(0.952907\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 3.00000i 0.120775 0.120775i −0.644136 0.764911i \(-0.722783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) −8.00000 8.00000i −0.321547 0.321547i 0.527813 0.849360i \(-0.323012\pi\)
−0.849360 + 0.527813i \(0.823012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.0000 9.00000i −0.598089 0.358854i
\(630\) 0 0
\(631\) 40.0000i 1.59237i −0.605050 0.796187i \(-0.706847\pi\)
0.605050 0.796187i \(-0.293153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.00000 8.00000i −0.317470 0.317470i
\(636\) 0 0
\(637\) 28.0000i 1.10940i
\(638\) 0 0
\(639\) 12.0000 + 12.0000i 0.474713 + 0.474713i
\(640\) 0 0
\(641\) 11.0000 11.0000i 0.434474 0.434474i −0.455673 0.890147i \(-0.650601\pi\)
0.890147 + 0.455673i \(0.150601\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) −16.0000 + 16.0000i −0.628055 + 0.628055i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.0000 + 29.0000i 1.13486 + 1.13486i 0.989358 + 0.145499i \(0.0464789\pi\)
0.145499 + 0.989358i \(0.453521\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) 0 0
\(657\) 15.0000 + 15.0000i 0.585206 + 0.585206i
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 20.0000i 0.777910i 0.921257 + 0.388955i \(0.127164\pi\)
−0.921257 + 0.388955i \(0.872836\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 72.0000i 2.77953i
\(672\) 0 0
\(673\) 19.0000 + 19.0000i 0.732396 + 0.732396i 0.971094 0.238698i \(-0.0767205\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.0000 13.0000i 0.499631 0.499631i −0.411692 0.911323i \(-0.635062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.0000 + 20.0000i −0.765279 + 0.765279i −0.977271 0.211993i \(-0.932005\pi\)
0.211993 + 0.977271i \(0.432005\pi\)
\(684\) 0 0
\(685\) −8.00000 + 8.00000i −0.305664 + 0.305664i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.0000i 0.609551i
\(690\) 0 0
\(691\) 24.0000 + 24.0000i 0.913003 + 0.913003i 0.996507 0.0835044i \(-0.0266113\pi\)
−0.0835044 + 0.996507i \(0.526611\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.0000i 0.606915i
\(696\) 0 0
\(697\) 3.00000 5.00000i 0.113633 0.189389i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 12.0000 + 12.0000i 0.452589 + 0.452589i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.0000 + 23.0000i −0.863783 + 0.863783i −0.991775 0.127992i \(-0.959147\pi\)
0.127992 + 0.991775i \(0.459147\pi\)
\(710\) 0 0
\(711\) 24.0000 24.0000i 0.900070 0.900070i
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) −32.0000 −1.19673
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.00000 8.00000i 0.298350 0.298350i −0.542018 0.840367i \(-0.682339\pi\)
0.840367 + 0.542018i \(0.182339\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.00000 9.00000i −0.334252 0.334252i
\(726\) 0 0
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −16.0000 + 4.00000i −0.591781 + 0.147945i
\(732\) 0 0
\(733\) 36.0000i 1.32969i −0.746981 0.664845i \(-0.768498\pi\)
0.746981 0.664845i \(-0.231502\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 48.0000 + 48.0000i 1.76810 + 1.76810i
\(738\) 0 0
\(739\) 4.00000i 0.147142i 0.997290 + 0.0735712i \(0.0234396\pi\)
−0.997290 + 0.0735712i \(0.976560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 10.0000 10.0000i 0.366372 0.366372i
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 + 16.0000i −0.583848 + 0.583848i −0.935959 0.352110i \(-0.885464\pi\)
0.352110 + 0.935959i \(0.385464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000i 0.799604i 0.916602 + 0.399802i \(0.130921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.00000 + 15.0000i −0.325396 + 0.542326i
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.00000i 0.215805i −0.994161 0.107903i \(-0.965587\pi\)
0.994161 0.107903i \(-0.0344134\pi\)
\(774\) 0 0
\(775\) 12.0000 + 12.0000i 0.431053 + 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.00000 + 4.00000i −0.143315 + 0.143315i
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.00000 2.00000i 0.0713831 0.0713831i
\(786\) 0 0
\(787\) 12.0000 12.0000i 0.427754 0.427754i −0.460109 0.887863i \(-0.652190\pi\)
0.887863 + 0.460109i \(0.152190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −36.0000 36.0000i −1.27840 1.27840i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) 8.00000 + 32.0000i 0.283020 + 1.13208i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 40.0000 1.41157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.0000 + 23.0000i 0.808637 + 0.808637i 0.984428 0.175791i \(-0.0562482\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) 4.00000 4.00000i 0.140459 0.140459i −0.633381 0.773840i \(-0.718333\pi\)
0.773840 + 0.633381i \(0.218333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.0000 + 19.0000i −0.663105 + 0.663105i −0.956111 0.293006i \(-0.905344\pi\)
0.293006 + 0.956111i \(0.405344\pi\)
\(822\) 0 0
\(823\) 36.0000 + 36.0000i 1.25488 + 1.25488i 0.953506 + 0.301376i \(0.0974458\pi\)
0.301376 + 0.953506i \(0.402554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.0000 + 20.0000i 0.695468 + 0.695468i 0.963430 0.267961i \(-0.0863500\pi\)
−0.267961 + 0.963430i \(0.586350\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.0000 + 7.00000i −0.970143 + 0.242536i
\(834\) 0 0
\(835\) 16.0000i 0.553703i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.0000 + 32.0000i 1.10476 + 1.10476i 0.993828 + 0.110935i \(0.0353845\pi\)
0.110935 + 0.993828i \(0.464615\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 + 3.00000i −0.103203 + 0.103203i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −25.0000 + 25.0000i −0.855984 + 0.855984i −0.990862 0.134878i \(-0.956936\pi\)
0.134878 + 0.990862i \(0.456936\pi\)
\(854\) 0 0
\(855\) 12.0000 12.0000i 0.410391 0.410391i
\(856\) 0 0
\(857\) −15.0000 15.0000i −0.512390 0.512390i 0.402868 0.915258i \(-0.368013\pi\)
−0.915258 + 0.402868i \(0.868013\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i −0.789188 0.614152i \(-0.789498\pi\)
0.789188 0.614152i \(-0.210502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 10.0000i 0.340010i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 64.0000i 2.17105i
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) 9.00000 + 9.00000i 0.304604 + 0.304604i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35.0000 + 35.0000i 1.18187 + 1.18187i 0.979260 + 0.202606i \(0.0649409\pi\)
0.202606 + 0.979260i \(0.435059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −39.0000 + 39.0000i −1.31394 + 1.31394i −0.395460 + 0.918483i \(0.629415\pi\)
−0.918483 + 0.395460i \(0.870585\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −28.0000 + 28.0000i −0.940148 + 0.940148i −0.998307 0.0581593i \(-0.981477\pi\)
0.0581593 + 0.998307i \(0.481477\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −36.0000 36.0000i −1.20605 1.20605i
\(892\) 0 0
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) −4.00000 4.00000i −0.133705 0.133705i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000i 0.800445i
\(900\) 0 0
\(901\) 16.0000 4.00000i 0.533037 0.133259i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.0000 −0.731305
\(906\) 0 0
\(907\) −20.0000 20.0000i −0.664089 0.664089i 0.292252 0.956341i \(-0.405595\pi\)
−0.956341 + 0.292252i \(0.905595\pi\)
\(908\) 0 0
\(909\) 36.0000i 1.19404i
\(910\) 0 0
\(911\) 4.00000 + 4.00000i 0.132526 + 0.132526i 0.770258 0.637732i \(-0.220127\pi\)
−0.637732 + 0.770258i \(0.720127\pi\)
\(912\) 0 0
\(913\) 16.0000 16.0000i 0.529523 0.529523i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.0000 16.0000i 0.526646 0.526646i
\(924\) 0 0
\(925\) 9.00000 + 9.00000i 0.295918 + 0.295918i
\(926\) 0 0
\(927\) 48.0000i 1.57653i
\(928\) 0 0
\(929\) 13.0000 + 13.0000i 0.426516 + 0.426516i 0.887440 0.460924i \(-0.152482\pi\)
−0.460924 + 0.887440i \(0.652482\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.00000 + 32.0000i 0.261628 + 1.04651i
\(936\) 0 0
\(937\) 48.0000i 1.56809i −0.620703 0.784046i \(-0.713153\pi\)
0.620703 0.784046i \(-0.286847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.00000 + 1.00000i 0.0325991 + 0.0325991i 0.723218 0.690619i \(-0.242662\pi\)
−0.690619 + 0.723218i \(0.742662\pi\)
\(942\) 0 0
\(943\) 8.00000i 0.260516i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 12.0000i 0.389948 0.389948i −0.484721 0.874669i \(-0.661079\pi\)
0.874669 + 0.484721i \(0.161079\pi\)
\(948\) 0 0
\(949\) 20.0000 20.0000i 0.649227 0.649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) −8.00000 + 8.00000i −0.258874 + 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) −24.0000 24.0000i −0.773389 0.773389i
\(964\) 0 0
\(965\) 22.0000 0.708205
\(966\) 0 0
\(967\) 32.0000i 1.02905i −0.857475 0.514525i \(-0.827968\pi\)
0.857475 0.514525i \(-0.172032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0000i 0.641831i −0.947108 0.320915i \(-0.896010\pi\)
0.947108 0.320915i \(-0.103990\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.00000i 0.255943i −0.991778 0.127971i \(-0.959153\pi\)
0.991778 0.127971i \(-0.0408466\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −9.00000 + 9.00000i −0.287348 + 0.287348i
\(982\) 0 0
\(983\) 20.0000 20.0000i 0.637901 0.637901i −0.312136 0.950037i \(-0.601045\pi\)
0.950037 + 0.312136i \(0.101045\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 + 16.0000i −0.508770 + 0.508770i
\(990\) 0 0
\(991\) 24.0000 24.0000i 0.762385 0.762385i −0.214368 0.976753i \(-0.568769\pi\)
0.976753 + 0.214368i \(0.0687691\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 24.0000i 0.760851i
\(996\) 0 0
\(997\) −35.0000 35.0000i −1.10846 1.10846i −0.993353 0.115108i \(-0.963279\pi\)
−0.115108 0.993353i \(-0.536721\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.o.c.225.1 2
3.2 odd 2 2448.2.be.j.1585.1 2
4.3 odd 2 34.2.c.b.21.1 yes 2
8.3 odd 2 1088.2.o.k.769.1 2
8.5 even 2 1088.2.o.i.769.1 2
12.11 even 2 306.2.g.d.55.1 2
17.8 even 8 4624.2.a.l.1.1 2
17.9 even 8 4624.2.a.l.1.2 2
17.13 even 4 inner 272.2.o.c.81.1 2
20.3 even 4 850.2.g.a.599.1 2
20.7 even 4 850.2.g.d.599.1 2
20.19 odd 2 850.2.h.c.701.1 2
51.47 odd 4 2448.2.be.j.1441.1 2
68.3 even 16 578.2.d.f.155.1 8
68.7 even 16 578.2.d.f.179.2 8
68.11 even 16 578.2.d.f.399.1 8
68.15 odd 8 578.2.b.c.577.2 2
68.19 odd 8 578.2.b.c.577.1 2
68.23 even 16 578.2.d.f.399.2 8
68.27 even 16 578.2.d.f.179.1 8
68.31 even 16 578.2.d.f.155.2 8
68.39 even 16 578.2.d.f.423.2 8
68.43 odd 8 578.2.a.b.1.2 2
68.47 odd 4 34.2.c.b.13.1 2
68.55 odd 4 578.2.c.b.251.1 2
68.59 odd 8 578.2.a.b.1.1 2
68.63 even 16 578.2.d.f.423.1 8
68.67 odd 2 578.2.c.b.327.1 2
136.13 even 4 1088.2.o.i.897.1 2
136.115 odd 4 1088.2.o.k.897.1 2
204.47 even 4 306.2.g.d.217.1 2
204.59 even 8 5202.2.a.bb.1.2 2
204.179 even 8 5202.2.a.bb.1.1 2
340.47 even 4 850.2.g.a.149.1 2
340.183 even 4 850.2.g.d.149.1 2
340.319 odd 4 850.2.h.c.251.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.c.b.13.1 2 68.47 odd 4
34.2.c.b.21.1 yes 2 4.3 odd 2
272.2.o.c.81.1 2 17.13 even 4 inner
272.2.o.c.225.1 2 1.1 even 1 trivial
306.2.g.d.55.1 2 12.11 even 2
306.2.g.d.217.1 2 204.47 even 4
578.2.a.b.1.1 2 68.59 odd 8
578.2.a.b.1.2 2 68.43 odd 8
578.2.b.c.577.1 2 68.19 odd 8
578.2.b.c.577.2 2 68.15 odd 8
578.2.c.b.251.1 2 68.55 odd 4
578.2.c.b.327.1 2 68.67 odd 2
578.2.d.f.155.1 8 68.3 even 16
578.2.d.f.155.2 8 68.31 even 16
578.2.d.f.179.1 8 68.27 even 16
578.2.d.f.179.2 8 68.7 even 16
578.2.d.f.399.1 8 68.11 even 16
578.2.d.f.399.2 8 68.23 even 16
578.2.d.f.423.1 8 68.63 even 16
578.2.d.f.423.2 8 68.39 even 16
850.2.g.a.149.1 2 340.47 even 4
850.2.g.a.599.1 2 20.3 even 4
850.2.g.d.149.1 2 340.183 even 4
850.2.g.d.599.1 2 20.7 even 4
850.2.h.c.251.1 2 340.319 odd 4
850.2.h.c.701.1 2 20.19 odd 2
1088.2.o.i.769.1 2 8.5 even 2
1088.2.o.i.897.1 2 136.13 even 4
1088.2.o.k.769.1 2 8.3 odd 2
1088.2.o.k.897.1 2 136.115 odd 4
2448.2.be.j.1441.1 2 51.47 odd 4
2448.2.be.j.1585.1 2 3.2 odd 2
4624.2.a.l.1.1 2 17.8 even 8
4624.2.a.l.1.2 2 17.9 even 8
5202.2.a.bb.1.1 2 204.179 even 8
5202.2.a.bb.1.2 2 204.59 even 8