Properties

Label 850.2.d.i.849.4
Level $850$
Weight $2$
Character 850.849
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(849,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 849.4
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 850.849
Dual form 850.2.d.i.849.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.82843 q^{3} -1.00000 q^{4} +2.82843i q^{6} -1.00000i q^{8} +5.00000 q^{9} +2.82843i q^{11} -2.82843 q^{12} +2.00000i q^{13} +1.00000 q^{16} +(-2.82843 + 3.00000i) q^{17} +5.00000i q^{18} +4.00000 q^{19} -2.82843 q^{22} +5.65685 q^{23} -2.82843i q^{24} -2.00000 q^{26} +5.65685 q^{27} -2.82843i q^{29} +1.00000i q^{32} +8.00000i q^{33} +(-3.00000 - 2.82843i) q^{34} -5.00000 q^{36} +8.48528 q^{37} +4.00000i q^{38} +5.65685i q^{39} -5.65685i q^{41} -4.00000i q^{43} -2.82843i q^{44} +5.65685i q^{46} +2.82843 q^{48} -7.00000 q^{49} +(-8.00000 + 8.48528i) q^{51} -2.00000i q^{52} +6.00000i q^{53} +5.65685i q^{54} +11.3137 q^{57} +2.82843 q^{58} -12.0000 q^{59} -8.48528i q^{61} -1.00000 q^{64} -8.00000 q^{66} +4.00000i q^{67} +(2.82843 - 3.00000i) q^{68} +16.0000 q^{69} -5.65685i q^{71} -5.00000i q^{72} +8.48528i q^{74} -4.00000 q^{76} -5.65685 q^{78} -16.9706i q^{79} +1.00000 q^{81} +5.65685 q^{82} -12.0000i q^{83} +4.00000 q^{86} -8.00000i q^{87} +2.82843 q^{88} -6.00000 q^{89} -5.65685 q^{92} +2.82843i q^{96} -16.9706 q^{97} -7.00000i q^{98} +14.1421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 20 q^{9} + 4 q^{16} + 16 q^{19} - 8 q^{26} - 12 q^{34} - 20 q^{36} - 28 q^{49} - 32 q^{51} - 48 q^{59} - 4 q^{64} - 32 q^{66} + 64 q^{69} - 16 q^{76} + 4 q^{81} + 16 q^{86} - 24 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.82843i 1.15470i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) −2.82843 −0.816497
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.82843 + 3.00000i −0.685994 + 0.727607i
\(18\) 5.00000i 1.17851i
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.82843 −0.603023
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 2.82843i 0.577350i
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 8.00000i 1.39262i
\(34\) −3.00000 2.82843i −0.514496 0.485071i
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) 8.48528 1.39497 0.697486 0.716599i \(-0.254302\pi\)
0.697486 + 0.716599i \(0.254302\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 5.65685i 0.905822i
\(40\) 0 0
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 0 0
\(46\) 5.65685i 0.834058i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 2.82843 0.408248
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −8.00000 + 8.48528i −1.12022 + 1.18818i
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 5.65685i 0.769800i
\(55\) 0 0
\(56\) 0 0
\(57\) 11.3137 1.49854
\(58\) 2.82843 0.371391
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −8.00000 −0.984732
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 2.82843 3.00000i 0.342997 0.363803i
\(69\) 16.0000 1.92617
\(70\) 0 0
\(71\) 5.65685i 0.671345i −0.941979 0.335673i \(-0.891036\pi\)
0.941979 0.335673i \(-0.108964\pi\)
\(72\) 5.00000i 0.589256i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 8.48528i 0.986394i
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) −5.65685 −0.640513
\(79\) 16.9706i 1.90934i −0.297670 0.954669i \(-0.596210\pi\)
0.297670 0.954669i \(-0.403790\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 5.65685 0.624695
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 8.00000i 0.857690i
\(88\) 2.82843 0.301511
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.65685 −0.589768
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 2.82843i 0.288675i
\(97\) −16.9706 −1.72310 −0.861550 0.507673i \(-0.830506\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 14.1421i 1.42134i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −8.48528 8.00000i −0.840168 0.792118i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 2.82843 0.273434 0.136717 0.990610i \(-0.456345\pi\)
0.136717 + 0.990610i \(0.456345\pi\)
\(108\) −5.65685 −0.544331
\(109\) 8.48528i 0.812743i −0.913708 0.406371i \(-0.866794\pi\)
0.913708 0.406371i \(-0.133206\pi\)
\(110\) 0 0
\(111\) 24.0000 2.27798
\(112\) 0 0
\(113\) −11.3137 −1.06430 −0.532152 0.846649i \(-0.678617\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 11.3137i 1.05963i
\(115\) 0 0
\(116\) 2.82843i 0.262613i
\(117\) 10.0000i 0.924500i
\(118\) 12.0000i 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 8.48528 0.768221
\(123\) 16.0000i 1.44267i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 11.3137i 0.996116i
\(130\) 0 0
\(131\) 2.82843i 0.247121i 0.992337 + 0.123560i \(0.0394313\pi\)
−0.992337 + 0.123560i \(0.960569\pi\)
\(132\) 8.00000i 0.696311i
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 3.00000 + 2.82843i 0.257248 + 0.242536i
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 16.0000i 1.36201i
\(139\) 8.48528i 0.719712i 0.933008 + 0.359856i \(0.117174\pi\)
−0.933008 + 0.359856i \(0.882826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.65685 0.474713
\(143\) −5.65685 −0.473050
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) 0 0
\(147\) −19.7990 −1.63299
\(148\) −8.48528 −0.697486
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000i 0.324443i
\(153\) −14.1421 + 15.0000i −1.14332 + 1.21268i
\(154\) 0 0
\(155\) 0 0
\(156\) 5.65685i 0.452911i
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 16.9706 1.35011
\(159\) 16.9706i 1.34585i
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) −8.48528 −0.664619 −0.332309 0.943170i \(-0.607828\pi\)
−0.332309 + 0.943170i \(0.607828\pi\)
\(164\) 5.65685i 0.441726i
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 11.3137 0.875481 0.437741 0.899101i \(-0.355779\pi\)
0.437741 + 0.899101i \(0.355779\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 20.0000 1.52944
\(172\) 4.00000i 0.304997i
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 8.00000 0.606478
\(175\) 0 0
\(176\) 2.82843i 0.213201i
\(177\) −33.9411 −2.55117
\(178\) 6.00000i 0.449719i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 8.48528i 0.630706i −0.948974 0.315353i \(-0.897877\pi\)
0.948974 0.315353i \(-0.102123\pi\)
\(182\) 0 0
\(183\) 24.0000i 1.77413i
\(184\) 5.65685i 0.417029i
\(185\) 0 0
\(186\) 0 0
\(187\) −8.48528 8.00000i −0.620505 0.585018i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −2.82843 −0.204124
\(193\) 16.9706 1.22157 0.610784 0.791797i \(-0.290854\pi\)
0.610784 + 0.791797i \(0.290854\pi\)
\(194\) 16.9706i 1.21842i
\(195\) 0 0
\(196\) 7.00000 0.500000
\(197\) 2.82843 0.201517 0.100759 0.994911i \(-0.467873\pi\)
0.100759 + 0.994911i \(0.467873\pi\)
\(198\) −14.1421 −1.00504
\(199\) 16.9706i 1.20301i −0.798869 0.601506i \(-0.794568\pi\)
0.798869 0.601506i \(-0.205432\pi\)
\(200\) 0 0
\(201\) 11.3137i 0.798007i
\(202\) 6.00000i 0.422159i
\(203\) 0 0
\(204\) 8.00000 8.48528i 0.560112 0.594089i
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 28.2843 1.96589
\(208\) 2.00000i 0.138675i
\(209\) 11.3137i 0.782586i
\(210\) 0 0
\(211\) 8.48528i 0.584151i −0.956395 0.292075i \(-0.905654\pi\)
0.956395 0.292075i \(-0.0943458\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 16.0000i 1.09630i
\(214\) 2.82843i 0.193347i
\(215\) 0 0
\(216\) 5.65685i 0.384900i
\(217\) 0 0
\(218\) 8.48528 0.574696
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 5.65685i −0.403604 0.380521i
\(222\) 24.0000i 1.61077i
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 11.3137i 0.752577i
\(227\) 19.7990 1.31411 0.657053 0.753845i \(-0.271803\pi\)
0.657053 + 0.753845i \(0.271803\pi\)
\(228\) −11.3137 −0.749269
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.82843 −0.185695
\(233\) 22.6274 1.48237 0.741186 0.671300i \(-0.234264\pi\)
0.741186 + 0.671300i \(0.234264\pi\)
\(234\) −10.0000 −0.653720
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 48.0000i 3.11794i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 16.9706i 1.09317i −0.837404 0.546585i \(-0.815928\pi\)
0.837404 0.546585i \(-0.184072\pi\)
\(242\) 3.00000i 0.192847i
\(243\) −14.1421 −0.907218
\(244\) 8.48528i 0.543214i
\(245\) 0 0
\(246\) 16.0000 1.02012
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) 33.9411i 2.15093i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 11.3137 0.704361
\(259\) 0 0
\(260\) 0 0
\(261\) 14.1421i 0.875376i
\(262\) −2.82843 −0.174741
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) 8.00000 0.492366
\(265\) 0 0
\(266\) 0 0
\(267\) −16.9706 −1.03858
\(268\) 4.00000i 0.244339i
\(269\) 31.1127i 1.89697i 0.316815 + 0.948487i \(0.397387\pi\)
−0.316815 + 0.948487i \(0.602613\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −2.82843 + 3.00000i −0.171499 + 0.181902i
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) −16.0000 −0.963087
\(277\) 25.4558 1.52949 0.764747 0.644331i \(-0.222864\pi\)
0.764747 + 0.644331i \(0.222864\pi\)
\(278\) −8.48528 −0.508913
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 8.48528 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(284\) 5.65685i 0.335673i
\(285\) 0 0
\(286\) 5.65685i 0.334497i
\(287\) 0 0
\(288\) 5.00000i 0.294628i
\(289\) −1.00000 16.9706i −0.0588235 0.998268i
\(290\) 0 0
\(291\) −48.0000 −2.81381
\(292\) 0 0
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 19.7990i 1.15470i
\(295\) 0 0
\(296\) 8.48528i 0.493197i
\(297\) 16.0000i 0.928414i
\(298\) 6.00000i 0.347571i
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000i 0.460348i
\(303\) −16.9706 −0.974933
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) −15.0000 14.1421i −0.857493 0.808452i
\(307\) 20.0000i 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 0 0
\(309\) 22.6274i 1.28723i
\(310\) 0 0
\(311\) 11.3137i 0.641542i 0.947157 + 0.320771i \(0.103942\pi\)
−0.947157 + 0.320771i \(0.896058\pi\)
\(312\) 5.65685 0.320256
\(313\) −16.9706 −0.959233 −0.479616 0.877478i \(-0.659224\pi\)
−0.479616 + 0.877478i \(0.659224\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 16.9706i 0.954669i
\(317\) 2.82843 0.158860 0.0794301 0.996840i \(-0.474690\pi\)
0.0794301 + 0.996840i \(0.474690\pi\)
\(318\) −16.9706 −0.951662
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) −11.3137 + 12.0000i −0.629512 + 0.667698i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 8.48528i 0.469956i
\(327\) 24.0000i 1.32720i
\(328\) −5.65685 −0.312348
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 42.4264 2.32495
\(334\) 11.3137i 0.619059i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −32.0000 −1.73800
\(340\) 0 0
\(341\) 0 0
\(342\) 20.0000i 1.08148i
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 2.82843i 0.152057i
\(347\) −14.1421 −0.759190 −0.379595 0.925153i \(-0.623937\pi\)
−0.379595 + 0.925153i \(0.623937\pi\)
\(348\) 8.00000i 0.428845i
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 11.3137i 0.603881i
\(352\) −2.82843 −0.150756
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 33.9411i 1.80395i
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 8.48528 0.445976
\(363\) 8.48528 0.445362
\(364\) 0 0
\(365\) 0 0
\(366\) 24.0000 1.25450
\(367\) −16.9706 −0.885856 −0.442928 0.896557i \(-0.646060\pi\)
−0.442928 + 0.896557i \(0.646060\pi\)
\(368\) 5.65685 0.294884
\(369\) 28.2843i 1.47242i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000i 1.13912i −0.821951 0.569558i \(-0.807114\pi\)
0.821951 0.569558i \(-0.192886\pi\)
\(374\) 8.00000 8.48528i 0.413670 0.438763i
\(375\) 0 0
\(376\) 0 0
\(377\) 5.65685 0.291343
\(378\) 0 0
\(379\) 25.4558i 1.30758i 0.756677 + 0.653789i \(0.226822\pi\)
−0.756677 + 0.653789i \(0.773178\pi\)
\(380\) 0 0
\(381\) 45.2548i 2.31848i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 2.82843i 0.144338i
\(385\) 0 0
\(386\) 16.9706i 0.863779i
\(387\) 20.0000i 1.01666i
\(388\) 16.9706 0.861550
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −16.0000 + 16.9706i −0.809155 + 0.858238i
\(392\) 7.00000i 0.353553i
\(393\) 8.00000i 0.403547i
\(394\) 2.82843i 0.142494i
\(395\) 0 0
\(396\) 14.1421i 0.710669i
\(397\) −8.48528 −0.425864 −0.212932 0.977067i \(-0.568301\pi\)
−0.212932 + 0.977067i \(0.568301\pi\)
\(398\) 16.9706 0.850657
\(399\) 0 0
\(400\) 0 0
\(401\) 28.2843i 1.41245i 0.707988 + 0.706225i \(0.249603\pi\)
−0.707988 + 0.706225i \(0.750397\pi\)
\(402\) −11.3137 −0.564276
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000i 1.18964i
\(408\) 8.48528 + 8.00000i 0.420084 + 0.396059i
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) 50.9117i 2.51129i
\(412\) 8.00000i 0.394132i
\(413\) 0 0
\(414\) 28.2843i 1.39010i
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 24.0000i 1.17529i
\(418\) −11.3137 −0.553372
\(419\) 14.1421i 0.690889i 0.938439 + 0.345444i \(0.112272\pi\)
−0.938439 + 0.345444i \(0.887728\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 8.48528 0.413057
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 16.0000 0.775203
\(427\) 0 0
\(428\) −2.82843 −0.136717
\(429\) −16.0000 −0.772487
\(430\) 0 0
\(431\) 5.65685i 0.272481i −0.990676 0.136241i \(-0.956498\pi\)
0.990676 0.136241i \(-0.0435020\pi\)
\(432\) 5.65685 0.272166
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.48528i 0.406371i
\(437\) 22.6274 1.08242
\(438\) 0 0
\(439\) 16.9706i 0.809961i 0.914325 + 0.404980i \(0.132722\pi\)
−0.914325 + 0.404980i \(0.867278\pi\)
\(440\) 0 0
\(441\) −35.0000 −1.66667
\(442\) 5.65685 6.00000i 0.269069 0.285391i
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) −24.0000 −1.13899
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) −16.9706 −0.802680
\(448\) 0 0
\(449\) 5.65685i 0.266963i 0.991051 + 0.133482i \(0.0426157\pi\)
−0.991051 + 0.133482i \(0.957384\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 11.3137 0.532152
\(453\) 22.6274 1.06313
\(454\) 19.7990i 0.929213i
\(455\) 0 0
\(456\) 11.3137i 0.529813i
\(457\) 10.0000i 0.467780i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 22.0000i 1.02799i
\(459\) −16.0000 + 16.9706i −0.746816 + 0.792118i
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i 0.668644 + 0.743583i \(0.266875\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(464\) 2.82843i 0.131306i
\(465\) 0 0
\(466\) 22.6274i 1.04819i
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 10.0000i 0.462250i
\(469\) 0 0
\(470\) 0 0
\(471\) 39.5980i 1.82458i
\(472\) 12.0000i 0.552345i
\(473\) 11.3137 0.520205
\(474\) 48.0000 2.20471
\(475\) 0 0
\(476\) 0 0
\(477\) 30.0000i 1.37361i
\(478\) 0 0
\(479\) 5.65685i 0.258468i 0.991614 + 0.129234i \(0.0412519\pi\)
−0.991614 + 0.129234i \(0.958748\pi\)
\(480\) 0 0
\(481\) 16.9706i 0.773791i
\(482\) 16.9706 0.772988
\(483\) 0 0
\(484\) −3.00000 −0.136364
\(485\) 0 0
\(486\) 14.1421i 0.641500i
\(487\) −16.9706 −0.769010 −0.384505 0.923123i \(-0.625628\pi\)
−0.384505 + 0.923123i \(0.625628\pi\)
\(488\) −8.48528 −0.384111
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 16.0000i 0.721336i
\(493\) 8.48528 + 8.00000i 0.382158 + 0.360302i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 33.9411 1.52094
\(499\) 25.4558i 1.13956i −0.821797 0.569780i \(-0.807028\pi\)
0.821797 0.569780i \(-0.192972\pi\)
\(500\) 0 0
\(501\) 32.0000 1.42965
\(502\) 12.0000i 0.535586i
\(503\) −28.2843 −1.26113 −0.630567 0.776135i \(-0.717177\pi\)
−0.630567 + 0.776135i \(0.717177\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 25.4558 1.13053
\(508\) 16.0000i 0.709885i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 22.6274 0.999025
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 11.3137i 0.498058i
\(517\) 0 0
\(518\) 0 0
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) 5.65685i 0.247831i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395452\pi\)
\(522\) 14.1421 0.618984
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 2.82843i 0.123560i
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) 8.00000i 0.348155i
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) −60.0000 −2.60378
\(532\) 0 0
\(533\) 11.3137 0.490051
\(534\) 16.9706i 0.734388i
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) −33.9411 −1.46467
\(538\) −31.1127 −1.34136
\(539\) 19.7990i 0.852803i
\(540\) 0 0
\(541\) 8.48528i 0.364811i 0.983223 + 0.182405i \(0.0583883\pi\)
−0.983223 + 0.182405i \(0.941612\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 24.0000i 1.02994i
\(544\) −3.00000 2.82843i −0.128624 0.121268i
\(545\) 0 0
\(546\) 0 0
\(547\) −42.4264 −1.81402 −0.907011 0.421107i \(-0.861642\pi\)
−0.907011 + 0.421107i \(0.861642\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 42.4264i 1.81071i
\(550\) 0 0
\(551\) 11.3137i 0.481980i
\(552\) 16.0000i 0.681005i
\(553\) 0 0
\(554\) 25.4558i 1.08152i
\(555\) 0 0
\(556\) 8.48528i 0.359856i
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −24.0000 22.6274i −1.01328 0.955330i
\(562\) 18.0000i 0.759284i
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8.48528i 0.356663i
\(567\) 0 0
\(568\) −5.65685 −0.237356
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 25.4558i 1.06529i −0.846338 0.532647i \(-0.821197\pi\)
0.846338 0.532647i \(-0.178803\pi\)
\(572\) 5.65685 0.236525
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −5.00000 −0.208333
\(577\) 38.0000i 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 16.9706 1.00000i 0.705882 0.0415945i
\(579\) 48.0000 1.99481
\(580\) 0 0
\(581\) 0 0
\(582\) 48.0000i 1.98966i
\(583\) −16.9706 −0.702849
\(584\) 0 0
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 19.7990 0.816497
\(589\) 0 0
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 8.48528 0.348743
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) −16.0000 −0.656488
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 48.0000i 1.96451i
\(598\) −11.3137 −0.462652
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 20.0000i 0.814463i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 16.9706i 0.689382i
\(607\) 33.9411 1.37763 0.688814 0.724938i \(-0.258132\pi\)
0.688814 + 0.724938i \(0.258132\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 14.1421 15.0000i 0.571662 0.606339i
\(613\) 10.0000i 0.403896i −0.979396 0.201948i \(-0.935273\pi\)
0.979396 0.201948i \(-0.0647272\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) 11.3137 0.455473 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(618\) −22.6274 −0.910208
\(619\) 8.48528i 0.341052i −0.985353 0.170526i \(-0.945453\pi\)
0.985353 0.170526i \(-0.0545467\pi\)
\(620\) 0 0
\(621\) 32.0000 1.28412
\(622\) −11.3137 −0.453638
\(623\) 0 0
\(624\) 5.65685i 0.226455i
\(625\) 0 0
\(626\) 16.9706i 0.678280i
\(627\) 32.0000i 1.27796i
\(628\) 14.0000i 0.558661i
\(629\) −24.0000 + 25.4558i −0.956943 + 1.01499i
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −16.9706 −0.675053
\(633\) 24.0000i 0.953914i
\(634\) 2.82843i 0.112331i
\(635\) 0 0
\(636\) 16.9706i 0.672927i
\(637\) 14.0000i 0.554700i
\(638\) 8.00000i 0.316723i
\(639\) 28.2843i 1.11891i
\(640\) 0 0
\(641\) 5.65685i 0.223432i −0.993740 0.111716i \(-0.964365\pi\)
0.993740 0.111716i \(-0.0356347\pi\)
\(642\) 8.00000i 0.315735i
\(643\) −8.48528 −0.334627 −0.167313 0.985904i \(-0.553509\pi\)
−0.167313 + 0.985904i \(0.553509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 11.3137i −0.472134 0.445132i
\(647\) 24.0000i 0.943537i 0.881722 + 0.471769i \(0.156384\pi\)
−0.881722 + 0.471769i \(0.843616\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 33.9411i 1.33231i
\(650\) 0 0
\(651\) 0 0
\(652\) 8.48528 0.332309
\(653\) 14.1421 0.553425 0.276712 0.960953i \(-0.410755\pi\)
0.276712 + 0.960953i \(0.410755\pi\)
\(654\) 24.0000 0.938474
\(655\) 0 0
\(656\) 5.65685i 0.220863i
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 4.00000i 0.155464i
\(663\) −16.9706 16.0000i −0.659082 0.621389i
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 42.4264i 1.64399i
\(667\) 16.0000i 0.619522i
\(668\) −11.3137 −0.437741
\(669\) 45.2548i 1.74965i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) −16.9706 −0.654167 −0.327084 0.944995i \(-0.606066\pi\)
−0.327084 + 0.944995i \(0.606066\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −14.1421 −0.543526 −0.271763 0.962364i \(-0.587607\pi\)
−0.271763 + 0.962364i \(0.587607\pi\)
\(678\) 32.0000i 1.22895i
\(679\) 0 0
\(680\) 0 0
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) −19.7990 −0.757587 −0.378794 0.925481i \(-0.623661\pi\)
−0.378794 + 0.925481i \(0.623661\pi\)
\(684\) −20.0000 −0.764719
\(685\) 0 0
\(686\) 0 0
\(687\) 62.2254 2.37405
\(688\) 4.00000i 0.152499i
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 8.48528i 0.322795i −0.986889 0.161398i \(-0.948400\pi\)
0.986889 0.161398i \(-0.0516002\pi\)
\(692\) 2.82843 0.107521
\(693\) 0 0
\(694\) 14.1421i 0.536828i
\(695\) 0 0
\(696\) −8.00000 −0.303239
\(697\) 16.9706 + 16.0000i 0.642806 + 0.606043i
\(698\) 34.0000i 1.28692i
\(699\) 64.0000 2.42070
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) −11.3137 −0.427008
\(703\) 33.9411 1.28011
\(704\) 2.82843i 0.106600i
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) 0 0
\(708\) 33.9411 1.27559
\(709\) 8.48528i 0.318671i 0.987224 + 0.159336i \(0.0509352\pi\)
−0.987224 + 0.159336i \(0.949065\pi\)
\(710\) 0 0
\(711\) 84.8528i 3.18223i
\(712\) 6.00000i 0.224860i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) 39.5980i 1.47676i 0.674387 + 0.738378i \(0.264408\pi\)
−0.674387 + 0.738378i \(0.735592\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000i 0.111648i
\(723\) 48.0000i 1.78514i
\(724\) 8.48528i 0.315353i
\(725\) 0 0
\(726\) 8.48528i 0.314918i
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 12.0000 + 11.3137i 0.443836 + 0.418453i
\(732\) 24.0000i 0.887066i
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) 16.9706i 0.626395i
\(735\) 0 0
\(736\) 5.65685i 0.208514i
\(737\) −11.3137 −0.416746
\(738\) 28.2843 1.04116
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 22.6274i 0.831239i
\(742\) 0 0
\(743\) −11.3137 −0.415060 −0.207530 0.978229i \(-0.566542\pi\)
−0.207530 + 0.978229i \(0.566542\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.0000 0.805477
\(747\) 60.0000i 2.19529i
\(748\) 8.48528 + 8.00000i 0.310253 + 0.292509i
\(749\) 0 0
\(750\) 0 0
\(751\) 16.9706i 0.619265i 0.950856 + 0.309632i \(0.100206\pi\)
−0.950856 + 0.309632i \(0.899794\pi\)
\(752\) 0 0
\(753\) −33.9411 −1.23688
\(754\) 5.65685i 0.206010i
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000i 0.799604i 0.916602 + 0.399802i \(0.130921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) −25.4558 −0.924598
\(759\) 45.2548i 1.64265i
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) −45.2548 −1.63941
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000i 0.866590i
\(768\) 2.82843 0.102062
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 16.9706i 0.611180i
\(772\) −16.9706 −0.610784
\(773\) 54.0000i 1.94225i −0.238581 0.971123i \(-0.576682\pi\)
0.238581 0.971123i \(-0.423318\pi\)
\(774\) 20.0000 0.718885
\(775\) 0 0
\(776\) 16.9706i 0.609208i
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) 22.6274i 0.810711i
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) −16.9706 16.0000i −0.606866 0.572159i
\(783\) 16.0000i 0.571793i
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) −8.00000 −0.285351
\(787\) −42.4264 −1.51234 −0.756169 0.654376i \(-0.772931\pi\)
−0.756169 + 0.654376i \(0.772931\pi\)
\(788\) −2.82843 −0.100759
\(789\) 67.8823i 2.41667i
\(790\) 0 0
\(791\) 0 0
\(792\) 14.1421 0.502519
\(793\) 16.9706 0.602642
\(794\) 8.48528i 0.301131i
\(795\) 0 0
\(796\) 16.9706i 0.601506i
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) −28.2843 −0.998752
\(803\) 0 0
\(804\) 11.3137i 0.399004i
\(805\) 0 0
\(806\) 0 0
\(807\) 88.0000i 3.09775i
\(808\) 6.00000i 0.211079i
\(809\) 39.5980i 1.39219i 0.717949 + 0.696095i \(0.245081\pi\)
−0.717949 + 0.696095i \(0.754919\pi\)
\(810\) 0 0
\(811\) 42.4264i 1.48979i 0.667180 + 0.744896i \(0.267501\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) −45.2548 −1.58716
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) −8.00000 + 8.48528i −0.280056 + 0.297044i
\(817\) 16.0000i 0.559769i
\(818\) 2.00000i 0.0699284i
\(819\) 0 0
\(820\) 0 0
\(821\) 48.0833i 1.67812i −0.544041 0.839059i \(-0.683106\pi\)
0.544041 0.839059i \(-0.316894\pi\)
\(822\) −50.9117 −1.77575
\(823\) −16.9706 −0.591557 −0.295778 0.955257i \(-0.595579\pi\)
−0.295778 + 0.955257i \(0.595579\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 36.7696 1.27860 0.639301 0.768956i \(-0.279224\pi\)
0.639301 + 0.768956i \(0.279224\pi\)
\(828\) −28.2843 −0.982946
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 72.0000 2.49765
\(832\) 2.00000i 0.0693375i
\(833\) 19.7990 21.0000i 0.685994 0.727607i
\(834\) −24.0000 −0.831052
\(835\) 0 0
\(836\) 11.3137i 0.391293i
\(837\) 0 0
\(838\) −14.1421 −0.488532
\(839\) 45.2548i 1.56237i −0.624299 0.781185i \(-0.714615\pi\)
0.624299 0.781185i \(-0.285385\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 26.0000i 0.896019i
\(843\) 50.9117 1.75349
\(844\) 8.48528i 0.292075i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000i 0.206041i
\(849\) 24.0000 0.823678
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 16.0000i 0.548151i
\(853\) −25.4558 −0.871592 −0.435796 0.900046i \(-0.643533\pi\)
−0.435796 + 0.900046i \(0.643533\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.82843i 0.0966736i
\(857\) 28.2843 0.966172 0.483086 0.875573i \(-0.339516\pi\)
0.483086 + 0.875573i \(0.339516\pi\)
\(858\) 16.0000i 0.546231i
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.65685 0.192673
\(863\) 48.0000i 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 5.65685i 0.192450i
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) −2.82843 48.0000i −0.0960584 1.63017i
\(868\) 0 0
\(869\) 48.0000 1.62829
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −8.48528 −0.287348
\(873\) −84.8528 −2.87183
\(874\) 22.6274i 0.765384i
\(875\) 0 0
\(876\) 0 0
\(877\) 8.48528 0.286528 0.143264 0.989685i \(-0.454240\pi\)
0.143264 + 0.989685i \(0.454240\pi\)
\(878\) −16.9706 −0.572729
\(879\) 16.9706i 0.572403i
\(880\) 0 0
\(881\) 45.2548i 1.52467i 0.647180 + 0.762337i \(0.275948\pi\)
−0.647180 + 0.762337i \(0.724052\pi\)
\(882\) 35.0000i 1.17851i
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) 6.00000 + 5.65685i 0.201802 + 0.190261i
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −39.5980 −1.32957 −0.664785 0.747035i \(-0.731477\pi\)
−0.664785 + 0.747035i \(0.731477\pi\)
\(888\) 24.0000i 0.805387i
\(889\) 0 0
\(890\) 0 0
\(891\) 2.82843i 0.0947559i
\(892\) 16.0000i 0.535720i
\(893\) 0 0
\(894\) 16.9706i 0.567581i
\(895\) 0 0
\(896\) 0 0
\(897\) 32.0000i 1.06845i
\(898\) −5.65685 −0.188772
\(899\) 0 0
\(900\) 0 0
\(901\) −18.0000 16.9706i −0.599667 0.565371i
\(902\) 16.0000i 0.532742i
\(903\) 0 0
\(904\) 11.3137i 0.376288i
\(905\) 0 0
\(906\) 22.6274i 0.751746i
\(907\) −42.4264 −1.40875 −0.704373 0.709830i \(-0.748772\pi\)
−0.704373 + 0.709830i \(0.748772\pi\)
\(908\) −19.7990 −0.657053
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 56.5685i 1.87420i −0.349062 0.937100i \(-0.613500\pi\)
0.349062 0.937100i \(-0.386500\pi\)
\(912\) 11.3137 0.374634
\(913\) 33.9411 1.12329
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 0 0
\(918\) −16.9706 16.0000i −0.560112 0.528079i
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 56.5685i 1.86400i
\(922\) 18.0000i 0.592798i
\(923\) 11.3137 0.372395
\(924\) 0 0
\(925\) 0 0
\(926\) −32.0000 −1.05159
\(927\) 40.0000i 1.31377i
\(928\) 2.82843 0.0928477
\(929\) 5.65685i 0.185595i 0.995685 + 0.0927977i \(0.0295810\pi\)
−0.995685 + 0.0927977i \(0.970419\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) −22.6274 −0.741186
\(933\) 32.0000i 1.04763i
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) 10.0000 0.326860
\(937\) 2.00000i 0.0653372i −0.999466 0.0326686i \(-0.989599\pi\)
0.999466 0.0326686i \(-0.0104006\pi\)
\(938\) 0 0
\(939\) −48.0000 −1.56642
\(940\) 0 0
\(941\) 36.7696i 1.19865i 0.800505 + 0.599327i \(0.204565\pi\)
−0.800505 + 0.599327i \(0.795435\pi\)
\(942\) 39.5980 1.29017
\(943\) 32.0000i 1.04206i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 11.3137i 0.367840i
\(947\) 2.82843 0.0919115 0.0459558 0.998943i \(-0.485367\pi\)
0.0459558 + 0.998943i \(0.485367\pi\)
\(948\) 48.0000i 1.55897i
\(949\) 0 0
\(950\) 0 0
\(951\) 8.00000 0.259418
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) −30.0000 −0.971286
\(955\) 0 0
\(956\) 0 0
\(957\) 22.6274 0.731441
\(958\) −5.65685 −0.182765
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) −16.9706 −0.547153
\(963\) 14.1421 0.455724
\(964\) 16.9706i 0.546585i
\(965\) 0 0
\(966\) 0 0
\(967\) 8.00000i 0.257263i −0.991692 0.128631i \(-0.958942\pi\)
0.991692 0.128631i \(-0.0410584\pi\)
\(968\) 3.00000i 0.0964237i
\(969\) −32.0000 + 33.9411i −1.02799 + 1.09035i
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 14.1421 0.453609
\(973\) 0 0
\(974\) 16.9706i 0.543772i
\(975\) 0 0
\(976\) 8.48528i 0.271607i
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 24.0000i 0.767435i
\(979\) 16.9706i 0.542382i
\(980\) 0 0
\(981\) 42.4264i 1.35457i
\(982\) 12.0000i 0.382935i
\(983\) 5.65685 0.180426 0.0902128 0.995923i \(-0.471245\pi\)
0.0902128 + 0.995923i \(0.471245\pi\)
\(984\) −16.0000 −0.510061
\(985\) 0 0
\(986\) −8.00000 + 8.48528i −0.254772 + 0.270226i
\(987\) 0 0
\(988\) 8.00000i 0.254514i
\(989\) 22.6274i 0.719510i
\(990\) 0 0
\(991\) 50.9117i 1.61726i 0.588315 + 0.808632i \(0.299791\pi\)
−0.588315 + 0.808632i \(0.700209\pi\)
\(992\) 0 0
\(993\) −11.3137 −0.359030
\(994\) 0 0
\(995\) 0 0
\(996\) 33.9411i 1.07547i
\(997\) 59.3970 1.88112 0.940560 0.339626i \(-0.110301\pi\)
0.940560 + 0.339626i \(0.110301\pi\)
\(998\) 25.4558 0.805791
\(999\) 48.0000 1.51865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.d.i.849.4 4
5.2 odd 4 34.2.b.a.33.1 2
5.3 odd 4 850.2.b.f.101.2 2
5.4 even 2 inner 850.2.d.i.849.1 4
15.2 even 4 306.2.b.d.271.1 2
17.16 even 2 inner 850.2.d.i.849.3 4
20.7 even 4 272.2.b.a.33.2 2
35.27 even 4 1666.2.b.c.883.2 2
40.27 even 4 1088.2.b.a.577.1 2
40.37 odd 4 1088.2.b.b.577.2 2
60.47 odd 4 2448.2.c.n.577.1 2
85.2 odd 8 578.2.c.a.251.1 2
85.7 even 16 578.2.d.g.155.1 8
85.12 even 16 578.2.d.g.179.1 8
85.22 even 16 578.2.d.g.179.2 8
85.27 even 16 578.2.d.g.155.2 8
85.32 odd 8 578.2.c.d.251.1 2
85.33 odd 4 850.2.b.f.101.1 2
85.37 even 16 578.2.d.g.399.2 8
85.42 odd 8 578.2.c.a.327.1 2
85.47 odd 4 578.2.a.d.1.2 2
85.57 even 16 578.2.d.g.423.1 8
85.62 even 16 578.2.d.g.423.2 8
85.67 odd 4 34.2.b.a.33.2 yes 2
85.72 odd 4 578.2.a.d.1.1 2
85.77 odd 8 578.2.c.d.327.1 2
85.82 even 16 578.2.d.g.399.1 8
85.84 even 2 inner 850.2.d.i.849.2 4
255.47 even 4 5202.2.a.u.1.2 2
255.152 even 4 306.2.b.d.271.2 2
255.242 even 4 5202.2.a.u.1.1 2
340.47 even 4 4624.2.a.s.1.1 2
340.67 even 4 272.2.b.a.33.1 2
340.327 even 4 4624.2.a.s.1.2 2
595.237 even 4 1666.2.b.c.883.1 2
680.67 even 4 1088.2.b.a.577.2 2
680.237 odd 4 1088.2.b.b.577.1 2
1020.407 odd 4 2448.2.c.n.577.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.b.a.33.1 2 5.2 odd 4
34.2.b.a.33.2 yes 2 85.67 odd 4
272.2.b.a.33.1 2 340.67 even 4
272.2.b.a.33.2 2 20.7 even 4
306.2.b.d.271.1 2 15.2 even 4
306.2.b.d.271.2 2 255.152 even 4
578.2.a.d.1.1 2 85.72 odd 4
578.2.a.d.1.2 2 85.47 odd 4
578.2.c.a.251.1 2 85.2 odd 8
578.2.c.a.327.1 2 85.42 odd 8
578.2.c.d.251.1 2 85.32 odd 8
578.2.c.d.327.1 2 85.77 odd 8
578.2.d.g.155.1 8 85.7 even 16
578.2.d.g.155.2 8 85.27 even 16
578.2.d.g.179.1 8 85.12 even 16
578.2.d.g.179.2 8 85.22 even 16
578.2.d.g.399.1 8 85.82 even 16
578.2.d.g.399.2 8 85.37 even 16
578.2.d.g.423.1 8 85.57 even 16
578.2.d.g.423.2 8 85.62 even 16
850.2.b.f.101.1 2 85.33 odd 4
850.2.b.f.101.2 2 5.3 odd 4
850.2.d.i.849.1 4 5.4 even 2 inner
850.2.d.i.849.2 4 85.84 even 2 inner
850.2.d.i.849.3 4 17.16 even 2 inner
850.2.d.i.849.4 4 1.1 even 1 trivial
1088.2.b.a.577.1 2 40.27 even 4
1088.2.b.a.577.2 2 680.67 even 4
1088.2.b.b.577.1 2 680.237 odd 4
1088.2.b.b.577.2 2 40.37 odd 4
1666.2.b.c.883.1 2 595.237 even 4
1666.2.b.c.883.2 2 35.27 even 4
2448.2.c.n.577.1 2 60.47 odd 4
2448.2.c.n.577.2 2 1020.407 odd 4
4624.2.a.s.1.1 2 340.47 even 4
4624.2.a.s.1.2 2 340.327 even 4
5202.2.a.u.1.1 2 255.242 even 4
5202.2.a.u.1.2 2 255.47 even 4