Properties

Label 1666.2.b.c.883.1
Level $1666$
Weight $2$
Character 1666.883
Analytic conductor $13.303$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1666,2,Mod(883,1666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1666, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1666.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1666 = 2 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1666.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0,-2,-10,0,0,0,-4,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3030769767\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1666.883
Dual form 1666.2.b.c.883.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.82843i q^{3} +1.00000 q^{4} +2.82843i q^{5} +2.82843i q^{6} -1.00000 q^{8} -5.00000 q^{9} -2.82843i q^{10} -2.82843i q^{11} -2.82843i q^{12} -2.00000 q^{13} +8.00000 q^{15} +1.00000 q^{16} +(3.00000 - 2.82843i) q^{17} +5.00000 q^{18} +4.00000 q^{19} +2.82843i q^{20} +2.82843i q^{22} +5.65685i q^{23} +2.82843i q^{24} -3.00000 q^{25} +2.00000 q^{26} +5.65685i q^{27} -2.82843i q^{29} -8.00000 q^{30} -1.00000 q^{32} -8.00000 q^{33} +(-3.00000 + 2.82843i) q^{34} -5.00000 q^{36} -8.48528i q^{37} -4.00000 q^{38} +5.65685i q^{39} -2.82843i q^{40} -5.65685i q^{41} -4.00000 q^{43} -2.82843i q^{44} -14.1421i q^{45} -5.65685i q^{46} -2.82843i q^{48} +3.00000 q^{50} +(-8.00000 - 8.48528i) q^{51} -2.00000 q^{52} +6.00000 q^{53} -5.65685i q^{54} +8.00000 q^{55} -11.3137i q^{57} +2.82843i q^{58} -12.0000 q^{59} +8.00000 q^{60} -8.48528i q^{61} +1.00000 q^{64} -5.65685i q^{65} +8.00000 q^{66} -4.00000 q^{67} +(3.00000 - 2.82843i) q^{68} +16.0000 q^{69} +5.65685i q^{71} +5.00000 q^{72} +8.48528i q^{74} +8.48528i q^{75} +4.00000 q^{76} -5.65685i q^{78} -16.9706i q^{79} +2.82843i q^{80} +1.00000 q^{81} +5.65685i q^{82} +12.0000 q^{83} +(8.00000 + 8.48528i) q^{85} +4.00000 q^{86} -8.00000 q^{87} +2.82843i q^{88} -6.00000 q^{89} +14.1421i q^{90} +5.65685i q^{92} +11.3137i q^{95} +2.82843i q^{96} -16.9706i q^{97} +14.1421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 10 q^{9} - 4 q^{13} + 16 q^{15} + 2 q^{16} + 6 q^{17} + 10 q^{18} + 8 q^{19} - 6 q^{25} + 4 q^{26} - 16 q^{30} - 2 q^{32} - 16 q^{33} - 6 q^{34} - 10 q^{36} - 8 q^{38}+ \cdots - 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1666\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.82843i 1.63299i −0.577350 0.816497i \(-0.695913\pi\)
0.577350 0.816497i \(-0.304087\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.82843i 1.26491i 0.774597 + 0.632456i \(0.217953\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 2.82843i 1.15470i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −5.00000 −1.66667
\(10\) 2.82843i 0.894427i
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 2.82843i 0.816497i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 8.00000 2.06559
\(16\) 1.00000 0.250000
\(17\) 3.00000 2.82843i 0.727607 0.685994i
\(18\) 5.00000 1.17851
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 2.82843i 0.632456i
\(21\) 0 0
\(22\) 2.82843i 0.603023i
\(23\) 5.65685i 1.17954i 0.807573 + 0.589768i \(0.200781\pi\)
−0.807573 + 0.589768i \(0.799219\pi\)
\(24\) 2.82843i 0.577350i
\(25\) −3.00000 −0.600000
\(26\) 2.00000 0.392232
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) −8.00000 −1.46059
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −0.176777
\(33\) −8.00000 −1.39262
\(34\) −3.00000 + 2.82843i −0.514496 + 0.485071i
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) 8.48528i 1.39497i −0.716599 0.697486i \(-0.754302\pi\)
0.716599 0.697486i \(-0.245698\pi\)
\(38\) −4.00000 −0.648886
\(39\) 5.65685i 0.905822i
\(40\) 2.82843i 0.447214i
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 14.1421i 2.10819i
\(46\) 5.65685i 0.834058i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 2.82843i 0.408248i
\(49\) 0 0
\(50\) 3.00000 0.424264
\(51\) −8.00000 8.48528i −1.12022 1.18818i
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 5.65685i 0.769800i
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 11.3137i 1.49854i
\(58\) 2.82843i 0.371391i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 8.00000 1.03280
\(61\) 8.48528i 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 5.65685i 0.701646i
\(66\) 8.00000 0.984732
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 3.00000 2.82843i 0.363803 0.342997i
\(69\) 16.0000 1.92617
\(70\) 0 0
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 5.00000 0.589256
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 8.48528i 0.986394i
\(75\) 8.48528i 0.979796i
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 5.65685i 0.640513i
\(79\) 16.9706i 1.90934i −0.297670 0.954669i \(-0.596210\pi\)
0.297670 0.954669i \(-0.403790\pi\)
\(80\) 2.82843i 0.316228i
\(81\) 1.00000 0.111111
\(82\) 5.65685i 0.624695i
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 8.00000 + 8.48528i 0.867722 + 0.920358i
\(86\) 4.00000 0.431331
\(87\) −8.00000 −0.857690
\(88\) 2.82843i 0.301511i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 14.1421i 1.49071i
\(91\) 0 0
\(92\) 5.65685i 0.589768i
\(93\) 0 0
\(94\) 0 0
\(95\) 11.3137i 1.16076i
\(96\) 2.82843i 0.288675i
\(97\) 16.9706i 1.72310i −0.507673 0.861550i \(-0.669494\pi\)
0.507673 0.861550i \(-0.330506\pi\)
\(98\) 0 0
\(99\) 14.1421i 1.42134i
\(100\) −3.00000 −0.300000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 8.00000 + 8.48528i 0.792118 + 0.840168i
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 2.82843i 0.273434i −0.990610 0.136717i \(-0.956345\pi\)
0.990610 0.136717i \(-0.0436552\pi\)
\(108\) 5.65685i 0.544331i
\(109\) 8.48528i 0.812743i −0.913708 0.406371i \(-0.866794\pi\)
0.913708 0.406371i \(-0.133206\pi\)
\(110\) −8.00000 −0.762770
\(111\) −24.0000 −2.27798
\(112\) 0 0
\(113\) 11.3137i 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 11.3137i 1.05963i
\(115\) −16.0000 −1.49201
\(116\) 2.82843i 0.262613i
\(117\) 10.0000 0.924500
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) −8.00000 −0.730297
\(121\) 3.00000 0.272727
\(122\) 8.48528i 0.768221i
\(123\) −16.0000 −1.44267
\(124\) 0 0
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 11.3137i 0.996116i
\(130\) 5.65685i 0.496139i
\(131\) 2.82843i 0.247121i 0.992337 + 0.123560i \(0.0394313\pi\)
−0.992337 + 0.123560i \(0.960569\pi\)
\(132\) −8.00000 −0.696311
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) −16.0000 −1.37706
\(136\) −3.00000 + 2.82843i −0.257248 + 0.242536i
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −16.0000 −1.36201
\(139\) 8.48528i 0.719712i −0.933008 0.359856i \(-0.882826\pi\)
0.933008 0.359856i \(-0.117174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.65685i 0.474713i
\(143\) 5.65685i 0.473050i
\(144\) −5.00000 −0.416667
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 0 0
\(148\) 8.48528i 0.697486i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 8.48528i 0.692820i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −4.00000 −0.324443
\(153\) −15.0000 + 14.1421i −1.21268 + 1.14332i
\(154\) 0 0
\(155\) 0 0
\(156\) 5.65685i 0.452911i
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 16.9706i 1.35011i
\(159\) 16.9706i 1.34585i
\(160\) 2.82843i 0.223607i
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 8.48528i 0.664619i −0.943170 0.332309i \(-0.892172\pi\)
0.943170 0.332309i \(-0.107828\pi\)
\(164\) 5.65685i 0.441726i
\(165\) 22.6274i 1.76154i
\(166\) −12.0000 −0.931381
\(167\) 11.3137i 0.875481i 0.899101 + 0.437741i \(0.144221\pi\)
−0.899101 + 0.437741i \(0.855779\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −8.00000 8.48528i −0.613572 0.650791i
\(171\) −20.0000 −1.52944
\(172\) −4.00000 −0.304997
\(173\) 2.82843i 0.215041i 0.994203 + 0.107521i \(0.0342912\pi\)
−0.994203 + 0.107521i \(0.965709\pi\)
\(174\) 8.00000 0.606478
\(175\) 0 0
\(176\) 2.82843i 0.213201i
\(177\) 33.9411i 2.55117i
\(178\) 6.00000 0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 14.1421i 1.05409i
\(181\) 8.48528i 0.630706i −0.948974 0.315353i \(-0.897877\pi\)
0.948974 0.315353i \(-0.102123\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 5.65685i 0.417029i
\(185\) 24.0000 1.76452
\(186\) 0 0
\(187\) −8.00000 8.48528i −0.585018 0.620505i
\(188\) 0 0
\(189\) 0 0
\(190\) 11.3137i 0.820783i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 2.82843i 0.204124i
\(193\) 16.9706i 1.22157i 0.791797 + 0.610784i \(0.209146\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 16.9706i 1.21842i
\(195\) −16.0000 −1.14578
\(196\) 0 0
\(197\) 2.82843i 0.201517i −0.994911 0.100759i \(-0.967873\pi\)
0.994911 0.100759i \(-0.0321270\pi\)
\(198\) 14.1421i 1.00504i
\(199\) 16.9706i 1.20301i 0.798869 + 0.601506i \(0.205432\pi\)
−0.798869 + 0.601506i \(0.794568\pi\)
\(200\) 3.00000 0.212132
\(201\) 11.3137i 0.798007i
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) −8.00000 8.48528i −0.560112 0.594089i
\(205\) 16.0000 1.11749
\(206\) 8.00000 0.557386
\(207\) 28.2843i 1.96589i
\(208\) −2.00000 −0.138675
\(209\) 11.3137i 0.782586i
\(210\) 0 0
\(211\) 8.48528i 0.584151i 0.956395 + 0.292075i \(0.0943458\pi\)
−0.956395 + 0.292075i \(0.905654\pi\)
\(212\) 6.00000 0.412082
\(213\) 16.0000 1.09630
\(214\) 2.82843i 0.193347i
\(215\) 11.3137i 0.771589i
\(216\) 5.65685i 0.384900i
\(217\) 0 0
\(218\) 8.48528i 0.574696i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) −6.00000 + 5.65685i −0.403604 + 0.380521i
\(222\) 24.0000 1.61077
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 11.3137i 0.752577i
\(227\) 19.7990i 1.31411i 0.753845 + 0.657053i \(0.228197\pi\)
−0.753845 + 0.657053i \(0.771803\pi\)
\(228\) 11.3137i 0.749269i
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 16.0000 1.05501
\(231\) 0 0
\(232\) 2.82843i 0.185695i
\(233\) 22.6274i 1.48237i 0.671300 + 0.741186i \(0.265736\pi\)
−0.671300 + 0.741186i \(0.734264\pi\)
\(234\) −10.0000 −0.653720
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) −48.0000 −3.11794
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 8.00000 0.516398
\(241\) 16.9706i 1.09317i −0.837404 0.546585i \(-0.815928\pi\)
0.837404 0.546585i \(-0.184072\pi\)
\(242\) −3.00000 −0.192847
\(243\) 14.1421i 0.907218i
\(244\) 8.48528i 0.543214i
\(245\) 0 0
\(246\) 16.0000 1.02012
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) 33.9411i 2.15093i
\(250\) 5.65685i 0.357771i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 16.0000 1.00393
\(255\) 24.0000 22.6274i 1.50294 1.41698i
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 11.3137i 0.704361i
\(259\) 0 0
\(260\) 5.65685i 0.350823i
\(261\) 14.1421i 0.875376i
\(262\) 2.82843i 0.174741i
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 8.00000 0.492366
\(265\) 16.9706i 1.04249i
\(266\) 0 0
\(267\) 16.9706i 1.03858i
\(268\) −4.00000 −0.244339
\(269\) 31.1127i 1.89697i −0.316815 0.948487i \(-0.602613\pi\)
0.316815 0.948487i \(-0.397387\pi\)
\(270\) 16.0000 0.973729
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 3.00000 2.82843i 0.181902 0.171499i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 8.48528i 0.511682i
\(276\) 16.0000 0.963087
\(277\) 25.4558i 1.52949i −0.644331 0.764747i \(-0.722864\pi\)
0.644331 0.764747i \(-0.277136\pi\)
\(278\) 8.48528i 0.508913i
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 8.48528i 0.504398i −0.967675 0.252199i \(-0.918846\pi\)
0.967675 0.252199i \(-0.0811537\pi\)
\(284\) 5.65685i 0.335673i
\(285\) 32.0000 1.89552
\(286\) 5.65685i 0.334497i
\(287\) 0 0
\(288\) 5.00000 0.294628
\(289\) 1.00000 16.9706i 0.0588235 0.998268i
\(290\) −8.00000 −0.469776
\(291\) −48.0000 −2.81381
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 33.9411i 1.97613i
\(296\) 8.48528i 0.493197i
\(297\) 16.0000 0.928414
\(298\) −6.00000 −0.347571
\(299\) 11.3137i 0.654289i
\(300\) 8.48528i 0.489898i
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) 16.9706i 0.974933i
\(304\) 4.00000 0.229416
\(305\) 24.0000 1.37424
\(306\) 15.0000 14.1421i 0.857493 0.808452i
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 22.6274i 1.28723i
\(310\) 0 0
\(311\) 11.3137i 0.641542i 0.947157 + 0.320771i \(0.103942\pi\)
−0.947157 + 0.320771i \(0.896058\pi\)
\(312\) 5.65685i 0.320256i
\(313\) 16.9706i 0.959233i 0.877478 + 0.479616i \(0.159224\pi\)
−0.877478 + 0.479616i \(0.840776\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 16.9706i 0.954669i
\(317\) 2.82843i 0.158860i −0.996840 0.0794301i \(-0.974690\pi\)
0.996840 0.0794301i \(-0.0253101\pi\)
\(318\) 16.9706i 0.951662i
\(319\) −8.00000 −0.447914
\(320\) 2.82843i 0.158114i
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 12.0000 11.3137i 0.667698 0.629512i
\(324\) 1.00000 0.0555556
\(325\) 6.00000 0.332820
\(326\) 8.48528i 0.469956i
\(327\) −24.0000 −1.32720
\(328\) 5.65685i 0.312348i
\(329\) 0 0
\(330\) 22.6274i 1.24560i
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 12.0000 0.658586
\(333\) 42.4264i 2.32495i
\(334\) 11.3137i 0.619059i
\(335\) 11.3137i 0.618134i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 9.00000 0.489535
\(339\) −32.0000 −1.73800
\(340\) 8.00000 + 8.48528i 0.433861 + 0.460179i
\(341\) 0 0
\(342\) 20.0000 1.08148
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 45.2548i 2.43644i
\(346\) 2.82843i 0.152057i
\(347\) 14.1421i 0.759190i 0.925153 + 0.379595i \(0.123937\pi\)
−0.925153 + 0.379595i \(0.876063\pi\)
\(348\) −8.00000 −0.428845
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 11.3137i 0.603881i
\(352\) 2.82843i 0.150756i
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 33.9411i 1.80395i
\(355\) −16.0000 −0.849192
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 14.1421i 0.745356i
\(361\) −3.00000 −0.157895
\(362\) 8.48528i 0.445976i
\(363\) 8.48528i 0.445362i
\(364\) 0 0
\(365\) 0 0
\(366\) 24.0000 1.25450
\(367\) 16.9706i 0.885856i −0.896557 0.442928i \(-0.853940\pi\)
0.896557 0.442928i \(-0.146060\pi\)
\(368\) 5.65685i 0.294884i
\(369\) 28.2843i 1.47242i
\(370\) −24.0000 −1.24770
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 8.00000 + 8.48528i 0.413670 + 0.438763i
\(375\) 16.0000 0.826236
\(376\) 0 0
\(377\) 5.65685i 0.291343i
\(378\) 0 0
\(379\) 25.4558i 1.30758i 0.756677 + 0.653789i \(0.226822\pi\)
−0.756677 + 0.653789i \(0.773178\pi\)
\(380\) 11.3137i 0.580381i
\(381\) 45.2548i 2.31848i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 2.82843i 0.144338i
\(385\) 0 0
\(386\) 16.9706i 0.863779i
\(387\) 20.0000 1.01666
\(388\) 16.9706i 0.861550i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 16.0000 0.810191
\(391\) 16.0000 + 16.9706i 0.809155 + 0.858238i
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 2.82843i 0.142494i
\(395\) 48.0000 2.41514
\(396\) 14.1421i 0.710669i
\(397\) 8.48528i 0.425864i −0.977067 0.212932i \(-0.931699\pi\)
0.977067 0.212932i \(-0.0683013\pi\)
\(398\) 16.9706i 0.850657i
\(399\) 0 0
\(400\) −3.00000 −0.150000
\(401\) 28.2843i 1.41245i −0.707988 0.706225i \(-0.750397\pi\)
0.707988 0.706225i \(-0.249603\pi\)
\(402\) 11.3137i 0.564276i
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 2.82843i 0.140546i
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 8.00000 + 8.48528i 0.396059 + 0.420084i
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) −16.0000 −0.790184
\(411\) 50.9117i 2.51129i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 28.2843i 1.39010i
\(415\) 33.9411i 1.66610i
\(416\) 2.00000 0.0980581
\(417\) −24.0000 −1.17529
\(418\) 11.3137i 0.553372i
\(419\) 14.1421i 0.690889i −0.938439 0.345444i \(-0.887728\pi\)
0.938439 0.345444i \(-0.112272\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 8.48528i 0.413057i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −9.00000 + 8.48528i −0.436564 + 0.411597i
\(426\) −16.0000 −0.775203
\(427\) 0 0
\(428\) 2.82843i 0.136717i
\(429\) 16.0000 0.772487
\(430\) 11.3137i 0.545595i
\(431\) 5.65685i 0.272481i 0.990676 + 0.136241i \(0.0435020\pi\)
−0.990676 + 0.136241i \(0.956498\pi\)
\(432\) 5.65685i 0.272166i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 22.6274i 1.08490i
\(436\) 8.48528i 0.406371i
\(437\) 22.6274i 1.08242i
\(438\) 0 0
\(439\) 16.9706i 0.809961i −0.914325 0.404980i \(-0.867278\pi\)
0.914325 0.404980i \(-0.132722\pi\)
\(440\) −8.00000 −0.381385
\(441\) 0 0
\(442\) 6.00000 5.65685i 0.285391 0.269069i
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −24.0000 −1.13899
\(445\) 16.9706i 0.804482i
\(446\) −16.0000 −0.757622
\(447\) 16.9706i 0.802680i
\(448\) 0 0
\(449\) 5.65685i 0.266963i 0.991051 + 0.133482i \(0.0426157\pi\)
−0.991051 + 0.133482i \(0.957384\pi\)
\(450\) −15.0000 −0.707107
\(451\) −16.0000 −0.753411
\(452\) 11.3137i 0.532152i
\(453\) 22.6274i 1.06313i
\(454\) 19.7990i 0.929213i
\(455\) 0 0
\(456\) 11.3137i 0.529813i
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) −22.0000 −1.02799
\(459\) 16.0000 + 16.9706i 0.746816 + 0.792118i
\(460\) −16.0000 −0.746004
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 2.82843i 0.131306i
\(465\) 0 0
\(466\) 22.6274i 1.04819i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 10.0000 0.462250
\(469\) 0 0
\(470\) 0 0
\(471\) 39.5980i 1.82458i
\(472\) 12.0000 0.552345
\(473\) 11.3137i 0.520205i
\(474\) 48.0000 2.20471
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) 0 0
\(479\) 5.65685i 0.258468i −0.991614 0.129234i \(-0.958748\pi\)
0.991614 0.129234i \(-0.0412519\pi\)
\(480\) −8.00000 −0.365148
\(481\) 16.9706i 0.773791i
\(482\) 16.9706i 0.772988i
\(483\) 0 0
\(484\) 3.00000 0.136364
\(485\) 48.0000 2.17957
\(486\) 14.1421i 0.641500i
\(487\) 16.9706i 0.769010i 0.923123 + 0.384505i \(0.125628\pi\)
−0.923123 + 0.384505i \(0.874372\pi\)
\(488\) 8.48528i 0.384111i
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) −16.0000 −0.721336
\(493\) −8.00000 8.48528i −0.360302 0.382158i
\(494\) 8.00000 0.359937
\(495\) −40.0000 −1.79787
\(496\) 0 0
\(497\) 0 0
\(498\) 33.9411i 1.52094i
\(499\) 25.4558i 1.13956i −0.821797 0.569780i \(-0.807028\pi\)
0.821797 0.569780i \(-0.192972\pi\)
\(500\) 5.65685i 0.252982i
\(501\) 32.0000 1.42965
\(502\) −12.0000 −0.535586
\(503\) 28.2843i 1.26113i 0.776135 + 0.630567i \(0.217177\pi\)
−0.776135 + 0.630567i \(0.782823\pi\)
\(504\) 0 0
\(505\) 16.9706i 0.755180i
\(506\) −16.0000 −0.711287
\(507\) 25.4558i 1.13053i
\(508\) −16.0000 −0.709885
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) −24.0000 + 22.6274i −1.06274 + 1.00196i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 22.6274i 0.999025i
\(514\) 6.00000 0.264649
\(515\) 22.6274i 0.997083i
\(516\) 11.3137i 0.498058i
\(517\) 0 0
\(518\) 0 0
\(519\) 8.00000 0.351161
\(520\) 5.65685i 0.248069i
\(521\) 5.65685i 0.247831i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395452\pi\)
\(522\) 14.1421i 0.618984i
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 2.82843i 0.123560i
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) −8.00000 −0.348155
\(529\) −9.00000 −0.391304
\(530\) 16.9706i 0.737154i
\(531\) 60.0000 2.60378
\(532\) 0 0
\(533\) 11.3137i 0.490051i
\(534\) 16.9706i 0.734388i
\(535\) 8.00000 0.345870
\(536\) 4.00000 0.172774
\(537\) 33.9411i 1.46467i
\(538\) 31.1127i 1.34136i
\(539\) 0 0
\(540\) −16.0000 −0.688530
\(541\) 8.48528i 0.364811i −0.983223 0.182405i \(-0.941612\pi\)
0.983223 0.182405i \(-0.0583883\pi\)
\(542\) −16.0000 −0.687259
\(543\) −24.0000 −1.02994
\(544\) −3.00000 + 2.82843i −0.128624 + 0.121268i
\(545\) 24.0000 1.02805
\(546\) 0 0
\(547\) 42.4264i 1.81402i 0.421107 + 0.907011i \(0.361642\pi\)
−0.421107 + 0.907011i \(0.638358\pi\)
\(548\) −18.0000 −0.768922
\(549\) 42.4264i 1.81071i
\(550\) 8.48528i 0.361814i
\(551\) 11.3137i 0.481980i
\(552\) −16.0000 −0.681005
\(553\) 0 0
\(554\) 25.4558i 1.08152i
\(555\) 67.8823i 2.88144i
\(556\) 8.48528i 0.359856i
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −24.0000 + 22.6274i −1.01328 + 0.955330i
\(562\) −18.0000 −0.759284
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 32.0000 1.34625
\(566\) 8.48528i 0.356663i
\(567\) 0 0
\(568\) 5.65685i 0.237356i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) −32.0000 −1.34033
\(571\) 25.4558i 1.06529i 0.846338 + 0.532647i \(0.178803\pi\)
−0.846338 + 0.532647i \(0.821197\pi\)
\(572\) 5.65685i 0.236525i
\(573\) 0 0
\(574\) 0 0
\(575\) 16.9706i 0.707721i
\(576\) −5.00000 −0.208333
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) −1.00000 + 16.9706i −0.0415945 + 0.705882i
\(579\) 48.0000 1.99481
\(580\) 8.00000 0.332182
\(581\) 0 0
\(582\) 48.0000 1.98966
\(583\) 16.9706i 0.702849i
\(584\) 0 0
\(585\) 28.2843i 1.16941i
\(586\) 6.00000 0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 33.9411i 1.39733i
\(591\) −8.00000 −0.329076
\(592\) 8.48528i 0.348743i
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) −16.0000 −0.656488
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 48.0000 1.96451
\(598\) 11.3137i 0.462652i
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 8.48528i 0.346410i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 20.0000 0.814463
\(604\) 8.00000 0.325515
\(605\) 8.48528i 0.344976i
\(606\) 16.9706i 0.689382i
\(607\) 33.9411i 1.37763i 0.724938 + 0.688814i \(0.241868\pi\)
−0.724938 + 0.688814i \(0.758132\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −24.0000 −0.971732
\(611\) 0 0
\(612\) −15.0000 + 14.1421i −0.606339 + 0.571662i
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 20.0000 0.807134
\(615\) 45.2548i 1.82485i
\(616\) 0 0
\(617\) 11.3137i 0.455473i −0.973723 0.227736i \(-0.926868\pi\)
0.973723 0.227736i \(-0.0731324\pi\)
\(618\) 22.6274i 0.910208i
\(619\) 8.48528i 0.341052i 0.985353 + 0.170526i \(0.0545467\pi\)
−0.985353 + 0.170526i \(0.945453\pi\)
\(620\) 0 0
\(621\) −32.0000 −1.28412
\(622\) 11.3137i 0.453638i
\(623\) 0 0
\(624\) 5.65685i 0.226455i
\(625\) −31.0000 −1.24000
\(626\) 16.9706i 0.678280i
\(627\) −32.0000 −1.27796
\(628\) −14.0000 −0.558661
\(629\) −24.0000 25.4558i −0.956943 1.01499i
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 16.9706i 0.675053i
\(633\) 24.0000 0.953914
\(634\) 2.82843i 0.112331i
\(635\) 45.2548i 1.79588i
\(636\) 16.9706i 0.672927i
\(637\) 0 0
\(638\) 8.00000 0.316723
\(639\) 28.2843i 1.11891i
\(640\) 2.82843i 0.111803i
\(641\) 5.65685i 0.223432i 0.993740 + 0.111716i \(0.0356347\pi\)
−0.993740 + 0.111716i \(0.964365\pi\)
\(642\) 8.00000 0.315735
\(643\) 8.48528i 0.334627i 0.985904 + 0.167313i \(0.0535092\pi\)
−0.985904 + 0.167313i \(0.946491\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) −12.0000 + 11.3137i −0.472134 + 0.445132i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 33.9411i 1.33231i
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) 8.48528i 0.332309i
\(653\) 14.1421i 0.553425i 0.960953 + 0.276712i \(0.0892449\pi\)
−0.960953 + 0.276712i \(0.910755\pi\)
\(654\) 24.0000 0.938474
\(655\) −8.00000 −0.312586
\(656\) 5.65685i 0.220863i
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 22.6274i 0.880771i
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 4.00000 0.155464
\(663\) 16.0000 + 16.9706i 0.621389 + 0.659082i
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 42.4264i 1.64399i
\(667\) 16.0000 0.619522
\(668\) 11.3137i 0.437741i
\(669\) 45.2548i 1.74965i
\(670\) 11.3137i 0.437087i
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 16.9706i 0.654167i −0.944995 0.327084i \(-0.893934\pi\)
0.944995 0.327084i \(-0.106066\pi\)
\(674\) 0 0
\(675\) 16.9706i 0.653197i
\(676\) −9.00000 −0.346154
\(677\) 14.1421i 0.543526i −0.962364 0.271763i \(-0.912393\pi\)
0.962364 0.271763i \(-0.0876068\pi\)
\(678\) 32.0000 1.22895
\(679\) 0 0
\(680\) −8.00000 8.48528i −0.306786 0.325396i
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) 19.7990i 0.757587i −0.925481 0.378794i \(-0.876339\pi\)
0.925481 0.378794i \(-0.123661\pi\)
\(684\) −20.0000 −0.764719
\(685\) 50.9117i 1.94524i
\(686\) 0 0
\(687\) 62.2254i 2.37405i
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) 45.2548i 1.72282i
\(691\) 8.48528i 0.322795i −0.986889 0.161398i \(-0.948400\pi\)
0.986889 0.161398i \(-0.0516002\pi\)
\(692\) 2.82843i 0.107521i
\(693\) 0 0
\(694\) 14.1421i 0.536828i
\(695\) 24.0000 0.910372
\(696\) 8.00000 0.303239
\(697\) −16.0000 16.9706i −0.606043 0.642806i
\(698\) −34.0000 −1.28692
\(699\) 64.0000 2.42070
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 11.3137i 0.427008i
\(703\) 33.9411i 1.28011i
\(704\) 2.82843i 0.106600i
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) 33.9411i 1.27559i
\(709\) 8.48528i 0.318671i 0.987224 + 0.159336i \(0.0509352\pi\)
−0.987224 + 0.159336i \(0.949065\pi\)
\(710\) 16.0000 0.600469
\(711\) 84.8528i 3.18223i
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) 39.5980i 1.47676i −0.674387 0.738378i \(-0.735592\pi\)
0.674387 0.738378i \(-0.264408\pi\)
\(720\) 14.1421i 0.527046i
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) −48.0000 −1.78514
\(724\) 8.48528i 0.315353i
\(725\) 8.48528i 0.315135i
\(726\) 8.48528i 0.314918i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 43.0000 1.59259
\(730\) 0 0
\(731\) −12.0000 + 11.3137i −0.443836 + 0.418453i
\(732\) −24.0000 −0.887066
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 16.9706i 0.626395i
\(735\) 0 0
\(736\) 5.65685i 0.208514i
\(737\) 11.3137i 0.416746i
\(738\) 28.2843i 1.04116i
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) 24.0000 0.882258
\(741\) 22.6274i 0.831239i
\(742\) 0 0
\(743\) 11.3137i 0.415060i −0.978229 0.207530i \(-0.933458\pi\)
0.978229 0.207530i \(-0.0665424\pi\)
\(744\) 0 0
\(745\) 16.9706i 0.621753i
\(746\) 22.0000 0.805477
\(747\) −60.0000 −2.19529
\(748\) −8.00000 8.48528i −0.292509 0.310253i
\(749\) 0 0
\(750\) −16.0000 −0.584237
\(751\) 16.9706i 0.619265i −0.950856 0.309632i \(-0.899794\pi\)
0.950856 0.309632i \(-0.100206\pi\)
\(752\) 0 0
\(753\) 33.9411i 1.23688i
\(754\) 5.65685i 0.206010i
\(755\) 22.6274i 0.823496i
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 25.4558i 0.924598i
\(759\) 45.2548i 1.64265i
\(760\) 11.3137i 0.410391i
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 45.2548i 1.63941i
\(763\) 0 0
\(764\) 0 0
\(765\) −40.0000 42.4264i −1.44620 1.53393i
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 2.82843i 0.102062i
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 16.9706i 0.611180i
\(772\) 16.9706i 0.610784i
\(773\) 54.0000 1.94225 0.971123 0.238581i \(-0.0766824\pi\)
0.971123 + 0.238581i \(0.0766824\pi\)
\(774\) −20.0000 −0.718885
\(775\) 0 0
\(776\) 16.9706i 0.609208i
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 22.6274i 0.810711i
\(780\) −16.0000 −0.572892
\(781\) 16.0000 0.572525
\(782\) −16.0000 16.9706i −0.572159 0.606866i
\(783\) 16.0000 0.571793
\(784\) 0 0
\(785\) 39.5980i 1.41331i
\(786\) −8.00000 −0.285351
\(787\) 42.4264i 1.51234i −0.654376 0.756169i \(-0.727069\pi\)
0.654376 0.756169i \(-0.272931\pi\)
\(788\) 2.82843i 0.100759i
\(789\) 67.8823i 2.41667i
\(790\) −48.0000 −1.70776
\(791\) 0 0
\(792\) 14.1421i 0.502519i
\(793\) 16.9706i 0.602642i
\(794\) 8.48528i 0.301131i
\(795\) 48.0000 1.70238
\(796\) 16.9706i 0.601506i
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 3.00000 0.106066
\(801\) 30.0000 1.06000
\(802\) 28.2843i 0.998752i
\(803\) 0 0
\(804\) 11.3137i 0.399004i
\(805\) 0 0
\(806\) 0 0
\(807\) −88.0000 −3.09775
\(808\) −6.00000 −0.211079
\(809\) 39.5980i 1.39219i 0.717949 + 0.696095i \(0.245081\pi\)
−0.717949 + 0.696095i \(0.754919\pi\)
\(810\) 2.82843i 0.0993808i
\(811\) 42.4264i 1.48979i 0.667180 + 0.744896i \(0.267501\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 45.2548i 1.58716i
\(814\) 24.0000 0.841200
\(815\) 24.0000 0.840683
\(816\) −8.00000 8.48528i −0.280056 0.297044i
\(817\) −16.0000 −0.559769
\(818\) 2.00000 0.0699284
\(819\) 0 0
\(820\) 16.0000 0.558744
\(821\) 48.0833i 1.67812i 0.544041 + 0.839059i \(0.316894\pi\)
−0.544041 + 0.839059i \(0.683106\pi\)
\(822\) 50.9117i 1.77575i
\(823\) 16.9706i 0.591557i −0.955257 0.295778i \(-0.904421\pi\)
0.955257 0.295778i \(-0.0955790\pi\)
\(824\) 8.00000 0.278693
\(825\) 24.0000 0.835573
\(826\) 0 0
\(827\) 36.7696i 1.27860i −0.768956 0.639301i \(-0.779224\pi\)
0.768956 0.639301i \(-0.220776\pi\)
\(828\) 28.2843i 0.982946i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 33.9411i 1.17811i
\(831\) −72.0000 −2.49765
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 24.0000 0.831052
\(835\) −32.0000 −1.10741
\(836\) 11.3137i 0.391293i
\(837\) 0 0
\(838\) 14.1421i 0.488532i
\(839\) 45.2548i 1.56237i 0.624299 + 0.781185i \(0.285385\pi\)
−0.624299 + 0.781185i \(0.714615\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) −26.0000 −0.896019
\(843\) 50.9117i 1.75349i
\(844\) 8.48528i 0.292075i
\(845\) 25.4558i 0.875708i
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) −24.0000 −0.823678
\(850\) 9.00000 8.48528i 0.308697 0.291043i
\(851\) 48.0000 1.64542
\(852\) 16.0000 0.548151
\(853\) 25.4558i 0.871592i 0.900046 + 0.435796i \(0.143533\pi\)
−0.900046 + 0.435796i \(0.856467\pi\)
\(854\) 0 0
\(855\) 56.5685i 1.93460i
\(856\) 2.82843i 0.0966736i
\(857\) 28.2843i 0.966172i 0.875573 + 0.483086i \(0.160484\pi\)
−0.875573 + 0.483086i \(0.839516\pi\)
\(858\) −16.0000 −0.546231
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 11.3137i 0.385794i
\(861\) 0 0
\(862\) 5.65685i 0.192673i
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 5.65685i 0.192450i
\(865\) −8.00000 −0.272008
\(866\) 14.0000 0.475739
\(867\) −48.0000 2.82843i −1.63017 0.0960584i
\(868\) 0 0
\(869\) −48.0000 −1.62829
\(870\) 22.6274i 0.767141i
\(871\) 8.00000 0.271070
\(872\) 8.48528i 0.287348i
\(873\) 84.8528i 2.87183i
\(874\) 22.6274i 0.765384i
\(875\) 0 0
\(876\) 0 0
\(877\) 8.48528i 0.286528i −0.989685 0.143264i \(-0.954240\pi\)
0.989685 0.143264i \(-0.0457597\pi\)
\(878\) 16.9706i 0.572729i
\(879\) 16.9706i 0.572403i
\(880\) 8.00000 0.269680
\(881\) 45.2548i 1.52467i 0.647180 + 0.762337i \(0.275948\pi\)
−0.647180 + 0.762337i \(0.724052\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) −6.00000 + 5.65685i −0.201802 + 0.190261i
\(885\) −96.0000 −3.22700
\(886\) 12.0000 0.403148
\(887\) 39.5980i 1.32957i −0.747035 0.664785i \(-0.768523\pi\)
0.747035 0.664785i \(-0.231477\pi\)
\(888\) 24.0000 0.805387
\(889\) 0 0
\(890\) 16.9706i 0.568855i
\(891\) 2.82843i 0.0947559i
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) 16.9706i 0.567581i
\(895\) 33.9411i 1.13453i
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 5.65685i 0.188772i
\(899\) 0 0
\(900\) 15.0000 0.500000
\(901\) 18.0000 16.9706i 0.599667 0.565371i
\(902\) 16.0000 0.532742
\(903\) 0 0
\(904\) 11.3137i 0.376288i
\(905\) 24.0000 0.797787
\(906\) 22.6274i 0.751746i
\(907\) 42.4264i 1.40875i 0.709830 + 0.704373i \(0.248772\pi\)
−0.709830 + 0.704373i \(0.751228\pi\)
\(908\) 19.7990i 0.657053i
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 56.5685i 1.87420i 0.349062 + 0.937100i \(0.386500\pi\)
−0.349062 + 0.937100i \(0.613500\pi\)
\(912\) 11.3137i 0.374634i
\(913\) 33.9411i 1.12329i
\(914\) 10.0000 0.330771
\(915\) 67.8823i 2.24412i
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) −16.0000 16.9706i −0.528079 0.560112i
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 16.0000 0.527504
\(921\) 56.5685i 1.86400i
\(922\) −18.0000 −0.592798
\(923\) 11.3137i 0.372395i
\(924\) 0 0
\(925\) 25.4558i 0.836983i
\(926\) −32.0000 −1.05159
\(927\) 40.0000 1.31377
\(928\) 2.82843i 0.0928477i
\(929\) 5.65685i 0.185595i −0.995685 0.0927977i \(-0.970419\pi\)
0.995685 0.0927977i \(-0.0295810\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 22.6274i 0.741186i
\(933\) 32.0000 1.04763
\(934\) −36.0000 −1.17796
\(935\) 24.0000 22.6274i 0.784884 0.739996i
\(936\) −10.0000 −0.326860
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 48.0000 1.56642
\(940\) 0 0
\(941\) 36.7696i 1.19865i 0.800505 + 0.599327i \(0.204565\pi\)
−0.800505 + 0.599327i \(0.795435\pi\)
\(942\) 39.5980i 1.29017i
\(943\) 32.0000 1.04206
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 11.3137i 0.367840i
\(947\) 2.82843i 0.0919115i −0.998943 0.0459558i \(-0.985367\pi\)
0.998943 0.0459558i \(-0.0146333\pi\)
\(948\) −48.0000 −1.55897
\(949\) 0 0
\(950\) 12.0000 0.389331
\(951\) −8.00000 −0.259418
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 30.0000 0.971286
\(955\) 0 0
\(956\) 0 0
\(957\) 22.6274i 0.731441i
\(958\) 5.65685i 0.182765i
\(959\) 0 0
\(960\) 8.00000 0.258199
\(961\) 31.0000 1.00000
\(962\) 16.9706i 0.547153i
\(963\) 14.1421i 0.455724i
\(964\) 16.9706i 0.546585i
\(965\) −48.0000 −1.54517
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −3.00000 −0.0964237
\(969\) −32.0000 33.9411i −1.02799 1.09035i
\(970\) −48.0000 −1.54119
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 14.1421i 0.453609i
\(973\) 0 0
\(974\) 16.9706i 0.543772i
\(975\) 16.9706i 0.543493i
\(976\) 8.48528i 0.271607i
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 24.0000 0.767435
\(979\) 16.9706i 0.542382i
\(980\) 0 0
\(981\) 42.4264i 1.35457i
\(982\) 12.0000 0.382935
\(983\) 5.65685i 0.180426i −0.995923 0.0902128i \(-0.971245\pi\)
0.995923 0.0902128i \(-0.0287547\pi\)
\(984\) 16.0000 0.510061
\(985\) 8.00000 0.254901
\(986\) 8.00000 + 8.48528i 0.254772 + 0.270226i
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 22.6274i 0.719510i
\(990\) 40.0000 1.27128
\(991\) 50.9117i 1.61726i −0.588315 0.808632i \(-0.700209\pi\)
0.588315 0.808632i \(-0.299791\pi\)
\(992\) 0 0
\(993\) 11.3137i 0.359030i
\(994\) 0 0
\(995\) −48.0000 −1.52170
\(996\) 33.9411i 1.07547i
\(997\) 59.3970i 1.88112i 0.339626 + 0.940560i \(0.389699\pi\)
−0.339626 + 0.940560i \(0.610301\pi\)
\(998\) 25.4558i 0.805791i
\(999\) 48.0000 1.51865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1666.2.b.c.883.1 2
7.6 odd 2 34.2.b.a.33.2 yes 2
17.16 even 2 inner 1666.2.b.c.883.2 2
21.20 even 2 306.2.b.d.271.2 2
28.27 even 2 272.2.b.a.33.1 2
35.13 even 4 850.2.d.i.849.3 4
35.27 even 4 850.2.d.i.849.2 4
35.34 odd 2 850.2.b.f.101.1 2
56.13 odd 2 1088.2.b.b.577.1 2
56.27 even 2 1088.2.b.a.577.2 2
84.83 odd 2 2448.2.c.n.577.2 2
119.6 even 16 578.2.d.g.423.2 8
119.13 odd 4 578.2.a.d.1.1 2
119.20 even 16 578.2.d.g.399.1 8
119.27 even 16 578.2.d.g.155.1 8
119.41 even 16 578.2.d.g.155.2 8
119.48 even 16 578.2.d.g.399.2 8
119.55 odd 4 578.2.a.d.1.2 2
119.62 even 16 578.2.d.g.423.1 8
119.76 odd 8 578.2.c.d.327.1 2
119.83 odd 8 578.2.c.a.251.1 2
119.90 even 16 578.2.d.g.179.1 8
119.97 even 16 578.2.d.g.179.2 8
119.104 odd 8 578.2.c.d.251.1 2
119.111 odd 8 578.2.c.a.327.1 2
119.118 odd 2 34.2.b.a.33.1 2
357.251 even 4 5202.2.a.u.1.1 2
357.293 even 4 5202.2.a.u.1.2 2
357.356 even 2 306.2.b.d.271.1 2
476.55 even 4 4624.2.a.s.1.1 2
476.251 even 4 4624.2.a.s.1.2 2
476.475 even 2 272.2.b.a.33.2 2
595.118 even 4 850.2.d.i.849.4 4
595.237 even 4 850.2.d.i.849.1 4
595.594 odd 2 850.2.b.f.101.2 2
952.237 odd 2 1088.2.b.b.577.2 2
952.475 even 2 1088.2.b.a.577.1 2
1428.1427 odd 2 2448.2.c.n.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.b.a.33.1 2 119.118 odd 2
34.2.b.a.33.2 yes 2 7.6 odd 2
272.2.b.a.33.1 2 28.27 even 2
272.2.b.a.33.2 2 476.475 even 2
306.2.b.d.271.1 2 357.356 even 2
306.2.b.d.271.2 2 21.20 even 2
578.2.a.d.1.1 2 119.13 odd 4
578.2.a.d.1.2 2 119.55 odd 4
578.2.c.a.251.1 2 119.83 odd 8
578.2.c.a.327.1 2 119.111 odd 8
578.2.c.d.251.1 2 119.104 odd 8
578.2.c.d.327.1 2 119.76 odd 8
578.2.d.g.155.1 8 119.27 even 16
578.2.d.g.155.2 8 119.41 even 16
578.2.d.g.179.1 8 119.90 even 16
578.2.d.g.179.2 8 119.97 even 16
578.2.d.g.399.1 8 119.20 even 16
578.2.d.g.399.2 8 119.48 even 16
578.2.d.g.423.1 8 119.62 even 16
578.2.d.g.423.2 8 119.6 even 16
850.2.b.f.101.1 2 35.34 odd 2
850.2.b.f.101.2 2 595.594 odd 2
850.2.d.i.849.1 4 595.237 even 4
850.2.d.i.849.2 4 35.27 even 4
850.2.d.i.849.3 4 35.13 even 4
850.2.d.i.849.4 4 595.118 even 4
1088.2.b.a.577.1 2 952.475 even 2
1088.2.b.a.577.2 2 56.27 even 2
1088.2.b.b.577.1 2 56.13 odd 2
1088.2.b.b.577.2 2 952.237 odd 2
1666.2.b.c.883.1 2 1.1 even 1 trivial
1666.2.b.c.883.2 2 17.16 even 2 inner
2448.2.c.n.577.1 2 1428.1427 odd 2
2448.2.c.n.577.2 2 84.83 odd 2
4624.2.a.s.1.1 2 476.55 even 4
4624.2.a.s.1.2 2 476.251 even 4
5202.2.a.u.1.1 2 357.251 even 4
5202.2.a.u.1.2 2 357.293 even 4