Properties

Label 578.2.d.g.179.1
Level $578$
Weight $2$
Character 578.179
Analytic conductor $4.615$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [578,2,Mod(155,578)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(578, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("578.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 578 = 2 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 578.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.61535323683\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 179.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 578.179
Dual form 578.2.d.g.155.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-2.61313 - 1.08239i) q^{3} -1.00000i q^{4} +(-1.08239 + 2.61313i) q^{5} +(-2.61313 + 1.08239i) q^{6} +(-0.707107 - 0.707107i) q^{8} +(3.53553 + 3.53553i) q^{9} +(1.08239 + 2.61313i) q^{10} +(2.61313 - 1.08239i) q^{11} +(-1.08239 + 2.61313i) q^{12} +2.00000i q^{13} +(5.65685 - 5.65685i) q^{15} -1.00000 q^{16} +5.00000 q^{18} +(2.82843 - 2.82843i) q^{19} +(2.61313 + 1.08239i) q^{20} +(1.08239 - 2.61313i) q^{22} +(5.22625 - 2.16478i) q^{23} +(1.08239 + 2.61313i) q^{24} +(-2.12132 - 2.12132i) q^{25} +(1.41421 + 1.41421i) q^{26} +(-2.16478 - 5.22625i) q^{27} +(1.08239 - 2.61313i) q^{29} -8.00000i q^{30} +(-0.707107 + 0.707107i) q^{32} -8.00000 q^{33} +(3.53553 - 3.53553i) q^{36} +(7.83938 + 3.24718i) q^{37} -4.00000i q^{38} +(2.16478 - 5.22625i) q^{39} +(2.61313 - 1.08239i) q^{40} +(-2.16478 - 5.22625i) q^{41} +(2.82843 + 2.82843i) q^{43} +(-1.08239 - 2.61313i) q^{44} +(-13.0656 + 5.41196i) q^{45} +(2.16478 - 5.22625i) q^{46} +(2.61313 + 1.08239i) q^{48} +(4.94975 - 4.94975i) q^{49} -3.00000 q^{50} +2.00000 q^{52} +(-4.24264 + 4.24264i) q^{53} +(-5.22625 - 2.16478i) q^{54} +8.00000i q^{55} +(-10.4525 + 4.32957i) q^{57} +(-1.08239 - 2.61313i) q^{58} +(8.48528 + 8.48528i) q^{59} +(-5.65685 - 5.65685i) q^{60} +(3.24718 + 7.83938i) q^{61} +1.00000i q^{64} +(-5.22625 - 2.16478i) q^{65} +(-5.65685 + 5.65685i) q^{66} +4.00000 q^{67} -16.0000 q^{69} +(-5.22625 - 2.16478i) q^{71} -5.00000i q^{72} +(7.83938 - 3.24718i) q^{74} +(3.24718 + 7.83938i) q^{75} +(-2.82843 - 2.82843i) q^{76} +(-2.16478 - 5.22625i) q^{78} +(15.6788 - 6.49435i) q^{79} +(1.08239 - 2.61313i) q^{80} +1.00000i q^{81} +(-5.22625 - 2.16478i) q^{82} +(-8.48528 + 8.48528i) q^{83} +4.00000 q^{86} +(-5.65685 + 5.65685i) q^{87} +(-2.61313 - 1.08239i) q^{88} -6.00000i q^{89} +(-5.41196 + 13.0656i) q^{90} +(-2.16478 - 5.22625i) q^{92} +(4.32957 + 10.4525i) q^{95} +(2.61313 - 1.08239i) q^{96} +(-6.49435 + 15.6788i) q^{97} -7.00000i q^{98} +(13.0656 + 5.41196i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{16} + 40 q^{18} - 64 q^{33} - 24 q^{50} + 16 q^{52} + 32 q^{67} - 128 q^{69} + 32 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/578\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −2.61313 1.08239i −1.50869 0.624919i −0.533402 0.845862i \(-0.679087\pi\)
−0.975287 + 0.220942i \(0.929087\pi\)
\(4\) 1.00000i 0.500000i
\(5\) −1.08239 + 2.61313i −0.484061 + 1.16863i 0.473604 + 0.880738i \(0.342953\pi\)
−0.957664 + 0.287887i \(0.907047\pi\)
\(6\) −2.61313 + 1.08239i −1.06680 + 0.441885i
\(7\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 3.53553 + 3.53553i 1.17851 + 1.17851i
\(10\) 1.08239 + 2.61313i 0.342282 + 0.826343i
\(11\) 2.61313 1.08239i 0.787887 0.326354i 0.0477934 0.998857i \(-0.484781\pi\)
0.740094 + 0.672504i \(0.234781\pi\)
\(12\) −1.08239 + 2.61313i −0.312460 + 0.754344i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 5.65685 5.65685i 1.46059 1.46059i
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) 5.00000 1.17851
\(19\) 2.82843 2.82843i 0.648886 0.648886i −0.303838 0.952724i \(-0.598268\pi\)
0.952724 + 0.303838i \(0.0982682\pi\)
\(20\) 2.61313 + 1.08239i 0.584313 + 0.242030i
\(21\) 0 0
\(22\) 1.08239 2.61313i 0.230767 0.557120i
\(23\) 5.22625 2.16478i 1.08975 0.451389i 0.235830 0.971794i \(-0.424219\pi\)
0.853919 + 0.520406i \(0.174219\pi\)
\(24\) 1.08239 + 2.61313i 0.220942 + 0.533402i
\(25\) −2.12132 2.12132i −0.424264 0.424264i
\(26\) 1.41421 + 1.41421i 0.277350 + 0.277350i
\(27\) −2.16478 5.22625i −0.416613 1.00579i
\(28\) 0 0
\(29\) 1.08239 2.61313i 0.200995 0.485245i −0.790955 0.611874i \(-0.790416\pi\)
0.991950 + 0.126629i \(0.0404158\pi\)
\(30\) 8.00000i 1.46059i
\(31\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) 0 0
\(36\) 3.53553 3.53553i 0.589256 0.589256i
\(37\) 7.83938 + 3.24718i 1.28879 + 0.533833i 0.918623 0.395134i \(-0.129302\pi\)
0.370162 + 0.928967i \(0.379302\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 2.16478 5.22625i 0.346643 0.836870i
\(40\) 2.61313 1.08239i 0.413171 0.171141i
\(41\) −2.16478 5.22625i −0.338083 0.816203i −0.997900 0.0647773i \(-0.979366\pi\)
0.659817 0.751426i \(-0.270634\pi\)
\(42\) 0 0
\(43\) 2.82843 + 2.82843i 0.431331 + 0.431331i 0.889081 0.457750i \(-0.151344\pi\)
−0.457750 + 0.889081i \(0.651344\pi\)
\(44\) −1.08239 2.61313i −0.163177 0.393944i
\(45\) −13.0656 + 5.41196i −1.94771 + 0.806768i
\(46\) 2.16478 5.22625i 0.319180 0.770569i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 2.61313 + 1.08239i 0.377172 + 0.156230i
\(49\) 4.94975 4.94975i 0.707107 0.707107i
\(50\) −3.00000 −0.424264
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −4.24264 + 4.24264i −0.582772 + 0.582772i −0.935664 0.352892i \(-0.885198\pi\)
0.352892 + 0.935664i \(0.385198\pi\)
\(54\) −5.22625 2.16478i −0.711203 0.294590i
\(55\) 8.00000i 1.07872i
\(56\) 0 0
\(57\) −10.4525 + 4.32957i −1.38447 + 0.573465i
\(58\) −1.08239 2.61313i −0.142125 0.343120i
\(59\) 8.48528 + 8.48528i 1.10469 + 1.10469i 0.993837 + 0.110853i \(0.0353582\pi\)
0.110853 + 0.993837i \(0.464642\pi\)
\(60\) −5.65685 5.65685i −0.730297 0.730297i
\(61\) 3.24718 + 7.83938i 0.415758 + 1.00373i 0.983563 + 0.180566i \(0.0577930\pi\)
−0.567805 + 0.823163i \(0.692207\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −5.22625 2.16478i −0.648237 0.268508i
\(66\) −5.65685 + 5.65685i −0.696311 + 0.696311i
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) −16.0000 −1.92617
\(70\) 0 0
\(71\) −5.22625 2.16478i −0.620242 0.256913i 0.0503587 0.998731i \(-0.483964\pi\)
−0.670601 + 0.741819i \(0.733964\pi\)
\(72\) 5.00000i 0.589256i
\(73\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(74\) 7.83938 3.24718i 0.911309 0.377477i
\(75\) 3.24718 + 7.83938i 0.374952 + 0.905213i
\(76\) −2.82843 2.82843i −0.324443 0.324443i
\(77\) 0 0
\(78\) −2.16478 5.22625i −0.245114 0.591756i
\(79\) 15.6788 6.49435i 1.76400 0.730672i 0.768085 0.640347i \(-0.221210\pi\)
0.995912 0.0903244i \(-0.0287904\pi\)
\(80\) 1.08239 2.61313i 0.121015 0.292156i
\(81\) 1.00000i 0.111111i
\(82\) −5.22625 2.16478i −0.577143 0.239060i
\(83\) −8.48528 + 8.48528i −0.931381 + 0.931381i −0.997792 0.0664117i \(-0.978845\pi\)
0.0664117 + 0.997792i \(0.478845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) −5.65685 + 5.65685i −0.606478 + 0.606478i
\(88\) −2.61313 1.08239i −0.278560 0.115383i
\(89\) 6.00000i 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) −5.41196 + 13.0656i −0.570471 + 1.37724i
\(91\) 0 0
\(92\) −2.16478 5.22625i −0.225694 0.544874i
\(93\) 0 0
\(94\) 0 0
\(95\) 4.32957 + 10.4525i 0.444204 + 1.07240i
\(96\) 2.61313 1.08239i 0.266701 0.110471i
\(97\) −6.49435 + 15.6788i −0.659402 + 1.59194i 0.139328 + 0.990246i \(0.455506\pi\)
−0.798730 + 0.601690i \(0.794494\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 13.0656 + 5.41196i 1.31315 + 0.543923i
\(100\) −2.12132 + 2.12132i −0.212132 + 0.212132i
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 1.41421 1.41421i 0.138675 0.138675i
\(105\) 0 0
\(106\) 6.00000i 0.582772i
\(107\) −1.08239 + 2.61313i −0.104639 + 0.252620i −0.967524 0.252780i \(-0.918655\pi\)
0.862885 + 0.505400i \(0.168655\pi\)
\(108\) −5.22625 + 2.16478i −0.502896 + 0.208306i
\(109\) 3.24718 + 7.83938i 0.311023 + 0.750876i 0.999668 + 0.0257772i \(0.00820604\pi\)
−0.688645 + 0.725099i \(0.741794\pi\)
\(110\) 5.65685 + 5.65685i 0.539360 + 0.539360i
\(111\) −16.9706 16.9706i −1.61077 1.61077i
\(112\) 0 0
\(113\) 10.4525 4.32957i 0.983289 0.407292i 0.167646 0.985847i \(-0.446383\pi\)
0.815643 + 0.578556i \(0.196383\pi\)
\(114\) −4.32957 + 10.4525i −0.405501 + 0.978967i
\(115\) 16.0000i 1.49201i
\(116\) −2.61313 1.08239i −0.242623 0.100498i
\(117\) −7.07107 + 7.07107i −0.653720 + 0.653720i
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) −8.00000 −0.730297
\(121\) −2.12132 + 2.12132i −0.192847 + 0.192847i
\(122\) 7.83938 + 3.24718i 0.709744 + 0.293986i
\(123\) 16.0000i 1.44267i
\(124\) 0 0
\(125\) −5.22625 + 2.16478i −0.467450 + 0.193624i
\(126\) 0 0
\(127\) −11.3137 11.3137i −1.00393 1.00393i −0.999992 0.00393704i \(-0.998747\pi\)
−0.00393704 0.999992i \(-0.501253\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −4.32957 10.4525i −0.381197 0.920292i
\(130\) −5.22625 + 2.16478i −0.458373 + 0.189864i
\(131\) 1.08239 2.61313i 0.0945690 0.228310i −0.869515 0.493906i \(-0.835569\pi\)
0.964084 + 0.265596i \(0.0855687\pi\)
\(132\) 8.00000i 0.696311i
\(133\) 0 0
\(134\) 2.82843 2.82843i 0.244339 0.244339i
\(135\) 16.0000 1.37706
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −11.3137 + 11.3137i −0.963087 + 0.963087i
\(139\) −7.83938 3.24718i −0.664927 0.275422i 0.0245830 0.999698i \(-0.492174\pi\)
−0.689510 + 0.724276i \(0.742174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.22625 + 2.16478i −0.438577 + 0.181665i
\(143\) 2.16478 + 5.22625i 0.181028 + 0.437041i
\(144\) −3.53553 3.53553i −0.294628 0.294628i
\(145\) 5.65685 + 5.65685i 0.469776 + 0.469776i
\(146\) 0 0
\(147\) −18.2919 + 7.57675i −1.50869 + 0.624919i
\(148\) 3.24718 7.83938i 0.266916 0.644393i
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 7.83938 + 3.24718i 0.640083 + 0.265131i
\(151\) 5.65685 5.65685i 0.460348 0.460348i −0.438421 0.898770i \(-0.644462\pi\)
0.898770 + 0.438421i \(0.144462\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −5.22625 2.16478i −0.418435 0.173321i
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 6.49435 15.6788i 0.516663 1.24733i
\(159\) 15.6788 6.49435i 1.24341 0.515036i
\(160\) −1.08239 2.61313i −0.0855706 0.206586i
\(161\) 0 0
\(162\) 0.707107 + 0.707107i 0.0555556 + 0.0555556i
\(163\) −3.24718 7.83938i −0.254339 0.614027i 0.744207 0.667949i \(-0.232828\pi\)
−0.998545 + 0.0539220i \(0.982828\pi\)
\(164\) −5.22625 + 2.16478i −0.408102 + 0.169041i
\(165\) 8.65914 20.9050i 0.674113 1.62745i
\(166\) 12.0000i 0.931381i
\(167\) −10.4525 4.32957i −0.808839 0.335032i −0.0603483 0.998177i \(-0.519221\pi\)
−0.748491 + 0.663145i \(0.769221\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 20.0000 1.52944
\(172\) 2.82843 2.82843i 0.215666 0.215666i
\(173\) 2.61313 + 1.08239i 0.198672 + 0.0822928i 0.479801 0.877377i \(-0.340709\pi\)
−0.281129 + 0.959670i \(0.590709\pi\)
\(174\) 8.00000i 0.606478i
\(175\) 0 0
\(176\) −2.61313 + 1.08239i −0.196972 + 0.0815884i
\(177\) −12.9887 31.3575i −0.976291 2.35697i
\(178\) −4.24264 4.24264i −0.317999 0.317999i
\(179\) −8.48528 8.48528i −0.634220 0.634220i 0.314904 0.949124i \(-0.398028\pi\)
−0.949124 + 0.314904i \(0.898028\pi\)
\(180\) 5.41196 + 13.0656i 0.403384 + 0.973855i
\(181\) −7.83938 + 3.24718i −0.582696 + 0.241361i −0.654505 0.756058i \(-0.727123\pi\)
0.0718086 + 0.997418i \(0.477123\pi\)
\(182\) 0 0
\(183\) 24.0000i 1.77413i
\(184\) −5.22625 2.16478i −0.385284 0.159590i
\(185\) −16.9706 + 16.9706i −1.24770 + 1.24770i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 10.4525 + 4.32957i 0.758304 + 0.314100i
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.08239 2.61313i 0.0781149 0.188586i
\(193\) 15.6788 6.49435i 1.12858 0.467474i 0.261283 0.965262i \(-0.415854\pi\)
0.867298 + 0.497788i \(0.165854\pi\)
\(194\) 6.49435 + 15.6788i 0.466267 + 1.12567i
\(195\) 11.3137 + 11.3137i 0.810191 + 0.810191i
\(196\) −4.94975 4.94975i −0.353553 0.353553i
\(197\) −1.08239 2.61313i −0.0771173 0.186178i 0.880619 0.473825i \(-0.157127\pi\)
−0.957736 + 0.287647i \(0.907127\pi\)
\(198\) 13.0656 5.41196i 0.928534 0.384611i
\(199\) 6.49435 15.6788i 0.460372 1.11144i −0.507872 0.861433i \(-0.669568\pi\)
0.968245 0.250005i \(-0.0804323\pi\)
\(200\) 3.00000i 0.212132i
\(201\) −10.4525 4.32957i −0.737263 0.305384i
\(202\) 4.24264 4.24264i 0.298511 0.298511i
\(203\) 0 0
\(204\) 0 0
\(205\) 16.0000 1.11749
\(206\) 5.65685 5.65685i 0.394132 0.394132i
\(207\) 26.1313 + 10.8239i 1.81625 + 0.752315i
\(208\) 2.00000i 0.138675i
\(209\) 4.32957 10.4525i 0.299483 0.723015i
\(210\) 0 0
\(211\) −3.24718 7.83938i −0.223545 0.539685i 0.771822 0.635839i \(-0.219346\pi\)
−0.995366 + 0.0961541i \(0.969346\pi\)
\(212\) 4.24264 + 4.24264i 0.291386 + 0.291386i
\(213\) 11.3137 + 11.3137i 0.775203 + 0.775203i
\(214\) 1.08239 + 2.61313i 0.0739908 + 0.178630i
\(215\) −10.4525 + 4.32957i −0.712855 + 0.295274i
\(216\) −2.16478 + 5.22625i −0.147295 + 0.355601i
\(217\) 0 0
\(218\) 7.83938 + 3.24718i 0.530950 + 0.219927i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) 0 0
\(222\) −24.0000 −1.61077
\(223\) 11.3137 11.3137i 0.757622 0.757622i −0.218267 0.975889i \(-0.570040\pi\)
0.975889 + 0.218267i \(0.0700404\pi\)
\(224\) 0 0
\(225\) 15.0000i 1.00000i
\(226\) 4.32957 10.4525i 0.287999 0.695290i
\(227\) −18.2919 + 7.57675i −1.21407 + 0.502886i −0.895521 0.445019i \(-0.853197\pi\)
−0.318554 + 0.947905i \(0.603197\pi\)
\(228\) 4.32957 + 10.4525i 0.286733 + 0.692234i
\(229\) −15.5563 15.5563i −1.02799 1.02799i −0.999597 0.0283957i \(-0.990960\pi\)
−0.0283957 0.999597i \(-0.509040\pi\)
\(230\) 11.3137 + 11.3137i 0.746004 + 0.746004i
\(231\) 0 0
\(232\) −2.61313 + 1.08239i −0.171560 + 0.0710625i
\(233\) −8.65914 + 20.9050i −0.567279 + 1.36953i 0.336561 + 0.941662i \(0.390736\pi\)
−0.903840 + 0.427871i \(0.859264\pi\)
\(234\) 10.0000i 0.653720i
\(235\) 0 0
\(236\) 8.48528 8.48528i 0.552345 0.552345i
\(237\) −48.0000 −3.11794
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −5.65685 + 5.65685i −0.365148 + 0.365148i
\(241\) −15.6788 6.49435i −1.00996 0.418338i −0.184518 0.982829i \(-0.559072\pi\)
−0.825439 + 0.564491i \(0.809072\pi\)
\(242\) 3.00000i 0.192847i
\(243\) −5.41196 + 13.0656i −0.347177 + 0.838161i
\(244\) 7.83938 3.24718i 0.501865 0.207879i
\(245\) 7.57675 + 18.2919i 0.484061 + 1.16863i
\(246\) 11.3137 + 11.3137i 0.721336 + 0.721336i
\(247\) 5.65685 + 5.65685i 0.359937 + 0.359937i
\(248\) 0 0
\(249\) 31.3575 12.9887i 1.98720 0.823126i
\(250\) −2.16478 + 5.22625i −0.136913 + 0.330537i
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 0 0
\(253\) 11.3137 11.3137i 0.711287 0.711287i
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.24264 + 4.24264i −0.264649 + 0.264649i −0.826940 0.562291i \(-0.809920\pi\)
0.562291 + 0.826940i \(0.309920\pi\)
\(258\) −10.4525 4.32957i −0.650744 0.269547i
\(259\) 0 0
\(260\) −2.16478 + 5.22625i −0.134254 + 0.324118i
\(261\) 13.0656 5.41196i 0.808742 0.334992i
\(262\) −1.08239 2.61313i −0.0668704 0.161439i
\(263\) 16.9706 + 16.9706i 1.04645 + 1.04645i 0.998867 + 0.0475824i \(0.0151517\pi\)
0.0475824 + 0.998867i \(0.484848\pi\)
\(264\) 5.65685 + 5.65685i 0.348155 + 0.348155i
\(265\) −6.49435 15.6788i −0.398945 0.963138i
\(266\) 0 0
\(267\) −6.49435 + 15.6788i −0.397448 + 0.959524i
\(268\) 4.00000i 0.244339i
\(269\) 28.7444 + 11.9063i 1.75258 + 0.725941i 0.997528 + 0.0702715i \(0.0223866\pi\)
0.755048 + 0.655669i \(0.227613\pi\)
\(270\) 11.3137 11.3137i 0.688530 0.688530i
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −12.7279 + 12.7279i −0.768922 + 0.768922i
\(275\) −7.83938 3.24718i −0.472732 0.195812i
\(276\) 16.0000i 0.963087i
\(277\) −9.74153 + 23.5181i −0.585312 + 1.41307i 0.302628 + 0.953109i \(0.402136\pi\)
−0.887940 + 0.459959i \(0.847864\pi\)
\(278\) −7.83938 + 3.24718i −0.470175 + 0.194753i
\(279\) 0 0
\(280\) 0 0
\(281\) −12.7279 12.7279i −0.759284 0.759284i 0.216908 0.976192i \(-0.430403\pi\)
−0.976192 + 0.216908i \(0.930403\pi\)
\(282\) 0 0
\(283\) −7.83938 + 3.24718i −0.466003 + 0.193025i −0.603315 0.797503i \(-0.706154\pi\)
0.137312 + 0.990528i \(0.456154\pi\)
\(284\) −2.16478 + 5.22625i −0.128456 + 0.310121i
\(285\) 32.0000i 1.89552i
\(286\) 5.22625 + 2.16478i 0.309035 + 0.128006i
\(287\) 0 0
\(288\) −5.00000 −0.294628
\(289\) 0 0
\(290\) 8.00000 0.469776
\(291\) 33.9411 33.9411i 1.98966 1.98966i
\(292\) 0 0
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) −7.57675 + 18.2919i −0.441885 + 1.06680i
\(295\) −31.3575 + 12.9887i −1.82570 + 0.756232i
\(296\) −3.24718 7.83938i −0.188738 0.455655i
\(297\) −11.3137 11.3137i −0.656488 0.656488i
\(298\) 4.24264 + 4.24264i 0.245770 + 0.245770i
\(299\) 4.32957 + 10.4525i 0.250385 + 0.604484i
\(300\) 7.83938 3.24718i 0.452607 0.187476i
\(301\) 0 0
\(302\) 8.00000i 0.460348i
\(303\) −15.6788 6.49435i −0.900721 0.373091i
\(304\) −2.82843 + 2.82843i −0.162221 + 0.162221i
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) −20.9050 8.65914i −1.18924 0.492601i
\(310\) 0 0
\(311\) −4.32957 + 10.4525i −0.245507 + 0.592707i −0.997812 0.0661077i \(-0.978942\pi\)
0.752305 + 0.658815i \(0.228942\pi\)
\(312\) −5.22625 + 2.16478i −0.295878 + 0.122557i
\(313\) 6.49435 + 15.6788i 0.367083 + 0.886216i 0.994225 + 0.107311i \(0.0342242\pi\)
−0.627143 + 0.778904i \(0.715776\pi\)
\(314\) −9.89949 9.89949i −0.558661 0.558661i
\(315\) 0 0
\(316\) −6.49435 15.6788i −0.365336 0.881999i
\(317\) 2.61313 1.08239i 0.146768 0.0607932i −0.308090 0.951357i \(-0.599690\pi\)
0.454858 + 0.890564i \(0.349690\pi\)
\(318\) 6.49435 15.6788i 0.364185 0.879221i
\(319\) 8.00000i 0.447914i
\(320\) −2.61313 1.08239i −0.146078 0.0605076i
\(321\) 5.65685 5.65685i 0.315735 0.315735i
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 4.24264 4.24264i 0.235339 0.235339i
\(326\) −7.83938 3.24718i −0.434183 0.179844i
\(327\) 24.0000i 1.32720i
\(328\) −2.16478 + 5.22625i −0.119530 + 0.288571i
\(329\) 0 0
\(330\) −8.65914 20.9050i −0.476670 1.15078i
\(331\) −2.82843 2.82843i −0.155464 0.155464i 0.625089 0.780553i \(-0.285063\pi\)
−0.780553 + 0.625089i \(0.785063\pi\)
\(332\) 8.48528 + 8.48528i 0.465690 + 0.465690i
\(333\) 16.2359 + 39.1969i 0.889721 + 2.14798i
\(334\) −10.4525 + 4.32957i −0.571936 + 0.236903i
\(335\) −4.32957 + 10.4525i −0.236550 + 0.571081i
\(336\) 0 0
\(337\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(338\) 6.36396 6.36396i 0.346154 0.346154i
\(339\) −32.0000 −1.73800
\(340\) 0 0
\(341\) 0 0
\(342\) 14.1421 14.1421i 0.764719 0.764719i
\(343\) 0 0
\(344\) 4.00000i 0.215666i
\(345\) 17.3183 41.8100i 0.932385 2.25098i
\(346\) 2.61313 1.08239i 0.140483 0.0581898i
\(347\) −5.41196 13.0656i −0.290529 0.701400i 0.709465 0.704741i \(-0.248937\pi\)
−0.999994 + 0.00334079i \(0.998937\pi\)
\(348\) 5.65685 + 5.65685i 0.303239 + 0.303239i
\(349\) 24.0416 + 24.0416i 1.28692 + 1.28692i 0.936649 + 0.350270i \(0.113910\pi\)
0.350270 + 0.936649i \(0.386090\pi\)
\(350\) 0 0
\(351\) 10.4525 4.32957i 0.557913 0.231095i
\(352\) −1.08239 + 2.61313i −0.0576917 + 0.139280i
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) −31.3575 12.9887i −1.66663 0.690342i
\(355\) 11.3137 11.3137i 0.600469 0.600469i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −16.9706 + 16.9706i −0.895672 + 0.895672i −0.995050 0.0993777i \(-0.968315\pi\)
0.0993777 + 0.995050i \(0.468315\pi\)
\(360\) 13.0656 + 5.41196i 0.688619 + 0.285235i
\(361\) 3.00000i 0.157895i
\(362\) −3.24718 + 7.83938i −0.170668 + 0.412029i
\(363\) 7.83938 3.24718i 0.411461 0.170433i
\(364\) 0 0
\(365\) 0 0
\(366\) −16.9706 16.9706i −0.887066 0.887066i
\(367\) 6.49435 + 15.6788i 0.339002 + 0.818424i 0.997812 + 0.0661146i \(0.0210603\pi\)
−0.658810 + 0.752310i \(0.728940\pi\)
\(368\) −5.22625 + 2.16478i −0.272437 + 0.112847i
\(369\) 10.8239 26.1313i 0.563471 1.36034i
\(370\) 24.0000i 1.24770i
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 16.0000 0.826236
\(376\) 0 0
\(377\) 5.22625 + 2.16478i 0.269166 + 0.111492i
\(378\) 0 0
\(379\) 9.74153 23.5181i 0.500389 1.20805i −0.448884 0.893590i \(-0.648178\pi\)
0.949272 0.314455i \(-0.101822\pi\)
\(380\) 10.4525 4.32957i 0.536202 0.222102i
\(381\) 17.3183 + 41.8100i 0.887242 + 2.14199i
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) −1.08239 2.61313i −0.0552356 0.133351i
\(385\) 0 0
\(386\) 6.49435 15.6788i 0.330554 0.798028i
\(387\) 20.0000i 1.01666i
\(388\) 15.6788 + 6.49435i 0.795968 + 0.329701i
\(389\) −4.24264 + 4.24264i −0.215110 + 0.215110i −0.806434 0.591324i \(-0.798606\pi\)
0.591324 + 0.806434i \(0.298606\pi\)
\(390\) 16.0000 0.810191
\(391\) 0 0
\(392\) −7.00000 −0.353553
\(393\) −5.65685 + 5.65685i −0.285351 + 0.285351i
\(394\) −2.61313 1.08239i −0.131647 0.0545301i
\(395\) 48.0000i 2.41514i
\(396\) 5.41196 13.0656i 0.271961 0.656573i
\(397\) 7.83938 3.24718i 0.393447 0.162971i −0.177184 0.984178i \(-0.556699\pi\)
0.570631 + 0.821207i \(0.306699\pi\)
\(398\) −6.49435 15.6788i −0.325533 0.785905i
\(399\) 0 0
\(400\) 2.12132 + 2.12132i 0.106066 + 0.106066i
\(401\) −10.8239 26.1313i −0.540521 1.30493i −0.924356 0.381531i \(-0.875397\pi\)
0.383835 0.923402i \(-0.374603\pi\)
\(402\) −10.4525 + 4.32957i −0.521324 + 0.215939i
\(403\) 0 0
\(404\) 6.00000i 0.298511i
\(405\) −2.61313 1.08239i −0.129847 0.0537845i
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 11.3137 11.3137i 0.558744 0.558744i
\(411\) 47.0363 + 19.4831i 2.32013 + 0.961028i
\(412\) 8.00000i 0.394132i
\(413\) 0 0
\(414\) 26.1313 10.8239i 1.28428 0.531967i
\(415\) −12.9887 31.3575i −0.637591 1.53928i
\(416\) −1.41421 1.41421i −0.0693375 0.0693375i
\(417\) 16.9706 + 16.9706i 0.831052 + 0.831052i
\(418\) −4.32957 10.4525i −0.211766 0.511249i
\(419\) −13.0656 + 5.41196i −0.638298 + 0.264392i −0.678274 0.734809i \(-0.737272\pi\)
0.0399763 + 0.999201i \(0.487272\pi\)
\(420\) 0 0
\(421\) 26.0000i 1.26716i 0.773676 + 0.633581i \(0.218416\pi\)
−0.773676 + 0.633581i \(0.781584\pi\)
\(422\) −7.83938 3.24718i −0.381615 0.158070i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 16.0000 0.775203
\(427\) 0 0
\(428\) 2.61313 + 1.08239i 0.126310 + 0.0523194i
\(429\) 16.0000i 0.772487i
\(430\) −4.32957 + 10.4525i −0.208790 + 0.504064i
\(431\) 5.22625 2.16478i 0.251740 0.104274i −0.253245 0.967402i \(-0.581498\pi\)
0.504985 + 0.863128i \(0.331498\pi\)
\(432\) 2.16478 + 5.22625i 0.104153 + 0.251448i
\(433\) 9.89949 + 9.89949i 0.475739 + 0.475739i 0.903766 0.428027i \(-0.140791\pi\)
−0.428027 + 0.903766i \(0.640791\pi\)
\(434\) 0 0
\(435\) −8.65914 20.9050i −0.415174 1.00232i
\(436\) 7.83938 3.24718i 0.375438 0.155512i
\(437\) 8.65914 20.9050i 0.414223 1.00002i
\(438\) 0 0
\(439\) 15.6788 + 6.49435i 0.748306 + 0.309959i 0.724050 0.689747i \(-0.242278\pi\)
0.0242559 + 0.999706i \(0.492278\pi\)
\(440\) 5.65685 5.65685i 0.269680 0.269680i
\(441\) 35.0000 1.66667
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −16.9706 + 16.9706i −0.805387 + 0.805387i
\(445\) 15.6788 + 6.49435i 0.743244 + 0.307862i
\(446\) 16.0000i 0.757622i
\(447\) 6.49435 15.6788i 0.307172 0.741580i
\(448\) 0 0
\(449\) −2.16478 5.22625i −0.102162 0.246642i 0.864531 0.502580i \(-0.167616\pi\)
−0.966693 + 0.255938i \(0.917616\pi\)
\(450\) −10.6066 10.6066i −0.500000 0.500000i
\(451\) −11.3137 11.3137i −0.532742 0.532742i
\(452\) −4.32957 10.4525i −0.203646 0.491644i
\(453\) −20.9050 + 8.65914i −0.982203 + 0.406842i
\(454\) −7.57675 + 18.2919i −0.355594 + 0.858481i
\(455\) 0 0
\(456\) 10.4525 + 4.32957i 0.489483 + 0.202751i
\(457\) −7.07107 + 7.07107i −0.330771 + 0.330771i −0.852879 0.522108i \(-0.825146\pi\)
0.522108 + 0.852879i \(0.325146\pi\)
\(458\) −22.0000 −1.02799
\(459\) 0 0
\(460\) 16.0000 0.746004
\(461\) 12.7279 12.7279i 0.592798 0.592798i −0.345588 0.938386i \(-0.612320\pi\)
0.938386 + 0.345588i \(0.112320\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i −0.668644 0.743583i \(-0.733125\pi\)
0.668644 0.743583i \(-0.266875\pi\)
\(464\) −1.08239 + 2.61313i −0.0502488 + 0.121311i
\(465\) 0 0
\(466\) 8.65914 + 20.9050i 0.401127 + 0.968406i
\(467\) −25.4558 25.4558i −1.17796 1.17796i −0.980264 0.197692i \(-0.936655\pi\)
−0.197692 0.980264i \(-0.563345\pi\)
\(468\) 7.07107 + 7.07107i 0.326860 + 0.326860i
\(469\) 0 0
\(470\) 0 0
\(471\) −15.1535 + 36.5838i −0.698236 + 1.68569i
\(472\) 12.0000i 0.552345i
\(473\) 10.4525 + 4.32957i 0.480607 + 0.199074i
\(474\) −33.9411 + 33.9411i −1.55897 + 1.55897i
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) 0 0
\(479\) −5.22625 2.16478i −0.238794 0.0989115i 0.260078 0.965588i \(-0.416252\pi\)
−0.498871 + 0.866676i \(0.666252\pi\)
\(480\) 8.00000i 0.365148i
\(481\) −6.49435 + 15.6788i −0.296117 + 0.714890i
\(482\) −15.6788 + 6.49435i −0.714148 + 0.295810i
\(483\) 0 0
\(484\) 2.12132 + 2.12132i 0.0964237 + 0.0964237i
\(485\) −33.9411 33.9411i −1.54119 1.54119i
\(486\) 5.41196 + 13.0656i 0.245492 + 0.592669i
\(487\) −15.6788 + 6.49435i −0.710472 + 0.294287i −0.708500 0.705711i \(-0.750628\pi\)
−0.00197224 + 0.999998i \(0.500628\pi\)
\(488\) 3.24718 7.83938i 0.146993 0.354872i
\(489\) 24.0000i 1.08532i
\(490\) 18.2919 + 7.57675i 0.826343 + 0.342282i
\(491\) −8.48528 + 8.48528i −0.382935 + 0.382935i −0.872159 0.489223i \(-0.837280\pi\)
0.489223 + 0.872159i \(0.337280\pi\)
\(492\) 16.0000 0.721336
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) −28.2843 + 28.2843i −1.27128 + 1.27128i
\(496\) 0 0
\(497\) 0 0
\(498\) 12.9887 31.3575i 0.582038 1.40516i
\(499\) −23.5181 + 9.74153i −1.05282 + 0.436091i −0.840896 0.541196i \(-0.817972\pi\)
−0.211920 + 0.977287i \(0.567972\pi\)
\(500\) 2.16478 + 5.22625i 0.0968121 + 0.233725i
\(501\) 22.6274 + 22.6274i 1.01092 + 1.01092i
\(502\) −8.48528 8.48528i −0.378717 0.378717i
\(503\) −10.8239 26.1313i −0.482615 1.16514i −0.958363 0.285554i \(-0.907823\pi\)
0.475748 0.879582i \(-0.342177\pi\)
\(504\) 0 0
\(505\) −6.49435 + 15.6788i −0.288995 + 0.697695i
\(506\) 16.0000i 0.711287i
\(507\) −23.5181 9.74153i −1.04448 0.432637i
\(508\) −11.3137 + 11.3137i −0.501965 + 0.501965i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −20.9050 8.65914i −0.922979 0.382310i
\(514\) 6.00000i 0.264649i
\(515\) −8.65914 + 20.9050i −0.381567 + 0.921185i
\(516\) −10.4525 + 4.32957i −0.460146 + 0.190599i
\(517\) 0 0
\(518\) 0 0
\(519\) −5.65685 5.65685i −0.248308 0.248308i
\(520\) 2.16478 + 5.22625i 0.0949321 + 0.229186i
\(521\) −5.22625 + 2.16478i −0.228966 + 0.0948409i −0.494217 0.869339i \(-0.664545\pi\)
0.265251 + 0.964179i \(0.414545\pi\)
\(522\) 5.41196 13.0656i 0.236875 0.571867i
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) −2.61313 1.08239i −0.114155 0.0472845i
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 8.00000 0.348155
\(529\) 6.36396 6.36396i 0.276694 0.276694i
\(530\) −15.6788 6.49435i −0.681042 0.282097i
\(531\) 60.0000i 2.60378i
\(532\) 0 0
\(533\) 10.4525 4.32957i 0.452748 0.187534i
\(534\) 6.49435 + 15.6788i 0.281038 + 0.678486i
\(535\) −5.65685 5.65685i −0.244567 0.244567i
\(536\) −2.82843 2.82843i −0.122169 0.122169i
\(537\) 12.9887 + 31.3575i 0.560504 + 1.35318i
\(538\) 28.7444 11.9063i 1.23926 0.513318i
\(539\) 7.57675 18.2919i 0.326354 0.787887i
\(540\) 16.0000i 0.688530i
\(541\) −7.83938 3.24718i −0.337041 0.139607i 0.207743 0.978184i \(-0.433388\pi\)
−0.544784 + 0.838576i \(0.683388\pi\)
\(542\) 11.3137 11.3137i 0.485965 0.485965i
\(543\) 24.0000 1.02994
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −39.1969 16.2359i −1.67594 0.694196i −0.676818 0.736150i \(-0.736642\pi\)
−0.999120 + 0.0419538i \(0.986642\pi\)
\(548\) 18.0000i 0.768922i
\(549\) −16.2359 + 39.1969i −0.692931 + 1.67288i
\(550\) −7.83938 + 3.24718i −0.334272 + 0.138460i
\(551\) −4.32957 10.4525i −0.184446 0.445292i
\(552\) 11.3137 + 11.3137i 0.481543 + 0.481543i
\(553\) 0 0
\(554\) 9.74153 + 23.5181i 0.413878 + 0.999190i
\(555\) 62.7150 25.9774i 2.66210 1.10268i
\(556\) −3.24718 + 7.83938i −0.137711 + 0.332464i
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) −5.65685 + 5.65685i −0.239259 + 0.239259i
\(560\) 0 0
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) −25.4558 + 25.4558i −1.07284 + 1.07284i −0.0757057 + 0.997130i \(0.524121\pi\)
−0.997130 + 0.0757057i \(0.975879\pi\)
\(564\) 0 0
\(565\) 32.0000i 1.34625i
\(566\) −3.24718 + 7.83938i −0.136489 + 0.329514i
\(567\) 0 0
\(568\) 2.16478 + 5.22625i 0.0908323 + 0.219289i
\(569\) −4.24264 4.24264i −0.177861 0.177861i 0.612562 0.790423i \(-0.290139\pi\)
−0.790423 + 0.612562i \(0.790139\pi\)
\(570\) −22.6274 22.6274i −0.947758 0.947758i
\(571\) 9.74153 + 23.5181i 0.407670 + 0.984203i 0.985749 + 0.168222i \(0.0538026\pi\)
−0.578079 + 0.815981i \(0.696197\pi\)
\(572\) 5.22625 2.16478i 0.218521 0.0905142i
\(573\) 0 0
\(574\) 0 0
\(575\) −15.6788 6.49435i −0.653849 0.270833i
\(576\) −3.53553 + 3.53553i −0.147314 + 0.147314i
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) −48.0000 −1.99481
\(580\) 5.65685 5.65685i 0.234888 0.234888i
\(581\) 0 0
\(582\) 48.0000i 1.98966i
\(583\) −6.49435 + 15.6788i −0.268969 + 0.649348i
\(584\) 0 0
\(585\) −10.8239 26.1313i −0.447514 1.08039i
\(586\) −4.24264 4.24264i −0.175262 0.175262i
\(587\) 8.48528 + 8.48528i 0.350225 + 0.350225i 0.860193 0.509968i \(-0.170343\pi\)
−0.509968 + 0.860193i \(0.670343\pi\)
\(588\) 7.57675 + 18.2919i 0.312460 + 0.754344i
\(589\) 0 0
\(590\) −12.9887 + 31.3575i −0.534737 + 1.29097i
\(591\) 8.00000i 0.329076i
\(592\) −7.83938 3.24718i −0.322196 0.133458i
\(593\) 12.7279 12.7279i 0.522673 0.522673i −0.395705 0.918378i \(-0.629500\pi\)
0.918378 + 0.395705i \(0.129500\pi\)
\(594\) −16.0000 −0.656488
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) −33.9411 + 33.9411i −1.38912 + 1.38912i
\(598\) 10.4525 + 4.32957i 0.427435 + 0.177049i
\(599\) 24.0000i 0.980613i −0.871550 0.490307i \(-0.836885\pi\)
0.871550 0.490307i \(-0.163115\pi\)
\(600\) 3.24718 7.83938i 0.132565 0.320041i
\(601\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(602\) 0 0
\(603\) 14.1421 + 14.1421i 0.575912 + 0.575912i
\(604\) −5.65685 5.65685i −0.230174 0.230174i
\(605\) −3.24718 7.83938i −0.132017 0.318716i
\(606\) −15.6788 + 6.49435i −0.636906 + 0.263815i
\(607\) 12.9887 31.3575i 0.527195 1.27276i −0.406158 0.913803i \(-0.633132\pi\)
0.933353 0.358959i \(-0.116868\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) −16.9706 + 16.9706i −0.687118 + 0.687118i
\(611\) 0 0
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 14.1421 14.1421i 0.570730 0.570730i
\(615\) −41.8100 17.3183i −1.68594 0.698340i
\(616\) 0 0
\(617\) −4.32957 + 10.4525i −0.174302 + 0.420802i −0.986754 0.162227i \(-0.948132\pi\)
0.812452 + 0.583029i \(0.198132\pi\)
\(618\) −20.9050 + 8.65914i −0.840923 + 0.348322i
\(619\) 3.24718 + 7.83938i 0.130515 + 0.315091i 0.975605 0.219533i \(-0.0704533\pi\)
−0.845090 + 0.534624i \(0.820453\pi\)
\(620\) 0 0
\(621\) −22.6274 22.6274i −0.908007 0.908007i
\(622\) 4.32957 + 10.4525i 0.173600 + 0.419107i
\(623\) 0 0
\(624\) −2.16478 + 5.22625i −0.0866607 + 0.209218i
\(625\) 31.0000i 1.24000i
\(626\) 15.6788 + 6.49435i 0.626649 + 0.259567i
\(627\) −22.6274 + 22.6274i −0.903652 + 0.903652i
\(628\) −14.0000 −0.558661
\(629\) 0 0
\(630\) 0 0
\(631\) −5.65685 + 5.65685i −0.225196 + 0.225196i −0.810682 0.585486i \(-0.800904\pi\)
0.585486 + 0.810682i \(0.300904\pi\)
\(632\) −15.6788 6.49435i −0.623667 0.258331i
\(633\) 24.0000i 0.953914i
\(634\) 1.08239 2.61313i 0.0429873 0.103780i
\(635\) 41.8100 17.3183i 1.65918 0.687255i
\(636\) −6.49435 15.6788i −0.257518 0.621703i
\(637\) 9.89949 + 9.89949i 0.392232 + 0.392232i
\(638\) −5.65685 5.65685i −0.223957 0.223957i
\(639\) −10.8239 26.1313i −0.428188 1.03374i
\(640\) −2.61313 + 1.08239i −0.103293 + 0.0427853i
\(641\) −2.16478 + 5.22625i −0.0855038 + 0.206425i −0.960848 0.277076i \(-0.910635\pi\)
0.875344 + 0.483500i \(0.160635\pi\)
\(642\) 8.00000i 0.315735i
\(643\) −7.83938 3.24718i −0.309155 0.128056i 0.222712 0.974884i \(-0.428509\pi\)
−0.531866 + 0.846828i \(0.678509\pi\)
\(644\) 0 0
\(645\) 32.0000 1.26000
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0.707107 0.707107i 0.0277778 0.0277778i
\(649\) 31.3575 + 12.9887i 1.23089 + 0.509851i
\(650\) 6.00000i 0.235339i
\(651\) 0 0
\(652\) −7.83938 + 3.24718i −0.307014 + 0.127169i
\(653\) −5.41196 13.0656i −0.211786 0.511298i 0.781911 0.623390i \(-0.214245\pi\)
−0.993698 + 0.112092i \(0.964245\pi\)
\(654\) −16.9706 16.9706i −0.663602 0.663602i
\(655\) 5.65685 + 5.65685i 0.221032 + 0.221032i
\(656\) 2.16478 + 5.22625i 0.0845206 + 0.204051i
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000i 0.467454i −0.972302 0.233727i \(-0.924908\pi\)
0.972302 0.233727i \(-0.0750921\pi\)
\(660\) −20.9050 8.65914i −0.813726 0.337056i
\(661\) −7.07107 + 7.07107i −0.275033 + 0.275033i −0.831122 0.556090i \(-0.812301\pi\)
0.556090 + 0.831122i \(0.312301\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 39.1969 + 16.2359i 1.51885 + 0.629128i
\(667\) 16.0000i 0.619522i
\(668\) −4.32957 + 10.4525i −0.167516 + 0.404420i
\(669\) −41.8100 + 17.3183i −1.61647 + 0.669563i
\(670\) 4.32957 + 10.4525i 0.167266 + 0.403815i
\(671\) 16.9706 + 16.9706i 0.655141 + 0.655141i
\(672\) 0 0
\(673\) −6.49435 15.6788i −0.250339 0.604372i 0.747892 0.663820i \(-0.231066\pi\)
−0.998231 + 0.0594483i \(0.981066\pi\)
\(674\) 0 0
\(675\) −6.49435 + 15.6788i −0.249968 + 0.603476i
\(676\) 9.00000i 0.346154i
\(677\) 13.0656 + 5.41196i 0.502153 + 0.207999i 0.619357 0.785109i \(-0.287393\pi\)
−0.117204 + 0.993108i \(0.537393\pi\)
\(678\) −22.6274 + 22.6274i −0.869001 + 0.869001i
\(679\) 0 0
\(680\) 0 0
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) 18.2919 + 7.57675i 0.699919 + 0.289916i 0.704126 0.710075i \(-0.251339\pi\)
−0.00420661 + 0.999991i \(0.501339\pi\)
\(684\) 20.0000i 0.764719i
\(685\) 19.4831 47.0363i 0.744409 1.79716i
\(686\) 0 0
\(687\) 23.8126 + 57.4888i 0.908508 + 2.19333i
\(688\) −2.82843 2.82843i −0.107833 0.107833i
\(689\) −8.48528 8.48528i −0.323263 0.323263i
\(690\) −17.3183 41.8100i −0.659295 1.59168i
\(691\) −7.83938 + 3.24718i −0.298224 + 0.123528i −0.526778 0.850003i \(-0.676600\pi\)
0.228554 + 0.973531i \(0.426600\pi\)
\(692\) 1.08239 2.61313i 0.0411464 0.0993361i
\(693\) 0 0
\(694\) −13.0656 5.41196i −0.495965 0.205435i
\(695\) 16.9706 16.9706i 0.643730 0.643730i
\(696\) 8.00000 0.303239
\(697\) 0 0
\(698\) 34.0000 1.28692
\(699\) 45.2548 45.2548i 1.71170 1.71170i
\(700\) 0 0
\(701\) 30.0000i 1.13308i 0.824033 + 0.566542i \(0.191719\pi\)
−0.824033 + 0.566542i \(0.808281\pi\)
\(702\) 4.32957 10.4525i 0.163409 0.394504i
\(703\) 31.3575 12.9887i 1.18267 0.489878i
\(704\) 1.08239 + 2.61313i 0.0407942 + 0.0984859i
\(705\) 0 0
\(706\) −4.24264 4.24264i −0.159674 0.159674i
\(707\) 0 0
\(708\) −31.3575 + 12.9887i −1.17849 + 0.488145i
\(709\) −3.24718 + 7.83938i −0.121950 + 0.294414i −0.973052 0.230587i \(-0.925935\pi\)
0.851101 + 0.525001i \(0.175935\pi\)
\(710\) 16.0000i 0.600469i
\(711\) 78.3938 + 32.4718i 2.94000 + 1.21779i
\(712\) −4.24264 + 4.24264i −0.159000 + 0.159000i
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) −8.48528 + 8.48528i −0.317110 + 0.317110i
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) 15.1535 36.5838i 0.565130 1.36434i −0.340488 0.940249i \(-0.610592\pi\)
0.905618 0.424095i \(-0.139408\pi\)
\(720\) 13.0656 5.41196i 0.486927 0.201692i
\(721\) 0 0
\(722\) 2.12132 + 2.12132i 0.0789474 + 0.0789474i
\(723\) 33.9411 + 33.9411i 1.26228 + 1.26228i
\(724\) 3.24718 + 7.83938i 0.120680 + 0.291348i
\(725\) −7.83938 + 3.24718i −0.291147 + 0.120597i
\(726\) 3.24718 7.83938i 0.120514 0.290947i
\(727\) 8.00000i 0.296704i 0.988935 + 0.148352i \(0.0473968\pi\)
−0.988935 + 0.148352i \(0.952603\pi\)
\(728\) 0 0
\(729\) 30.4056 30.4056i 1.12613 1.12613i
\(730\) 0 0
\(731\) 0 0
\(732\) −24.0000 −0.887066
\(733\) −9.89949 + 9.89949i −0.365646 + 0.365646i −0.865887 0.500240i \(-0.833245\pi\)
0.500240 + 0.865887i \(0.333245\pi\)
\(734\) 15.6788 + 6.49435i 0.578713 + 0.239711i
\(735\) 56.0000i 2.06559i
\(736\) −2.16478 + 5.22625i −0.0797950 + 0.192642i
\(737\) 10.4525 4.32957i 0.385023 0.159482i
\(738\) −10.8239 26.1313i −0.398434 0.961905i
\(739\) 31.1127 + 31.1127i 1.14450 + 1.14450i 0.987617 + 0.156882i \(0.0501441\pi\)
0.156882 + 0.987617i \(0.449856\pi\)
\(740\) 16.9706 + 16.9706i 0.623850 + 0.623850i
\(741\) −8.65914 20.9050i −0.318101 0.767965i
\(742\) 0 0
\(743\) 4.32957 10.4525i 0.158836 0.383465i −0.824347 0.566084i \(-0.808458\pi\)
0.983184 + 0.182619i \(0.0584576\pi\)
\(744\) 0 0
\(745\) −15.6788 6.49435i −0.574425 0.237935i
\(746\) 15.5563 15.5563i 0.569558 0.569558i
\(747\) −60.0000 −2.19529
\(748\) 0 0
\(749\) 0 0
\(750\) 11.3137 11.3137i 0.413118 0.413118i
\(751\) 15.6788 + 6.49435i 0.572126 + 0.236982i 0.649940 0.759986i \(-0.274794\pi\)
−0.0778140 + 0.996968i \(0.524794\pi\)
\(752\) 0 0
\(753\) −12.9887 + 31.3575i −0.473335 + 1.14273i
\(754\) 5.22625 2.16478i 0.190329 0.0788368i
\(755\) 8.65914 + 20.9050i 0.315138 + 0.760811i
\(756\) 0 0
\(757\) 15.5563 + 15.5563i 0.565405 + 0.565405i 0.930838 0.365433i \(-0.119079\pi\)
−0.365433 + 0.930838i \(0.619079\pi\)
\(758\) −9.74153 23.5181i −0.353828 0.854217i
\(759\) −41.8100 + 17.3183i −1.51761 + 0.628614i
\(760\) 4.32957 10.4525i 0.157050 0.379152i
\(761\) 30.0000i 1.08750i 0.839248 + 0.543750i \(0.182996\pi\)
−0.839248 + 0.543750i \(0.817004\pi\)
\(762\) 41.8100 + 17.3183i 1.51462 + 0.627375i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.9706 + 16.9706i −0.612772 + 0.612772i
\(768\) −2.61313 1.08239i −0.0942931 0.0390575i
\(769\) 10.0000i 0.360609i 0.983611 + 0.180305i \(0.0577084\pi\)
−0.983611 + 0.180305i \(0.942292\pi\)
\(770\) 0 0
\(771\) 15.6788 6.49435i 0.564657 0.233888i
\(772\) −6.49435 15.6788i −0.233737 0.564291i
\(773\) −38.1838 38.1838i −1.37337 1.37337i −0.855390 0.517985i \(-0.826682\pi\)
−0.517985 0.855390i \(-0.673318\pi\)
\(774\) 14.1421 + 14.1421i 0.508329 + 0.508329i
\(775\) 0 0
\(776\) 15.6788 6.49435i 0.562835 0.233134i
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) −20.9050 8.65914i −0.749000 0.310246i
\(780\) 11.3137 11.3137i 0.405096 0.405096i
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) −16.0000 −0.571793
\(784\) −4.94975 + 4.94975i −0.176777 + 0.176777i
\(785\) 36.5838 + 15.1535i 1.30573 + 0.540851i
\(786\) 8.00000i 0.285351i
\(787\) 16.2359 39.1969i 0.578747 1.39722i −0.315192 0.949028i \(-0.602069\pi\)
0.893938 0.448190i \(-0.147931\pi\)
\(788\) −2.61313 + 1.08239i −0.0930888 + 0.0385586i
\(789\) −25.9774 62.7150i −0.924820 2.23271i
\(790\) 33.9411 + 33.9411i 1.20757 + 1.20757i
\(791\) 0 0
\(792\) −5.41196 13.0656i −0.192306 0.464267i
\(793\) −15.6788 + 6.49435i −0.556769 + 0.230621i
\(794\) 3.24718 7.83938i 0.115238 0.278209i
\(795\) 48.0000i 1.70238i
\(796\) −15.6788 6.49435i −0.555719 0.230186i
\(797\) −12.7279 + 12.7279i −0.450846 + 0.450846i −0.895635 0.444789i \(-0.853279\pi\)
0.444789 + 0.895635i \(0.353279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 3.00000 0.106066
\(801\) 21.2132 21.2132i 0.749532 0.749532i
\(802\) −26.1313 10.8239i −0.922727 0.382206i
\(803\) 0 0
\(804\) −4.32957 + 10.4525i −0.152692 + 0.368631i
\(805\) 0 0
\(806\) 0 0
\(807\) −62.2254 62.2254i −2.19044 2.19044i
\(808\) −4.24264 4.24264i −0.149256 0.149256i
\(809\) 15.1535 + 36.5838i 0.532768 + 1.28622i 0.929683 + 0.368361i \(0.120081\pi\)
−0.396914 + 0.917856i \(0.629919\pi\)
\(810\) −2.61313 + 1.08239i −0.0918159 + 0.0380314i
\(811\) 16.2359 39.1969i 0.570119 1.37639i −0.331335 0.943513i \(-0.607499\pi\)
0.901454 0.432876i \(-0.142501\pi\)
\(812\) 0 0
\(813\) −41.8100 17.3183i −1.46634 0.607378i
\(814\) 16.9706 16.9706i 0.594818 0.594818i
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 1.41421 1.41421i 0.0494468 0.0494468i
\(819\) 0 0
\(820\) 16.0000i 0.558744i
\(821\) 18.4007 44.4231i 0.642188 1.55038i −0.181534 0.983385i \(-0.558106\pi\)
0.823722 0.566994i \(-0.191894\pi\)
\(822\) 47.0363 19.4831i 1.64058 0.679550i
\(823\) 6.49435 + 15.6788i 0.226379 + 0.546527i 0.995731 0.0922973i \(-0.0294210\pi\)
−0.769353 + 0.638824i \(0.779421\pi\)
\(824\) −5.65685 5.65685i −0.197066 0.197066i
\(825\) 16.9706 + 16.9706i 0.590839 + 0.590839i
\(826\) 0 0
\(827\) 33.9706 14.0711i 1.18127 0.489300i 0.296371 0.955073i \(-0.404224\pi\)
0.884904 + 0.465773i \(0.154224\pi\)
\(828\) 10.8239 26.1313i 0.376157 0.908124i
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) −31.3575 12.9887i −1.08844 0.450845i
\(831\) 50.9117 50.9117i 1.76611 1.76611i
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 24.0000 0.831052
\(835\) 22.6274 22.6274i 0.783054 0.783054i
\(836\) −10.4525 4.32957i −0.361507 0.149741i
\(837\) 0 0
\(838\) −5.41196 + 13.0656i −0.186953 + 0.451345i
\(839\) −41.8100 + 17.3183i −1.44344 + 0.597893i −0.960630 0.277831i \(-0.910385\pi\)
−0.482812 + 0.875724i \(0.660385\pi\)
\(840\) 0 0
\(841\) 14.8492 + 14.8492i 0.512043 + 0.512043i
\(842\) 18.3848 + 18.3848i 0.633581 + 0.633581i
\(843\) 19.4831 + 47.0363i 0.671032 + 1.62002i
\(844\) −7.83938 + 3.24718i −0.269843 + 0.111772i
\(845\) −9.74153 + 23.5181i −0.335119 + 0.809048i
\(846\) 0 0
\(847\) 0 0
\(848\) 4.24264 4.24264i 0.145693 0.145693i
\(849\) 24.0000 0.823678
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 11.3137 11.3137i 0.387601 0.387601i
\(853\) 23.5181 + 9.74153i 0.805246 + 0.333544i 0.747055 0.664762i \(-0.231467\pi\)
0.0581902 + 0.998306i \(0.481467\pi\)
\(854\) 0 0
\(855\) −21.6478 + 52.2625i −0.740341 + 1.78734i
\(856\) 2.61313 1.08239i 0.0893148 0.0369954i
\(857\) 10.8239 + 26.1313i 0.369738 + 0.892627i 0.993793 + 0.111246i \(0.0354842\pi\)
−0.624055 + 0.781381i \(0.714516\pi\)
\(858\) −11.3137 11.3137i −0.386244 0.386244i
\(859\) 2.82843 + 2.82843i 0.0965047 + 0.0965047i 0.753711 0.657206i \(-0.228262\pi\)
−0.657206 + 0.753711i \(0.728262\pi\)
\(860\) 4.32957 + 10.4525i 0.147637 + 0.356427i
\(861\) 0 0
\(862\) 2.16478 5.22625i 0.0737328 0.178007i
\(863\) 48.0000i 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 5.22625 + 2.16478i 0.177801 + 0.0736475i
\(865\) −5.65685 + 5.65685i −0.192339 + 0.192339i
\(866\) 14.0000 0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) 33.9411 33.9411i 1.15137 1.15137i
\(870\) −20.9050 8.65914i −0.708746 0.293572i
\(871\) 8.00000i 0.271070i
\(872\) 3.24718 7.83938i 0.109963 0.265475i
\(873\) −78.3938 + 32.4718i −2.65323 + 1.09900i
\(874\) −8.65914 20.9050i −0.292900 0.707122i
\(875\) 0 0
\(876\) 0 0
\(877\) −3.24718 7.83938i −0.109649 0.264717i 0.859525 0.511094i \(-0.170760\pi\)
−0.969174 + 0.246377i \(0.920760\pi\)
\(878\) 15.6788 6.49435i 0.529132 0.219174i
\(879\) −6.49435 + 15.6788i −0.219049 + 0.528831i
\(880\) 8.00000i 0.269680i
\(881\) −41.8100 17.3183i −1.40862 0.583468i −0.456642 0.889650i \(-0.650948\pi\)
−0.951973 + 0.306183i \(0.900948\pi\)
\(882\) 24.7487 24.7487i 0.833333 0.833333i
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 96.0000 3.22700
\(886\) −8.48528 + 8.48528i −0.285069 + 0.285069i
\(887\) −36.5838 15.1535i −1.22836 0.508804i −0.328303 0.944572i \(-0.606477\pi\)
−0.900059 + 0.435768i \(0.856477\pi\)
\(888\) 24.0000i 0.805387i
\(889\) 0 0
\(890\) 15.6788 6.49435i 0.525553 0.217691i
\(891\) 1.08239 + 2.61313i 0.0362615 + 0.0875430i
\(892\) −11.3137 11.3137i −0.378811 0.378811i
\(893\) 0 0
\(894\) −6.49435 15.6788i −0.217204 0.524376i
\(895\) 31.3575 12.9887i 1.04817 0.434165i
\(896\) 0 0
\(897\) 32.0000i 1.06845i
\(898\) −5.22625 2.16478i −0.174402 0.0722398i
\(899\) 0 0
\(900\) −15.0000 −0.500000
\(901\) 0 0
\(902\) −16.0000 −0.532742
\(903\) 0 0
\(904\) −10.4525 4.32957i −0.347645 0.143999i
\(905\) 24.0000i 0.797787i
\(906\) −8.65914 + 20.9050i −0.287681 + 0.694522i
\(907\) 39.1969 16.2359i 1.30151 0.539104i 0.379115 0.925349i \(-0.376228\pi\)
0.922396 + 0.386246i \(0.126228\pi\)
\(908\) 7.57675 + 18.2919i 0.251443 + 0.607037i
\(909\) 21.2132 + 21.2132i 0.703598 + 0.703598i
\(910\) 0 0
\(911\) 21.6478 + 52.2625i 0.717225 + 1.73153i 0.681104 + 0.732187i \(0.261500\pi\)
0.0361215 + 0.999347i \(0.488500\pi\)
\(912\) 10.4525 4.32957i 0.346117 0.143366i
\(913\) −12.9887 + 31.3575i −0.429863 + 1.03778i
\(914\) 10.0000i 0.330771i
\(915\) 62.7150 + 25.9774i 2.07329 + 0.858787i
\(916\) −15.5563 + 15.5563i −0.513996 + 0.513996i
\(917\) 0 0
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 11.3137 11.3137i 0.373002 0.373002i
\(921\) −52.2625 21.6478i −1.72211 0.713321i
\(922\) 18.0000i 0.592798i
\(923\) 4.32957 10.4525i 0.142509 0.344048i
\(924\) 0 0
\(925\) −9.74153 23.5181i −0.320300 0.773271i
\(926\) −22.6274 22.6274i −0.743583 0.743583i
\(927\) 28.2843 + 28.2843i 0.928977 + 0.928977i
\(928\) 1.08239 + 2.61313i 0.0355313 + 0.0857801i
\(929\) −5.22625 + 2.16478i −0.171468 + 0.0710243i −0.466766 0.884381i \(-0.654581\pi\)
0.295298 + 0.955405i \(0.404581\pi\)
\(930\) 0 0
\(931\) 28.0000i 0.917663i
\(932\) 20.9050 + 8.65914i 0.684766 + 0.283639i
\(933\) 22.6274 22.6274i 0.740788 0.740788i
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) 10.0000 0.326860
\(937\) −1.41421 + 1.41421i −0.0462003 + 0.0462003i −0.729830 0.683629i \(-0.760401\pi\)
0.683629 + 0.729830i \(0.260401\pi\)
\(938\) 0 0
\(939\) 48.0000i 1.56642i
\(940\) 0 0
\(941\) −33.9706 + 14.0711i −1.10741 + 0.458705i −0.860045 0.510217i \(-0.829565\pi\)
−0.247366 + 0.968922i \(0.579565\pi\)
\(942\) 15.1535 + 36.5838i 0.493727 + 1.19196i
\(943\) −22.6274 22.6274i −0.736850 0.736850i
\(944\) −8.48528 8.48528i −0.276172 0.276172i
\(945\) 0 0
\(946\) 10.4525 4.32957i 0.339840 0.140766i
\(947\) 1.08239 2.61313i 0.0351730 0.0849152i −0.905317 0.424737i \(-0.860367\pi\)
0.940490 + 0.339822i \(0.110367\pi\)
\(948\) 48.0000i 1.55897i
\(949\) 0 0
\(950\) −8.48528 + 8.48528i −0.275299 + 0.275299i
\(951\) −8.00000 −0.259418
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) −21.2132 + 21.2132i −0.686803 + 0.686803i
\(955\) 0 0
\(956\) 0 0
\(957\) −8.65914 + 20.9050i −0.279910 + 0.675763i
\(958\) −5.22625 + 2.16478i −0.168853 + 0.0699410i
\(959\) 0 0
\(960\) 5.65685 + 5.65685i 0.182574 + 0.182574i
\(961\) −21.9203 21.9203i −0.707107 0.707107i
\(962\) 6.49435 + 15.6788i 0.209386 + 0.505503i
\(963\) −13.0656 + 5.41196i −0.421034 + 0.174398i
\(964\) −6.49435 + 15.6788i −0.209169 + 0.504979i
\(965\) 48.0000i 1.54517i
\(966\) 0 0
\(967\) 5.65685 5.65685i 0.181912 0.181912i −0.610276 0.792189i \(-0.708942\pi\)
0.792189 + 0.610276i \(0.208942\pi\)
\(968\) 3.00000 0.0964237
\(969\) 0 0
\(970\) −48.0000 −1.54119
\(971\) −8.48528 + 8.48528i −0.272306 + 0.272306i −0.830028 0.557722i \(-0.811675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(972\) 13.0656 + 5.41196i 0.419080 + 0.173589i
\(973\) 0 0
\(974\) −6.49435 + 15.6788i −0.208092 + 0.502380i
\(975\) −15.6788 + 6.49435i −0.502122 + 0.207986i
\(976\) −3.24718 7.83938i −0.103940 0.250932i
\(977\) 12.7279 + 12.7279i 0.407202 + 0.407202i 0.880762 0.473560i \(-0.157031\pi\)
−0.473560 + 0.880762i \(0.657031\pi\)
\(978\) 16.9706 + 16.9706i 0.542659 + 0.542659i
\(979\) −6.49435 15.6788i −0.207560 0.501095i
\(980\) 18.2919 7.57675i 0.584313 0.242030i
\(981\) −16.2359 + 39.1969i −0.518372 + 1.25146i
\(982\) 12.0000i 0.382935i
\(983\) 5.22625 + 2.16478i 0.166692 + 0.0690459i 0.464469 0.885589i \(-0.346245\pi\)
−0.297777 + 0.954635i \(0.596245\pi\)
\(984\) 11.3137 11.3137i 0.360668 0.360668i
\(985\) 8.00000 0.254901
\(986\) 0 0
\(987\) 0 0
\(988\) 5.65685 5.65685i 0.179969 0.179969i
\(989\) 20.9050 + 8.65914i 0.664741 + 0.275345i
\(990\) 40.0000i 1.27128i
\(991\) −19.4831 + 47.0363i −0.618900 + 1.49416i 0.234083 + 0.972217i \(0.424791\pi\)
−0.852982 + 0.521940i \(0.825209\pi\)
\(992\) 0 0
\(993\) 4.32957 + 10.4525i 0.137395 + 0.331700i
\(994\) 0 0
\(995\) 33.9411 + 33.9411i 1.07601 + 1.07601i
\(996\) −12.9887 31.3575i −0.411563 0.993601i
\(997\) 54.8756 22.7302i 1.73793 0.719874i 0.738995 0.673711i \(-0.235301\pi\)
0.998934 0.0461631i \(-0.0146994\pi\)
\(998\) −9.74153 + 23.5181i −0.308363 + 0.744454i
\(999\) 48.0000i 1.51865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 578.2.d.g.179.1 8
17.2 even 8 inner 578.2.d.g.155.1 8
17.3 odd 16 578.2.c.a.251.1 2
17.4 even 4 inner 578.2.d.g.399.1 8
17.5 odd 16 578.2.c.d.327.1 2
17.6 odd 16 578.2.a.d.1.1 2
17.7 odd 16 34.2.b.a.33.2 yes 2
17.8 even 8 inner 578.2.d.g.423.2 8
17.9 even 8 inner 578.2.d.g.423.1 8
17.10 odd 16 34.2.b.a.33.1 2
17.11 odd 16 578.2.a.d.1.2 2
17.12 odd 16 578.2.c.a.327.1 2
17.13 even 4 inner 578.2.d.g.399.2 8
17.14 odd 16 578.2.c.d.251.1 2
17.15 even 8 inner 578.2.d.g.155.2 8
17.16 even 2 inner 578.2.d.g.179.2 8
51.11 even 16 5202.2.a.u.1.2 2
51.23 even 16 5202.2.a.u.1.1 2
51.41 even 16 306.2.b.d.271.2 2
51.44 even 16 306.2.b.d.271.1 2
68.7 even 16 272.2.b.a.33.1 2
68.11 even 16 4624.2.a.s.1.1 2
68.23 even 16 4624.2.a.s.1.2 2
68.27 even 16 272.2.b.a.33.2 2
85.7 even 16 850.2.d.i.849.2 4
85.24 odd 16 850.2.b.f.101.1 2
85.27 even 16 850.2.d.i.849.1 4
85.44 odd 16 850.2.b.f.101.2 2
85.58 even 16 850.2.d.i.849.3 4
85.78 even 16 850.2.d.i.849.4 4
119.27 even 16 1666.2.b.c.883.2 2
119.41 even 16 1666.2.b.c.883.1 2
136.27 even 16 1088.2.b.a.577.1 2
136.61 odd 16 1088.2.b.b.577.2 2
136.75 even 16 1088.2.b.a.577.2 2
136.109 odd 16 1088.2.b.b.577.1 2
204.95 odd 16 2448.2.c.n.577.1 2
204.143 odd 16 2448.2.c.n.577.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.b.a.33.1 2 17.10 odd 16
34.2.b.a.33.2 yes 2 17.7 odd 16
272.2.b.a.33.1 2 68.7 even 16
272.2.b.a.33.2 2 68.27 even 16
306.2.b.d.271.1 2 51.44 even 16
306.2.b.d.271.2 2 51.41 even 16
578.2.a.d.1.1 2 17.6 odd 16
578.2.a.d.1.2 2 17.11 odd 16
578.2.c.a.251.1 2 17.3 odd 16
578.2.c.a.327.1 2 17.12 odd 16
578.2.c.d.251.1 2 17.14 odd 16
578.2.c.d.327.1 2 17.5 odd 16
578.2.d.g.155.1 8 17.2 even 8 inner
578.2.d.g.155.2 8 17.15 even 8 inner
578.2.d.g.179.1 8 1.1 even 1 trivial
578.2.d.g.179.2 8 17.16 even 2 inner
578.2.d.g.399.1 8 17.4 even 4 inner
578.2.d.g.399.2 8 17.13 even 4 inner
578.2.d.g.423.1 8 17.9 even 8 inner
578.2.d.g.423.2 8 17.8 even 8 inner
850.2.b.f.101.1 2 85.24 odd 16
850.2.b.f.101.2 2 85.44 odd 16
850.2.d.i.849.1 4 85.27 even 16
850.2.d.i.849.2 4 85.7 even 16
850.2.d.i.849.3 4 85.58 even 16
850.2.d.i.849.4 4 85.78 even 16
1088.2.b.a.577.1 2 136.27 even 16
1088.2.b.a.577.2 2 136.75 even 16
1088.2.b.b.577.1 2 136.109 odd 16
1088.2.b.b.577.2 2 136.61 odd 16
1666.2.b.c.883.1 2 119.41 even 16
1666.2.b.c.883.2 2 119.27 even 16
2448.2.c.n.577.1 2 204.95 odd 16
2448.2.c.n.577.2 2 204.143 odd 16
4624.2.a.s.1.1 2 68.11 even 16
4624.2.a.s.1.2 2 68.23 even 16
5202.2.a.u.1.1 2 51.23 even 16
5202.2.a.u.1.2 2 51.11 even 16