Properties

Label 850.2.c.i.749.4
Level $850$
Weight $2$
Character 850.749
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(749,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,-2,0,0,-6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 749.4
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 850.749
Dual form 850.2.c.i.749.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.56155i q^{3} -1.00000 q^{4} -2.56155 q^{6} +5.12311i q^{7} -1.00000i q^{8} -3.56155 q^{9} -4.00000 q^{11} -2.56155i q^{12} -4.56155i q^{13} -5.12311 q^{14} +1.00000 q^{16} +1.00000i q^{17} -3.56155i q^{18} +2.56155 q^{19} -13.1231 q^{21} -4.00000i q^{22} +5.12311i q^{23} +2.56155 q^{24} +4.56155 q^{26} -1.43845i q^{27} -5.12311i q^{28} +5.68466 q^{29} -6.56155 q^{31} +1.00000i q^{32} -10.2462i q^{33} -1.00000 q^{34} +3.56155 q^{36} -7.12311i q^{37} +2.56155i q^{38} +11.6847 q^{39} +4.24621 q^{41} -13.1231i q^{42} +1.12311i q^{43} +4.00000 q^{44} -5.12311 q^{46} +6.56155i q^{47} +2.56155i q^{48} -19.2462 q^{49} -2.56155 q^{51} +4.56155i q^{52} +0.561553i q^{53} +1.43845 q^{54} +5.12311 q^{56} +6.56155i q^{57} +5.68466i q^{58} +0.315342 q^{59} +7.43845 q^{61} -6.56155i q^{62} -18.2462i q^{63} -1.00000 q^{64} +10.2462 q^{66} -9.12311i q^{67} -1.00000i q^{68} -13.1231 q^{69} -4.31534 q^{71} +3.56155i q^{72} +6.80776i q^{73} +7.12311 q^{74} -2.56155 q^{76} -20.4924i q^{77} +11.6847i q^{78} -7.00000 q^{81} +4.24621i q^{82} +6.24621i q^{83} +13.1231 q^{84} -1.12311 q^{86} +14.5616i q^{87} +4.00000i q^{88} +9.68466 q^{89} +23.3693 q^{91} -5.12311i q^{92} -16.8078i q^{93} -6.56155 q^{94} -2.56155 q^{96} -1.68466i q^{97} -19.2462i q^{98} +14.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 2 q^{6} - 6 q^{9} - 16 q^{11} - 4 q^{14} + 4 q^{16} + 2 q^{19} - 36 q^{21} + 2 q^{24} + 10 q^{26} - 2 q^{29} - 18 q^{31} - 4 q^{34} + 6 q^{36} + 22 q^{39} - 16 q^{41} + 16 q^{44} - 4 q^{46}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.56155i 1.47891i 0.673204 + 0.739457i \(0.264917\pi\)
−0.673204 + 0.739457i \(0.735083\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −2.56155 −1.04575
\(7\) 5.12311i 1.93635i 0.250270 + 0.968176i \(0.419480\pi\)
−0.250270 + 0.968176i \(0.580520\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) − 2.56155i − 0.739457i
\(13\) − 4.56155i − 1.26515i −0.774500 0.632574i \(-0.781999\pi\)
0.774500 0.632574i \(-0.218001\pi\)
\(14\) −5.12311 −1.36921
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) − 3.56155i − 0.839466i
\(19\) 2.56155 0.587661 0.293830 0.955858i \(-0.405070\pi\)
0.293830 + 0.955858i \(0.405070\pi\)
\(20\) 0 0
\(21\) −13.1231 −2.86370
\(22\) − 4.00000i − 0.852803i
\(23\) 5.12311i 1.06824i 0.845408 + 0.534121i \(0.179357\pi\)
−0.845408 + 0.534121i \(0.820643\pi\)
\(24\) 2.56155 0.522875
\(25\) 0 0
\(26\) 4.56155 0.894594
\(27\) − 1.43845i − 0.276829i
\(28\) − 5.12311i − 0.968176i
\(29\) 5.68466 1.05561 0.527807 0.849364i \(-0.323014\pi\)
0.527807 + 0.849364i \(0.323014\pi\)
\(30\) 0 0
\(31\) −6.56155 −1.17849 −0.589245 0.807955i \(-0.700575\pi\)
−0.589245 + 0.807955i \(0.700575\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 10.2462i − 1.78364i
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 3.56155 0.593592
\(37\) − 7.12311i − 1.17103i −0.810661 0.585516i \(-0.800892\pi\)
0.810661 0.585516i \(-0.199108\pi\)
\(38\) 2.56155i 0.415539i
\(39\) 11.6847 1.87104
\(40\) 0 0
\(41\) 4.24621 0.663147 0.331573 0.943429i \(-0.392421\pi\)
0.331573 + 0.943429i \(0.392421\pi\)
\(42\) − 13.1231i − 2.02494i
\(43\) 1.12311i 0.171272i 0.996326 + 0.0856360i \(0.0272922\pi\)
−0.996326 + 0.0856360i \(0.972708\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −5.12311 −0.755361
\(47\) 6.56155i 0.957101i 0.878060 + 0.478550i \(0.158838\pi\)
−0.878060 + 0.478550i \(0.841162\pi\)
\(48\) 2.56155i 0.369728i
\(49\) −19.2462 −2.74946
\(50\) 0 0
\(51\) −2.56155 −0.358689
\(52\) 4.56155i 0.632574i
\(53\) 0.561553i 0.0771352i 0.999256 + 0.0385676i \(0.0122795\pi\)
−0.999256 + 0.0385676i \(0.987721\pi\)
\(54\) 1.43845 0.195748
\(55\) 0 0
\(56\) 5.12311 0.684604
\(57\) 6.56155i 0.869099i
\(58\) 5.68466i 0.746432i
\(59\) 0.315342 0.0410540 0.0205270 0.999789i \(-0.493466\pi\)
0.0205270 + 0.999789i \(0.493466\pi\)
\(60\) 0 0
\(61\) 7.43845 0.952396 0.476198 0.879338i \(-0.342015\pi\)
0.476198 + 0.879338i \(0.342015\pi\)
\(62\) − 6.56155i − 0.833318i
\(63\) − 18.2462i − 2.29881i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 10.2462 1.26122
\(67\) − 9.12311i − 1.11456i −0.830323 0.557282i \(-0.811844\pi\)
0.830323 0.557282i \(-0.188156\pi\)
\(68\) − 1.00000i − 0.121268i
\(69\) −13.1231 −1.57984
\(70\) 0 0
\(71\) −4.31534 −0.512137 −0.256068 0.966659i \(-0.582427\pi\)
−0.256068 + 0.966659i \(0.582427\pi\)
\(72\) 3.56155i 0.419733i
\(73\) 6.80776i 0.796789i 0.917214 + 0.398394i \(0.130432\pi\)
−0.917214 + 0.398394i \(0.869568\pi\)
\(74\) 7.12311 0.828044
\(75\) 0 0
\(76\) −2.56155 −0.293830
\(77\) − 20.4924i − 2.33533i
\(78\) 11.6847i 1.32303i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 4.24621i 0.468916i
\(83\) 6.24621i 0.685611i 0.939406 + 0.342805i \(0.111377\pi\)
−0.939406 + 0.342805i \(0.888623\pi\)
\(84\) 13.1231 1.43185
\(85\) 0 0
\(86\) −1.12311 −0.121108
\(87\) 14.5616i 1.56116i
\(88\) 4.00000i 0.426401i
\(89\) 9.68466 1.02657 0.513286 0.858218i \(-0.328428\pi\)
0.513286 + 0.858218i \(0.328428\pi\)
\(90\) 0 0
\(91\) 23.3693 2.44977
\(92\) − 5.12311i − 0.534121i
\(93\) − 16.8078i − 1.74288i
\(94\) −6.56155 −0.676772
\(95\) 0 0
\(96\) −2.56155 −0.261437
\(97\) − 1.68466i − 0.171051i −0.996336 0.0855256i \(-0.972743\pi\)
0.996336 0.0855256i \(-0.0272569\pi\)
\(98\) − 19.2462i − 1.94416i
\(99\) 14.2462 1.43180
\(100\) 0 0
\(101\) −14.4924 −1.44205 −0.721025 0.692909i \(-0.756329\pi\)
−0.721025 + 0.692909i \(0.756329\pi\)
\(102\) − 2.56155i − 0.253632i
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −4.56155 −0.447297
\(105\) 0 0
\(106\) −0.561553 −0.0545428
\(107\) 16.4924i 1.59438i 0.603727 + 0.797191i \(0.293682\pi\)
−0.603727 + 0.797191i \(0.706318\pi\)
\(108\) 1.43845i 0.138415i
\(109\) 8.56155 0.820048 0.410024 0.912075i \(-0.365520\pi\)
0.410024 + 0.912075i \(0.365520\pi\)
\(110\) 0 0
\(111\) 18.2462 1.73185
\(112\) 5.12311i 0.484088i
\(113\) − 2.80776i − 0.264132i −0.991241 0.132066i \(-0.957839\pi\)
0.991241 0.132066i \(-0.0421611\pi\)
\(114\) −6.56155 −0.614546
\(115\) 0 0
\(116\) −5.68466 −0.527807
\(117\) 16.2462i 1.50196i
\(118\) 0.315342i 0.0290295i
\(119\) −5.12311 −0.469634
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 7.43845i 0.673445i
\(123\) 10.8769i 0.980737i
\(124\) 6.56155 0.589245
\(125\) 0 0
\(126\) 18.2462 1.62550
\(127\) 9.43845i 0.837527i 0.908095 + 0.418763i \(0.137536\pi\)
−0.908095 + 0.418763i \(0.862464\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −2.87689 −0.253296
\(130\) 0 0
\(131\) 1.12311 0.0981262 0.0490631 0.998796i \(-0.484376\pi\)
0.0490631 + 0.998796i \(0.484376\pi\)
\(132\) 10.2462i 0.891818i
\(133\) 13.1231i 1.13792i
\(134\) 9.12311 0.788116
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) − 13.1231i − 1.11711i
\(139\) −16.4924 −1.39887 −0.699435 0.714697i \(-0.746565\pi\)
−0.699435 + 0.714697i \(0.746565\pi\)
\(140\) 0 0
\(141\) −16.8078 −1.41547
\(142\) − 4.31534i − 0.362135i
\(143\) 18.2462i 1.52582i
\(144\) −3.56155 −0.296796
\(145\) 0 0
\(146\) −6.80776 −0.563415
\(147\) − 49.3002i − 4.06621i
\(148\) 7.12311i 0.585516i
\(149\) −3.12311 −0.255855 −0.127927 0.991784i \(-0.540832\pi\)
−0.127927 + 0.991784i \(0.540832\pi\)
\(150\) 0 0
\(151\) −15.3693 −1.25074 −0.625369 0.780329i \(-0.715051\pi\)
−0.625369 + 0.780329i \(0.715051\pi\)
\(152\) − 2.56155i − 0.207769i
\(153\) − 3.56155i − 0.287934i
\(154\) 20.4924 1.65133
\(155\) 0 0
\(156\) −11.6847 −0.935521
\(157\) 18.4924i 1.47586i 0.674879 + 0.737928i \(0.264196\pi\)
−0.674879 + 0.737928i \(0.735804\pi\)
\(158\) 0 0
\(159\) −1.43845 −0.114076
\(160\) 0 0
\(161\) −26.2462 −2.06849
\(162\) − 7.00000i − 0.549972i
\(163\) − 14.2462i − 1.11585i −0.829892 0.557925i \(-0.811598\pi\)
0.829892 0.557925i \(-0.188402\pi\)
\(164\) −4.24621 −0.331573
\(165\) 0 0
\(166\) −6.24621 −0.484800
\(167\) 5.12311i 0.396438i 0.980158 + 0.198219i \(0.0635157\pi\)
−0.980158 + 0.198219i \(0.936484\pi\)
\(168\) 13.1231i 1.01247i
\(169\) −7.80776 −0.600597
\(170\) 0 0
\(171\) −9.12311 −0.697661
\(172\) − 1.12311i − 0.0856360i
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) −14.5616 −1.10391
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0.807764i 0.0607153i
\(178\) 9.68466i 0.725896i
\(179\) −8.49242 −0.634753 −0.317377 0.948300i \(-0.602802\pi\)
−0.317377 + 0.948300i \(0.602802\pi\)
\(180\) 0 0
\(181\) 16.2462 1.20757 0.603786 0.797147i \(-0.293658\pi\)
0.603786 + 0.797147i \(0.293658\pi\)
\(182\) 23.3693i 1.73225i
\(183\) 19.0540i 1.40851i
\(184\) 5.12311 0.377680
\(185\) 0 0
\(186\) 16.8078 1.23241
\(187\) − 4.00000i − 0.292509i
\(188\) − 6.56155i − 0.478550i
\(189\) 7.36932 0.536039
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) − 2.56155i − 0.184864i
\(193\) 24.2462i 1.74528i 0.488364 + 0.872640i \(0.337594\pi\)
−0.488364 + 0.872640i \(0.662406\pi\)
\(194\) 1.68466 0.120951
\(195\) 0 0
\(196\) 19.2462 1.37473
\(197\) 13.3693i 0.952524i 0.879303 + 0.476262i \(0.158009\pi\)
−0.879303 + 0.476262i \(0.841991\pi\)
\(198\) 14.2462i 1.01243i
\(199\) −14.5616 −1.03224 −0.516121 0.856516i \(-0.672624\pi\)
−0.516121 + 0.856516i \(0.672624\pi\)
\(200\) 0 0
\(201\) 23.3693 1.64834
\(202\) − 14.4924i − 1.01968i
\(203\) 29.1231i 2.04404i
\(204\) 2.56155 0.179345
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) − 18.2462i − 1.26820i
\(208\) − 4.56155i − 0.316287i
\(209\) −10.2462 −0.708745
\(210\) 0 0
\(211\) −3.36932 −0.231953 −0.115977 0.993252i \(-0.537000\pi\)
−0.115977 + 0.993252i \(0.537000\pi\)
\(212\) − 0.561553i − 0.0385676i
\(213\) − 11.0540i − 0.757406i
\(214\) −16.4924 −1.12740
\(215\) 0 0
\(216\) −1.43845 −0.0978739
\(217\) − 33.6155i − 2.28197i
\(218\) 8.56155i 0.579862i
\(219\) −17.4384 −1.17838
\(220\) 0 0
\(221\) 4.56155 0.306843
\(222\) 18.2462i 1.22461i
\(223\) − 3.68466i − 0.246743i −0.992361 0.123371i \(-0.960629\pi\)
0.992361 0.123371i \(-0.0393707\pi\)
\(224\) −5.12311 −0.342302
\(225\) 0 0
\(226\) 2.80776 0.186770
\(227\) 16.3153i 1.08289i 0.840737 + 0.541444i \(0.182122\pi\)
−0.840737 + 0.541444i \(0.817878\pi\)
\(228\) − 6.56155i − 0.434549i
\(229\) 14.4924 0.957686 0.478843 0.877900i \(-0.341056\pi\)
0.478843 + 0.877900i \(0.341056\pi\)
\(230\) 0 0
\(231\) 52.4924 3.45375
\(232\) − 5.68466i − 0.373216i
\(233\) − 6.31534i − 0.413732i −0.978369 0.206866i \(-0.933674\pi\)
0.978369 0.206866i \(-0.0663264\pi\)
\(234\) −16.2462 −1.06205
\(235\) 0 0
\(236\) −0.315342 −0.0205270
\(237\) 0 0
\(238\) − 5.12311i − 0.332082i
\(239\) 23.3693 1.51164 0.755818 0.654782i \(-0.227240\pi\)
0.755818 + 0.654782i \(0.227240\pi\)
\(240\) 0 0
\(241\) 12.2462 0.788848 0.394424 0.918929i \(-0.370944\pi\)
0.394424 + 0.918929i \(0.370944\pi\)
\(242\) 5.00000i 0.321412i
\(243\) − 22.2462i − 1.42710i
\(244\) −7.43845 −0.476198
\(245\) 0 0
\(246\) −10.8769 −0.693485
\(247\) − 11.6847i − 0.743477i
\(248\) 6.56155i 0.416659i
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 18.2462i 1.14940i
\(253\) − 20.4924i − 1.28835i
\(254\) −9.43845 −0.592221
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.00000i 0.124757i 0.998053 + 0.0623783i \(0.0198685\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) − 2.87689i − 0.179108i
\(259\) 36.4924 2.26753
\(260\) 0 0
\(261\) −20.2462 −1.25321
\(262\) 1.12311i 0.0693857i
\(263\) − 24.8078i − 1.52971i −0.644201 0.764856i \(-0.722810\pi\)
0.644201 0.764856i \(-0.277190\pi\)
\(264\) −10.2462 −0.630611
\(265\) 0 0
\(266\) −13.1231 −0.804629
\(267\) 24.8078i 1.51821i
\(268\) 9.12311i 0.557282i
\(269\) 2.80776 0.171192 0.0855962 0.996330i \(-0.472721\pi\)
0.0855962 + 0.996330i \(0.472721\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 59.8617i 3.62300i
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) 13.1231 0.789918
\(277\) − 15.7538i − 0.946553i −0.880914 0.473277i \(-0.843071\pi\)
0.880914 0.473277i \(-0.156929\pi\)
\(278\) − 16.4924i − 0.989150i
\(279\) 23.3693 1.39908
\(280\) 0 0
\(281\) 16.5616 0.987979 0.493990 0.869468i \(-0.335538\pi\)
0.493990 + 0.869468i \(0.335538\pi\)
\(282\) − 16.8078i − 1.00089i
\(283\) − 8.31534i − 0.494296i −0.968978 0.247148i \(-0.920507\pi\)
0.968978 0.247148i \(-0.0794933\pi\)
\(284\) 4.31534 0.256068
\(285\) 0 0
\(286\) −18.2462 −1.07892
\(287\) 21.7538i 1.28409i
\(288\) − 3.56155i − 0.209867i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 4.31534 0.252970
\(292\) − 6.80776i − 0.398394i
\(293\) 16.5616i 0.967536i 0.875196 + 0.483768i \(0.160732\pi\)
−0.875196 + 0.483768i \(0.839268\pi\)
\(294\) 49.3002 2.87525
\(295\) 0 0
\(296\) −7.12311 −0.414022
\(297\) 5.75379i 0.333869i
\(298\) − 3.12311i − 0.180917i
\(299\) 23.3693 1.35148
\(300\) 0 0
\(301\) −5.75379 −0.331643
\(302\) − 15.3693i − 0.884405i
\(303\) − 37.1231i − 2.13267i
\(304\) 2.56155 0.146915
\(305\) 0 0
\(306\) 3.56155 0.203600
\(307\) − 17.7538i − 1.01326i −0.862163 0.506631i \(-0.830891\pi\)
0.862163 0.506631i \(-0.169109\pi\)
\(308\) 20.4924i 1.16766i
\(309\) 20.4924 1.16577
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) − 11.6847i − 0.661514i
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) −18.4924 −1.04359
\(315\) 0 0
\(316\) 0 0
\(317\) 31.6155i 1.77570i 0.460128 + 0.887852i \(0.347803\pi\)
−0.460128 + 0.887852i \(0.652197\pi\)
\(318\) − 1.43845i − 0.0806641i
\(319\) −22.7386 −1.27312
\(320\) 0 0
\(321\) −42.2462 −2.35795
\(322\) − 26.2462i − 1.46264i
\(323\) 2.56155i 0.142529i
\(324\) 7.00000 0.388889
\(325\) 0 0
\(326\) 14.2462 0.789025
\(327\) 21.9309i 1.21278i
\(328\) − 4.24621i − 0.234458i
\(329\) −33.6155 −1.85328
\(330\) 0 0
\(331\) 23.0540 1.26716 0.633581 0.773677i \(-0.281585\pi\)
0.633581 + 0.773677i \(0.281585\pi\)
\(332\) − 6.24621i − 0.342805i
\(333\) 25.3693i 1.39023i
\(334\) −5.12311 −0.280324
\(335\) 0 0
\(336\) −13.1231 −0.715924
\(337\) − 10.3153i − 0.561912i −0.959721 0.280956i \(-0.909348\pi\)
0.959721 0.280956i \(-0.0906516\pi\)
\(338\) − 7.80776i − 0.424686i
\(339\) 7.19224 0.390629
\(340\) 0 0
\(341\) 26.2462 1.42131
\(342\) − 9.12311i − 0.493321i
\(343\) − 62.7386i − 3.38757i
\(344\) 1.12311 0.0605538
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) − 10.5616i − 0.566974i −0.958976 0.283487i \(-0.908509\pi\)
0.958976 0.283487i \(-0.0914913\pi\)
\(348\) − 14.5616i − 0.780581i
\(349\) 15.1231 0.809521 0.404761 0.914423i \(-0.367355\pi\)
0.404761 + 0.914423i \(0.367355\pi\)
\(350\) 0 0
\(351\) −6.56155 −0.350230
\(352\) − 4.00000i − 0.213201i
\(353\) − 22.4924i − 1.19715i −0.801066 0.598575i \(-0.795734\pi\)
0.801066 0.598575i \(-0.204266\pi\)
\(354\) −0.807764 −0.0429322
\(355\) 0 0
\(356\) −9.68466 −0.513286
\(357\) − 13.1231i − 0.694548i
\(358\) − 8.49242i − 0.448838i
\(359\) 10.8769 0.574061 0.287030 0.957922i \(-0.407332\pi\)
0.287030 + 0.957922i \(0.407332\pi\)
\(360\) 0 0
\(361\) −12.4384 −0.654655
\(362\) 16.2462i 0.853882i
\(363\) 12.8078i 0.672233i
\(364\) −23.3693 −1.22489
\(365\) 0 0
\(366\) −19.0540 −0.995967
\(367\) − 33.6155i − 1.75472i −0.479836 0.877358i \(-0.659304\pi\)
0.479836 0.877358i \(-0.340696\pi\)
\(368\) 5.12311i 0.267060i
\(369\) −15.1231 −0.787277
\(370\) 0 0
\(371\) −2.87689 −0.149361
\(372\) 16.8078i 0.871442i
\(373\) 24.7386i 1.28092i 0.767992 + 0.640459i \(0.221256\pi\)
−0.767992 + 0.640459i \(0.778744\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 6.56155 0.338386
\(377\) − 25.9309i − 1.33551i
\(378\) 7.36932i 0.379037i
\(379\) 14.2462 0.731779 0.365889 0.930658i \(-0.380765\pi\)
0.365889 + 0.930658i \(0.380765\pi\)
\(380\) 0 0
\(381\) −24.1771 −1.23863
\(382\) 0 0
\(383\) 16.8078i 0.858837i 0.903106 + 0.429418i \(0.141281\pi\)
−0.903106 + 0.429418i \(0.858719\pi\)
\(384\) 2.56155 0.130719
\(385\) 0 0
\(386\) −24.2462 −1.23410
\(387\) − 4.00000i − 0.203331i
\(388\) 1.68466i 0.0855256i
\(389\) −13.3693 −0.677851 −0.338926 0.940813i \(-0.610064\pi\)
−0.338926 + 0.940813i \(0.610064\pi\)
\(390\) 0 0
\(391\) −5.12311 −0.259087
\(392\) 19.2462i 0.972080i
\(393\) 2.87689i 0.145120i
\(394\) −13.3693 −0.673536
\(395\) 0 0
\(396\) −14.2462 −0.715899
\(397\) 21.3693i 1.07250i 0.844061 + 0.536248i \(0.180159\pi\)
−0.844061 + 0.536248i \(0.819841\pi\)
\(398\) − 14.5616i − 0.729905i
\(399\) −33.6155 −1.68288
\(400\) 0 0
\(401\) 10.6307 0.530871 0.265435 0.964129i \(-0.414484\pi\)
0.265435 + 0.964129i \(0.414484\pi\)
\(402\) 23.3693i 1.16556i
\(403\) 29.9309i 1.49096i
\(404\) 14.4924 0.721025
\(405\) 0 0
\(406\) −29.1231 −1.44536
\(407\) 28.4924i 1.41232i
\(408\) 2.56155i 0.126816i
\(409\) 2.31534 0.114486 0.0572431 0.998360i \(-0.481769\pi\)
0.0572431 + 0.998360i \(0.481769\pi\)
\(410\) 0 0
\(411\) −25.6155 −1.26352
\(412\) 8.00000i 0.394132i
\(413\) 1.61553i 0.0794949i
\(414\) 18.2462 0.896752
\(415\) 0 0
\(416\) 4.56155 0.223649
\(417\) − 42.2462i − 2.06881i
\(418\) − 10.2462i − 0.501159i
\(419\) 25.1231 1.22734 0.613672 0.789561i \(-0.289692\pi\)
0.613672 + 0.789561i \(0.289692\pi\)
\(420\) 0 0
\(421\) 7.61553 0.371158 0.185579 0.982629i \(-0.440584\pi\)
0.185579 + 0.982629i \(0.440584\pi\)
\(422\) − 3.36932i − 0.164016i
\(423\) − 23.3693i − 1.13626i
\(424\) 0.561553 0.0272714
\(425\) 0 0
\(426\) 11.0540 0.535567
\(427\) 38.1080i 1.84417i
\(428\) − 16.4924i − 0.797191i
\(429\) −46.7386 −2.25656
\(430\) 0 0
\(431\) −20.4924 −0.987085 −0.493543 0.869722i \(-0.664298\pi\)
−0.493543 + 0.869722i \(0.664298\pi\)
\(432\) − 1.43845i − 0.0692073i
\(433\) 2.49242i 0.119778i 0.998205 + 0.0598891i \(0.0190747\pi\)
−0.998205 + 0.0598891i \(0.980925\pi\)
\(434\) 33.6155 1.61360
\(435\) 0 0
\(436\) −8.56155 −0.410024
\(437\) 13.1231i 0.627763i
\(438\) − 17.4384i − 0.833241i
\(439\) 32.9848 1.57428 0.787140 0.616774i \(-0.211561\pi\)
0.787140 + 0.616774i \(0.211561\pi\)
\(440\) 0 0
\(441\) 68.5464 3.26411
\(442\) 4.56155i 0.216971i
\(443\) − 28.0000i − 1.33032i −0.746701 0.665160i \(-0.768363\pi\)
0.746701 0.665160i \(-0.231637\pi\)
\(444\) −18.2462 −0.865927
\(445\) 0 0
\(446\) 3.68466 0.174474
\(447\) − 8.00000i − 0.378387i
\(448\) − 5.12311i − 0.242044i
\(449\) 16.8769 0.796470 0.398235 0.917283i \(-0.369623\pi\)
0.398235 + 0.917283i \(0.369623\pi\)
\(450\) 0 0
\(451\) −16.9848 −0.799785
\(452\) 2.80776i 0.132066i
\(453\) − 39.3693i − 1.84973i
\(454\) −16.3153 −0.765717
\(455\) 0 0
\(456\) 6.56155 0.307273
\(457\) − 16.2462i − 0.759966i −0.924994 0.379983i \(-0.875930\pi\)
0.924994 0.379983i \(-0.124070\pi\)
\(458\) 14.4924i 0.677186i
\(459\) 1.43845 0.0671410
\(460\) 0 0
\(461\) 2.49242 0.116084 0.0580418 0.998314i \(-0.481514\pi\)
0.0580418 + 0.998314i \(0.481514\pi\)
\(462\) 52.4924i 2.44217i
\(463\) 13.9309i 0.647422i 0.946156 + 0.323711i \(0.104931\pi\)
−0.946156 + 0.323711i \(0.895069\pi\)
\(464\) 5.68466 0.263904
\(465\) 0 0
\(466\) 6.31534 0.292553
\(467\) − 32.4924i − 1.50357i −0.659408 0.751785i \(-0.729193\pi\)
0.659408 0.751785i \(-0.270807\pi\)
\(468\) − 16.2462i − 0.750981i
\(469\) 46.7386 2.15819
\(470\) 0 0
\(471\) −47.3693 −2.18266
\(472\) − 0.315342i − 0.0145148i
\(473\) − 4.49242i − 0.206562i
\(474\) 0 0
\(475\) 0 0
\(476\) 5.12311 0.234817
\(477\) − 2.00000i − 0.0915737i
\(478\) 23.3693i 1.06889i
\(479\) −38.5616 −1.76192 −0.880961 0.473189i \(-0.843103\pi\)
−0.880961 + 0.473189i \(0.843103\pi\)
\(480\) 0 0
\(481\) −32.4924 −1.48153
\(482\) 12.2462i 0.557800i
\(483\) − 67.2311i − 3.05912i
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 22.2462 1.00911
\(487\) 25.6155i 1.16075i 0.814349 + 0.580375i \(0.197094\pi\)
−0.814349 + 0.580375i \(0.802906\pi\)
\(488\) − 7.43845i − 0.336723i
\(489\) 36.4924 1.65024
\(490\) 0 0
\(491\) 2.56155 0.115601 0.0578006 0.998328i \(-0.481591\pi\)
0.0578006 + 0.998328i \(0.481591\pi\)
\(492\) − 10.8769i − 0.490368i
\(493\) 5.68466i 0.256024i
\(494\) 11.6847 0.525718
\(495\) 0 0
\(496\) −6.56155 −0.294622
\(497\) − 22.1080i − 0.991677i
\(498\) − 16.0000i − 0.716977i
\(499\) 9.12311 0.408406 0.204203 0.978929i \(-0.434540\pi\)
0.204203 + 0.978929i \(0.434540\pi\)
\(500\) 0 0
\(501\) −13.1231 −0.586297
\(502\) − 4.00000i − 0.178529i
\(503\) − 22.7386i − 1.01387i −0.861986 0.506933i \(-0.830779\pi\)
0.861986 0.506933i \(-0.169221\pi\)
\(504\) −18.2462 −0.812751
\(505\) 0 0
\(506\) 20.4924 0.910999
\(507\) − 20.0000i − 0.888231i
\(508\) − 9.43845i − 0.418763i
\(509\) −16.8769 −0.748055 −0.374028 0.927418i \(-0.622023\pi\)
−0.374028 + 0.927418i \(0.622023\pi\)
\(510\) 0 0
\(511\) −34.8769 −1.54286
\(512\) 1.00000i 0.0441942i
\(513\) − 3.68466i − 0.162682i
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) 2.87689 0.126648
\(517\) − 26.2462i − 1.15431i
\(518\) 36.4924i 1.60338i
\(519\) −46.1080 −2.02391
\(520\) 0 0
\(521\) 43.6155 1.91083 0.955415 0.295265i \(-0.0954078\pi\)
0.955415 + 0.295265i \(0.0954078\pi\)
\(522\) − 20.2462i − 0.886153i
\(523\) − 39.8617i − 1.74303i −0.490367 0.871516i \(-0.663137\pi\)
0.490367 0.871516i \(-0.336863\pi\)
\(524\) −1.12311 −0.0490631
\(525\) 0 0
\(526\) 24.8078 1.08167
\(527\) − 6.56155i − 0.285826i
\(528\) − 10.2462i − 0.445909i
\(529\) −3.24621 −0.141140
\(530\) 0 0
\(531\) −1.12311 −0.0487386
\(532\) − 13.1231i − 0.568959i
\(533\) − 19.3693i − 0.838978i
\(534\) −24.8078 −1.07354
\(535\) 0 0
\(536\) −9.12311 −0.394058
\(537\) − 21.7538i − 0.938745i
\(538\) 2.80776i 0.121051i
\(539\) 76.9848 3.31597
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 41.6155i 1.78589i
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −59.8617 −2.56185
\(547\) 29.4384i 1.25870i 0.777123 + 0.629349i \(0.216678\pi\)
−0.777123 + 0.629349i \(0.783322\pi\)
\(548\) − 10.0000i − 0.427179i
\(549\) −26.4924 −1.13067
\(550\) 0 0
\(551\) 14.5616 0.620343
\(552\) 13.1231i 0.558556i
\(553\) 0 0
\(554\) 15.7538 0.669314
\(555\) 0 0
\(556\) 16.4924 0.699435
\(557\) 36.5616i 1.54916i 0.632474 + 0.774581i \(0.282039\pi\)
−0.632474 + 0.774581i \(0.717961\pi\)
\(558\) 23.3693i 0.989302i
\(559\) 5.12311 0.216684
\(560\) 0 0
\(561\) 10.2462 0.432595
\(562\) 16.5616i 0.698607i
\(563\) 4.63068i 0.195160i 0.995228 + 0.0975800i \(0.0311102\pi\)
−0.995228 + 0.0975800i \(0.968890\pi\)
\(564\) 16.8078 0.707735
\(565\) 0 0
\(566\) 8.31534 0.349520
\(567\) − 35.8617i − 1.50605i
\(568\) 4.31534i 0.181068i
\(569\) 3.93087 0.164791 0.0823953 0.996600i \(-0.473743\pi\)
0.0823953 + 0.996600i \(0.473743\pi\)
\(570\) 0 0
\(571\) 25.1231 1.05137 0.525685 0.850680i \(-0.323809\pi\)
0.525685 + 0.850680i \(0.323809\pi\)
\(572\) − 18.2462i − 0.762912i
\(573\) 0 0
\(574\) −21.7538 −0.907986
\(575\) 0 0
\(576\) 3.56155 0.148398
\(577\) − 5.36932i − 0.223528i −0.993735 0.111764i \(-0.964350\pi\)
0.993735 0.111764i \(-0.0356500\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) −62.1080 −2.58112
\(580\) 0 0
\(581\) −32.0000 −1.32758
\(582\) 4.31534i 0.178877i
\(583\) − 2.24621i − 0.0930286i
\(584\) 6.80776 0.281707
\(585\) 0 0
\(586\) −16.5616 −0.684151
\(587\) − 6.87689i − 0.283840i −0.989878 0.141920i \(-0.954672\pi\)
0.989878 0.141920i \(-0.0453275\pi\)
\(588\) 49.3002i 2.03311i
\(589\) −16.8078 −0.692552
\(590\) 0 0
\(591\) −34.2462 −1.40870
\(592\) − 7.12311i − 0.292758i
\(593\) 8.24621i 0.338631i 0.985562 + 0.169316i \(0.0541557\pi\)
−0.985562 + 0.169316i \(0.945844\pi\)
\(594\) −5.75379 −0.236081
\(595\) 0 0
\(596\) 3.12311 0.127927
\(597\) − 37.3002i − 1.52660i
\(598\) 23.3693i 0.955642i
\(599\) 9.61553 0.392880 0.196440 0.980516i \(-0.437062\pi\)
0.196440 + 0.980516i \(0.437062\pi\)
\(600\) 0 0
\(601\) −7.61553 −0.310644 −0.155322 0.987864i \(-0.549641\pi\)
−0.155322 + 0.987864i \(0.549641\pi\)
\(602\) − 5.75379i − 0.234507i
\(603\) 32.4924i 1.32319i
\(604\) 15.3693 0.625369
\(605\) 0 0
\(606\) 37.1231 1.50802
\(607\) − 43.8617i − 1.78029i −0.455674 0.890147i \(-0.650602\pi\)
0.455674 0.890147i \(-0.349398\pi\)
\(608\) 2.56155i 0.103885i
\(609\) −74.6004 −3.02296
\(610\) 0 0
\(611\) 29.9309 1.21087
\(612\) 3.56155i 0.143967i
\(613\) 23.9309i 0.966559i 0.875466 + 0.483279i \(0.160554\pi\)
−0.875466 + 0.483279i \(0.839446\pi\)
\(614\) 17.7538 0.716485
\(615\) 0 0
\(616\) −20.4924 −0.825663
\(617\) 6.31534i 0.254246i 0.991887 + 0.127123i \(0.0405743\pi\)
−0.991887 + 0.127123i \(0.959426\pi\)
\(618\) 20.4924i 0.824326i
\(619\) −9.12311 −0.366689 −0.183344 0.983049i \(-0.558692\pi\)
−0.183344 + 0.983049i \(0.558692\pi\)
\(620\) 0 0
\(621\) 7.36932 0.295720
\(622\) 8.00000i 0.320771i
\(623\) 49.6155i 1.98780i
\(624\) 11.6847 0.467761
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) − 26.2462i − 1.04817i
\(628\) − 18.4924i − 0.737928i
\(629\) 7.12311 0.284017
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) − 8.63068i − 0.343039i
\(634\) −31.6155 −1.25561
\(635\) 0 0
\(636\) 1.43845 0.0570381
\(637\) 87.7926i 3.47847i
\(638\) − 22.7386i − 0.900231i
\(639\) 15.3693 0.608001
\(640\) 0 0
\(641\) −24.2462 −0.957668 −0.478834 0.877906i \(-0.658940\pi\)
−0.478834 + 0.877906i \(0.658940\pi\)
\(642\) − 42.2462i − 1.66732i
\(643\) − 40.4924i − 1.59687i −0.602084 0.798433i \(-0.705663\pi\)
0.602084 0.798433i \(-0.294337\pi\)
\(644\) 26.2462 1.03425
\(645\) 0 0
\(646\) −2.56155 −0.100783
\(647\) 11.6847i 0.459371i 0.973265 + 0.229686i \(0.0737698\pi\)
−0.973265 + 0.229686i \(0.926230\pi\)
\(648\) 7.00000i 0.274986i
\(649\) −1.26137 −0.0495130
\(650\) 0 0
\(651\) 86.1080 3.37484
\(652\) 14.2462i 0.557925i
\(653\) 38.4924i 1.50632i 0.657835 + 0.753162i \(0.271473\pi\)
−0.657835 + 0.753162i \(0.728527\pi\)
\(654\) −21.9309 −0.857565
\(655\) 0 0
\(656\) 4.24621 0.165787
\(657\) − 24.2462i − 0.945935i
\(658\) − 33.6155i − 1.31047i
\(659\) 41.9309 1.63339 0.816697 0.577066i \(-0.195803\pi\)
0.816697 + 0.577066i \(0.195803\pi\)
\(660\) 0 0
\(661\) 17.8617 0.694741 0.347371 0.937728i \(-0.387075\pi\)
0.347371 + 0.937728i \(0.387075\pi\)
\(662\) 23.0540i 0.896018i
\(663\) 11.6847i 0.453795i
\(664\) 6.24621 0.242400
\(665\) 0 0
\(666\) −25.3693 −0.983041
\(667\) 29.1231i 1.12765i
\(668\) − 5.12311i − 0.198219i
\(669\) 9.43845 0.364911
\(670\) 0 0
\(671\) −29.7538 −1.14863
\(672\) − 13.1231i − 0.506235i
\(673\) − 20.4233i − 0.787260i −0.919269 0.393630i \(-0.871219\pi\)
0.919269 0.393630i \(-0.128781\pi\)
\(674\) 10.3153 0.397332
\(675\) 0 0
\(676\) 7.80776 0.300299
\(677\) − 40.7386i − 1.56571i −0.622202 0.782856i \(-0.713762\pi\)
0.622202 0.782856i \(-0.286238\pi\)
\(678\) 7.19224i 0.276216i
\(679\) 8.63068 0.331215
\(680\) 0 0
\(681\) −41.7926 −1.60150
\(682\) 26.2462i 1.00502i
\(683\) 41.3002i 1.58031i 0.612909 + 0.790154i \(0.289999\pi\)
−0.612909 + 0.790154i \(0.710001\pi\)
\(684\) 9.12311 0.348831
\(685\) 0 0
\(686\) 62.7386 2.39537
\(687\) 37.1231i 1.41633i
\(688\) 1.12311i 0.0428180i
\(689\) 2.56155 0.0975874
\(690\) 0 0
\(691\) 9.75379 0.371052 0.185526 0.982639i \(-0.440601\pi\)
0.185526 + 0.982639i \(0.440601\pi\)
\(692\) − 18.0000i − 0.684257i
\(693\) 72.9848i 2.77247i
\(694\) 10.5616 0.400911
\(695\) 0 0
\(696\) 14.5616 0.551954
\(697\) 4.24621i 0.160837i
\(698\) 15.1231i 0.572418i
\(699\) 16.1771 0.611873
\(700\) 0 0
\(701\) 46.3542 1.75077 0.875386 0.483424i \(-0.160607\pi\)
0.875386 + 0.483424i \(0.160607\pi\)
\(702\) − 6.56155i − 0.247650i
\(703\) − 18.2462i − 0.688169i
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 22.4924 0.846513
\(707\) − 74.2462i − 2.79232i
\(708\) − 0.807764i − 0.0303576i
\(709\) −37.5464 −1.41008 −0.705042 0.709165i \(-0.749072\pi\)
−0.705042 + 0.709165i \(0.749072\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 9.68466i − 0.362948i
\(713\) − 33.6155i − 1.25891i
\(714\) 13.1231 0.491120
\(715\) 0 0
\(716\) 8.49242 0.317377
\(717\) 59.8617i 2.23558i
\(718\) 10.8769i 0.405922i
\(719\) −15.1922 −0.566575 −0.283287 0.959035i \(-0.591425\pi\)
−0.283287 + 0.959035i \(0.591425\pi\)
\(720\) 0 0
\(721\) 40.9848 1.52636
\(722\) − 12.4384i − 0.462911i
\(723\) 31.3693i 1.16664i
\(724\) −16.2462 −0.603786
\(725\) 0 0
\(726\) −12.8078 −0.475341
\(727\) 46.5616i 1.72687i 0.504458 + 0.863436i \(0.331692\pi\)
−0.504458 + 0.863436i \(0.668308\pi\)
\(728\) − 23.3693i − 0.866125i
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) −1.12311 −0.0415396
\(732\) − 19.0540i − 0.704255i
\(733\) 22.4924i 0.830777i 0.909644 + 0.415388i \(0.136354\pi\)
−0.909644 + 0.415388i \(0.863646\pi\)
\(734\) 33.6155 1.24077
\(735\) 0 0
\(736\) −5.12311 −0.188840
\(737\) 36.4924i 1.34422i
\(738\) − 15.1231i − 0.556689i
\(739\) 20.1771 0.742226 0.371113 0.928588i \(-0.378976\pi\)
0.371113 + 0.928588i \(0.378976\pi\)
\(740\) 0 0
\(741\) 29.9309 1.09954
\(742\) − 2.87689i − 0.105614i
\(743\) 21.1231i 0.774932i 0.921884 + 0.387466i \(0.126649\pi\)
−0.921884 + 0.387466i \(0.873351\pi\)
\(744\) −16.8078 −0.616203
\(745\) 0 0
\(746\) −24.7386 −0.905746
\(747\) − 22.2462i − 0.813946i
\(748\) 4.00000i 0.146254i
\(749\) −84.4924 −3.08729
\(750\) 0 0
\(751\) −24.1771 −0.882234 −0.441117 0.897450i \(-0.645418\pi\)
−0.441117 + 0.897450i \(0.645418\pi\)
\(752\) 6.56155i 0.239275i
\(753\) − 10.2462i − 0.373393i
\(754\) 25.9309 0.944347
\(755\) 0 0
\(756\) −7.36932 −0.268019
\(757\) 47.7926i 1.73705i 0.495644 + 0.868526i \(0.334932\pi\)
−0.495644 + 0.868526i \(0.665068\pi\)
\(758\) 14.2462i 0.517446i
\(759\) 52.4924 1.90535
\(760\) 0 0
\(761\) −20.7386 −0.751775 −0.375887 0.926665i \(-0.622662\pi\)
−0.375887 + 0.926665i \(0.622662\pi\)
\(762\) − 24.1771i − 0.875843i
\(763\) 43.8617i 1.58790i
\(764\) 0 0
\(765\) 0 0
\(766\) −16.8078 −0.607289
\(767\) − 1.43845i − 0.0519393i
\(768\) 2.56155i 0.0924321i
\(769\) −11.4384 −0.412481 −0.206240 0.978501i \(-0.566123\pi\)
−0.206240 + 0.978501i \(0.566123\pi\)
\(770\) 0 0
\(771\) −5.12311 −0.184504
\(772\) − 24.2462i − 0.872640i
\(773\) − 20.7386i − 0.745917i −0.927848 0.372958i \(-0.878343\pi\)
0.927848 0.372958i \(-0.121657\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −1.68466 −0.0604757
\(777\) 93.4773i 3.35348i
\(778\) − 13.3693i − 0.479313i
\(779\) 10.8769 0.389705
\(780\) 0 0
\(781\) 17.2614 0.617660
\(782\) − 5.12311i − 0.183202i
\(783\) − 8.17708i − 0.292225i
\(784\) −19.2462 −0.687365
\(785\) 0 0
\(786\) −2.87689 −0.102615
\(787\) − 27.5464i − 0.981923i −0.871181 0.490962i \(-0.836646\pi\)
0.871181 0.490962i \(-0.163354\pi\)
\(788\) − 13.3693i − 0.476262i
\(789\) 63.5464 2.26231
\(790\) 0 0
\(791\) 14.3845 0.511453
\(792\) − 14.2462i − 0.506217i
\(793\) − 33.9309i − 1.20492i
\(794\) −21.3693 −0.758369
\(795\) 0 0
\(796\) 14.5616 0.516121
\(797\) 18.4924i 0.655035i 0.944845 + 0.327518i \(0.106212\pi\)
−0.944845 + 0.327518i \(0.893788\pi\)
\(798\) − 33.6155i − 1.18998i
\(799\) −6.56155 −0.232131
\(800\) 0 0
\(801\) −34.4924 −1.21873
\(802\) 10.6307i 0.375382i
\(803\) − 27.2311i − 0.960963i
\(804\) −23.3693 −0.824172
\(805\) 0 0
\(806\) −29.9309 −1.05427
\(807\) 7.19224i 0.253179i
\(808\) 14.4924i 0.509842i
\(809\) −18.9848 −0.667472 −0.333736 0.942667i \(-0.608309\pi\)
−0.333736 + 0.942667i \(0.608309\pi\)
\(810\) 0 0
\(811\) 3.36932 0.118313 0.0591564 0.998249i \(-0.481159\pi\)
0.0591564 + 0.998249i \(0.481159\pi\)
\(812\) − 29.1231i − 1.02202i
\(813\) 40.9848i 1.43740i
\(814\) −28.4924 −0.998659
\(815\) 0 0
\(816\) −2.56155 −0.0896723
\(817\) 2.87689i 0.100650i
\(818\) 2.31534i 0.0809540i
\(819\) −83.2311 −2.90833
\(820\) 0 0
\(821\) −15.3002 −0.533980 −0.266990 0.963699i \(-0.586029\pi\)
−0.266990 + 0.963699i \(0.586029\pi\)
\(822\) − 25.6155i − 0.893444i
\(823\) − 0.630683i − 0.0219842i −0.999940 0.0109921i \(-0.996501\pi\)
0.999940 0.0109921i \(-0.00349897\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) −1.61553 −0.0562114
\(827\) 0.492423i 0.0171232i 0.999963 + 0.00856160i \(0.00272528\pi\)
−0.999963 + 0.00856160i \(0.997275\pi\)
\(828\) 18.2462i 0.634100i
\(829\) 9.36932 0.325410 0.162705 0.986675i \(-0.447978\pi\)
0.162705 + 0.986675i \(0.447978\pi\)
\(830\) 0 0
\(831\) 40.3542 1.39987
\(832\) 4.56155i 0.158143i
\(833\) − 19.2462i − 0.666842i
\(834\) 42.2462 1.46287
\(835\) 0 0
\(836\) 10.2462 0.354373
\(837\) 9.43845i 0.326240i
\(838\) 25.1231i 0.867863i
\(839\) −35.0540 −1.21020 −0.605099 0.796150i \(-0.706866\pi\)
−0.605099 + 0.796150i \(0.706866\pi\)
\(840\) 0 0
\(841\) 3.31534 0.114322
\(842\) 7.61553i 0.262448i
\(843\) 42.4233i 1.46114i
\(844\) 3.36932 0.115977
\(845\) 0 0
\(846\) 23.3693 0.803454
\(847\) 25.6155i 0.880160i
\(848\) 0.561553i 0.0192838i
\(849\) 21.3002 0.731021
\(850\) 0 0
\(851\) 36.4924 1.25094
\(852\) 11.0540i 0.378703i
\(853\) − 48.2462i − 1.65192i −0.563730 0.825959i \(-0.690634\pi\)
0.563730 0.825959i \(-0.309366\pi\)
\(854\) −38.1080 −1.30403
\(855\) 0 0
\(856\) 16.4924 0.563699
\(857\) 1.82292i 0.0622697i 0.999515 + 0.0311349i \(0.00991214\pi\)
−0.999515 + 0.0311349i \(0.990088\pi\)
\(858\) − 46.7386i − 1.59563i
\(859\) 35.5464 1.21283 0.606414 0.795149i \(-0.292608\pi\)
0.606414 + 0.795149i \(0.292608\pi\)
\(860\) 0 0
\(861\) −55.7235 −1.89905
\(862\) − 20.4924i − 0.697975i
\(863\) − 11.5076i − 0.391722i −0.980632 0.195861i \(-0.937250\pi\)
0.980632 0.195861i \(-0.0627502\pi\)
\(864\) 1.43845 0.0489370
\(865\) 0 0
\(866\) −2.49242 −0.0846960
\(867\) − 2.56155i − 0.0869949i
\(868\) 33.6155i 1.14099i
\(869\) 0 0
\(870\) 0 0
\(871\) −41.6155 −1.41009
\(872\) − 8.56155i − 0.289931i
\(873\) 6.00000i 0.203069i
\(874\) −13.1231 −0.443896
\(875\) 0 0
\(876\) 17.4384 0.589191
\(877\) − 51.6155i − 1.74293i −0.490455 0.871466i \(-0.663170\pi\)
0.490455 0.871466i \(-0.336830\pi\)
\(878\) 32.9848i 1.11318i
\(879\) −42.4233 −1.43090
\(880\) 0 0
\(881\) −28.7386 −0.968229 −0.484115 0.875005i \(-0.660858\pi\)
−0.484115 + 0.875005i \(0.660858\pi\)
\(882\) 68.5464i 2.30808i
\(883\) − 27.3693i − 0.921051i −0.887647 0.460525i \(-0.847661\pi\)
0.887647 0.460525i \(-0.152339\pi\)
\(884\) −4.56155 −0.153422
\(885\) 0 0
\(886\) 28.0000 0.940678
\(887\) 50.6004i 1.69899i 0.527593 + 0.849497i \(0.323095\pi\)
−0.527593 + 0.849497i \(0.676905\pi\)
\(888\) − 18.2462i − 0.612303i
\(889\) −48.3542 −1.62175
\(890\) 0 0
\(891\) 28.0000 0.938035
\(892\) 3.68466i 0.123371i
\(893\) 16.8078i 0.562450i
\(894\) 8.00000 0.267560
\(895\) 0 0
\(896\) 5.12311 0.171151
\(897\) 59.8617i 1.99873i
\(898\) 16.8769i 0.563189i
\(899\) −37.3002 −1.24403
\(900\) 0 0
\(901\) −0.561553 −0.0187080
\(902\) − 16.9848i − 0.565533i
\(903\) − 14.7386i − 0.490471i
\(904\) −2.80776 −0.0933848
\(905\) 0 0
\(906\) 39.3693 1.30796
\(907\) 18.5616i 0.616326i 0.951334 + 0.308163i \(0.0997143\pi\)
−0.951334 + 0.308163i \(0.900286\pi\)
\(908\) − 16.3153i − 0.541444i
\(909\) 51.6155 1.71198
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 6.56155i 0.217275i
\(913\) − 24.9848i − 0.826878i
\(914\) 16.2462 0.537377
\(915\) 0 0
\(916\) −14.4924 −0.478843
\(917\) 5.75379i 0.190007i
\(918\) 1.43845i 0.0474758i
\(919\) 21.1231 0.696787 0.348393 0.937348i \(-0.386727\pi\)
0.348393 + 0.937348i \(0.386727\pi\)
\(920\) 0 0
\(921\) 45.4773 1.49853
\(922\) 2.49242i 0.0820836i
\(923\) 19.6847i 0.647928i
\(924\) −52.4924 −1.72687
\(925\) 0 0
\(926\) −13.9309 −0.457797
\(927\) 28.4924i 0.935814i
\(928\) 5.68466i 0.186608i
\(929\) 59.4773 1.95139 0.975693 0.219142i \(-0.0703259\pi\)
0.975693 + 0.219142i \(0.0703259\pi\)
\(930\) 0 0
\(931\) −49.3002 −1.61575
\(932\) 6.31534i 0.206866i
\(933\) 20.4924i 0.670892i
\(934\) 32.4924 1.06318
\(935\) 0 0
\(936\) 16.2462 0.531024
\(937\) − 44.1080i − 1.44094i −0.693484 0.720472i \(-0.743925\pi\)
0.693484 0.720472i \(-0.256075\pi\)
\(938\) 46.7386i 1.52607i
\(939\) −15.3693 −0.501559
\(940\) 0 0
\(941\) −27.4384 −0.894468 −0.447234 0.894417i \(-0.647591\pi\)
−0.447234 + 0.894417i \(0.647591\pi\)
\(942\) − 47.3693i − 1.54338i
\(943\) 21.7538i 0.708401i
\(944\) 0.315342 0.0102635
\(945\) 0 0
\(946\) 4.49242 0.146061
\(947\) 52.8078i 1.71602i 0.513632 + 0.858011i \(0.328300\pi\)
−0.513632 + 0.858011i \(0.671700\pi\)
\(948\) 0 0
\(949\) 31.0540 1.00805
\(950\) 0 0
\(951\) −80.9848 −2.62611
\(952\) 5.12311i 0.166041i
\(953\) − 39.1231i − 1.26732i −0.773611 0.633661i \(-0.781551\pi\)
0.773611 0.633661i \(-0.218449\pi\)
\(954\) 2.00000 0.0647524
\(955\) 0 0
\(956\) −23.3693 −0.755818
\(957\) − 58.2462i − 1.88283i
\(958\) − 38.5616i − 1.24587i
\(959\) −51.2311 −1.65434
\(960\) 0 0
\(961\) 12.0540 0.388838
\(962\) − 32.4924i − 1.04760i
\(963\) − 58.7386i − 1.89283i
\(964\) −12.2462 −0.394424
\(965\) 0 0
\(966\) 67.2311 2.16312
\(967\) 19.5076i 0.627321i 0.949535 + 0.313661i \(0.101555\pi\)
−0.949535 + 0.313661i \(0.898445\pi\)
\(968\) − 5.00000i − 0.160706i
\(969\) −6.56155 −0.210787
\(970\) 0 0
\(971\) 15.6847 0.503345 0.251672 0.967813i \(-0.419019\pi\)
0.251672 + 0.967813i \(0.419019\pi\)
\(972\) 22.2462i 0.713548i
\(973\) − 84.4924i − 2.70870i
\(974\) −25.6155 −0.820774
\(975\) 0 0
\(976\) 7.43845 0.238099
\(977\) − 27.1231i − 0.867745i −0.900974 0.433873i \(-0.857147\pi\)
0.900974 0.433873i \(-0.142853\pi\)
\(978\) 36.4924i 1.16690i
\(979\) −38.7386 −1.23809
\(980\) 0 0
\(981\) −30.4924 −0.973548
\(982\) 2.56155i 0.0817424i
\(983\) 37.1231i 1.18404i 0.805922 + 0.592022i \(0.201670\pi\)
−0.805922 + 0.592022i \(0.798330\pi\)
\(984\) 10.8769 0.346743
\(985\) 0 0
\(986\) −5.68466 −0.181036
\(987\) − 86.1080i − 2.74085i
\(988\) 11.6847i 0.371739i
\(989\) −5.75379 −0.182960
\(990\) 0 0
\(991\) 34.4233 1.09349 0.546746 0.837299i \(-0.315866\pi\)
0.546746 + 0.837299i \(0.315866\pi\)
\(992\) − 6.56155i − 0.208330i
\(993\) 59.0540i 1.87402i
\(994\) 22.1080 0.701222
\(995\) 0 0
\(996\) 16.0000 0.506979
\(997\) 11.7538i 0.372246i 0.982526 + 0.186123i \(0.0595923\pi\)
−0.982526 + 0.186123i \(0.940408\pi\)
\(998\) 9.12311i 0.288787i
\(999\) −10.2462 −0.324176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.c.i.749.4 4
5.2 odd 4 850.2.a.n.1.2 2
5.3 odd 4 170.2.a.f.1.1 2
5.4 even 2 inner 850.2.c.i.749.1 4
15.2 even 4 7650.2.a.de.1.1 2
15.8 even 4 1530.2.a.r.1.2 2
20.3 even 4 1360.2.a.m.1.2 2
20.7 even 4 6800.2.a.be.1.1 2
35.13 even 4 8330.2.a.bq.1.2 2
40.3 even 4 5440.2.a.bd.1.1 2
40.13 odd 4 5440.2.a.bj.1.2 2
85.13 odd 4 2890.2.b.i.2311.1 4
85.33 odd 4 2890.2.a.u.1.2 2
85.38 odd 4 2890.2.b.i.2311.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.a.f.1.1 2 5.3 odd 4
850.2.a.n.1.2 2 5.2 odd 4
850.2.c.i.749.1 4 5.4 even 2 inner
850.2.c.i.749.4 4 1.1 even 1 trivial
1360.2.a.m.1.2 2 20.3 even 4
1530.2.a.r.1.2 2 15.8 even 4
2890.2.a.u.1.2 2 85.33 odd 4
2890.2.b.i.2311.1 4 85.13 odd 4
2890.2.b.i.2311.4 4 85.38 odd 4
5440.2.a.bd.1.1 2 40.3 even 4
5440.2.a.bj.1.2 2 40.13 odd 4
6800.2.a.be.1.1 2 20.7 even 4
7650.2.a.de.1.1 2 15.2 even 4
8330.2.a.bq.1.2 2 35.13 even 4