Properties

Label 847.4.a.n.1.13
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,4,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 6 x^{13} - 67 x^{12} + 380 x^{11} + 1774 x^{10} - 8872 x^{9} - 23849 x^{8} + 93880 x^{7} + \cdots - 1952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-4.41395\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.41395 q^{2} +8.77003 q^{3} +21.3108 q^{4} -13.8023 q^{5} +47.4805 q^{6} -7.00000 q^{7} +72.0641 q^{8} +49.9135 q^{9} -74.7248 q^{10} +186.897 q^{12} +30.0089 q^{13} -37.8976 q^{14} -121.046 q^{15} +219.665 q^{16} +106.800 q^{17} +270.229 q^{18} -52.2797 q^{19} -294.138 q^{20} -61.3902 q^{21} +86.9878 q^{23} +632.004 q^{24} +65.5030 q^{25} +162.467 q^{26} +200.952 q^{27} -149.176 q^{28} -187.342 q^{29} -655.339 q^{30} +180.697 q^{31} +612.739 q^{32} +578.208 q^{34} +96.6160 q^{35} +1063.70 q^{36} -364.432 q^{37} -283.040 q^{38} +263.179 q^{39} -994.649 q^{40} +128.976 q^{41} -332.363 q^{42} -48.2610 q^{43} -688.920 q^{45} +470.948 q^{46} -455.085 q^{47} +1926.46 q^{48} +49.0000 q^{49} +354.630 q^{50} +936.636 q^{51} +639.515 q^{52} -389.192 q^{53} +1087.94 q^{54} -504.449 q^{56} -458.495 q^{57} -1014.26 q^{58} +146.448 q^{59} -2579.60 q^{60} -194.654 q^{61} +978.285 q^{62} -349.394 q^{63} +1560.02 q^{64} -414.192 q^{65} -302.780 q^{67} +2275.99 q^{68} +762.886 q^{69} +523.074 q^{70} -395.902 q^{71} +3596.97 q^{72} +552.678 q^{73} -1973.01 q^{74} +574.463 q^{75} -1114.12 q^{76} +1424.84 q^{78} -824.060 q^{79} -3031.87 q^{80} +414.690 q^{81} +698.270 q^{82} +1041.32 q^{83} -1308.28 q^{84} -1474.08 q^{85} -261.282 q^{86} -1642.99 q^{87} -806.869 q^{89} -3729.77 q^{90} -210.063 q^{91} +1853.78 q^{92} +1584.72 q^{93} -2463.81 q^{94} +721.579 q^{95} +5373.74 q^{96} +524.575 q^{97} +265.283 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 8 q^{2} + 4 q^{3} + 60 q^{4} + 6 q^{5} + 34 q^{6} - 98 q^{7} + 96 q^{8} + 58 q^{9} + 4 q^{10} - 14 q^{12} + 164 q^{13} - 56 q^{14} - 240 q^{15} + 356 q^{16} + 276 q^{17} + 516 q^{18} - 12 q^{19}+ \cdots + 392 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.41395 1.91412 0.957060 0.289891i \(-0.0936191\pi\)
0.957060 + 0.289891i \(0.0936191\pi\)
\(3\) 8.77003 1.68779 0.843897 0.536506i \(-0.180256\pi\)
0.843897 + 0.536506i \(0.180256\pi\)
\(4\) 21.3108 2.66385
\(5\) −13.8023 −1.23451 −0.617257 0.786762i \(-0.711756\pi\)
−0.617257 + 0.786762i \(0.711756\pi\)
\(6\) 47.4805 3.23064
\(7\) −7.00000 −0.377964
\(8\) 72.0641 3.18481
\(9\) 49.9135 1.84865
\(10\) −74.7248 −2.36301
\(11\) 0 0
\(12\) 186.897 4.49603
\(13\) 30.0089 0.640229 0.320115 0.947379i \(-0.396279\pi\)
0.320115 + 0.947379i \(0.396279\pi\)
\(14\) −37.8976 −0.723469
\(15\) −121.046 −2.08360
\(16\) 219.665 3.43226
\(17\) 106.800 1.52369 0.761845 0.647760i \(-0.224294\pi\)
0.761845 + 0.647760i \(0.224294\pi\)
\(18\) 270.229 3.53853
\(19\) −52.2797 −0.631252 −0.315626 0.948884i \(-0.602214\pi\)
−0.315626 + 0.948884i \(0.602214\pi\)
\(20\) −294.138 −3.28856
\(21\) −61.3902 −0.637926
\(22\) 0 0
\(23\) 86.9878 0.788618 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(24\) 632.004 5.37531
\(25\) 65.5030 0.524024
\(26\) 162.467 1.22548
\(27\) 200.952 1.43234
\(28\) −149.176 −1.00684
\(29\) −187.342 −1.19960 −0.599802 0.800149i \(-0.704754\pi\)
−0.599802 + 0.800149i \(0.704754\pi\)
\(30\) −655.339 −3.98827
\(31\) 180.697 1.04691 0.523454 0.852054i \(-0.324643\pi\)
0.523454 + 0.852054i \(0.324643\pi\)
\(32\) 612.739 3.38494
\(33\) 0 0
\(34\) 578.208 2.91652
\(35\) 96.6160 0.466602
\(36\) 1063.70 4.92452
\(37\) −364.432 −1.61925 −0.809624 0.586949i \(-0.800329\pi\)
−0.809624 + 0.586949i \(0.800329\pi\)
\(38\) −283.040 −1.20829
\(39\) 263.179 1.08058
\(40\) −994.649 −3.93169
\(41\) 128.976 0.491285 0.245643 0.969360i \(-0.421001\pi\)
0.245643 + 0.969360i \(0.421001\pi\)
\(42\) −332.363 −1.22107
\(43\) −48.2610 −0.171157 −0.0855783 0.996331i \(-0.527274\pi\)
−0.0855783 + 0.996331i \(0.527274\pi\)
\(44\) 0 0
\(45\) −688.920 −2.28218
\(46\) 470.948 1.50951
\(47\) −455.085 −1.41236 −0.706181 0.708032i \(-0.749583\pi\)
−0.706181 + 0.708032i \(0.749583\pi\)
\(48\) 1926.46 5.79294
\(49\) 49.0000 0.142857
\(50\) 354.630 1.00304
\(51\) 936.636 2.57167
\(52\) 639.515 1.70548
\(53\) −389.192 −1.00867 −0.504337 0.863507i \(-0.668263\pi\)
−0.504337 + 0.863507i \(0.668263\pi\)
\(54\) 1087.94 2.74167
\(55\) 0 0
\(56\) −504.449 −1.20375
\(57\) −458.495 −1.06542
\(58\) −1014.26 −2.29618
\(59\) 146.448 0.323152 0.161576 0.986860i \(-0.448342\pi\)
0.161576 + 0.986860i \(0.448342\pi\)
\(60\) −2579.60 −5.55041
\(61\) −194.654 −0.408573 −0.204286 0.978911i \(-0.565487\pi\)
−0.204286 + 0.978911i \(0.565487\pi\)
\(62\) 978.285 2.00391
\(63\) −349.394 −0.698723
\(64\) 1560.02 3.04692
\(65\) −414.192 −0.790372
\(66\) 0 0
\(67\) −302.780 −0.552096 −0.276048 0.961144i \(-0.589025\pi\)
−0.276048 + 0.961144i \(0.589025\pi\)
\(68\) 2275.99 4.05888
\(69\) 762.886 1.33102
\(70\) 523.074 0.893132
\(71\) −395.902 −0.661760 −0.330880 0.943673i \(-0.607345\pi\)
−0.330880 + 0.943673i \(0.607345\pi\)
\(72\) 3596.97 5.88759
\(73\) 552.678 0.886111 0.443055 0.896494i \(-0.353895\pi\)
0.443055 + 0.896494i \(0.353895\pi\)
\(74\) −1973.01 −3.09943
\(75\) 574.463 0.884444
\(76\) −1114.12 −1.68156
\(77\) 0 0
\(78\) 1424.84 2.06835
\(79\) −824.060 −1.17359 −0.586797 0.809734i \(-0.699611\pi\)
−0.586797 + 0.809734i \(0.699611\pi\)
\(80\) −3031.87 −4.23717
\(81\) 414.690 0.568847
\(82\) 698.270 0.940379
\(83\) 1041.32 1.37710 0.688550 0.725188i \(-0.258247\pi\)
0.688550 + 0.725188i \(0.258247\pi\)
\(84\) −1308.28 −1.69934
\(85\) −1474.08 −1.88101
\(86\) −261.282 −0.327614
\(87\) −1642.99 −2.02468
\(88\) 0 0
\(89\) −806.869 −0.960988 −0.480494 0.876998i \(-0.659543\pi\)
−0.480494 + 0.876998i \(0.659543\pi\)
\(90\) −3729.77 −4.36836
\(91\) −210.063 −0.241984
\(92\) 1853.78 2.10076
\(93\) 1584.72 1.76697
\(94\) −2463.81 −2.70343
\(95\) 721.579 0.779289
\(96\) 5373.74 5.71308
\(97\) 524.575 0.549098 0.274549 0.961573i \(-0.411471\pi\)
0.274549 + 0.961573i \(0.411471\pi\)
\(98\) 265.283 0.273446
\(99\) 0 0
\(100\) 1395.92 1.39592
\(101\) 800.638 0.788777 0.394388 0.918944i \(-0.370956\pi\)
0.394388 + 0.918944i \(0.370956\pi\)
\(102\) 5070.90 4.92249
\(103\) −35.8170 −0.0342636 −0.0171318 0.999853i \(-0.505453\pi\)
−0.0171318 + 0.999853i \(0.505453\pi\)
\(104\) 2162.57 2.03901
\(105\) 847.325 0.787528
\(106\) −2107.07 −1.93072
\(107\) −151.852 −0.137197 −0.0685987 0.997644i \(-0.521853\pi\)
−0.0685987 + 0.997644i \(0.521853\pi\)
\(108\) 4282.45 3.81554
\(109\) 1722.37 1.51352 0.756759 0.653694i \(-0.226782\pi\)
0.756759 + 0.653694i \(0.226782\pi\)
\(110\) 0 0
\(111\) −3196.08 −2.73296
\(112\) −1537.65 −1.29727
\(113\) −1851.03 −1.54097 −0.770487 0.637455i \(-0.779987\pi\)
−0.770487 + 0.637455i \(0.779987\pi\)
\(114\) −2482.27 −2.03935
\(115\) −1200.63 −0.973560
\(116\) −3992.41 −3.19557
\(117\) 1497.85 1.18356
\(118\) 792.864 0.618551
\(119\) −747.597 −0.575900
\(120\) −8723.10 −6.63589
\(121\) 0 0
\(122\) −1053.85 −0.782057
\(123\) 1131.13 0.829188
\(124\) 3850.81 2.78881
\(125\) 821.195 0.587599
\(126\) −1891.60 −1.33744
\(127\) −468.009 −0.327001 −0.163500 0.986543i \(-0.552279\pi\)
−0.163500 + 0.986543i \(0.552279\pi\)
\(128\) 3543.96 2.44723
\(129\) −423.250 −0.288877
\(130\) −2242.41 −1.51287
\(131\) −1581.15 −1.05455 −0.527274 0.849695i \(-0.676786\pi\)
−0.527274 + 0.849695i \(0.676786\pi\)
\(132\) 0 0
\(133\) 365.958 0.238591
\(134\) −1639.23 −1.05678
\(135\) −2773.59 −1.76824
\(136\) 7696.42 4.85266
\(137\) 1236.62 0.771177 0.385589 0.922671i \(-0.373998\pi\)
0.385589 + 0.922671i \(0.373998\pi\)
\(138\) 4130.22 2.54774
\(139\) −1064.09 −0.649314 −0.324657 0.945832i \(-0.605249\pi\)
−0.324657 + 0.945832i \(0.605249\pi\)
\(140\) 2058.97 1.24296
\(141\) −3991.11 −2.38377
\(142\) −2143.39 −1.26669
\(143\) 0 0
\(144\) 10964.2 6.34503
\(145\) 2585.74 1.48093
\(146\) 2992.17 1.69612
\(147\) 429.732 0.241113
\(148\) −7766.34 −4.31344
\(149\) −2314.77 −1.27270 −0.636352 0.771398i \(-0.719558\pi\)
−0.636352 + 0.771398i \(0.719558\pi\)
\(150\) 3110.11 1.69293
\(151\) 1822.45 0.982178 0.491089 0.871109i \(-0.336599\pi\)
0.491089 + 0.871109i \(0.336599\pi\)
\(152\) −3767.49 −2.01042
\(153\) 5330.74 2.81676
\(154\) 0 0
\(155\) −2494.03 −1.29242
\(156\) 5608.57 2.87849
\(157\) −2697.54 −1.37125 −0.685627 0.727953i \(-0.740472\pi\)
−0.685627 + 0.727953i \(0.740472\pi\)
\(158\) −4461.41 −2.24640
\(159\) −3413.23 −1.70243
\(160\) −8457.20 −4.17875
\(161\) −608.915 −0.298070
\(162\) 2245.11 1.08884
\(163\) 742.028 0.356565 0.178283 0.983979i \(-0.442946\pi\)
0.178283 + 0.983979i \(0.442946\pi\)
\(164\) 2748.59 1.30871
\(165\) 0 0
\(166\) 5637.63 2.63594
\(167\) −2732.03 −1.26593 −0.632966 0.774179i \(-0.718163\pi\)
−0.632966 + 0.774179i \(0.718163\pi\)
\(168\) −4424.03 −2.03167
\(169\) −1296.46 −0.590106
\(170\) −7980.58 −3.60049
\(171\) −2609.46 −1.16696
\(172\) −1028.48 −0.455936
\(173\) −230.194 −0.101164 −0.0505818 0.998720i \(-0.516108\pi\)
−0.0505818 + 0.998720i \(0.516108\pi\)
\(174\) −8895.08 −3.87548
\(175\) −458.521 −0.198062
\(176\) 0 0
\(177\) 1284.36 0.545414
\(178\) −4368.35 −1.83945
\(179\) −3463.69 −1.44630 −0.723151 0.690690i \(-0.757307\pi\)
−0.723151 + 0.690690i \(0.757307\pi\)
\(180\) −14681.4 −6.07939
\(181\) 838.524 0.344348 0.172174 0.985067i \(-0.444921\pi\)
0.172174 + 0.985067i \(0.444921\pi\)
\(182\) −1137.27 −0.463186
\(183\) −1707.13 −0.689587
\(184\) 6268.70 2.51160
\(185\) 5029.99 1.99898
\(186\) 8579.59 3.38218
\(187\) 0 0
\(188\) −9698.23 −3.76232
\(189\) −1406.66 −0.541374
\(190\) 3906.59 1.49165
\(191\) −3240.80 −1.22773 −0.613865 0.789411i \(-0.710386\pi\)
−0.613865 + 0.789411i \(0.710386\pi\)
\(192\) 13681.4 5.14257
\(193\) 2849.42 1.06273 0.531363 0.847144i \(-0.321680\pi\)
0.531363 + 0.847144i \(0.321680\pi\)
\(194\) 2840.02 1.05104
\(195\) −3632.48 −1.33398
\(196\) 1044.23 0.380550
\(197\) 3620.43 1.30936 0.654682 0.755904i \(-0.272802\pi\)
0.654682 + 0.755904i \(0.272802\pi\)
\(198\) 0 0
\(199\) 1456.55 0.518855 0.259428 0.965763i \(-0.416466\pi\)
0.259428 + 0.965763i \(0.416466\pi\)
\(200\) 4720.41 1.66892
\(201\) −2655.39 −0.931825
\(202\) 4334.61 1.50981
\(203\) 1311.39 0.453408
\(204\) 19960.5 6.85056
\(205\) −1780.17 −0.606498
\(206\) −193.911 −0.0655846
\(207\) 4341.86 1.45788
\(208\) 6591.90 2.19743
\(209\) 0 0
\(210\) 4587.37 1.50742
\(211\) 4057.90 1.32397 0.661984 0.749518i \(-0.269715\pi\)
0.661984 + 0.749518i \(0.269715\pi\)
\(212\) −8294.01 −2.68696
\(213\) −3472.07 −1.11691
\(214\) −822.121 −0.262612
\(215\) 666.112 0.211295
\(216\) 14481.4 4.56173
\(217\) −1264.88 −0.395694
\(218\) 9324.84 2.89705
\(219\) 4847.00 1.49557
\(220\) 0 0
\(221\) 3204.94 0.975511
\(222\) −17303.4 −5.23120
\(223\) 1589.64 0.477354 0.238677 0.971099i \(-0.423286\pi\)
0.238677 + 0.971099i \(0.423286\pi\)
\(224\) −4289.18 −1.27939
\(225\) 3269.48 0.968735
\(226\) −10021.4 −2.94961
\(227\) 577.950 0.168986 0.0844932 0.996424i \(-0.473073\pi\)
0.0844932 + 0.996424i \(0.473073\pi\)
\(228\) −9770.90 −2.83813
\(229\) 337.007 0.0972492 0.0486246 0.998817i \(-0.484516\pi\)
0.0486246 + 0.998817i \(0.484516\pi\)
\(230\) −6500.15 −1.86351
\(231\) 0 0
\(232\) −13500.6 −3.82051
\(233\) 5367.41 1.50915 0.754573 0.656217i \(-0.227844\pi\)
0.754573 + 0.656217i \(0.227844\pi\)
\(234\) 8109.28 2.26547
\(235\) 6281.21 1.74358
\(236\) 3120.94 0.860829
\(237\) −7227.03 −1.98078
\(238\) −4047.45 −1.10234
\(239\) 4056.64 1.09792 0.548959 0.835849i \(-0.315024\pi\)
0.548959 + 0.835849i \(0.315024\pi\)
\(240\) −26589.6 −7.15147
\(241\) 1544.94 0.412939 0.206469 0.978453i \(-0.433803\pi\)
0.206469 + 0.978453i \(0.433803\pi\)
\(242\) 0 0
\(243\) −1788.86 −0.472243
\(244\) −4148.25 −1.08838
\(245\) −676.312 −0.176359
\(246\) 6123.85 1.58716
\(247\) −1568.86 −0.404146
\(248\) 13021.8 3.33421
\(249\) 9132.38 2.32426
\(250\) 4445.90 1.12473
\(251\) 5397.44 1.35730 0.678652 0.734460i \(-0.262565\pi\)
0.678652 + 0.734460i \(0.262565\pi\)
\(252\) −7445.88 −1.86129
\(253\) 0 0
\(254\) −2533.78 −0.625919
\(255\) −12927.7 −3.17476
\(256\) 6706.65 1.63737
\(257\) 2509.96 0.609209 0.304605 0.952479i \(-0.401476\pi\)
0.304605 + 0.952479i \(0.401476\pi\)
\(258\) −2291.46 −0.552945
\(259\) 2551.02 0.612018
\(260\) −8826.77 −2.10543
\(261\) −9350.88 −2.21764
\(262\) −8560.26 −2.01853
\(263\) 2918.55 0.684280 0.342140 0.939649i \(-0.388848\pi\)
0.342140 + 0.939649i \(0.388848\pi\)
\(264\) 0 0
\(265\) 5371.74 1.24522
\(266\) 1981.28 0.456691
\(267\) −7076.27 −1.62195
\(268\) −6452.49 −1.47070
\(269\) −4066.05 −0.921604 −0.460802 0.887503i \(-0.652438\pi\)
−0.460802 + 0.887503i \(0.652438\pi\)
\(270\) −15016.1 −3.38463
\(271\) 3310.65 0.742094 0.371047 0.928614i \(-0.378999\pi\)
0.371047 + 0.928614i \(0.378999\pi\)
\(272\) 23460.1 5.22969
\(273\) −1842.26 −0.408419
\(274\) 6694.98 1.47613
\(275\) 0 0
\(276\) 16257.7 3.54565
\(277\) −78.4692 −0.0170208 −0.00851039 0.999964i \(-0.502709\pi\)
−0.00851039 + 0.999964i \(0.502709\pi\)
\(278\) −5760.91 −1.24286
\(279\) 9019.22 1.93536
\(280\) 6962.54 1.48604
\(281\) 4810.68 1.02128 0.510642 0.859793i \(-0.329408\pi\)
0.510642 + 0.859793i \(0.329408\pi\)
\(282\) −21607.7 −4.56283
\(283\) 1378.13 0.289475 0.144738 0.989470i \(-0.453766\pi\)
0.144738 + 0.989470i \(0.453766\pi\)
\(284\) −8437.00 −1.76283
\(285\) 6328.27 1.31528
\(286\) 0 0
\(287\) −902.833 −0.185688
\(288\) 30583.9 6.25756
\(289\) 6493.16 1.32163
\(290\) 13999.1 2.83467
\(291\) 4600.54 0.926764
\(292\) 11778.0 2.36047
\(293\) −5549.00 −1.10640 −0.553201 0.833048i \(-0.686594\pi\)
−0.553201 + 0.833048i \(0.686594\pi\)
\(294\) 2326.54 0.461520
\(295\) −2021.32 −0.398935
\(296\) −26262.4 −5.15700
\(297\) 0 0
\(298\) −12532.0 −2.43611
\(299\) 2610.41 0.504897
\(300\) 12242.3 2.35603
\(301\) 337.827 0.0646911
\(302\) 9866.64 1.88001
\(303\) 7021.62 1.33129
\(304\) −11484.0 −2.16662
\(305\) 2686.68 0.504389
\(306\) 28860.3 5.39162
\(307\) 8345.50 1.55148 0.775738 0.631055i \(-0.217378\pi\)
0.775738 + 0.631055i \(0.217378\pi\)
\(308\) 0 0
\(309\) −314.116 −0.0578299
\(310\) −13502.6 −2.47385
\(311\) 7032.19 1.28218 0.641092 0.767464i \(-0.278482\pi\)
0.641092 + 0.767464i \(0.278482\pi\)
\(312\) 18965.8 3.44143
\(313\) −4620.55 −0.834406 −0.417203 0.908813i \(-0.636990\pi\)
−0.417203 + 0.908813i \(0.636990\pi\)
\(314\) −14604.3 −2.62474
\(315\) 4822.44 0.862583
\(316\) −17561.4 −3.12628
\(317\) 11013.6 1.95137 0.975687 0.219170i \(-0.0703348\pi\)
0.975687 + 0.219170i \(0.0703348\pi\)
\(318\) −18479.0 −3.25866
\(319\) 0 0
\(320\) −21531.9 −3.76146
\(321\) −1331.75 −0.231561
\(322\) −3296.63 −0.570541
\(323\) −5583.45 −0.961832
\(324\) 8837.38 1.51532
\(325\) 1965.67 0.335495
\(326\) 4017.30 0.682508
\(327\) 15105.3 2.55451
\(328\) 9294.55 1.56465
\(329\) 3185.60 0.533822
\(330\) 0 0
\(331\) −11304.7 −1.87722 −0.938612 0.344974i \(-0.887888\pi\)
−0.938612 + 0.344974i \(0.887888\pi\)
\(332\) 22191.3 3.66839
\(333\) −18190.0 −2.99342
\(334\) −14791.1 −2.42315
\(335\) 4179.05 0.681570
\(336\) −13485.3 −2.18953
\(337\) −5454.98 −0.881756 −0.440878 0.897567i \(-0.645333\pi\)
−0.440878 + 0.897567i \(0.645333\pi\)
\(338\) −7018.98 −1.12953
\(339\) −16233.6 −2.60085
\(340\) −31413.8 −5.01075
\(341\) 0 0
\(342\) −14127.5 −2.23370
\(343\) −343.000 −0.0539949
\(344\) −3477.88 −0.545101
\(345\) −10529.6 −1.64317
\(346\) −1246.26 −0.193639
\(347\) 2943.67 0.455402 0.227701 0.973731i \(-0.426879\pi\)
0.227701 + 0.973731i \(0.426879\pi\)
\(348\) −35013.5 −5.39346
\(349\) −5541.62 −0.849960 −0.424980 0.905203i \(-0.639719\pi\)
−0.424980 + 0.905203i \(0.639719\pi\)
\(350\) −2482.41 −0.379115
\(351\) 6030.35 0.917026
\(352\) 0 0
\(353\) 10219.3 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(354\) 6953.44 1.04399
\(355\) 5464.35 0.816951
\(356\) −17195.0 −2.55993
\(357\) −6556.45 −0.972001
\(358\) −18752.2 −2.76839
\(359\) −969.299 −0.142500 −0.0712502 0.997458i \(-0.522699\pi\)
−0.0712502 + 0.997458i \(0.522699\pi\)
\(360\) −49646.3 −7.26831
\(361\) −4125.83 −0.601521
\(362\) 4539.72 0.659123
\(363\) 0 0
\(364\) −4476.61 −0.644610
\(365\) −7628.22 −1.09392
\(366\) −9242.29 −1.31995
\(367\) 12219.9 1.73807 0.869037 0.494747i \(-0.164739\pi\)
0.869037 + 0.494747i \(0.164739\pi\)
\(368\) 19108.1 2.70674
\(369\) 6437.65 0.908213
\(370\) 27232.1 3.82629
\(371\) 2724.35 0.381243
\(372\) 33771.7 4.70694
\(373\) −8149.03 −1.13121 −0.565604 0.824677i \(-0.691357\pi\)
−0.565604 + 0.824677i \(0.691357\pi\)
\(374\) 0 0
\(375\) 7201.90 0.991746
\(376\) −32795.3 −4.49810
\(377\) −5621.93 −0.768022
\(378\) −7615.59 −1.03625
\(379\) −10012.2 −1.35697 −0.678487 0.734612i \(-0.737364\pi\)
−0.678487 + 0.734612i \(0.737364\pi\)
\(380\) 15377.4 2.07591
\(381\) −4104.46 −0.551910
\(382\) −17545.5 −2.35002
\(383\) −324.732 −0.0433238 −0.0216619 0.999765i \(-0.506896\pi\)
−0.0216619 + 0.999765i \(0.506896\pi\)
\(384\) 31080.7 4.13041
\(385\) 0 0
\(386\) 15426.6 2.03418
\(387\) −2408.87 −0.316408
\(388\) 11179.1 1.46272
\(389\) −2755.25 −0.359117 −0.179559 0.983747i \(-0.557467\pi\)
−0.179559 + 0.983747i \(0.557467\pi\)
\(390\) −19666.0 −2.55341
\(391\) 9290.27 1.20161
\(392\) 3531.14 0.454973
\(393\) −13866.7 −1.77986
\(394\) 19600.8 2.50628
\(395\) 11373.9 1.44882
\(396\) 0 0
\(397\) −13014.6 −1.64529 −0.822647 0.568552i \(-0.807504\pi\)
−0.822647 + 0.568552i \(0.807504\pi\)
\(398\) 7885.70 0.993151
\(399\) 3209.46 0.402692
\(400\) 14388.7 1.79858
\(401\) 7492.11 0.933013 0.466507 0.884518i \(-0.345512\pi\)
0.466507 + 0.884518i \(0.345512\pi\)
\(402\) −14376.1 −1.78362
\(403\) 5422.53 0.670262
\(404\) 17062.3 2.10118
\(405\) −5723.66 −0.702250
\(406\) 7099.81 0.867876
\(407\) 0 0
\(408\) 67497.8 8.19029
\(409\) 228.102 0.0275769 0.0137884 0.999905i \(-0.495611\pi\)
0.0137884 + 0.999905i \(0.495611\pi\)
\(410\) −9637.72 −1.16091
\(411\) 10845.2 1.30159
\(412\) −763.289 −0.0912732
\(413\) −1025.14 −0.122140
\(414\) 23506.6 2.79055
\(415\) −14372.5 −1.70005
\(416\) 18387.7 2.16714
\(417\) −9332.08 −1.09591
\(418\) 0 0
\(419\) 5590.55 0.651829 0.325914 0.945399i \(-0.394328\pi\)
0.325914 + 0.945399i \(0.394328\pi\)
\(420\) 18057.2 2.09786
\(421\) 13801.0 1.59768 0.798838 0.601546i \(-0.205448\pi\)
0.798838 + 0.601546i \(0.205448\pi\)
\(422\) 21969.2 2.53423
\(423\) −22714.9 −2.61096
\(424\) −28046.8 −3.21244
\(425\) 6995.69 0.798449
\(426\) −18797.6 −2.13791
\(427\) 1362.58 0.154426
\(428\) −3236.10 −0.365474
\(429\) 0 0
\(430\) 3606.29 0.404444
\(431\) 10274.4 1.14827 0.574133 0.818762i \(-0.305339\pi\)
0.574133 + 0.818762i \(0.305339\pi\)
\(432\) 44142.0 4.91616
\(433\) −1446.07 −0.160494 −0.0802470 0.996775i \(-0.525571\pi\)
−0.0802470 + 0.996775i \(0.525571\pi\)
\(434\) −6848.00 −0.757406
\(435\) 22677.1 2.49950
\(436\) 36705.2 4.03179
\(437\) −4547.70 −0.497817
\(438\) 26241.4 2.86270
\(439\) −638.674 −0.0694356 −0.0347178 0.999397i \(-0.511053\pi\)
−0.0347178 + 0.999397i \(0.511053\pi\)
\(440\) 0 0
\(441\) 2445.76 0.264092
\(442\) 17351.4 1.86724
\(443\) −1275.25 −0.136769 −0.0683847 0.997659i \(-0.521785\pi\)
−0.0683847 + 0.997659i \(0.521785\pi\)
\(444\) −68111.0 −7.28019
\(445\) 11136.6 1.18635
\(446\) 8606.20 0.913712
\(447\) −20300.6 −2.14806
\(448\) −10920.2 −1.15163
\(449\) 958.015 0.100694 0.0503469 0.998732i \(-0.483967\pi\)
0.0503469 + 0.998732i \(0.483967\pi\)
\(450\) 17700.8 1.85427
\(451\) 0 0
\(452\) −39446.9 −4.10493
\(453\) 15982.9 1.65771
\(454\) 3128.99 0.323460
\(455\) 2899.34 0.298733
\(456\) −33041.0 −3.39317
\(457\) −5761.44 −0.589734 −0.294867 0.955538i \(-0.595275\pi\)
−0.294867 + 0.955538i \(0.595275\pi\)
\(458\) 1824.54 0.186147
\(459\) 21461.6 2.18244
\(460\) −25586.4 −2.59342
\(461\) 6714.16 0.678329 0.339165 0.940727i \(-0.389856\pi\)
0.339165 + 0.940727i \(0.389856\pi\)
\(462\) 0 0
\(463\) −8184.02 −0.821477 −0.410738 0.911753i \(-0.634729\pi\)
−0.410738 + 0.911753i \(0.634729\pi\)
\(464\) −41152.4 −4.11735
\(465\) −21872.8 −2.18134
\(466\) 29058.9 2.88868
\(467\) 1573.83 0.155949 0.0779745 0.996955i \(-0.475155\pi\)
0.0779745 + 0.996955i \(0.475155\pi\)
\(468\) 31920.4 3.15282
\(469\) 2119.46 0.208673
\(470\) 34006.1 3.33742
\(471\) −23657.5 −2.31439
\(472\) 10553.7 1.02918
\(473\) 0 0
\(474\) −39126.7 −3.79146
\(475\) −3424.48 −0.330791
\(476\) −15931.9 −1.53411
\(477\) −19425.9 −1.86468
\(478\) 21962.5 2.10155
\(479\) 11620.5 1.10846 0.554231 0.832363i \(-0.313012\pi\)
0.554231 + 0.832363i \(0.313012\pi\)
\(480\) −74169.9 −7.05287
\(481\) −10936.2 −1.03669
\(482\) 8364.22 0.790414
\(483\) −5340.20 −0.503080
\(484\) 0 0
\(485\) −7240.33 −0.677869
\(486\) −9684.77 −0.903930
\(487\) 14664.8 1.36452 0.682262 0.731107i \(-0.260996\pi\)
0.682262 + 0.731107i \(0.260996\pi\)
\(488\) −14027.6 −1.30123
\(489\) 6507.61 0.601808
\(490\) −3661.52 −0.337572
\(491\) 5909.66 0.543176 0.271588 0.962414i \(-0.412451\pi\)
0.271588 + 0.962414i \(0.412451\pi\)
\(492\) 24105.2 2.20883
\(493\) −20008.0 −1.82782
\(494\) −8493.72 −0.773584
\(495\) 0 0
\(496\) 39692.8 3.59326
\(497\) 2771.31 0.250122
\(498\) 49442.2 4.44891
\(499\) −13150.1 −1.17972 −0.589859 0.807506i \(-0.700817\pi\)
−0.589859 + 0.807506i \(0.700817\pi\)
\(500\) 17500.3 1.56528
\(501\) −23960.0 −2.13663
\(502\) 29221.4 2.59804
\(503\) −17658.9 −1.56535 −0.782676 0.622429i \(-0.786146\pi\)
−0.782676 + 0.622429i \(0.786146\pi\)
\(504\) −25178.8 −2.22530
\(505\) −11050.6 −0.973756
\(506\) 0 0
\(507\) −11370.0 −0.995977
\(508\) −9973.67 −0.871082
\(509\) 2013.01 0.175295 0.0876473 0.996152i \(-0.472065\pi\)
0.0876473 + 0.996152i \(0.472065\pi\)
\(510\) −69990.0 −6.07688
\(511\) −3868.75 −0.334918
\(512\) 7957.75 0.686887
\(513\) −10505.7 −0.904167
\(514\) 13588.8 1.16610
\(515\) 494.356 0.0422989
\(516\) −9019.81 −0.769525
\(517\) 0 0
\(518\) 13811.1 1.17148
\(519\) −2018.81 −0.170743
\(520\) −29848.4 −2.51719
\(521\) 22999.9 1.93406 0.967029 0.254667i \(-0.0819659\pi\)
0.967029 + 0.254667i \(0.0819659\pi\)
\(522\) −50625.2 −4.24483
\(523\) −3324.73 −0.277974 −0.138987 0.990294i \(-0.544385\pi\)
−0.138987 + 0.990294i \(0.544385\pi\)
\(524\) −33695.6 −2.80916
\(525\) −4021.24 −0.334288
\(526\) 15800.9 1.30979
\(527\) 19298.4 1.59516
\(528\) 0 0
\(529\) −4600.12 −0.378081
\(530\) 29082.3 2.38350
\(531\) 7309.75 0.597394
\(532\) 7798.86 0.635571
\(533\) 3870.44 0.314535
\(534\) −38310.5 −3.10461
\(535\) 2095.91 0.169372
\(536\) −21819.6 −1.75832
\(537\) −30376.6 −2.44106
\(538\) −22013.4 −1.76406
\(539\) 0 0
\(540\) −59107.5 −4.71034
\(541\) 12088.8 0.960698 0.480349 0.877078i \(-0.340510\pi\)
0.480349 + 0.877078i \(0.340510\pi\)
\(542\) 17923.7 1.42046
\(543\) 7353.88 0.581188
\(544\) 65440.3 5.15759
\(545\) −23772.7 −1.86846
\(546\) −9973.87 −0.781763
\(547\) −7.61110 −0.000594930 0 −0.000297465 1.00000i \(-0.500095\pi\)
−0.000297465 1.00000i \(0.500095\pi\)
\(548\) 26353.3 2.05430
\(549\) −9715.88 −0.755307
\(550\) 0 0
\(551\) 9794.18 0.757252
\(552\) 54976.7 4.23906
\(553\) 5768.42 0.443577
\(554\) −424.828 −0.0325798
\(555\) 44113.1 3.37387
\(556\) −22676.6 −1.72968
\(557\) −16354.5 −1.24410 −0.622048 0.782979i \(-0.713699\pi\)
−0.622048 + 0.782979i \(0.713699\pi\)
\(558\) 48829.6 3.70452
\(559\) −1448.26 −0.109579
\(560\) 21223.1 1.60150
\(561\) 0 0
\(562\) 26044.8 1.95486
\(563\) 15181.3 1.13644 0.568220 0.822877i \(-0.307632\pi\)
0.568220 + 0.822877i \(0.307632\pi\)
\(564\) −85053.8 −6.35002
\(565\) 25548.4 1.90235
\(566\) 7461.14 0.554091
\(567\) −2902.83 −0.215004
\(568\) −28530.3 −2.10758
\(569\) −15609.4 −1.15005 −0.575027 0.818134i \(-0.695008\pi\)
−0.575027 + 0.818134i \(0.695008\pi\)
\(570\) 34260.9 2.51760
\(571\) −19353.4 −1.41842 −0.709209 0.704998i \(-0.750948\pi\)
−0.709209 + 0.704998i \(0.750948\pi\)
\(572\) 0 0
\(573\) −28422.0 −2.07215
\(574\) −4887.89 −0.355430
\(575\) 5697.96 0.413255
\(576\) 77866.1 5.63268
\(577\) 6005.46 0.433294 0.216647 0.976250i \(-0.430488\pi\)
0.216647 + 0.976250i \(0.430488\pi\)
\(578\) 35153.6 2.52975
\(579\) 24989.5 1.79366
\(580\) 55104.3 3.94497
\(581\) −7289.22 −0.520495
\(582\) 24907.1 1.77394
\(583\) 0 0
\(584\) 39828.2 2.82210
\(585\) −20673.7 −1.46112
\(586\) −30042.0 −2.11779
\(587\) −2321.88 −0.163261 −0.0816306 0.996663i \(-0.526013\pi\)
−0.0816306 + 0.996663i \(0.526013\pi\)
\(588\) 9157.93 0.642290
\(589\) −9446.80 −0.660863
\(590\) −10943.3 −0.763610
\(591\) 31751.3 2.20994
\(592\) −80052.7 −5.55768
\(593\) −20556.4 −1.42352 −0.711761 0.702422i \(-0.752102\pi\)
−0.711761 + 0.702422i \(0.752102\pi\)
\(594\) 0 0
\(595\) 10318.5 0.710957
\(596\) −49329.6 −3.39030
\(597\) 12774.0 0.875721
\(598\) 14132.6 0.966432
\(599\) −16020.4 −1.09278 −0.546391 0.837530i \(-0.683999\pi\)
−0.546391 + 0.837530i \(0.683999\pi\)
\(600\) 41398.2 2.81679
\(601\) 1426.54 0.0968216 0.0484108 0.998828i \(-0.484584\pi\)
0.0484108 + 0.998828i \(0.484584\pi\)
\(602\) 1828.98 0.123826
\(603\) −15112.8 −1.02063
\(604\) 38837.9 2.61638
\(605\) 0 0
\(606\) 38014.7 2.54825
\(607\) −23151.1 −1.54807 −0.774033 0.633146i \(-0.781763\pi\)
−0.774033 + 0.633146i \(0.781763\pi\)
\(608\) −32033.8 −2.13675
\(609\) 11501.0 0.765258
\(610\) 14545.5 0.965460
\(611\) −13656.6 −0.904235
\(612\) 113602. 7.50344
\(613\) 7127.41 0.469614 0.234807 0.972042i \(-0.424554\pi\)
0.234807 + 0.972042i \(0.424554\pi\)
\(614\) 45182.1 2.96971
\(615\) −15612.1 −1.02364
\(616\) 0 0
\(617\) 18914.5 1.23415 0.617074 0.786905i \(-0.288318\pi\)
0.617074 + 0.786905i \(0.288318\pi\)
\(618\) −1700.61 −0.110693
\(619\) −6655.53 −0.432162 −0.216081 0.976375i \(-0.569328\pi\)
−0.216081 + 0.976375i \(0.569328\pi\)
\(620\) −53149.9 −3.44283
\(621\) 17480.4 1.12957
\(622\) 38071.9 2.45425
\(623\) 5648.09 0.363220
\(624\) 57811.2 3.70881
\(625\) −19522.2 −1.24942
\(626\) −25015.4 −1.59715
\(627\) 0 0
\(628\) −57486.7 −3.65282
\(629\) −38921.2 −2.46723
\(630\) 26108.4 1.65109
\(631\) −16295.1 −1.02805 −0.514024 0.857776i \(-0.671846\pi\)
−0.514024 + 0.857776i \(0.671846\pi\)
\(632\) −59385.1 −3.73768
\(633\) 35587.9 2.23458
\(634\) 59627.0 3.73516
\(635\) 6459.60 0.403687
\(636\) −72738.7 −4.53503
\(637\) 1470.44 0.0914614
\(638\) 0 0
\(639\) −19760.8 −1.22336
\(640\) −48914.8 −3.02114
\(641\) −2897.30 −0.178528 −0.0892641 0.996008i \(-0.528452\pi\)
−0.0892641 + 0.996008i \(0.528452\pi\)
\(642\) −7210.03 −0.443235
\(643\) −24686.0 −1.51403 −0.757016 0.653397i \(-0.773343\pi\)
−0.757016 + 0.653397i \(0.773343\pi\)
\(644\) −12976.5 −0.794014
\(645\) 5841.82 0.356622
\(646\) −30228.5 −1.84106
\(647\) 15318.3 0.930794 0.465397 0.885102i \(-0.345912\pi\)
0.465397 + 0.885102i \(0.345912\pi\)
\(648\) 29884.2 1.81167
\(649\) 0 0
\(650\) 10642.1 0.642178
\(651\) −11093.0 −0.667850
\(652\) 15813.2 0.949837
\(653\) 9002.33 0.539492 0.269746 0.962932i \(-0.413060\pi\)
0.269746 + 0.962932i \(0.413060\pi\)
\(654\) 81779.1 4.88963
\(655\) 21823.5 1.30185
\(656\) 28331.5 1.68622
\(657\) 27586.1 1.63811
\(658\) 17246.6 1.02180
\(659\) −21842.6 −1.29115 −0.645574 0.763698i \(-0.723382\pi\)
−0.645574 + 0.763698i \(0.723382\pi\)
\(660\) 0 0
\(661\) 11027.6 0.648901 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(662\) −61202.9 −3.59323
\(663\) 28107.5 1.64646
\(664\) 75041.5 4.38581
\(665\) −5051.05 −0.294544
\(666\) −98479.9 −5.72976
\(667\) −16296.5 −0.946029
\(668\) −58221.8 −3.37226
\(669\) 13941.2 0.805674
\(670\) 22625.2 1.30461
\(671\) 0 0
\(672\) −37616.2 −2.15934
\(673\) −1991.58 −0.114071 −0.0570354 0.998372i \(-0.518165\pi\)
−0.0570354 + 0.998372i \(0.518165\pi\)
\(674\) −29533.0 −1.68779
\(675\) 13162.9 0.750580
\(676\) −27628.7 −1.57196
\(677\) 24272.2 1.37793 0.688964 0.724795i \(-0.258066\pi\)
0.688964 + 0.724795i \(0.258066\pi\)
\(678\) −87887.7 −4.97833
\(679\) −3672.02 −0.207539
\(680\) −106228. −5.99068
\(681\) 5068.64 0.285214
\(682\) 0 0
\(683\) 2994.98 0.167789 0.0838944 0.996475i \(-0.473264\pi\)
0.0838944 + 0.996475i \(0.473264\pi\)
\(684\) −55609.7 −3.10861
\(685\) −17068.1 −0.952029
\(686\) −1856.98 −0.103353
\(687\) 2955.56 0.164137
\(688\) −10601.2 −0.587453
\(689\) −11679.3 −0.645782
\(690\) −57006.5 −3.14522
\(691\) 32733.9 1.80211 0.901053 0.433710i \(-0.142796\pi\)
0.901053 + 0.433710i \(0.142796\pi\)
\(692\) −4905.62 −0.269485
\(693\) 0 0
\(694\) 15936.9 0.871693
\(695\) 14686.8 0.801587
\(696\) −118401. −6.44824
\(697\) 13774.6 0.748566
\(698\) −30002.0 −1.62693
\(699\) 47072.4 2.54712
\(700\) −9771.45 −0.527609
\(701\) −29409.5 −1.58457 −0.792283 0.610154i \(-0.791107\pi\)
−0.792283 + 0.610154i \(0.791107\pi\)
\(702\) 32648.0 1.75530
\(703\) 19052.4 1.02215
\(704\) 0 0
\(705\) 55086.4 2.94280
\(706\) 55327.0 2.94937
\(707\) −5604.47 −0.298130
\(708\) 27370.7 1.45290
\(709\) 31423.9 1.66453 0.832264 0.554379i \(-0.187044\pi\)
0.832264 + 0.554379i \(0.187044\pi\)
\(710\) 29583.7 1.56374
\(711\) −41131.7 −2.16956
\(712\) −58146.3 −3.06057
\(713\) 15718.5 0.825611
\(714\) −35496.3 −1.86053
\(715\) 0 0
\(716\) −73814.0 −3.85273
\(717\) 35576.9 1.85306
\(718\) −5247.74 −0.272763
\(719\) −19292.3 −1.00067 −0.500335 0.865832i \(-0.666790\pi\)
−0.500335 + 0.865832i \(0.666790\pi\)
\(720\) −151331. −7.83303
\(721\) 250.719 0.0129504
\(722\) −22337.0 −1.15138
\(723\) 13549.2 0.696955
\(724\) 17869.6 0.917292
\(725\) −12271.4 −0.628621
\(726\) 0 0
\(727\) −13262.9 −0.676609 −0.338304 0.941037i \(-0.609853\pi\)
−0.338304 + 0.941037i \(0.609853\pi\)
\(728\) −15138.0 −0.770674
\(729\) −26884.9 −1.36590
\(730\) −41298.8 −2.09389
\(731\) −5154.26 −0.260789
\(732\) −36380.3 −1.83696
\(733\) −6096.90 −0.307222 −0.153611 0.988131i \(-0.549090\pi\)
−0.153611 + 0.988131i \(0.549090\pi\)
\(734\) 66157.9 3.32688
\(735\) −5931.28 −0.297658
\(736\) 53300.9 2.66942
\(737\) 0 0
\(738\) 34853.1 1.73843
\(739\) 34913.3 1.73790 0.868949 0.494901i \(-0.164796\pi\)
0.868949 + 0.494901i \(0.164796\pi\)
\(740\) 107193. 5.32500
\(741\) −13758.9 −0.682115
\(742\) 14749.5 0.729744
\(743\) −3720.35 −0.183696 −0.0918482 0.995773i \(-0.529277\pi\)
−0.0918482 + 0.995773i \(0.529277\pi\)
\(744\) 114201. 5.62746
\(745\) 31949.1 1.57117
\(746\) −44118.4 −2.16527
\(747\) 51975.7 2.54577
\(748\) 0 0
\(749\) 1062.97 0.0518558
\(750\) 38990.7 1.89832
\(751\) 23548.6 1.14421 0.572105 0.820181i \(-0.306127\pi\)
0.572105 + 0.820181i \(0.306127\pi\)
\(752\) −99966.0 −4.84759
\(753\) 47335.7 2.29085
\(754\) −30436.8 −1.47008
\(755\) −25154.0 −1.21251
\(756\) −29977.1 −1.44214
\(757\) 33683.8 1.61725 0.808625 0.588324i \(-0.200212\pi\)
0.808625 + 0.588324i \(0.200212\pi\)
\(758\) −54205.6 −2.59741
\(759\) 0 0
\(760\) 51999.9 2.48189
\(761\) 18322.8 0.872802 0.436401 0.899752i \(-0.356253\pi\)
0.436401 + 0.899752i \(0.356253\pi\)
\(762\) −22221.3 −1.05642
\(763\) −12056.6 −0.572056
\(764\) −69064.2 −3.27049
\(765\) −73576.3 −3.47733
\(766\) −1758.08 −0.0829270
\(767\) 4394.76 0.206891
\(768\) 58817.5 2.76354
\(769\) −2175.73 −0.102027 −0.0510134 0.998698i \(-0.516245\pi\)
−0.0510134 + 0.998698i \(0.516245\pi\)
\(770\) 0 0
\(771\) 22012.4 1.02822
\(772\) 60723.6 2.83094
\(773\) −22514.7 −1.04760 −0.523802 0.851840i \(-0.675487\pi\)
−0.523802 + 0.851840i \(0.675487\pi\)
\(774\) −13041.5 −0.605643
\(775\) 11836.2 0.548605
\(776\) 37803.0 1.74877
\(777\) 22372.5 1.03296
\(778\) −14916.8 −0.687394
\(779\) −6742.84 −0.310125
\(780\) −77411.0 −3.55354
\(781\) 0 0
\(782\) 50297.0 2.30002
\(783\) −37646.7 −1.71824
\(784\) 10763.6 0.490323
\(785\) 37232.2 1.69283
\(786\) −75073.8 −3.40686
\(787\) −202.840 −0.00918738 −0.00459369 0.999989i \(-0.501462\pi\)
−0.00459369 + 0.999989i \(0.501462\pi\)
\(788\) 77154.3 3.48795
\(789\) 25595.8 1.15492
\(790\) 61577.7 2.77321
\(791\) 12957.2 0.582434
\(792\) 0 0
\(793\) −5841.37 −0.261580
\(794\) −70460.1 −3.14929
\(795\) 47110.4 2.10168
\(796\) 31040.3 1.38215
\(797\) 35765.0 1.58954 0.794768 0.606913i \(-0.207592\pi\)
0.794768 + 0.606913i \(0.207592\pi\)
\(798\) 17375.9 0.770800
\(799\) −48602.9 −2.15200
\(800\) 40136.3 1.77379
\(801\) −40273.6 −1.77653
\(802\) 40561.9 1.78590
\(803\) 0 0
\(804\) −56588.5 −2.48224
\(805\) 8404.41 0.367971
\(806\) 29357.3 1.28296
\(807\) −35659.4 −1.55548
\(808\) 57697.2 2.51211
\(809\) 27890.8 1.21210 0.606049 0.795427i \(-0.292754\pi\)
0.606049 + 0.795427i \(0.292754\pi\)
\(810\) −30987.6 −1.34419
\(811\) 4519.06 0.195667 0.0978333 0.995203i \(-0.468809\pi\)
0.0978333 + 0.995203i \(0.468809\pi\)
\(812\) 27946.9 1.20781
\(813\) 29034.5 1.25250
\(814\) 0 0
\(815\) −10241.7 −0.440185
\(816\) 205746. 8.82664
\(817\) 2523.07 0.108043
\(818\) 1234.93 0.0527854
\(819\) −10484.9 −0.447343
\(820\) −37936.8 −1.61562
\(821\) −28198.0 −1.19868 −0.599341 0.800494i \(-0.704571\pi\)
−0.599341 + 0.800494i \(0.704571\pi\)
\(822\) 58715.2 2.49139
\(823\) −21369.8 −0.905110 −0.452555 0.891736i \(-0.649487\pi\)
−0.452555 + 0.891736i \(0.649487\pi\)
\(824\) −2581.12 −0.109123
\(825\) 0 0
\(826\) −5550.05 −0.233790
\(827\) 5051.86 0.212419 0.106210 0.994344i \(-0.466129\pi\)
0.106210 + 0.994344i \(0.466129\pi\)
\(828\) 92528.7 3.88357
\(829\) −17871.6 −0.748742 −0.374371 0.927279i \(-0.622141\pi\)
−0.374371 + 0.927279i \(0.622141\pi\)
\(830\) −77812.2 −3.25410
\(831\) −688.177 −0.0287276
\(832\) 46814.6 1.95073
\(833\) 5233.18 0.217670
\(834\) −50523.4 −2.09770
\(835\) 37708.2 1.56281
\(836\) 0 0
\(837\) 36311.4 1.49953
\(838\) 30266.9 1.24768
\(839\) 22145.7 0.911267 0.455633 0.890167i \(-0.349413\pi\)
0.455633 + 0.890167i \(0.349413\pi\)
\(840\) 61061.7 2.50813
\(841\) 10708.0 0.439049
\(842\) 74718.1 3.05814
\(843\) 42189.8 1.72372
\(844\) 86477.1 3.52685
\(845\) 17894.2 0.728494
\(846\) −122977. −4.99768
\(847\) 0 0
\(848\) −85491.8 −3.46203
\(849\) 12086.3 0.488575
\(850\) 37874.3 1.52833
\(851\) −31701.1 −1.27697
\(852\) −73992.7 −2.97529
\(853\) −38049.2 −1.52729 −0.763645 0.645636i \(-0.776592\pi\)
−0.763645 + 0.645636i \(0.776592\pi\)
\(854\) 7376.94 0.295590
\(855\) 36016.5 1.44063
\(856\) −10943.1 −0.436948
\(857\) 13673.1 0.544999 0.272500 0.962156i \(-0.412150\pi\)
0.272500 + 0.962156i \(0.412150\pi\)
\(858\) 0 0
\(859\) 20654.5 0.820399 0.410199 0.911996i \(-0.365459\pi\)
0.410199 + 0.911996i \(0.365459\pi\)
\(860\) 14195.4 0.562859
\(861\) −7917.88 −0.313404
\(862\) 55625.3 2.19792
\(863\) 27735.2 1.09399 0.546997 0.837135i \(-0.315771\pi\)
0.546997 + 0.837135i \(0.315771\pi\)
\(864\) 123131. 4.84838
\(865\) 3177.20 0.124888
\(866\) −7828.97 −0.307205
\(867\) 56945.2 2.23064
\(868\) −26955.6 −1.05407
\(869\) 0 0
\(870\) 122772. 4.78434
\(871\) −9086.11 −0.353468
\(872\) 124121. 4.82027
\(873\) 26183.3 1.01509
\(874\) −24621.0 −0.952881
\(875\) −5748.36 −0.222092
\(876\) 103294. 3.98398
\(877\) −36791.3 −1.41660 −0.708298 0.705913i \(-0.750537\pi\)
−0.708298 + 0.705913i \(0.750537\pi\)
\(878\) −3457.75 −0.132908
\(879\) −48664.9 −1.86738
\(880\) 0 0
\(881\) −15223.9 −0.582188 −0.291094 0.956694i \(-0.594019\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(882\) 13241.2 0.505504
\(883\) 24566.9 0.936288 0.468144 0.883652i \(-0.344923\pi\)
0.468144 + 0.883652i \(0.344923\pi\)
\(884\) 68300.0 2.59862
\(885\) −17727.1 −0.673321
\(886\) −6904.12 −0.261793
\(887\) 1549.80 0.0586664 0.0293332 0.999570i \(-0.490662\pi\)
0.0293332 + 0.999570i \(0.490662\pi\)
\(888\) −230322. −8.70395
\(889\) 3276.07 0.123595
\(890\) 60293.2 2.27082
\(891\) 0 0
\(892\) 33876.4 1.27160
\(893\) 23791.7 0.891556
\(894\) −109906. −4.11165
\(895\) 47806.8 1.78548
\(896\) −24807.7 −0.924965
\(897\) 22893.4 0.852161
\(898\) 5186.64 0.192740
\(899\) −33852.1 −1.25588
\(900\) 69675.3 2.58057
\(901\) −41565.6 −1.53690
\(902\) 0 0
\(903\) 2962.75 0.109185
\(904\) −133393. −4.90771
\(905\) −11573.5 −0.425102
\(906\) 86530.8 3.17306
\(907\) −29601.6 −1.08369 −0.541844 0.840479i \(-0.682273\pi\)
−0.541844 + 0.840479i \(0.682273\pi\)
\(908\) 12316.6 0.450155
\(909\) 39962.6 1.45817
\(910\) 15696.9 0.571810
\(911\) 11921.1 0.433550 0.216775 0.976222i \(-0.430446\pi\)
0.216775 + 0.976222i \(0.430446\pi\)
\(912\) −100715. −3.65681
\(913\) 0 0
\(914\) −31192.1 −1.12882
\(915\) 23562.2 0.851304
\(916\) 7181.90 0.259057
\(917\) 11068.1 0.398581
\(918\) 116192. 4.17745
\(919\) −7688.00 −0.275956 −0.137978 0.990435i \(-0.544060\pi\)
−0.137978 + 0.990435i \(0.544060\pi\)
\(920\) −86522.3 −3.10061
\(921\) 73190.3 2.61857
\(922\) 36350.1 1.29840
\(923\) −11880.6 −0.423678
\(924\) 0 0
\(925\) −23871.4 −0.848525
\(926\) −44307.9 −1.57240
\(927\) −1787.75 −0.0633413
\(928\) −114792. −4.06059
\(929\) 14582.9 0.515014 0.257507 0.966276i \(-0.417099\pi\)
0.257507 + 0.966276i \(0.417099\pi\)
\(930\) −118418. −4.17535
\(931\) −2561.71 −0.0901788
\(932\) 114384. 4.02014
\(933\) 61672.6 2.16406
\(934\) 8520.64 0.298505
\(935\) 0 0
\(936\) 107941. 3.76941
\(937\) 30266.7 1.05525 0.527625 0.849478i \(-0.323083\pi\)
0.527625 + 0.849478i \(0.323083\pi\)
\(938\) 11474.6 0.399425
\(939\) −40522.4 −1.40830
\(940\) 133858. 4.64464
\(941\) −31355.3 −1.08624 −0.543120 0.839655i \(-0.682757\pi\)
−0.543120 + 0.839655i \(0.682757\pi\)
\(942\) −128080. −4.43003
\(943\) 11219.4 0.387436
\(944\) 32169.5 1.10914
\(945\) 19415.1 0.668333
\(946\) 0 0
\(947\) 15016.2 0.515271 0.257635 0.966242i \(-0.417057\pi\)
0.257635 + 0.966242i \(0.417057\pi\)
\(948\) −154014. −5.27652
\(949\) 16585.3 0.567314
\(950\) −18539.9 −0.633173
\(951\) 96589.6 3.29352
\(952\) −53874.9 −1.83413
\(953\) 31774.7 1.08005 0.540023 0.841650i \(-0.318415\pi\)
0.540023 + 0.841650i \(0.318415\pi\)
\(954\) −105171. −3.56922
\(955\) 44730.5 1.51565
\(956\) 86450.4 2.92469
\(957\) 0 0
\(958\) 62912.7 2.12173
\(959\) −8656.32 −0.291478
\(960\) −188835. −6.34857
\(961\) 2860.48 0.0960183
\(962\) −59208.0 −1.98435
\(963\) −7579.48 −0.253630
\(964\) 32923.9 1.10001
\(965\) −39328.6 −1.31195
\(966\) −28911.6 −0.962955
\(967\) 37330.5 1.24143 0.620717 0.784034i \(-0.286841\pi\)
0.620717 + 0.784034i \(0.286841\pi\)
\(968\) 0 0
\(969\) −48967.1 −1.62337
\(970\) −39198.7 −1.29752
\(971\) 36461.3 1.20505 0.602523 0.798102i \(-0.294162\pi\)
0.602523 + 0.798102i \(0.294162\pi\)
\(972\) −38122.0 −1.25799
\(973\) 7448.61 0.245418
\(974\) 79394.2 2.61186
\(975\) 17239.0 0.566247
\(976\) −42758.7 −1.40233
\(977\) −56203.4 −1.84043 −0.920217 0.391408i \(-0.871988\pi\)
−0.920217 + 0.391408i \(0.871988\pi\)
\(978\) 35231.9 1.15193
\(979\) 0 0
\(980\) −14412.8 −0.469795
\(981\) 85969.6 2.79796
\(982\) 31994.6 1.03970
\(983\) 32452.2 1.05297 0.526483 0.850186i \(-0.323510\pi\)
0.526483 + 0.850186i \(0.323510\pi\)
\(984\) 81513.5 2.64081
\(985\) −49970.2 −1.61643
\(986\) −108322. −3.49867
\(987\) 27937.8 0.900982
\(988\) −33433.7 −1.07659
\(989\) −4198.12 −0.134977
\(990\) 0 0
\(991\) −2393.27 −0.0767152 −0.0383576 0.999264i \(-0.512213\pi\)
−0.0383576 + 0.999264i \(0.512213\pi\)
\(992\) 110720. 3.54372
\(993\) −99142.4 −3.16837
\(994\) 15003.8 0.478763
\(995\) −20103.7 −0.640534
\(996\) 194619. 6.19149
\(997\) −57755.5 −1.83464 −0.917319 0.398152i \(-0.869652\pi\)
−0.917319 + 0.398152i \(0.869652\pi\)
\(998\) −71193.9 −2.25812
\(999\) −73233.2 −2.31931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.n.1.13 yes 14
11.10 odd 2 847.4.a.m.1.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.4.a.m.1.2 14 11.10 odd 2
847.4.a.n.1.13 yes 14 1.1 even 1 trivial