Properties

Label 847.4.a.m.1.2
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,4,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 6 x^{13} - 67 x^{12} + 380 x^{11} + 1774 x^{10} - 8872 x^{9} - 23849 x^{8} + 93880 x^{7} + \cdots - 1952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.41395\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.41395 q^{2} +8.77003 q^{3} +21.3108 q^{4} -13.8023 q^{5} -47.4805 q^{6} +7.00000 q^{7} -72.0641 q^{8} +49.9135 q^{9} +74.7248 q^{10} +186.897 q^{12} -30.0089 q^{13} -37.8976 q^{14} -121.046 q^{15} +219.665 q^{16} -106.800 q^{17} -270.229 q^{18} +52.2797 q^{19} -294.138 q^{20} +61.3902 q^{21} +86.9878 q^{23} -632.004 q^{24} +65.5030 q^{25} +162.467 q^{26} +200.952 q^{27} +149.176 q^{28} +187.342 q^{29} +655.339 q^{30} +180.697 q^{31} -612.739 q^{32} +578.208 q^{34} -96.6160 q^{35} +1063.70 q^{36} -364.432 q^{37} -283.040 q^{38} -263.179 q^{39} +994.649 q^{40} -128.976 q^{41} -332.363 q^{42} +48.2610 q^{43} -688.920 q^{45} -470.948 q^{46} -455.085 q^{47} +1926.46 q^{48} +49.0000 q^{49} -354.630 q^{50} -936.636 q^{51} -639.515 q^{52} -389.192 q^{53} -1087.94 q^{54} -504.449 q^{56} +458.495 q^{57} -1014.26 q^{58} +146.448 q^{59} -2579.60 q^{60} +194.654 q^{61} -978.285 q^{62} +349.394 q^{63} +1560.02 q^{64} +414.192 q^{65} -302.780 q^{67} -2275.99 q^{68} +762.886 q^{69} +523.074 q^{70} -395.902 q^{71} -3596.97 q^{72} -552.678 q^{73} +1973.01 q^{74} +574.463 q^{75} +1114.12 q^{76} +1424.84 q^{78} +824.060 q^{79} -3031.87 q^{80} +414.690 q^{81} +698.270 q^{82} -1041.32 q^{83} +1308.28 q^{84} +1474.08 q^{85} -261.282 q^{86} +1642.99 q^{87} -806.869 q^{89} +3729.77 q^{90} -210.063 q^{91} +1853.78 q^{92} +1584.72 q^{93} +2463.81 q^{94} -721.579 q^{95} -5373.74 q^{96} +524.575 q^{97} -265.283 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 8 q^{2} + 4 q^{3} + 60 q^{4} + 6 q^{5} - 34 q^{6} + 98 q^{7} - 96 q^{8} + 58 q^{9} - 4 q^{10} - 14 q^{12} - 164 q^{13} - 56 q^{14} - 240 q^{15} + 356 q^{16} - 276 q^{17} - 516 q^{18} + 12 q^{19}+ \cdots - 392 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.41395 −1.91412 −0.957060 0.289891i \(-0.906381\pi\)
−0.957060 + 0.289891i \(0.906381\pi\)
\(3\) 8.77003 1.68779 0.843897 0.536506i \(-0.180256\pi\)
0.843897 + 0.536506i \(0.180256\pi\)
\(4\) 21.3108 2.66385
\(5\) −13.8023 −1.23451 −0.617257 0.786762i \(-0.711756\pi\)
−0.617257 + 0.786762i \(0.711756\pi\)
\(6\) −47.4805 −3.23064
\(7\) 7.00000 0.377964
\(8\) −72.0641 −3.18481
\(9\) 49.9135 1.84865
\(10\) 74.7248 2.36301
\(11\) 0 0
\(12\) 186.897 4.49603
\(13\) −30.0089 −0.640229 −0.320115 0.947379i \(-0.603721\pi\)
−0.320115 + 0.947379i \(0.603721\pi\)
\(14\) −37.8976 −0.723469
\(15\) −121.046 −2.08360
\(16\) 219.665 3.43226
\(17\) −106.800 −1.52369 −0.761845 0.647760i \(-0.775706\pi\)
−0.761845 + 0.647760i \(0.775706\pi\)
\(18\) −270.229 −3.53853
\(19\) 52.2797 0.631252 0.315626 0.948884i \(-0.397786\pi\)
0.315626 + 0.948884i \(0.397786\pi\)
\(20\) −294.138 −3.28856
\(21\) 61.3902 0.637926
\(22\) 0 0
\(23\) 86.9878 0.788618 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(24\) −632.004 −5.37531
\(25\) 65.5030 0.524024
\(26\) 162.467 1.22548
\(27\) 200.952 1.43234
\(28\) 149.176 1.00684
\(29\) 187.342 1.19960 0.599802 0.800149i \(-0.295246\pi\)
0.599802 + 0.800149i \(0.295246\pi\)
\(30\) 655.339 3.98827
\(31\) 180.697 1.04691 0.523454 0.852054i \(-0.324643\pi\)
0.523454 + 0.852054i \(0.324643\pi\)
\(32\) −612.739 −3.38494
\(33\) 0 0
\(34\) 578.208 2.91652
\(35\) −96.6160 −0.466602
\(36\) 1063.70 4.92452
\(37\) −364.432 −1.61925 −0.809624 0.586949i \(-0.800329\pi\)
−0.809624 + 0.586949i \(0.800329\pi\)
\(38\) −283.040 −1.20829
\(39\) −263.179 −1.08058
\(40\) 994.649 3.93169
\(41\) −128.976 −0.491285 −0.245643 0.969360i \(-0.578999\pi\)
−0.245643 + 0.969360i \(0.578999\pi\)
\(42\) −332.363 −1.22107
\(43\) 48.2610 0.171157 0.0855783 0.996331i \(-0.472726\pi\)
0.0855783 + 0.996331i \(0.472726\pi\)
\(44\) 0 0
\(45\) −688.920 −2.28218
\(46\) −470.948 −1.50951
\(47\) −455.085 −1.41236 −0.706181 0.708032i \(-0.749583\pi\)
−0.706181 + 0.708032i \(0.749583\pi\)
\(48\) 1926.46 5.79294
\(49\) 49.0000 0.142857
\(50\) −354.630 −1.00304
\(51\) −936.636 −2.57167
\(52\) −639.515 −1.70548
\(53\) −389.192 −1.00867 −0.504337 0.863507i \(-0.668263\pi\)
−0.504337 + 0.863507i \(0.668263\pi\)
\(54\) −1087.94 −2.74167
\(55\) 0 0
\(56\) −504.449 −1.20375
\(57\) 458.495 1.06542
\(58\) −1014.26 −2.29618
\(59\) 146.448 0.323152 0.161576 0.986860i \(-0.448342\pi\)
0.161576 + 0.986860i \(0.448342\pi\)
\(60\) −2579.60 −5.55041
\(61\) 194.654 0.408573 0.204286 0.978911i \(-0.434513\pi\)
0.204286 + 0.978911i \(0.434513\pi\)
\(62\) −978.285 −2.00391
\(63\) 349.394 0.698723
\(64\) 1560.02 3.04692
\(65\) 414.192 0.790372
\(66\) 0 0
\(67\) −302.780 −0.552096 −0.276048 0.961144i \(-0.589025\pi\)
−0.276048 + 0.961144i \(0.589025\pi\)
\(68\) −2275.99 −4.05888
\(69\) 762.886 1.33102
\(70\) 523.074 0.893132
\(71\) −395.902 −0.661760 −0.330880 0.943673i \(-0.607345\pi\)
−0.330880 + 0.943673i \(0.607345\pi\)
\(72\) −3596.97 −5.88759
\(73\) −552.678 −0.886111 −0.443055 0.896494i \(-0.646105\pi\)
−0.443055 + 0.896494i \(0.646105\pi\)
\(74\) 1973.01 3.09943
\(75\) 574.463 0.884444
\(76\) 1114.12 1.68156
\(77\) 0 0
\(78\) 1424.84 2.06835
\(79\) 824.060 1.17359 0.586797 0.809734i \(-0.300389\pi\)
0.586797 + 0.809734i \(0.300389\pi\)
\(80\) −3031.87 −4.23717
\(81\) 414.690 0.568847
\(82\) 698.270 0.940379
\(83\) −1041.32 −1.37710 −0.688550 0.725188i \(-0.741753\pi\)
−0.688550 + 0.725188i \(0.741753\pi\)
\(84\) 1308.28 1.69934
\(85\) 1474.08 1.88101
\(86\) −261.282 −0.327614
\(87\) 1642.99 2.02468
\(88\) 0 0
\(89\) −806.869 −0.960988 −0.480494 0.876998i \(-0.659543\pi\)
−0.480494 + 0.876998i \(0.659543\pi\)
\(90\) 3729.77 4.36836
\(91\) −210.063 −0.241984
\(92\) 1853.78 2.10076
\(93\) 1584.72 1.76697
\(94\) 2463.81 2.70343
\(95\) −721.579 −0.779289
\(96\) −5373.74 −5.71308
\(97\) 524.575 0.549098 0.274549 0.961573i \(-0.411471\pi\)
0.274549 + 0.961573i \(0.411471\pi\)
\(98\) −265.283 −0.273446
\(99\) 0 0
\(100\) 1395.92 1.39592
\(101\) −800.638 −0.788777 −0.394388 0.918944i \(-0.629044\pi\)
−0.394388 + 0.918944i \(0.629044\pi\)
\(102\) 5070.90 4.92249
\(103\) −35.8170 −0.0342636 −0.0171318 0.999853i \(-0.505453\pi\)
−0.0171318 + 0.999853i \(0.505453\pi\)
\(104\) 2162.57 2.03901
\(105\) −847.325 −0.787528
\(106\) 2107.07 1.93072
\(107\) 151.852 0.137197 0.0685987 0.997644i \(-0.478147\pi\)
0.0685987 + 0.997644i \(0.478147\pi\)
\(108\) 4282.45 3.81554
\(109\) −1722.37 −1.51352 −0.756759 0.653694i \(-0.773218\pi\)
−0.756759 + 0.653694i \(0.773218\pi\)
\(110\) 0 0
\(111\) −3196.08 −2.73296
\(112\) 1537.65 1.29727
\(113\) −1851.03 −1.54097 −0.770487 0.637455i \(-0.779987\pi\)
−0.770487 + 0.637455i \(0.779987\pi\)
\(114\) −2482.27 −2.03935
\(115\) −1200.63 −0.973560
\(116\) 3992.41 3.19557
\(117\) −1497.85 −1.18356
\(118\) −792.864 −0.618551
\(119\) −747.597 −0.575900
\(120\) 8723.10 6.63589
\(121\) 0 0
\(122\) −1053.85 −0.782057
\(123\) −1131.13 −0.829188
\(124\) 3850.81 2.78881
\(125\) 821.195 0.587599
\(126\) −1891.60 −1.33744
\(127\) 468.009 0.327001 0.163500 0.986543i \(-0.447721\pi\)
0.163500 + 0.986543i \(0.447721\pi\)
\(128\) −3543.96 −2.44723
\(129\) 423.250 0.288877
\(130\) −2242.41 −1.51287
\(131\) 1581.15 1.05455 0.527274 0.849695i \(-0.323214\pi\)
0.527274 + 0.849695i \(0.323214\pi\)
\(132\) 0 0
\(133\) 365.958 0.238591
\(134\) 1639.23 1.05678
\(135\) −2773.59 −1.76824
\(136\) 7696.42 4.85266
\(137\) 1236.62 0.771177 0.385589 0.922671i \(-0.373998\pi\)
0.385589 + 0.922671i \(0.373998\pi\)
\(138\) −4130.22 −2.54774
\(139\) 1064.09 0.649314 0.324657 0.945832i \(-0.394751\pi\)
0.324657 + 0.945832i \(0.394751\pi\)
\(140\) −2058.97 −1.24296
\(141\) −3991.11 −2.38377
\(142\) 2143.39 1.26669
\(143\) 0 0
\(144\) 10964.2 6.34503
\(145\) −2585.74 −1.48093
\(146\) 2992.17 1.69612
\(147\) 429.732 0.241113
\(148\) −7766.34 −4.31344
\(149\) 2314.77 1.27270 0.636352 0.771398i \(-0.280442\pi\)
0.636352 + 0.771398i \(0.280442\pi\)
\(150\) −3110.11 −1.69293
\(151\) −1822.45 −0.982178 −0.491089 0.871109i \(-0.663401\pi\)
−0.491089 + 0.871109i \(0.663401\pi\)
\(152\) −3767.49 −2.01042
\(153\) −5330.74 −2.81676
\(154\) 0 0
\(155\) −2494.03 −1.29242
\(156\) −5608.57 −2.87849
\(157\) −2697.54 −1.37125 −0.685627 0.727953i \(-0.740472\pi\)
−0.685627 + 0.727953i \(0.740472\pi\)
\(158\) −4461.41 −2.24640
\(159\) −3413.23 −1.70243
\(160\) 8457.20 4.17875
\(161\) 608.915 0.298070
\(162\) −2245.11 −1.08884
\(163\) 742.028 0.356565 0.178283 0.983979i \(-0.442946\pi\)
0.178283 + 0.983979i \(0.442946\pi\)
\(164\) −2748.59 −1.30871
\(165\) 0 0
\(166\) 5637.63 2.63594
\(167\) 2732.03 1.26593 0.632966 0.774179i \(-0.281837\pi\)
0.632966 + 0.774179i \(0.281837\pi\)
\(168\) −4424.03 −2.03167
\(169\) −1296.46 −0.590106
\(170\) −7980.58 −3.60049
\(171\) 2609.46 1.16696
\(172\) 1028.48 0.455936
\(173\) 230.194 0.101164 0.0505818 0.998720i \(-0.483892\pi\)
0.0505818 + 0.998720i \(0.483892\pi\)
\(174\) −8895.08 −3.87548
\(175\) 458.521 0.198062
\(176\) 0 0
\(177\) 1284.36 0.545414
\(178\) 4368.35 1.83945
\(179\) −3463.69 −1.44630 −0.723151 0.690690i \(-0.757307\pi\)
−0.723151 + 0.690690i \(0.757307\pi\)
\(180\) −14681.4 −6.07939
\(181\) 838.524 0.344348 0.172174 0.985067i \(-0.444921\pi\)
0.172174 + 0.985067i \(0.444921\pi\)
\(182\) 1137.27 0.463186
\(183\) 1707.13 0.689587
\(184\) −6268.70 −2.51160
\(185\) 5029.99 1.99898
\(186\) −8579.59 −3.38218
\(187\) 0 0
\(188\) −9698.23 −3.76232
\(189\) 1406.66 0.541374
\(190\) 3906.59 1.49165
\(191\) −3240.80 −1.22773 −0.613865 0.789411i \(-0.710386\pi\)
−0.613865 + 0.789411i \(0.710386\pi\)
\(192\) 13681.4 5.14257
\(193\) −2849.42 −1.06273 −0.531363 0.847144i \(-0.678320\pi\)
−0.531363 + 0.847144i \(0.678320\pi\)
\(194\) −2840.02 −1.05104
\(195\) 3632.48 1.33398
\(196\) 1044.23 0.380550
\(197\) −3620.43 −1.30936 −0.654682 0.755904i \(-0.727198\pi\)
−0.654682 + 0.755904i \(0.727198\pi\)
\(198\) 0 0
\(199\) 1456.55 0.518855 0.259428 0.965763i \(-0.416466\pi\)
0.259428 + 0.965763i \(0.416466\pi\)
\(200\) −4720.41 −1.66892
\(201\) −2655.39 −0.931825
\(202\) 4334.61 1.50981
\(203\) 1311.39 0.453408
\(204\) −19960.5 −6.85056
\(205\) 1780.17 0.606498
\(206\) 193.911 0.0655846
\(207\) 4341.86 1.45788
\(208\) −6591.90 −2.19743
\(209\) 0 0
\(210\) 4587.37 1.50742
\(211\) −4057.90 −1.32397 −0.661984 0.749518i \(-0.730285\pi\)
−0.661984 + 0.749518i \(0.730285\pi\)
\(212\) −8294.01 −2.68696
\(213\) −3472.07 −1.11691
\(214\) −822.121 −0.262612
\(215\) −666.112 −0.211295
\(216\) −14481.4 −4.56173
\(217\) 1264.88 0.395694
\(218\) 9324.84 2.89705
\(219\) −4847.00 −1.49557
\(220\) 0 0
\(221\) 3204.94 0.975511
\(222\) 17303.4 5.23120
\(223\) 1589.64 0.477354 0.238677 0.971099i \(-0.423286\pi\)
0.238677 + 0.971099i \(0.423286\pi\)
\(224\) −4289.18 −1.27939
\(225\) 3269.48 0.968735
\(226\) 10021.4 2.94961
\(227\) −577.950 −0.168986 −0.0844932 0.996424i \(-0.526927\pi\)
−0.0844932 + 0.996424i \(0.526927\pi\)
\(228\) 9770.90 2.83813
\(229\) 337.007 0.0972492 0.0486246 0.998817i \(-0.484516\pi\)
0.0486246 + 0.998817i \(0.484516\pi\)
\(230\) 6500.15 1.86351
\(231\) 0 0
\(232\) −13500.6 −3.82051
\(233\) −5367.41 −1.50915 −0.754573 0.656217i \(-0.772156\pi\)
−0.754573 + 0.656217i \(0.772156\pi\)
\(234\) 8109.28 2.26547
\(235\) 6281.21 1.74358
\(236\) 3120.94 0.860829
\(237\) 7227.03 1.98078
\(238\) 4047.45 1.10234
\(239\) −4056.64 −1.09792 −0.548959 0.835849i \(-0.684976\pi\)
−0.548959 + 0.835849i \(0.684976\pi\)
\(240\) −26589.6 −7.15147
\(241\) −1544.94 −0.412939 −0.206469 0.978453i \(-0.566197\pi\)
−0.206469 + 0.978453i \(0.566197\pi\)
\(242\) 0 0
\(243\) −1788.86 −0.472243
\(244\) 4148.25 1.08838
\(245\) −676.312 −0.176359
\(246\) 6123.85 1.58716
\(247\) −1568.86 −0.404146
\(248\) −13021.8 −3.33421
\(249\) −9132.38 −2.32426
\(250\) −4445.90 −1.12473
\(251\) 5397.44 1.35730 0.678652 0.734460i \(-0.262565\pi\)
0.678652 + 0.734460i \(0.262565\pi\)
\(252\) 7445.88 1.86129
\(253\) 0 0
\(254\) −2533.78 −0.625919
\(255\) 12927.7 3.17476
\(256\) 6706.65 1.63737
\(257\) 2509.96 0.609209 0.304605 0.952479i \(-0.401476\pi\)
0.304605 + 0.952479i \(0.401476\pi\)
\(258\) −2291.46 −0.552945
\(259\) −2551.02 −0.612018
\(260\) 8826.77 2.10543
\(261\) 9350.88 2.21764
\(262\) −8560.26 −2.01853
\(263\) −2918.55 −0.684280 −0.342140 0.939649i \(-0.611152\pi\)
−0.342140 + 0.939649i \(0.611152\pi\)
\(264\) 0 0
\(265\) 5371.74 1.24522
\(266\) −1981.28 −0.456691
\(267\) −7076.27 −1.62195
\(268\) −6452.49 −1.47070
\(269\) −4066.05 −0.921604 −0.460802 0.887503i \(-0.652438\pi\)
−0.460802 + 0.887503i \(0.652438\pi\)
\(270\) 15016.1 3.38463
\(271\) −3310.65 −0.742094 −0.371047 0.928614i \(-0.621001\pi\)
−0.371047 + 0.928614i \(0.621001\pi\)
\(272\) −23460.1 −5.22969
\(273\) −1842.26 −0.408419
\(274\) −6694.98 −1.47613
\(275\) 0 0
\(276\) 16257.7 3.54565
\(277\) 78.4692 0.0170208 0.00851039 0.999964i \(-0.497291\pi\)
0.00851039 + 0.999964i \(0.497291\pi\)
\(278\) −5760.91 −1.24286
\(279\) 9019.22 1.93536
\(280\) 6962.54 1.48604
\(281\) −4810.68 −1.02128 −0.510642 0.859793i \(-0.670592\pi\)
−0.510642 + 0.859793i \(0.670592\pi\)
\(282\) 21607.7 4.56283
\(283\) −1378.13 −0.289475 −0.144738 0.989470i \(-0.546234\pi\)
−0.144738 + 0.989470i \(0.546234\pi\)
\(284\) −8437.00 −1.76283
\(285\) −6328.27 −1.31528
\(286\) 0 0
\(287\) −902.833 −0.185688
\(288\) −30583.9 −6.25756
\(289\) 6493.16 1.32163
\(290\) 13999.1 2.83467
\(291\) 4600.54 0.926764
\(292\) −11778.0 −2.36047
\(293\) 5549.00 1.10640 0.553201 0.833048i \(-0.313406\pi\)
0.553201 + 0.833048i \(0.313406\pi\)
\(294\) −2326.54 −0.461520
\(295\) −2021.32 −0.398935
\(296\) 26262.4 5.15700
\(297\) 0 0
\(298\) −12532.0 −2.43611
\(299\) −2610.41 −0.504897
\(300\) 12242.3 2.35603
\(301\) 337.827 0.0646911
\(302\) 9866.64 1.88001
\(303\) −7021.62 −1.33129
\(304\) 11484.0 2.16662
\(305\) −2686.68 −0.504389
\(306\) 28860.3 5.39162
\(307\) −8345.50 −1.55148 −0.775738 0.631055i \(-0.782622\pi\)
−0.775738 + 0.631055i \(0.782622\pi\)
\(308\) 0 0
\(309\) −314.116 −0.0578299
\(310\) 13502.6 2.47385
\(311\) 7032.19 1.28218 0.641092 0.767464i \(-0.278482\pi\)
0.641092 + 0.767464i \(0.278482\pi\)
\(312\) 18965.8 3.44143
\(313\) −4620.55 −0.834406 −0.417203 0.908813i \(-0.636990\pi\)
−0.417203 + 0.908813i \(0.636990\pi\)
\(314\) 14604.3 2.62474
\(315\) −4822.44 −0.862583
\(316\) 17561.4 3.12628
\(317\) 11013.6 1.95137 0.975687 0.219170i \(-0.0703348\pi\)
0.975687 + 0.219170i \(0.0703348\pi\)
\(318\) 18479.0 3.25866
\(319\) 0 0
\(320\) −21531.9 −3.76146
\(321\) 1331.75 0.231561
\(322\) −3296.63 −0.570541
\(323\) −5583.45 −0.961832
\(324\) 8837.38 1.51532
\(325\) −1965.67 −0.335495
\(326\) −4017.30 −0.682508
\(327\) −15105.3 −2.55451
\(328\) 9294.55 1.56465
\(329\) −3185.60 −0.533822
\(330\) 0 0
\(331\) −11304.7 −1.87722 −0.938612 0.344974i \(-0.887888\pi\)
−0.938612 + 0.344974i \(0.887888\pi\)
\(332\) −22191.3 −3.66839
\(333\) −18190.0 −2.99342
\(334\) −14791.1 −2.42315
\(335\) 4179.05 0.681570
\(336\) 13485.3 2.18953
\(337\) 5454.98 0.881756 0.440878 0.897567i \(-0.354667\pi\)
0.440878 + 0.897567i \(0.354667\pi\)
\(338\) 7018.98 1.12953
\(339\) −16233.6 −2.60085
\(340\) 31413.8 5.01075
\(341\) 0 0
\(342\) −14127.5 −2.23370
\(343\) 343.000 0.0539949
\(344\) −3477.88 −0.545101
\(345\) −10529.6 −1.64317
\(346\) −1246.26 −0.193639
\(347\) −2943.67 −0.455402 −0.227701 0.973731i \(-0.573121\pi\)
−0.227701 + 0.973731i \(0.573121\pi\)
\(348\) 35013.5 5.39346
\(349\) 5541.62 0.849960 0.424980 0.905203i \(-0.360281\pi\)
0.424980 + 0.905203i \(0.360281\pi\)
\(350\) −2482.41 −0.379115
\(351\) −6030.35 −0.917026
\(352\) 0 0
\(353\) 10219.3 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(354\) −6953.44 −1.04399
\(355\) 5464.35 0.816951
\(356\) −17195.0 −2.55993
\(357\) −6556.45 −0.972001
\(358\) 18752.2 2.76839
\(359\) 969.299 0.142500 0.0712502 0.997458i \(-0.477301\pi\)
0.0712502 + 0.997458i \(0.477301\pi\)
\(360\) 49646.3 7.26831
\(361\) −4125.83 −0.601521
\(362\) −4539.72 −0.659123
\(363\) 0 0
\(364\) −4476.61 −0.644610
\(365\) 7628.22 1.09392
\(366\) −9242.29 −1.31995
\(367\) 12219.9 1.73807 0.869037 0.494747i \(-0.164739\pi\)
0.869037 + 0.494747i \(0.164739\pi\)
\(368\) 19108.1 2.70674
\(369\) −6437.65 −0.908213
\(370\) −27232.1 −3.82629
\(371\) −2724.35 −0.381243
\(372\) 33771.7 4.70694
\(373\) 8149.03 1.13121 0.565604 0.824677i \(-0.308643\pi\)
0.565604 + 0.824677i \(0.308643\pi\)
\(374\) 0 0
\(375\) 7201.90 0.991746
\(376\) 32795.3 4.49810
\(377\) −5621.93 −0.768022
\(378\) −7615.59 −1.03625
\(379\) −10012.2 −1.35697 −0.678487 0.734612i \(-0.737364\pi\)
−0.678487 + 0.734612i \(0.737364\pi\)
\(380\) −15377.4 −2.07591
\(381\) 4104.46 0.551910
\(382\) 17545.5 2.35002
\(383\) −324.732 −0.0433238 −0.0216619 0.999765i \(-0.506896\pi\)
−0.0216619 + 0.999765i \(0.506896\pi\)
\(384\) −31080.7 −4.13041
\(385\) 0 0
\(386\) 15426.6 2.03418
\(387\) 2408.87 0.316408
\(388\) 11179.1 1.46272
\(389\) −2755.25 −0.359117 −0.179559 0.983747i \(-0.557467\pi\)
−0.179559 + 0.983747i \(0.557467\pi\)
\(390\) −19666.0 −2.55341
\(391\) −9290.27 −1.20161
\(392\) −3531.14 −0.454973
\(393\) 13866.7 1.77986
\(394\) 19600.8 2.50628
\(395\) −11373.9 −1.44882
\(396\) 0 0
\(397\) −13014.6 −1.64529 −0.822647 0.568552i \(-0.807504\pi\)
−0.822647 + 0.568552i \(0.807504\pi\)
\(398\) −7885.70 −0.993151
\(399\) 3209.46 0.402692
\(400\) 14388.7 1.79858
\(401\) 7492.11 0.933013 0.466507 0.884518i \(-0.345512\pi\)
0.466507 + 0.884518i \(0.345512\pi\)
\(402\) 14376.1 1.78362
\(403\) −5422.53 −0.670262
\(404\) −17062.3 −2.10118
\(405\) −5723.66 −0.702250
\(406\) −7099.81 −0.867876
\(407\) 0 0
\(408\) 67497.8 8.19029
\(409\) −228.102 −0.0275769 −0.0137884 0.999905i \(-0.504389\pi\)
−0.0137884 + 0.999905i \(0.504389\pi\)
\(410\) −9637.72 −1.16091
\(411\) 10845.2 1.30159
\(412\) −763.289 −0.0912732
\(413\) 1025.14 0.122140
\(414\) −23506.6 −2.79055
\(415\) 14372.5 1.70005
\(416\) 18387.7 2.16714
\(417\) 9332.08 1.09591
\(418\) 0 0
\(419\) 5590.55 0.651829 0.325914 0.945399i \(-0.394328\pi\)
0.325914 + 0.945399i \(0.394328\pi\)
\(420\) −18057.2 −2.09786
\(421\) 13801.0 1.59768 0.798838 0.601546i \(-0.205448\pi\)
0.798838 + 0.601546i \(0.205448\pi\)
\(422\) 21969.2 2.53423
\(423\) −22714.9 −2.61096
\(424\) 28046.8 3.21244
\(425\) −6995.69 −0.798449
\(426\) 18797.6 2.13791
\(427\) 1362.58 0.154426
\(428\) 3236.10 0.365474
\(429\) 0 0
\(430\) 3606.29 0.404444
\(431\) −10274.4 −1.14827 −0.574133 0.818762i \(-0.694661\pi\)
−0.574133 + 0.818762i \(0.694661\pi\)
\(432\) 44142.0 4.91616
\(433\) −1446.07 −0.160494 −0.0802470 0.996775i \(-0.525571\pi\)
−0.0802470 + 0.996775i \(0.525571\pi\)
\(434\) −6848.00 −0.757406
\(435\) −22677.1 −2.49950
\(436\) −36705.2 −4.03179
\(437\) 4547.70 0.497817
\(438\) 26241.4 2.86270
\(439\) 638.674 0.0694356 0.0347178 0.999397i \(-0.488947\pi\)
0.0347178 + 0.999397i \(0.488947\pi\)
\(440\) 0 0
\(441\) 2445.76 0.264092
\(442\) −17351.4 −1.86724
\(443\) −1275.25 −0.136769 −0.0683847 0.997659i \(-0.521785\pi\)
−0.0683847 + 0.997659i \(0.521785\pi\)
\(444\) −68111.0 −7.28019
\(445\) 11136.6 1.18635
\(446\) −8606.20 −0.913712
\(447\) 20300.6 2.14806
\(448\) 10920.2 1.15163
\(449\) 958.015 0.100694 0.0503469 0.998732i \(-0.483967\pi\)
0.0503469 + 0.998732i \(0.483967\pi\)
\(450\) −17700.8 −1.85427
\(451\) 0 0
\(452\) −39446.9 −4.10493
\(453\) −15982.9 −1.65771
\(454\) 3128.99 0.323460
\(455\) 2899.34 0.298733
\(456\) −33041.0 −3.39317
\(457\) 5761.44 0.589734 0.294867 0.955538i \(-0.404725\pi\)
0.294867 + 0.955538i \(0.404725\pi\)
\(458\) −1824.54 −0.186147
\(459\) −21461.6 −2.18244
\(460\) −25586.4 −2.59342
\(461\) −6714.16 −0.678329 −0.339165 0.940727i \(-0.610144\pi\)
−0.339165 + 0.940727i \(0.610144\pi\)
\(462\) 0 0
\(463\) −8184.02 −0.821477 −0.410738 0.911753i \(-0.634729\pi\)
−0.410738 + 0.911753i \(0.634729\pi\)
\(464\) 41152.4 4.11735
\(465\) −21872.8 −2.18134
\(466\) 29058.9 2.88868
\(467\) 1573.83 0.155949 0.0779745 0.996955i \(-0.475155\pi\)
0.0779745 + 0.996955i \(0.475155\pi\)
\(468\) −31920.4 −3.15282
\(469\) −2119.46 −0.208673
\(470\) −34006.1 −3.33742
\(471\) −23657.5 −2.31439
\(472\) −10553.7 −1.02918
\(473\) 0 0
\(474\) −39126.7 −3.79146
\(475\) 3424.48 0.330791
\(476\) −15931.9 −1.53411
\(477\) −19425.9 −1.86468
\(478\) 21962.5 2.10155
\(479\) −11620.5 −1.10846 −0.554231 0.832363i \(-0.686988\pi\)
−0.554231 + 0.832363i \(0.686988\pi\)
\(480\) 74169.9 7.05287
\(481\) 10936.2 1.03669
\(482\) 8364.22 0.790414
\(483\) 5340.20 0.503080
\(484\) 0 0
\(485\) −7240.33 −0.677869
\(486\) 9684.77 0.903930
\(487\) 14664.8 1.36452 0.682262 0.731107i \(-0.260996\pi\)
0.682262 + 0.731107i \(0.260996\pi\)
\(488\) −14027.6 −1.30123
\(489\) 6507.61 0.601808
\(490\) 3661.52 0.337572
\(491\) −5909.66 −0.543176 −0.271588 0.962414i \(-0.587549\pi\)
−0.271588 + 0.962414i \(0.587549\pi\)
\(492\) −24105.2 −2.20883
\(493\) −20008.0 −1.82782
\(494\) 8493.72 0.773584
\(495\) 0 0
\(496\) 39692.8 3.59326
\(497\) −2771.31 −0.250122
\(498\) 49442.2 4.44891
\(499\) −13150.1 −1.17972 −0.589859 0.807506i \(-0.700817\pi\)
−0.589859 + 0.807506i \(0.700817\pi\)
\(500\) 17500.3 1.56528
\(501\) 23960.0 2.13663
\(502\) −29221.4 −2.59804
\(503\) 17658.9 1.56535 0.782676 0.622429i \(-0.213854\pi\)
0.782676 + 0.622429i \(0.213854\pi\)
\(504\) −25178.8 −2.22530
\(505\) 11050.6 0.973756
\(506\) 0 0
\(507\) −11370.0 −0.995977
\(508\) 9973.67 0.871082
\(509\) 2013.01 0.175295 0.0876473 0.996152i \(-0.472065\pi\)
0.0876473 + 0.996152i \(0.472065\pi\)
\(510\) −69990.0 −6.07688
\(511\) −3868.75 −0.334918
\(512\) −7957.75 −0.686887
\(513\) 10505.7 0.904167
\(514\) −13588.8 −1.16610
\(515\) 494.356 0.0422989
\(516\) 9019.81 0.769525
\(517\) 0 0
\(518\) 13811.1 1.17148
\(519\) 2018.81 0.170743
\(520\) −29848.4 −2.51719
\(521\) 22999.9 1.93406 0.967029 0.254667i \(-0.0819659\pi\)
0.967029 + 0.254667i \(0.0819659\pi\)
\(522\) −50625.2 −4.24483
\(523\) 3324.73 0.277974 0.138987 0.990294i \(-0.455615\pi\)
0.138987 + 0.990294i \(0.455615\pi\)
\(524\) 33695.6 2.80916
\(525\) 4021.24 0.334288
\(526\) 15800.9 1.30979
\(527\) −19298.4 −1.59516
\(528\) 0 0
\(529\) −4600.12 −0.378081
\(530\) −29082.3 −2.38350
\(531\) 7309.75 0.597394
\(532\) 7798.86 0.635571
\(533\) 3870.44 0.314535
\(534\) 38310.5 3.10461
\(535\) −2095.91 −0.169372
\(536\) 21819.6 1.75832
\(537\) −30376.6 −2.44106
\(538\) 22013.4 1.76406
\(539\) 0 0
\(540\) −59107.5 −4.71034
\(541\) −12088.8 −0.960698 −0.480349 0.877078i \(-0.659490\pi\)
−0.480349 + 0.877078i \(0.659490\pi\)
\(542\) 17923.7 1.42046
\(543\) 7353.88 0.581188
\(544\) 65440.3 5.15759
\(545\) 23772.7 1.86846
\(546\) 9973.87 0.781763
\(547\) 7.61110 0.000594930 0 0.000297465 1.00000i \(-0.499905\pi\)
0.000297465 1.00000i \(0.499905\pi\)
\(548\) 26353.3 2.05430
\(549\) 9715.88 0.755307
\(550\) 0 0
\(551\) 9794.18 0.757252
\(552\) −54976.7 −4.23906
\(553\) 5768.42 0.443577
\(554\) −424.828 −0.0325798
\(555\) 44113.1 3.37387
\(556\) 22676.6 1.72968
\(557\) 16354.5 1.24410 0.622048 0.782979i \(-0.286301\pi\)
0.622048 + 0.782979i \(0.286301\pi\)
\(558\) −48829.6 −3.70452
\(559\) −1448.26 −0.109579
\(560\) −21223.1 −1.60150
\(561\) 0 0
\(562\) 26044.8 1.95486
\(563\) −15181.3 −1.13644 −0.568220 0.822877i \(-0.692368\pi\)
−0.568220 + 0.822877i \(0.692368\pi\)
\(564\) −85053.8 −6.35002
\(565\) 25548.4 1.90235
\(566\) 7461.14 0.554091
\(567\) 2902.83 0.215004
\(568\) 28530.3 2.10758
\(569\) 15609.4 1.15005 0.575027 0.818134i \(-0.304992\pi\)
0.575027 + 0.818134i \(0.304992\pi\)
\(570\) 34260.9 2.51760
\(571\) 19353.4 1.41842 0.709209 0.704998i \(-0.249052\pi\)
0.709209 + 0.704998i \(0.249052\pi\)
\(572\) 0 0
\(573\) −28422.0 −2.07215
\(574\) 4887.89 0.355430
\(575\) 5697.96 0.413255
\(576\) 77866.1 5.63268
\(577\) 6005.46 0.433294 0.216647 0.976250i \(-0.430488\pi\)
0.216647 + 0.976250i \(0.430488\pi\)
\(578\) −35153.6 −2.52975
\(579\) −24989.5 −1.79366
\(580\) −55104.3 −3.94497
\(581\) −7289.22 −0.520495
\(582\) −24907.1 −1.77394
\(583\) 0 0
\(584\) 39828.2 2.82210
\(585\) 20673.7 1.46112
\(586\) −30042.0 −2.11779
\(587\) −2321.88 −0.163261 −0.0816306 0.996663i \(-0.526013\pi\)
−0.0816306 + 0.996663i \(0.526013\pi\)
\(588\) 9157.93 0.642290
\(589\) 9446.80 0.660863
\(590\) 10943.3 0.763610
\(591\) −31751.3 −2.20994
\(592\) −80052.7 −5.55768
\(593\) 20556.4 1.42352 0.711761 0.702422i \(-0.247898\pi\)
0.711761 + 0.702422i \(0.247898\pi\)
\(594\) 0 0
\(595\) 10318.5 0.710957
\(596\) 49329.6 3.39030
\(597\) 12774.0 0.875721
\(598\) 14132.6 0.966432
\(599\) −16020.4 −1.09278 −0.546391 0.837530i \(-0.683999\pi\)
−0.546391 + 0.837530i \(0.683999\pi\)
\(600\) −41398.2 −2.81679
\(601\) −1426.54 −0.0968216 −0.0484108 0.998828i \(-0.515416\pi\)
−0.0484108 + 0.998828i \(0.515416\pi\)
\(602\) −1828.98 −0.123826
\(603\) −15112.8 −1.02063
\(604\) −38837.9 −2.61638
\(605\) 0 0
\(606\) 38014.7 2.54825
\(607\) 23151.1 1.54807 0.774033 0.633146i \(-0.218237\pi\)
0.774033 + 0.633146i \(0.218237\pi\)
\(608\) −32033.8 −2.13675
\(609\) 11501.0 0.765258
\(610\) 14545.5 0.965460
\(611\) 13656.6 0.904235
\(612\) −113602. −7.50344
\(613\) −7127.41 −0.469614 −0.234807 0.972042i \(-0.575446\pi\)
−0.234807 + 0.972042i \(0.575446\pi\)
\(614\) 45182.1 2.96971
\(615\) 15612.1 1.02364
\(616\) 0 0
\(617\) 18914.5 1.23415 0.617074 0.786905i \(-0.288318\pi\)
0.617074 + 0.786905i \(0.288318\pi\)
\(618\) 1700.61 0.110693
\(619\) −6655.53 −0.432162 −0.216081 0.976375i \(-0.569328\pi\)
−0.216081 + 0.976375i \(0.569328\pi\)
\(620\) −53149.9 −3.44283
\(621\) 17480.4 1.12957
\(622\) −38071.9 −2.45425
\(623\) −5648.09 −0.363220
\(624\) −57811.2 −3.70881
\(625\) −19522.2 −1.24942
\(626\) 25015.4 1.59715
\(627\) 0 0
\(628\) −57486.7 −3.65282
\(629\) 38921.2 2.46723
\(630\) 26108.4 1.65109
\(631\) −16295.1 −1.02805 −0.514024 0.857776i \(-0.671846\pi\)
−0.514024 + 0.857776i \(0.671846\pi\)
\(632\) −59385.1 −3.73768
\(633\) −35587.9 −2.23458
\(634\) −59627.0 −3.73516
\(635\) −6459.60 −0.403687
\(636\) −72738.7 −4.53503
\(637\) −1470.44 −0.0914614
\(638\) 0 0
\(639\) −19760.8 −1.22336
\(640\) 48914.8 3.02114
\(641\) −2897.30 −0.178528 −0.0892641 0.996008i \(-0.528452\pi\)
−0.0892641 + 0.996008i \(0.528452\pi\)
\(642\) −7210.03 −0.443235
\(643\) −24686.0 −1.51403 −0.757016 0.653397i \(-0.773343\pi\)
−0.757016 + 0.653397i \(0.773343\pi\)
\(644\) 12976.5 0.794014
\(645\) −5841.82 −0.356622
\(646\) 30228.5 1.84106
\(647\) 15318.3 0.930794 0.465397 0.885102i \(-0.345912\pi\)
0.465397 + 0.885102i \(0.345912\pi\)
\(648\) −29884.2 −1.81167
\(649\) 0 0
\(650\) 10642.1 0.642178
\(651\) 11093.0 0.667850
\(652\) 15813.2 0.949837
\(653\) 9002.33 0.539492 0.269746 0.962932i \(-0.413060\pi\)
0.269746 + 0.962932i \(0.413060\pi\)
\(654\) 81779.1 4.88963
\(655\) −21823.5 −1.30185
\(656\) −28331.5 −1.68622
\(657\) −27586.1 −1.63811
\(658\) 17246.6 1.02180
\(659\) 21842.6 1.29115 0.645574 0.763698i \(-0.276618\pi\)
0.645574 + 0.763698i \(0.276618\pi\)
\(660\) 0 0
\(661\) 11027.6 0.648901 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(662\) 61202.9 3.59323
\(663\) 28107.5 1.64646
\(664\) 75041.5 4.38581
\(665\) −5051.05 −0.294544
\(666\) 98479.9 5.72976
\(667\) 16296.5 0.946029
\(668\) 58221.8 3.37226
\(669\) 13941.2 0.805674
\(670\) −22625.2 −1.30461
\(671\) 0 0
\(672\) −37616.2 −2.15934
\(673\) 1991.58 0.114071 0.0570354 0.998372i \(-0.481835\pi\)
0.0570354 + 0.998372i \(0.481835\pi\)
\(674\) −29533.0 −1.68779
\(675\) 13162.9 0.750580
\(676\) −27628.7 −1.57196
\(677\) −24272.2 −1.37793 −0.688964 0.724795i \(-0.741934\pi\)
−0.688964 + 0.724795i \(0.741934\pi\)
\(678\) 87887.7 4.97833
\(679\) 3672.02 0.207539
\(680\) −106228. −5.99068
\(681\) −5068.64 −0.285214
\(682\) 0 0
\(683\) 2994.98 0.167789 0.0838944 0.996475i \(-0.473264\pi\)
0.0838944 + 0.996475i \(0.473264\pi\)
\(684\) 55609.7 3.10861
\(685\) −17068.1 −0.952029
\(686\) −1856.98 −0.103353
\(687\) 2955.56 0.164137
\(688\) 10601.2 0.587453
\(689\) 11679.3 0.645782
\(690\) 57006.5 3.14522
\(691\) 32733.9 1.80211 0.901053 0.433710i \(-0.142796\pi\)
0.901053 + 0.433710i \(0.142796\pi\)
\(692\) 4905.62 0.269485
\(693\) 0 0
\(694\) 15936.9 0.871693
\(695\) −14686.8 −0.801587
\(696\) −118401. −6.44824
\(697\) 13774.6 0.748566
\(698\) −30002.0 −1.62693
\(699\) −47072.4 −2.54712
\(700\) 9771.45 0.527609
\(701\) 29409.5 1.58457 0.792283 0.610154i \(-0.208893\pi\)
0.792283 + 0.610154i \(0.208893\pi\)
\(702\) 32648.0 1.75530
\(703\) −19052.4 −1.02215
\(704\) 0 0
\(705\) 55086.4 2.94280
\(706\) −55327.0 −2.94937
\(707\) −5604.47 −0.298130
\(708\) 27370.7 1.45290
\(709\) 31423.9 1.66453 0.832264 0.554379i \(-0.187044\pi\)
0.832264 + 0.554379i \(0.187044\pi\)
\(710\) −29583.7 −1.56374
\(711\) 41131.7 2.16956
\(712\) 58146.3 3.06057
\(713\) 15718.5 0.825611
\(714\) 35496.3 1.86053
\(715\) 0 0
\(716\) −73814.0 −3.85273
\(717\) −35576.9 −1.85306
\(718\) −5247.74 −0.272763
\(719\) −19292.3 −1.00067 −0.500335 0.865832i \(-0.666790\pi\)
−0.500335 + 0.865832i \(0.666790\pi\)
\(720\) −151331. −7.83303
\(721\) −250.719 −0.0129504
\(722\) 22337.0 1.15138
\(723\) −13549.2 −0.696955
\(724\) 17869.6 0.917292
\(725\) 12271.4 0.628621
\(726\) 0 0
\(727\) −13262.9 −0.676609 −0.338304 0.941037i \(-0.609853\pi\)
−0.338304 + 0.941037i \(0.609853\pi\)
\(728\) 15138.0 0.770674
\(729\) −26884.9 −1.36590
\(730\) −41298.8 −2.09389
\(731\) −5154.26 −0.260789
\(732\) 36380.3 1.83696
\(733\) 6096.90 0.307222 0.153611 0.988131i \(-0.450910\pi\)
0.153611 + 0.988131i \(0.450910\pi\)
\(734\) −66157.9 −3.32688
\(735\) −5931.28 −0.297658
\(736\) −53300.9 −2.66942
\(737\) 0 0
\(738\) 34853.1 1.73843
\(739\) −34913.3 −1.73790 −0.868949 0.494901i \(-0.835204\pi\)
−0.868949 + 0.494901i \(0.835204\pi\)
\(740\) 107193. 5.32500
\(741\) −13758.9 −0.682115
\(742\) 14749.5 0.729744
\(743\) 3720.35 0.183696 0.0918482 0.995773i \(-0.470723\pi\)
0.0918482 + 0.995773i \(0.470723\pi\)
\(744\) −114201. −5.62746
\(745\) −31949.1 −1.57117
\(746\) −44118.4 −2.16527
\(747\) −51975.7 −2.54577
\(748\) 0 0
\(749\) 1062.97 0.0518558
\(750\) −38990.7 −1.89832
\(751\) 23548.6 1.14421 0.572105 0.820181i \(-0.306127\pi\)
0.572105 + 0.820181i \(0.306127\pi\)
\(752\) −99966.0 −4.84759
\(753\) 47335.7 2.29085
\(754\) 30436.8 1.47008
\(755\) 25154.0 1.21251
\(756\) 29977.1 1.44214
\(757\) 33683.8 1.61725 0.808625 0.588324i \(-0.200212\pi\)
0.808625 + 0.588324i \(0.200212\pi\)
\(758\) 54205.6 2.59741
\(759\) 0 0
\(760\) 51999.9 2.48189
\(761\) −18322.8 −0.872802 −0.436401 0.899752i \(-0.643747\pi\)
−0.436401 + 0.899752i \(0.643747\pi\)
\(762\) −22221.3 −1.05642
\(763\) −12056.6 −0.572056
\(764\) −69064.2 −3.27049
\(765\) 73576.3 3.47733
\(766\) 1758.08 0.0829270
\(767\) −4394.76 −0.206891
\(768\) 58817.5 2.76354
\(769\) 2175.73 0.102027 0.0510134 0.998698i \(-0.483755\pi\)
0.0510134 + 0.998698i \(0.483755\pi\)
\(770\) 0 0
\(771\) 22012.4 1.02822
\(772\) −60723.6 −2.83094
\(773\) −22514.7 −1.04760 −0.523802 0.851840i \(-0.675487\pi\)
−0.523802 + 0.851840i \(0.675487\pi\)
\(774\) −13041.5 −0.605643
\(775\) 11836.2 0.548605
\(776\) −37803.0 −1.74877
\(777\) −22372.5 −1.03296
\(778\) 14916.8 0.687394
\(779\) −6742.84 −0.310125
\(780\) 77411.0 3.55354
\(781\) 0 0
\(782\) 50297.0 2.30002
\(783\) 37646.7 1.71824
\(784\) 10763.6 0.490323
\(785\) 37232.2 1.69283
\(786\) −75073.8 −3.40686
\(787\) 202.840 0.00918738 0.00459369 0.999989i \(-0.498538\pi\)
0.00459369 + 0.999989i \(0.498538\pi\)
\(788\) −77154.3 −3.48795
\(789\) −25595.8 −1.15492
\(790\) 61577.7 2.77321
\(791\) −12957.2 −0.582434
\(792\) 0 0
\(793\) −5841.37 −0.261580
\(794\) 70460.1 3.14929
\(795\) 47110.4 2.10168
\(796\) 31040.3 1.38215
\(797\) 35765.0 1.58954 0.794768 0.606913i \(-0.207592\pi\)
0.794768 + 0.606913i \(0.207592\pi\)
\(798\) −17375.9 −0.770800
\(799\) 48602.9 2.15200
\(800\) −40136.3 −1.77379
\(801\) −40273.6 −1.77653
\(802\) −40561.9 −1.78590
\(803\) 0 0
\(804\) −56588.5 −2.48224
\(805\) −8404.41 −0.367971
\(806\) 29357.3 1.28296
\(807\) −35659.4 −1.55548
\(808\) 57697.2 2.51211
\(809\) −27890.8 −1.21210 −0.606049 0.795427i \(-0.707246\pi\)
−0.606049 + 0.795427i \(0.707246\pi\)
\(810\) 30987.6 1.34419
\(811\) −4519.06 −0.195667 −0.0978333 0.995203i \(-0.531191\pi\)
−0.0978333 + 0.995203i \(0.531191\pi\)
\(812\) 27946.9 1.20781
\(813\) −29034.5 −1.25250
\(814\) 0 0
\(815\) −10241.7 −0.440185
\(816\) −205746. −8.82664
\(817\) 2523.07 0.108043
\(818\) 1234.93 0.0527854
\(819\) −10484.9 −0.447343
\(820\) 37936.8 1.61562
\(821\) 28198.0 1.19868 0.599341 0.800494i \(-0.295429\pi\)
0.599341 + 0.800494i \(0.295429\pi\)
\(822\) −58715.2 −2.49139
\(823\) −21369.8 −0.905110 −0.452555 0.891736i \(-0.649487\pi\)
−0.452555 + 0.891736i \(0.649487\pi\)
\(824\) 2581.12 0.109123
\(825\) 0 0
\(826\) −5550.05 −0.233790
\(827\) −5051.86 −0.212419 −0.106210 0.994344i \(-0.533871\pi\)
−0.106210 + 0.994344i \(0.533871\pi\)
\(828\) 92528.7 3.88357
\(829\) −17871.6 −0.748742 −0.374371 0.927279i \(-0.622141\pi\)
−0.374371 + 0.927279i \(0.622141\pi\)
\(830\) −77812.2 −3.25410
\(831\) 688.177 0.0287276
\(832\) −46814.6 −1.95073
\(833\) −5233.18 −0.217670
\(834\) −50523.4 −2.09770
\(835\) −37708.2 −1.56281
\(836\) 0 0
\(837\) 36311.4 1.49953
\(838\) −30266.9 −1.24768
\(839\) 22145.7 0.911267 0.455633 0.890167i \(-0.349413\pi\)
0.455633 + 0.890167i \(0.349413\pi\)
\(840\) 61061.7 2.50813
\(841\) 10708.0 0.439049
\(842\) −74718.1 −3.05814
\(843\) −42189.8 −1.72372
\(844\) −86477.1 −3.52685
\(845\) 17894.2 0.728494
\(846\) 122977. 4.99768
\(847\) 0 0
\(848\) −85491.8 −3.46203
\(849\) −12086.3 −0.488575
\(850\) 37874.3 1.52833
\(851\) −31701.1 −1.27697
\(852\) −73992.7 −2.97529
\(853\) 38049.2 1.52729 0.763645 0.645636i \(-0.223408\pi\)
0.763645 + 0.645636i \(0.223408\pi\)
\(854\) −7376.94 −0.295590
\(855\) −36016.5 −1.44063
\(856\) −10943.1 −0.436948
\(857\) −13673.1 −0.544999 −0.272500 0.962156i \(-0.587850\pi\)
−0.272500 + 0.962156i \(0.587850\pi\)
\(858\) 0 0
\(859\) 20654.5 0.820399 0.410199 0.911996i \(-0.365459\pi\)
0.410199 + 0.911996i \(0.365459\pi\)
\(860\) −14195.4 −0.562859
\(861\) −7917.88 −0.313404
\(862\) 55625.3 2.19792
\(863\) 27735.2 1.09399 0.546997 0.837135i \(-0.315771\pi\)
0.546997 + 0.837135i \(0.315771\pi\)
\(864\) −123131. −4.84838
\(865\) −3177.20 −0.124888
\(866\) 7828.97 0.307205
\(867\) 56945.2 2.23064
\(868\) 26955.6 1.05407
\(869\) 0 0
\(870\) 122772. 4.78434
\(871\) 9086.11 0.353468
\(872\) 124121. 4.82027
\(873\) 26183.3 1.01509
\(874\) −24621.0 −0.952881
\(875\) 5748.36 0.222092
\(876\) −103294. −3.98398
\(877\) 36791.3 1.41660 0.708298 0.705913i \(-0.249463\pi\)
0.708298 + 0.705913i \(0.249463\pi\)
\(878\) −3457.75 −0.132908
\(879\) 48664.9 1.86738
\(880\) 0 0
\(881\) −15223.9 −0.582188 −0.291094 0.956694i \(-0.594019\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(882\) −13241.2 −0.505504
\(883\) 24566.9 0.936288 0.468144 0.883652i \(-0.344923\pi\)
0.468144 + 0.883652i \(0.344923\pi\)
\(884\) 68300.0 2.59862
\(885\) −17727.1 −0.673321
\(886\) 6904.12 0.261793
\(887\) −1549.80 −0.0586664 −0.0293332 0.999570i \(-0.509338\pi\)
−0.0293332 + 0.999570i \(0.509338\pi\)
\(888\) 230322. 8.70395
\(889\) 3276.07 0.123595
\(890\) −60293.2 −2.27082
\(891\) 0 0
\(892\) 33876.4 1.27160
\(893\) −23791.7 −0.891556
\(894\) −109906. −4.11165
\(895\) 47806.8 1.78548
\(896\) −24807.7 −0.924965
\(897\) −22893.4 −0.852161
\(898\) −5186.64 −0.192740
\(899\) 33852.1 1.25588
\(900\) 69675.3 2.58057
\(901\) 41565.6 1.53690
\(902\) 0 0
\(903\) 2962.75 0.109185
\(904\) 133393. 4.90771
\(905\) −11573.5 −0.425102
\(906\) 86530.8 3.17306
\(907\) −29601.6 −1.08369 −0.541844 0.840479i \(-0.682273\pi\)
−0.541844 + 0.840479i \(0.682273\pi\)
\(908\) −12316.6 −0.450155
\(909\) −39962.6 −1.45817
\(910\) −15696.9 −0.571810
\(911\) 11921.1 0.433550 0.216775 0.976222i \(-0.430446\pi\)
0.216775 + 0.976222i \(0.430446\pi\)
\(912\) 100715. 3.65681
\(913\) 0 0
\(914\) −31192.1 −1.12882
\(915\) −23562.2 −0.851304
\(916\) 7181.90 0.259057
\(917\) 11068.1 0.398581
\(918\) 116192. 4.17745
\(919\) 7688.00 0.275956 0.137978 0.990435i \(-0.455940\pi\)
0.137978 + 0.990435i \(0.455940\pi\)
\(920\) 86522.3 3.10061
\(921\) −73190.3 −2.61857
\(922\) 36350.1 1.29840
\(923\) 11880.6 0.423678
\(924\) 0 0
\(925\) −23871.4 −0.848525
\(926\) 44307.9 1.57240
\(927\) −1787.75 −0.0633413
\(928\) −114792. −4.06059
\(929\) 14582.9 0.515014 0.257507 0.966276i \(-0.417099\pi\)
0.257507 + 0.966276i \(0.417099\pi\)
\(930\) 118418. 4.17535
\(931\) 2561.71 0.0901788
\(932\) −114384. −4.02014
\(933\) 61672.6 2.16406
\(934\) −8520.64 −0.298505
\(935\) 0 0
\(936\) 107941. 3.76941
\(937\) −30266.7 −1.05525 −0.527625 0.849478i \(-0.676917\pi\)
−0.527625 + 0.849478i \(0.676917\pi\)
\(938\) 11474.6 0.399425
\(939\) −40522.4 −1.40830
\(940\) 133858. 4.64464
\(941\) 31355.3 1.08624 0.543120 0.839655i \(-0.317243\pi\)
0.543120 + 0.839655i \(0.317243\pi\)
\(942\) 128080. 4.43003
\(943\) −11219.4 −0.387436
\(944\) 32169.5 1.10914
\(945\) −19415.1 −0.668333
\(946\) 0 0
\(947\) 15016.2 0.515271 0.257635 0.966242i \(-0.417057\pi\)
0.257635 + 0.966242i \(0.417057\pi\)
\(948\) 154014. 5.27652
\(949\) 16585.3 0.567314
\(950\) −18539.9 −0.633173
\(951\) 96589.6 3.29352
\(952\) 53874.9 1.83413
\(953\) −31774.7 −1.08005 −0.540023 0.841650i \(-0.681585\pi\)
−0.540023 + 0.841650i \(0.681585\pi\)
\(954\) 105171. 3.56922
\(955\) 44730.5 1.51565
\(956\) −86450.4 −2.92469
\(957\) 0 0
\(958\) 62912.7 2.12173
\(959\) 8656.32 0.291478
\(960\) −188835. −6.34857
\(961\) 2860.48 0.0960183
\(962\) −59208.0 −1.98435
\(963\) 7579.48 0.253630
\(964\) −32923.9 −1.10001
\(965\) 39328.6 1.31195
\(966\) −28911.6 −0.962955
\(967\) −37330.5 −1.24143 −0.620717 0.784034i \(-0.713159\pi\)
−0.620717 + 0.784034i \(0.713159\pi\)
\(968\) 0 0
\(969\) −48967.1 −1.62337
\(970\) 39198.7 1.29752
\(971\) 36461.3 1.20505 0.602523 0.798102i \(-0.294162\pi\)
0.602523 + 0.798102i \(0.294162\pi\)
\(972\) −38122.0 −1.25799
\(973\) 7448.61 0.245418
\(974\) −79394.2 −2.61186
\(975\) −17239.0 −0.566247
\(976\) 42758.7 1.40233
\(977\) −56203.4 −1.84043 −0.920217 0.391408i \(-0.871988\pi\)
−0.920217 + 0.391408i \(0.871988\pi\)
\(978\) −35231.9 −1.15193
\(979\) 0 0
\(980\) −14412.8 −0.469795
\(981\) −85969.6 −2.79796
\(982\) 31994.6 1.03970
\(983\) 32452.2 1.05297 0.526483 0.850186i \(-0.323510\pi\)
0.526483 + 0.850186i \(0.323510\pi\)
\(984\) 81513.5 2.64081
\(985\) 49970.2 1.61643
\(986\) 108322. 3.49867
\(987\) −27937.8 −0.900982
\(988\) −33433.7 −1.07659
\(989\) 4198.12 0.134977
\(990\) 0 0
\(991\) −2393.27 −0.0767152 −0.0383576 0.999264i \(-0.512213\pi\)
−0.0383576 + 0.999264i \(0.512213\pi\)
\(992\) −110720. −3.54372
\(993\) −99142.4 −3.16837
\(994\) 15003.8 0.478763
\(995\) −20103.7 −0.640534
\(996\) −194619. −6.19149
\(997\) 57755.5 1.83464 0.917319 0.398152i \(-0.130348\pi\)
0.917319 + 0.398152i \(0.130348\pi\)
\(998\) 71193.9 2.25812
\(999\) −73233.2 −2.31931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.m.1.2 14
11.10 odd 2 847.4.a.n.1.13 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.4.a.m.1.2 14 1.1 even 1 trivial
847.4.a.n.1.13 yes 14 11.10 odd 2