Properties

Label 847.4.a.k.1.2
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,4,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 73x^{5} + 584x^{4} - 787x^{3} - 2076x^{2} + 1820x + 1488 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.00760\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00760 q^{2} +6.42839 q^{3} +8.06082 q^{4} -10.5476 q^{5} -25.7624 q^{6} +7.00000 q^{7} -0.243753 q^{8} +14.3241 q^{9} +42.2704 q^{10} +51.8181 q^{12} +60.3406 q^{13} -28.0532 q^{14} -67.8038 q^{15} -63.5097 q^{16} +33.3802 q^{17} -57.4054 q^{18} +69.2475 q^{19} -85.0221 q^{20} +44.9987 q^{21} +159.000 q^{23} -1.56694 q^{24} -13.7489 q^{25} -241.821 q^{26} -81.4853 q^{27} +56.4258 q^{28} -106.351 q^{29} +271.730 q^{30} -133.567 q^{31} +256.471 q^{32} -133.774 q^{34} -73.8330 q^{35} +115.464 q^{36} -264.019 q^{37} -277.516 q^{38} +387.892 q^{39} +2.57100 q^{40} +59.5186 q^{41} -180.337 q^{42} -260.611 q^{43} -151.085 q^{45} -637.207 q^{46} +212.453 q^{47} -408.265 q^{48} +49.0000 q^{49} +55.0999 q^{50} +214.581 q^{51} +486.395 q^{52} +559.528 q^{53} +326.560 q^{54} -1.70627 q^{56} +445.150 q^{57} +426.210 q^{58} +837.450 q^{59} -546.555 q^{60} +492.234 q^{61} +535.281 q^{62} +100.269 q^{63} -519.755 q^{64} -636.446 q^{65} -402.391 q^{67} +269.071 q^{68} +1022.11 q^{69} +295.893 q^{70} -856.461 q^{71} -3.49155 q^{72} -105.552 q^{73} +1058.08 q^{74} -88.3831 q^{75} +558.192 q^{76} -1554.52 q^{78} +446.524 q^{79} +669.873 q^{80} -910.571 q^{81} -238.526 q^{82} +971.903 q^{83} +362.727 q^{84} -352.079 q^{85} +1044.42 q^{86} -683.662 q^{87} +779.257 q^{89} +605.487 q^{90} +422.384 q^{91} +1281.67 q^{92} -858.618 q^{93} -851.425 q^{94} -730.393 q^{95} +1648.70 q^{96} -1766.59 q^{97} -196.372 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} + 30 q^{4} + 2 q^{5} + 53 q^{6} + 56 q^{7} + 27 q^{8} + 120 q^{9} + 66 q^{10} + 36 q^{12} + 124 q^{13} + 14 q^{14} + 78 q^{15} + 122 q^{16} + 192 q^{17} - 162 q^{18} + 96 q^{19}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00760 −1.41690 −0.708450 0.705761i \(-0.750605\pi\)
−0.708450 + 0.705761i \(0.750605\pi\)
\(3\) 6.42839 1.23714 0.618572 0.785728i \(-0.287712\pi\)
0.618572 + 0.785728i \(0.287712\pi\)
\(4\) 8.06082 1.00760
\(5\) −10.5476 −0.943403 −0.471701 0.881758i \(-0.656360\pi\)
−0.471701 + 0.881758i \(0.656360\pi\)
\(6\) −25.7624 −1.75291
\(7\) 7.00000 0.377964
\(8\) −0.243753 −0.0107725
\(9\) 14.3241 0.530524
\(10\) 42.2704 1.33671
\(11\) 0 0
\(12\) 51.8181 1.24655
\(13\) 60.3406 1.28734 0.643672 0.765302i \(-0.277410\pi\)
0.643672 + 0.765302i \(0.277410\pi\)
\(14\) −28.0532 −0.535537
\(15\) −67.8038 −1.16712
\(16\) −63.5097 −0.992339
\(17\) 33.3802 0.476228 0.238114 0.971237i \(-0.423471\pi\)
0.238114 + 0.971237i \(0.423471\pi\)
\(18\) −57.4054 −0.751699
\(19\) 69.2475 0.836130 0.418065 0.908417i \(-0.362708\pi\)
0.418065 + 0.908417i \(0.362708\pi\)
\(20\) −85.0221 −0.950575
\(21\) 44.9987 0.467596
\(22\) 0 0
\(23\) 159.000 1.44147 0.720734 0.693212i \(-0.243805\pi\)
0.720734 + 0.693212i \(0.243805\pi\)
\(24\) −1.56694 −0.0133271
\(25\) −13.7489 −0.109991
\(26\) −241.821 −1.82404
\(27\) −81.4853 −0.580809
\(28\) 56.4258 0.380838
\(29\) −106.351 −0.680993 −0.340496 0.940246i \(-0.610595\pi\)
−0.340496 + 0.940246i \(0.610595\pi\)
\(30\) 271.730 1.65370
\(31\) −133.567 −0.773847 −0.386924 0.922112i \(-0.626462\pi\)
−0.386924 + 0.922112i \(0.626462\pi\)
\(32\) 256.471 1.41682
\(33\) 0 0
\(34\) −133.774 −0.674767
\(35\) −73.8330 −0.356573
\(36\) 115.464 0.534557
\(37\) −264.019 −1.17309 −0.586547 0.809916i \(-0.699513\pi\)
−0.586547 + 0.809916i \(0.699513\pi\)
\(38\) −277.516 −1.18471
\(39\) 387.892 1.59263
\(40\) 2.57100 0.0101628
\(41\) 59.5186 0.226713 0.113357 0.993554i \(-0.463840\pi\)
0.113357 + 0.993554i \(0.463840\pi\)
\(42\) −180.337 −0.662537
\(43\) −260.611 −0.924250 −0.462125 0.886815i \(-0.652913\pi\)
−0.462125 + 0.886815i \(0.652913\pi\)
\(44\) 0 0
\(45\) −151.085 −0.500498
\(46\) −637.207 −2.04241
\(47\) 212.453 0.659350 0.329675 0.944095i \(-0.393061\pi\)
0.329675 + 0.944095i \(0.393061\pi\)
\(48\) −408.265 −1.22767
\(49\) 49.0000 0.142857
\(50\) 55.0999 0.155846
\(51\) 214.581 0.589162
\(52\) 486.395 1.29713
\(53\) 559.528 1.45013 0.725067 0.688679i \(-0.241809\pi\)
0.725067 + 0.688679i \(0.241809\pi\)
\(54\) 326.560 0.822948
\(55\) 0 0
\(56\) −1.70627 −0.00407161
\(57\) 445.150 1.03441
\(58\) 426.210 0.964898
\(59\) 837.450 1.84791 0.923955 0.382500i \(-0.124937\pi\)
0.923955 + 0.382500i \(0.124937\pi\)
\(60\) −546.555 −1.17600
\(61\) 492.234 1.03318 0.516591 0.856232i \(-0.327201\pi\)
0.516591 + 0.856232i \(0.327201\pi\)
\(62\) 535.281 1.09646
\(63\) 100.269 0.200519
\(64\) −519.755 −1.01515
\(65\) −636.446 −1.21448
\(66\) 0 0
\(67\) −402.391 −0.733729 −0.366864 0.930274i \(-0.619569\pi\)
−0.366864 + 0.930274i \(0.619569\pi\)
\(68\) 269.071 0.479849
\(69\) 1022.11 1.78330
\(70\) 295.893 0.505228
\(71\) −856.461 −1.43160 −0.715798 0.698308i \(-0.753937\pi\)
−0.715798 + 0.698308i \(0.753937\pi\)
\(72\) −3.49155 −0.00571505
\(73\) −105.552 −0.169233 −0.0846163 0.996414i \(-0.526966\pi\)
−0.0846163 + 0.996414i \(0.526966\pi\)
\(74\) 1058.08 1.66215
\(75\) −88.3831 −0.136075
\(76\) 558.192 0.842487
\(77\) 0 0
\(78\) −1554.52 −2.25659
\(79\) 446.524 0.635923 0.317961 0.948104i \(-0.397002\pi\)
0.317961 + 0.948104i \(0.397002\pi\)
\(80\) 669.873 0.936176
\(81\) −910.571 −1.24907
\(82\) −238.526 −0.321230
\(83\) 971.903 1.28530 0.642652 0.766158i \(-0.277834\pi\)
0.642652 + 0.766158i \(0.277834\pi\)
\(84\) 362.727 0.471151
\(85\) −352.079 −0.449275
\(86\) 1044.42 1.30957
\(87\) −683.662 −0.842486
\(88\) 0 0
\(89\) 779.257 0.928102 0.464051 0.885808i \(-0.346395\pi\)
0.464051 + 0.885808i \(0.346395\pi\)
\(90\) 605.487 0.709155
\(91\) 422.384 0.486570
\(92\) 1281.67 1.45243
\(93\) −858.618 −0.957360
\(94\) −851.425 −0.934232
\(95\) −730.393 −0.788808
\(96\) 1648.70 1.75281
\(97\) −1766.59 −1.84917 −0.924586 0.380972i \(-0.875589\pi\)
−0.924586 + 0.380972i \(0.875589\pi\)
\(98\) −196.372 −0.202414
\(99\) 0 0
\(100\) −110.827 −0.110827
\(101\) −339.383 −0.334355 −0.167178 0.985927i \(-0.553465\pi\)
−0.167178 + 0.985927i \(0.553465\pi\)
\(102\) −859.952 −0.834784
\(103\) 1045.45 1.00011 0.500056 0.865993i \(-0.333313\pi\)
0.500056 + 0.865993i \(0.333313\pi\)
\(104\) −14.7082 −0.0138678
\(105\) −474.627 −0.441132
\(106\) −2242.36 −2.05469
\(107\) −1090.57 −0.985319 −0.492659 0.870222i \(-0.663975\pi\)
−0.492659 + 0.870222i \(0.663975\pi\)
\(108\) −656.838 −0.585225
\(109\) 1551.05 1.36297 0.681486 0.731831i \(-0.261334\pi\)
0.681486 + 0.731831i \(0.261334\pi\)
\(110\) 0 0
\(111\) −1697.22 −1.45128
\(112\) −444.568 −0.375069
\(113\) 1292.60 1.07609 0.538044 0.842917i \(-0.319163\pi\)
0.538044 + 0.842917i \(0.319163\pi\)
\(114\) −1783.98 −1.46566
\(115\) −1677.06 −1.35988
\(116\) −857.273 −0.686170
\(117\) 864.327 0.682966
\(118\) −3356.16 −2.61830
\(119\) 233.661 0.179997
\(120\) 16.5274 0.0125728
\(121\) 0 0
\(122\) −1972.67 −1.46391
\(123\) 382.608 0.280477
\(124\) −1076.66 −0.779731
\(125\) 1463.46 1.04717
\(126\) −401.838 −0.284115
\(127\) −995.997 −0.695909 −0.347955 0.937511i \(-0.613124\pi\)
−0.347955 + 0.937511i \(0.613124\pi\)
\(128\) 31.1995 0.0215443
\(129\) −1675.30 −1.14343
\(130\) 2550.62 1.72080
\(131\) 2610.47 1.74105 0.870527 0.492121i \(-0.163778\pi\)
0.870527 + 0.492121i \(0.163778\pi\)
\(132\) 0 0
\(133\) 484.733 0.316027
\(134\) 1612.62 1.03962
\(135\) 859.471 0.547937
\(136\) −8.13651 −0.00513014
\(137\) 117.638 0.0733613 0.0366806 0.999327i \(-0.488322\pi\)
0.0366806 + 0.999327i \(0.488322\pi\)
\(138\) −4096.21 −2.52676
\(139\) 985.960 0.601640 0.300820 0.953681i \(-0.402740\pi\)
0.300820 + 0.953681i \(0.402740\pi\)
\(140\) −595.154 −0.359284
\(141\) 1365.73 0.815710
\(142\) 3432.35 2.02843
\(143\) 0 0
\(144\) −909.723 −0.526460
\(145\) 1121.74 0.642451
\(146\) 423.011 0.239785
\(147\) 314.991 0.176735
\(148\) −2128.21 −1.18201
\(149\) 523.599 0.287885 0.143943 0.989586i \(-0.454022\pi\)
0.143943 + 0.989586i \(0.454022\pi\)
\(150\) 354.204 0.192804
\(151\) 1368.70 0.737636 0.368818 0.929502i \(-0.379763\pi\)
0.368818 + 0.929502i \(0.379763\pi\)
\(152\) −16.8793 −0.00900717
\(153\) 478.142 0.252650
\(154\) 0 0
\(155\) 1408.80 0.730050
\(156\) 3126.73 1.60474
\(157\) −67.3334 −0.0342279 −0.0171140 0.999854i \(-0.505448\pi\)
−0.0171140 + 0.999854i \(0.505448\pi\)
\(158\) −1789.49 −0.901038
\(159\) 3596.86 1.79402
\(160\) −2705.15 −1.33663
\(161\) 1113.00 0.544823
\(162\) 3649.20 1.76980
\(163\) 3404.71 1.63606 0.818029 0.575177i \(-0.195067\pi\)
0.818029 + 0.575177i \(0.195067\pi\)
\(164\) 479.769 0.228437
\(165\) 0 0
\(166\) −3894.99 −1.82115
\(167\) −2865.57 −1.32781 −0.663905 0.747817i \(-0.731102\pi\)
−0.663905 + 0.747817i \(0.731102\pi\)
\(168\) −10.9686 −0.00503716
\(169\) 1443.98 0.657253
\(170\) 1410.99 0.636577
\(171\) 991.912 0.443587
\(172\) −2100.74 −0.931276
\(173\) 3254.33 1.43018 0.715092 0.699030i \(-0.246385\pi\)
0.715092 + 0.699030i \(0.246385\pi\)
\(174\) 2739.84 1.19372
\(175\) −96.2421 −0.0415727
\(176\) 0 0
\(177\) 5383.45 2.28613
\(178\) −3122.95 −1.31503
\(179\) −3319.65 −1.38616 −0.693080 0.720861i \(-0.743747\pi\)
−0.693080 + 0.720861i \(0.743747\pi\)
\(180\) −1217.87 −0.504303
\(181\) 2471.00 1.01474 0.507369 0.861729i \(-0.330618\pi\)
0.507369 + 0.861729i \(0.330618\pi\)
\(182\) −1692.74 −0.689421
\(183\) 3164.27 1.27819
\(184\) −38.7566 −0.0155281
\(185\) 2784.76 1.10670
\(186\) 3440.99 1.35648
\(187\) 0 0
\(188\) 1712.55 0.664363
\(189\) −570.397 −0.219525
\(190\) 2927.12 1.11766
\(191\) 4638.29 1.75715 0.878573 0.477608i \(-0.158496\pi\)
0.878573 + 0.477608i \(0.158496\pi\)
\(192\) −3341.19 −1.25588
\(193\) 4849.58 1.80871 0.904353 0.426786i \(-0.140354\pi\)
0.904353 + 0.426786i \(0.140354\pi\)
\(194\) 7079.77 2.62009
\(195\) −4091.32 −1.50249
\(196\) 394.980 0.143943
\(197\) −3193.21 −1.15486 −0.577428 0.816442i \(-0.695944\pi\)
−0.577428 + 0.816442i \(0.695944\pi\)
\(198\) 0 0
\(199\) −3060.65 −1.09027 −0.545135 0.838348i \(-0.683522\pi\)
−0.545135 + 0.838348i \(0.683522\pi\)
\(200\) 3.35133 0.00118487
\(201\) −2586.72 −0.907728
\(202\) 1360.11 0.473748
\(203\) −744.454 −0.257391
\(204\) 1729.70 0.593642
\(205\) −627.776 −0.213882
\(206\) −4189.75 −1.41706
\(207\) 2277.54 0.764733
\(208\) −3832.21 −1.27748
\(209\) 0 0
\(210\) 1902.11 0.625039
\(211\) −1855.21 −0.605298 −0.302649 0.953102i \(-0.597871\pi\)
−0.302649 + 0.953102i \(0.597871\pi\)
\(212\) 4510.26 1.46116
\(213\) −5505.66 −1.77109
\(214\) 4370.55 1.39610
\(215\) 2748.81 0.871940
\(216\) 19.8623 0.00625674
\(217\) −934.966 −0.292487
\(218\) −6215.99 −1.93119
\(219\) −678.532 −0.209365
\(220\) 0 0
\(221\) 2014.18 0.613069
\(222\) 6801.75 2.05632
\(223\) 636.378 0.191099 0.0955494 0.995425i \(-0.469539\pi\)
0.0955494 + 0.995425i \(0.469539\pi\)
\(224\) 1795.30 0.535507
\(225\) −196.941 −0.0583529
\(226\) −5180.24 −1.52471
\(227\) 5015.66 1.46652 0.733262 0.679947i \(-0.237997\pi\)
0.733262 + 0.679947i \(0.237997\pi\)
\(228\) 3588.27 1.04228
\(229\) 2583.85 0.745614 0.372807 0.927909i \(-0.378395\pi\)
0.372807 + 0.927909i \(0.378395\pi\)
\(230\) 6720.98 1.92682
\(231\) 0 0
\(232\) 25.9232 0.00733597
\(233\) −1824.49 −0.512989 −0.256494 0.966546i \(-0.582568\pi\)
−0.256494 + 0.966546i \(0.582568\pi\)
\(234\) −3463.87 −0.967694
\(235\) −2240.86 −0.622033
\(236\) 6750.54 1.86196
\(237\) 2870.43 0.786728
\(238\) −936.419 −0.255038
\(239\) 5329.10 1.44230 0.721152 0.692777i \(-0.243613\pi\)
0.721152 + 0.692777i \(0.243613\pi\)
\(240\) 4306.20 1.15818
\(241\) 2159.12 0.577101 0.288550 0.957465i \(-0.406827\pi\)
0.288550 + 0.957465i \(0.406827\pi\)
\(242\) 0 0
\(243\) −3653.40 −0.964467
\(244\) 3967.81 1.04104
\(245\) −516.831 −0.134772
\(246\) −1533.34 −0.397407
\(247\) 4178.44 1.07639
\(248\) 32.5572 0.00833624
\(249\) 6247.77 1.59011
\(250\) −5864.97 −1.48373
\(251\) −4627.53 −1.16369 −0.581847 0.813299i \(-0.697670\pi\)
−0.581847 + 0.813299i \(0.697670\pi\)
\(252\) 808.251 0.202044
\(253\) 0 0
\(254\) 3991.55 0.986033
\(255\) −2263.30 −0.555817
\(256\) 4033.01 0.984621
\(257\) 5548.11 1.34662 0.673311 0.739360i \(-0.264872\pi\)
0.673311 + 0.739360i \(0.264872\pi\)
\(258\) 6713.94 1.62012
\(259\) −1848.13 −0.443388
\(260\) −5130.28 −1.22372
\(261\) −1523.38 −0.361283
\(262\) −10461.7 −2.46690
\(263\) 559.458 0.131170 0.0655849 0.997847i \(-0.479109\pi\)
0.0655849 + 0.997847i \(0.479109\pi\)
\(264\) 0 0
\(265\) −5901.66 −1.36806
\(266\) −1942.61 −0.447779
\(267\) 5009.37 1.14820
\(268\) −3243.60 −0.739307
\(269\) −3900.98 −0.884189 −0.442094 0.896969i \(-0.645764\pi\)
−0.442094 + 0.896969i \(0.645764\pi\)
\(270\) −3444.41 −0.776372
\(271\) 5066.32 1.13563 0.567817 0.823155i \(-0.307788\pi\)
0.567817 + 0.823155i \(0.307788\pi\)
\(272\) −2119.96 −0.472580
\(273\) 2715.25 0.601957
\(274\) −471.445 −0.103945
\(275\) 0 0
\(276\) 8239.06 1.79686
\(277\) −6248.30 −1.35532 −0.677661 0.735375i \(-0.737006\pi\)
−0.677661 + 0.735375i \(0.737006\pi\)
\(278\) −3951.33 −0.852464
\(279\) −1913.23 −0.410545
\(280\) 17.9970 0.00384116
\(281\) 6130.56 1.30149 0.650744 0.759297i \(-0.274457\pi\)
0.650744 + 0.759297i \(0.274457\pi\)
\(282\) −5473.29 −1.15578
\(283\) 4823.70 1.01321 0.506606 0.862178i \(-0.330900\pi\)
0.506606 + 0.862178i \(0.330900\pi\)
\(284\) −6903.78 −1.44248
\(285\) −4695.25 −0.975868
\(286\) 0 0
\(287\) 416.630 0.0856895
\(288\) 3673.73 0.751655
\(289\) −3798.77 −0.773207
\(290\) −4495.48 −0.910288
\(291\) −11356.3 −2.28769
\(292\) −850.839 −0.170519
\(293\) 2977.52 0.593681 0.296840 0.954927i \(-0.404067\pi\)
0.296840 + 0.954927i \(0.404067\pi\)
\(294\) −1262.36 −0.250415
\(295\) −8833.06 −1.74332
\(296\) 64.3554 0.0126371
\(297\) 0 0
\(298\) −2098.37 −0.407904
\(299\) 9594.14 1.85566
\(300\) −712.440 −0.137109
\(301\) −1824.27 −0.349333
\(302\) −5485.19 −1.04516
\(303\) −2181.68 −0.413645
\(304\) −4397.89 −0.829725
\(305\) −5191.87 −0.974707
\(306\) −1916.20 −0.357980
\(307\) 613.140 0.113986 0.0569930 0.998375i \(-0.481849\pi\)
0.0569930 + 0.998375i \(0.481849\pi\)
\(308\) 0 0
\(309\) 6720.57 1.23728
\(310\) −5645.91 −1.03441
\(311\) 3663.37 0.667944 0.333972 0.942583i \(-0.391611\pi\)
0.333972 + 0.942583i \(0.391611\pi\)
\(312\) −94.5499 −0.0171565
\(313\) 3746.40 0.676546 0.338273 0.941048i \(-0.390157\pi\)
0.338273 + 0.941048i \(0.390157\pi\)
\(314\) 269.845 0.0484975
\(315\) −1057.59 −0.189170
\(316\) 3599.35 0.640758
\(317\) −5156.84 −0.913681 −0.456840 0.889549i \(-0.651019\pi\)
−0.456840 + 0.889549i \(0.651019\pi\)
\(318\) −14414.8 −2.54195
\(319\) 0 0
\(320\) 5482.15 0.957693
\(321\) −7010.59 −1.21898
\(322\) −4460.45 −0.771960
\(323\) 2311.49 0.398189
\(324\) −7339.95 −1.25856
\(325\) −829.615 −0.141596
\(326\) −13644.7 −2.31813
\(327\) 9970.76 1.68619
\(328\) −14.5078 −0.00244226
\(329\) 1487.17 0.249211
\(330\) 0 0
\(331\) 1602.92 0.266177 0.133088 0.991104i \(-0.457511\pi\)
0.133088 + 0.991104i \(0.457511\pi\)
\(332\) 7834.34 1.29508
\(333\) −3781.85 −0.622354
\(334\) 11484.0 1.88137
\(335\) 4244.24 0.692202
\(336\) −2857.85 −0.464014
\(337\) −6375.79 −1.03060 −0.515299 0.857010i \(-0.672319\pi\)
−0.515299 + 0.857010i \(0.672319\pi\)
\(338\) −5786.90 −0.931261
\(339\) 8309.36 1.33128
\(340\) −2838.05 −0.452691
\(341\) 0 0
\(342\) −3975.18 −0.628518
\(343\) 343.000 0.0539949
\(344\) 63.5245 0.00995644
\(345\) −10780.8 −1.68237
\(346\) −13042.0 −2.02643
\(347\) 1069.17 0.165406 0.0827031 0.996574i \(-0.473645\pi\)
0.0827031 + 0.996574i \(0.473645\pi\)
\(348\) −5510.88 −0.848891
\(349\) −4621.76 −0.708874 −0.354437 0.935080i \(-0.615327\pi\)
−0.354437 + 0.935080i \(0.615327\pi\)
\(350\) 385.700 0.0589043
\(351\) −4916.87 −0.747701
\(352\) 0 0
\(353\) 1369.54 0.206496 0.103248 0.994656i \(-0.467076\pi\)
0.103248 + 0.994656i \(0.467076\pi\)
\(354\) −21574.7 −3.23922
\(355\) 9033.58 1.35057
\(356\) 6281.46 0.935159
\(357\) 1502.06 0.222682
\(358\) 13303.8 1.96405
\(359\) 4486.12 0.659522 0.329761 0.944064i \(-0.393032\pi\)
0.329761 + 0.944064i \(0.393032\pi\)
\(360\) 36.8274 0.00539159
\(361\) −2063.78 −0.300886
\(362\) −9902.75 −1.43778
\(363\) 0 0
\(364\) 3404.76 0.490269
\(365\) 1113.32 0.159654
\(366\) −12681.1 −1.81107
\(367\) −5726.82 −0.814544 −0.407272 0.913307i \(-0.633520\pi\)
−0.407272 + 0.913307i \(0.633520\pi\)
\(368\) −10098.0 −1.43042
\(369\) 852.552 0.120277
\(370\) −11160.2 −1.56808
\(371\) 3916.70 0.548099
\(372\) −6921.16 −0.964639
\(373\) −13410.0 −1.86151 −0.930754 0.365645i \(-0.880848\pi\)
−0.930754 + 0.365645i \(0.880848\pi\)
\(374\) 0 0
\(375\) 9407.70 1.29550
\(376\) −51.7860 −0.00710282
\(377\) −6417.25 −0.876672
\(378\) 2285.92 0.311045
\(379\) 11796.0 1.59873 0.799367 0.600843i \(-0.205168\pi\)
0.799367 + 0.600843i \(0.205168\pi\)
\(380\) −5887.57 −0.794805
\(381\) −6402.65 −0.860939
\(382\) −18588.4 −2.48970
\(383\) −10664.1 −1.42274 −0.711368 0.702820i \(-0.751924\pi\)
−0.711368 + 0.702820i \(0.751924\pi\)
\(384\) 200.562 0.0266534
\(385\) 0 0
\(386\) −19435.1 −2.56275
\(387\) −3733.02 −0.490337
\(388\) −14240.1 −1.86323
\(389\) 2931.68 0.382113 0.191056 0.981579i \(-0.438809\pi\)
0.191056 + 0.981579i \(0.438809\pi\)
\(390\) 16396.4 2.12888
\(391\) 5307.44 0.686467
\(392\) −11.9439 −0.00153892
\(393\) 16781.1 2.15393
\(394\) 12797.1 1.63631
\(395\) −4709.74 −0.599931
\(396\) 0 0
\(397\) −8477.41 −1.07171 −0.535855 0.844310i \(-0.680011\pi\)
−0.535855 + 0.844310i \(0.680011\pi\)
\(398\) 12265.8 1.54480
\(399\) 3116.05 0.390971
\(400\) 873.187 0.109148
\(401\) −11982.2 −1.49218 −0.746088 0.665848i \(-0.768070\pi\)
−0.746088 + 0.665848i \(0.768070\pi\)
\(402\) 10366.5 1.28616
\(403\) −8059.48 −0.996207
\(404\) −2735.71 −0.336897
\(405\) 9604.30 1.17837
\(406\) 2983.47 0.364697
\(407\) 0 0
\(408\) −52.3046 −0.00634672
\(409\) −7195.61 −0.869926 −0.434963 0.900448i \(-0.643239\pi\)
−0.434963 + 0.900448i \(0.643239\pi\)
\(410\) 2515.87 0.303049
\(411\) 756.222 0.0907584
\(412\) 8427.20 1.00771
\(413\) 5862.15 0.698445
\(414\) −9127.44 −1.08355
\(415\) −10251.2 −1.21256
\(416\) 15475.6 1.82393
\(417\) 6338.13 0.744315
\(418\) 0 0
\(419\) −52.9772 −0.00617686 −0.00308843 0.999995i \(-0.500983\pi\)
−0.00308843 + 0.999995i \(0.500983\pi\)
\(420\) −3825.88 −0.444486
\(421\) 2660.28 0.307967 0.153984 0.988073i \(-0.450790\pi\)
0.153984 + 0.988073i \(0.450790\pi\)
\(422\) 7434.93 0.857646
\(423\) 3043.21 0.349801
\(424\) −136.387 −0.0156215
\(425\) −458.940 −0.0523808
\(426\) 22064.5 2.50945
\(427\) 3445.64 0.390506
\(428\) −8790.87 −0.992810
\(429\) 0 0
\(430\) −11016.1 −1.23545
\(431\) −2862.89 −0.319955 −0.159978 0.987121i \(-0.551142\pi\)
−0.159978 + 0.987121i \(0.551142\pi\)
\(432\) 5175.11 0.576360
\(433\) −8159.52 −0.905592 −0.452796 0.891614i \(-0.649573\pi\)
−0.452796 + 0.891614i \(0.649573\pi\)
\(434\) 3746.97 0.414424
\(435\) 7210.97 0.794804
\(436\) 12502.8 1.37333
\(437\) 11010.3 1.20525
\(438\) 2719.28 0.296649
\(439\) 7349.43 0.799018 0.399509 0.916729i \(-0.369181\pi\)
0.399509 + 0.916729i \(0.369181\pi\)
\(440\) 0 0
\(441\) 701.883 0.0757891
\(442\) −8072.01 −0.868657
\(443\) −1637.08 −0.175576 −0.0877881 0.996139i \(-0.527980\pi\)
−0.0877881 + 0.996139i \(0.527980\pi\)
\(444\) −13681.0 −1.46232
\(445\) −8219.27 −0.875575
\(446\) −2550.35 −0.270768
\(447\) 3365.89 0.356155
\(448\) −3638.29 −0.383690
\(449\) 6409.20 0.673650 0.336825 0.941567i \(-0.390647\pi\)
0.336825 + 0.941567i \(0.390647\pi\)
\(450\) 789.260 0.0826801
\(451\) 0 0
\(452\) 10419.5 1.08427
\(453\) 8798.52 0.912562
\(454\) −20100.7 −2.07792
\(455\) −4455.12 −0.459032
\(456\) −108.507 −0.0111432
\(457\) 7465.07 0.764116 0.382058 0.924138i \(-0.375215\pi\)
0.382058 + 0.924138i \(0.375215\pi\)
\(458\) −10355.0 −1.05646
\(459\) −2719.99 −0.276598
\(460\) −13518.5 −1.37022
\(461\) −13900.8 −1.40440 −0.702198 0.711982i \(-0.747798\pi\)
−0.702198 + 0.711982i \(0.747798\pi\)
\(462\) 0 0
\(463\) −9514.60 −0.955034 −0.477517 0.878622i \(-0.658463\pi\)
−0.477517 + 0.878622i \(0.658463\pi\)
\(464\) 6754.29 0.675776
\(465\) 9056.33 0.903176
\(466\) 7311.82 0.726853
\(467\) 8032.77 0.795957 0.397979 0.917395i \(-0.369712\pi\)
0.397979 + 0.917395i \(0.369712\pi\)
\(468\) 6967.19 0.688159
\(469\) −2816.73 −0.277323
\(470\) 8980.46 0.881357
\(471\) −432.845 −0.0423449
\(472\) −204.131 −0.0199065
\(473\) 0 0
\(474\) −11503.5 −1.11471
\(475\) −952.076 −0.0919668
\(476\) 1883.50 0.181366
\(477\) 8014.76 0.769331
\(478\) −21356.9 −2.04360
\(479\) −4584.42 −0.437301 −0.218651 0.975803i \(-0.570166\pi\)
−0.218651 + 0.975803i \(0.570166\pi\)
\(480\) −17389.7 −1.65360
\(481\) −15931.1 −1.51017
\(482\) −8652.89 −0.817693
\(483\) 7154.78 0.674025
\(484\) 0 0
\(485\) 18633.2 1.74452
\(486\) 14641.3 1.36655
\(487\) 16788.0 1.56209 0.781045 0.624474i \(-0.214687\pi\)
0.781045 + 0.624474i \(0.214687\pi\)
\(488\) −119.983 −0.0111299
\(489\) 21886.8 2.02404
\(490\) 2071.25 0.190958
\(491\) −10364.3 −0.952614 −0.476307 0.879279i \(-0.658025\pi\)
−0.476307 + 0.879279i \(0.658025\pi\)
\(492\) 3084.14 0.282609
\(493\) −3550.00 −0.324308
\(494\) −16745.5 −1.52513
\(495\) 0 0
\(496\) 8482.78 0.767919
\(497\) −5995.23 −0.541092
\(498\) −25038.5 −2.25302
\(499\) −18075.0 −1.62154 −0.810768 0.585368i \(-0.800950\pi\)
−0.810768 + 0.585368i \(0.800950\pi\)
\(500\) 11796.7 1.05513
\(501\) −18421.0 −1.64269
\(502\) 18545.3 1.64884
\(503\) 13824.0 1.22541 0.612704 0.790312i \(-0.290082\pi\)
0.612704 + 0.790312i \(0.290082\pi\)
\(504\) −24.4409 −0.00216008
\(505\) 3579.66 0.315432
\(506\) 0 0
\(507\) 9282.49 0.813116
\(508\) −8028.56 −0.701200
\(509\) −1438.23 −0.125242 −0.0626212 0.998037i \(-0.519946\pi\)
−0.0626212 + 0.998037i \(0.519946\pi\)
\(510\) 9070.40 0.787537
\(511\) −738.867 −0.0639639
\(512\) −16412.3 −1.41665
\(513\) −5642.65 −0.485632
\(514\) −22234.6 −1.90803
\(515\) −11027.0 −0.943508
\(516\) −13504.3 −1.15212
\(517\) 0 0
\(518\) 7406.57 0.628235
\(519\) 20920.1 1.76934
\(520\) 155.136 0.0130830
\(521\) −7030.47 −0.591191 −0.295596 0.955313i \(-0.595518\pi\)
−0.295596 + 0.955313i \(0.595518\pi\)
\(522\) 6105.09 0.511902
\(523\) 12311.3 1.02932 0.514662 0.857393i \(-0.327918\pi\)
0.514662 + 0.857393i \(0.327918\pi\)
\(524\) 21042.6 1.75429
\(525\) −618.682 −0.0514314
\(526\) −2242.08 −0.185854
\(527\) −4458.47 −0.368528
\(528\) 0 0
\(529\) 13113.9 1.07783
\(530\) 23651.5 1.93840
\(531\) 11995.8 0.980361
\(532\) 3907.34 0.318430
\(533\) 3591.38 0.291858
\(534\) −20075.5 −1.62688
\(535\) 11502.8 0.929553
\(536\) 98.0838 0.00790406
\(537\) −21340.0 −1.71488
\(538\) 15633.5 1.25281
\(539\) 0 0
\(540\) 6928.05 0.552103
\(541\) −21377.6 −1.69888 −0.849442 0.527681i \(-0.823062\pi\)
−0.849442 + 0.527681i \(0.823062\pi\)
\(542\) −20303.8 −1.60908
\(543\) 15884.5 1.25538
\(544\) 8561.05 0.674728
\(545\) −16359.8 −1.28583
\(546\) −10881.6 −0.852912
\(547\) 6871.32 0.537105 0.268552 0.963265i \(-0.413455\pi\)
0.268552 + 0.963265i \(0.413455\pi\)
\(548\) 948.259 0.0739190
\(549\) 7050.83 0.548128
\(550\) 0 0
\(551\) −7364.51 −0.569399
\(552\) −249.143 −0.0192105
\(553\) 3125.67 0.240356
\(554\) 25040.7 1.92035
\(555\) 17901.5 1.36915
\(556\) 7947.65 0.606214
\(557\) 5440.65 0.413874 0.206937 0.978354i \(-0.433650\pi\)
0.206937 + 0.978354i \(0.433650\pi\)
\(558\) 7667.44 0.581700
\(559\) −15725.4 −1.18983
\(560\) 4689.11 0.353841
\(561\) 0 0
\(562\) −24568.8 −1.84408
\(563\) 4349.17 0.325570 0.162785 0.986662i \(-0.447952\pi\)
0.162785 + 0.986662i \(0.447952\pi\)
\(564\) 11008.9 0.821912
\(565\) −13633.8 −1.01518
\(566\) −19331.4 −1.43562
\(567\) −6374.00 −0.472103
\(568\) 208.765 0.0154218
\(569\) −15711.4 −1.15757 −0.578785 0.815480i \(-0.696473\pi\)
−0.578785 + 0.815480i \(0.696473\pi\)
\(570\) 18816.7 1.38271
\(571\) 23775.8 1.74253 0.871266 0.490812i \(-0.163300\pi\)
0.871266 + 0.490812i \(0.163300\pi\)
\(572\) 0 0
\(573\) 29816.7 2.17384
\(574\) −1669.68 −0.121413
\(575\) −2186.07 −0.158548
\(576\) −7445.05 −0.538560
\(577\) −9031.16 −0.651598 −0.325799 0.945439i \(-0.605633\pi\)
−0.325799 + 0.945439i \(0.605633\pi\)
\(578\) 15223.9 1.09556
\(579\) 31175.0 2.23763
\(580\) 9042.14 0.647335
\(581\) 6803.32 0.485799
\(582\) 45511.5 3.24143
\(583\) 0 0
\(584\) 25.7287 0.00182305
\(585\) −9116.55 −0.644312
\(586\) −11932.7 −0.841185
\(587\) 13460.1 0.946439 0.473220 0.880945i \(-0.343092\pi\)
0.473220 + 0.880945i \(0.343092\pi\)
\(588\) 2539.09 0.178078
\(589\) −9249.16 −0.647037
\(590\) 35399.3 2.47011
\(591\) −20527.2 −1.42872
\(592\) 16767.8 1.16411
\(593\) 8573.25 0.593695 0.296848 0.954925i \(-0.404065\pi\)
0.296848 + 0.954925i \(0.404065\pi\)
\(594\) 0 0
\(595\) −2464.56 −0.169810
\(596\) 4220.64 0.290074
\(597\) −19675.0 −1.34882
\(598\) −38449.4 −2.62929
\(599\) 7719.48 0.526560 0.263280 0.964720i \(-0.415196\pi\)
0.263280 + 0.964720i \(0.415196\pi\)
\(600\) 21.5436 0.00146586
\(601\) 11571.5 0.785378 0.392689 0.919671i \(-0.371545\pi\)
0.392689 + 0.919671i \(0.371545\pi\)
\(602\) 7310.95 0.494970
\(603\) −5763.90 −0.389261
\(604\) 11032.8 0.743244
\(605\) 0 0
\(606\) 8743.31 0.586094
\(607\) 15871.8 1.06131 0.530654 0.847588i \(-0.321946\pi\)
0.530654 + 0.847588i \(0.321946\pi\)
\(608\) 17760.0 1.18464
\(609\) −4785.64 −0.318430
\(610\) 20806.9 1.38106
\(611\) 12819.5 0.848810
\(612\) 3854.22 0.254571
\(613\) −22045.9 −1.45257 −0.726286 0.687393i \(-0.758755\pi\)
−0.726286 + 0.687393i \(0.758755\pi\)
\(614\) −2457.22 −0.161507
\(615\) −4035.59 −0.264602
\(616\) 0 0
\(617\) −7518.67 −0.490584 −0.245292 0.969449i \(-0.578884\pi\)
−0.245292 + 0.969449i \(0.578884\pi\)
\(618\) −26933.3 −1.75310
\(619\) 14304.5 0.928829 0.464415 0.885618i \(-0.346265\pi\)
0.464415 + 0.885618i \(0.346265\pi\)
\(620\) 11356.1 0.735600
\(621\) −12956.1 −0.837218
\(622\) −14681.3 −0.946409
\(623\) 5454.80 0.350790
\(624\) −24634.9 −1.58043
\(625\) −13717.4 −0.877911
\(626\) −15014.0 −0.958597
\(627\) 0 0
\(628\) −542.762 −0.0344882
\(629\) −8812.99 −0.558660
\(630\) 4238.41 0.268035
\(631\) −17226.2 −1.08679 −0.543396 0.839476i \(-0.682862\pi\)
−0.543396 + 0.839476i \(0.682862\pi\)
\(632\) −108.842 −0.00685045
\(633\) −11926.0 −0.748840
\(634\) 20666.5 1.29459
\(635\) 10505.3 0.656523
\(636\) 28993.7 1.80766
\(637\) 2956.69 0.183906
\(638\) 0 0
\(639\) −12268.1 −0.759496
\(640\) −329.078 −0.0203249
\(641\) 21684.0 1.33614 0.668071 0.744098i \(-0.267120\pi\)
0.668071 + 0.744098i \(0.267120\pi\)
\(642\) 28095.6 1.72717
\(643\) −18945.1 −1.16193 −0.580966 0.813928i \(-0.697325\pi\)
−0.580966 + 0.813928i \(0.697325\pi\)
\(644\) 8971.68 0.548966
\(645\) 17670.4 1.07871
\(646\) −9263.53 −0.564193
\(647\) 14479.4 0.879819 0.439909 0.898042i \(-0.355011\pi\)
0.439909 + 0.898042i \(0.355011\pi\)
\(648\) 221.954 0.0134555
\(649\) 0 0
\(650\) 3324.76 0.200627
\(651\) −6010.32 −0.361848
\(652\) 27444.8 1.64850
\(653\) −5549.22 −0.332554 −0.166277 0.986079i \(-0.553175\pi\)
−0.166277 + 0.986079i \(0.553175\pi\)
\(654\) −39958.8 −2.38916
\(655\) −27534.1 −1.64251
\(656\) −3780.01 −0.224976
\(657\) −1511.95 −0.0897819
\(658\) −5959.98 −0.353107
\(659\) −18756.9 −1.10875 −0.554375 0.832267i \(-0.687043\pi\)
−0.554375 + 0.832267i \(0.687043\pi\)
\(660\) 0 0
\(661\) 14240.3 0.837945 0.418973 0.907999i \(-0.362390\pi\)
0.418973 + 0.907999i \(0.362390\pi\)
\(662\) −6423.86 −0.377146
\(663\) 12947.9 0.758454
\(664\) −236.904 −0.0138459
\(665\) −5112.75 −0.298141
\(666\) 15156.1 0.881813
\(667\) −16909.7 −0.981629
\(668\) −23098.8 −1.33790
\(669\) 4090.88 0.236417
\(670\) −17009.2 −0.980780
\(671\) 0 0
\(672\) 11540.9 0.662498
\(673\) −30202.7 −1.72991 −0.864955 0.501849i \(-0.832653\pi\)
−0.864955 + 0.501849i \(0.832653\pi\)
\(674\) 25551.6 1.46025
\(675\) 1120.33 0.0638838
\(676\) 11639.7 0.662250
\(677\) 9296.11 0.527738 0.263869 0.964559i \(-0.415001\pi\)
0.263869 + 0.964559i \(0.415001\pi\)
\(678\) −33300.6 −1.88628
\(679\) −12366.1 −0.698922
\(680\) 85.8203 0.00483979
\(681\) 32242.6 1.81430
\(682\) 0 0
\(683\) −5266.10 −0.295024 −0.147512 0.989060i \(-0.547127\pi\)
−0.147512 + 0.989060i \(0.547127\pi\)
\(684\) 7995.62 0.446960
\(685\) −1240.79 −0.0692092
\(686\) −1374.61 −0.0765054
\(687\) 16610.0 0.922432
\(688\) 16551.3 0.917169
\(689\) 33762.2 1.86682
\(690\) 43205.1 2.38375
\(691\) 1655.42 0.0911360 0.0455680 0.998961i \(-0.485490\pi\)
0.0455680 + 0.998961i \(0.485490\pi\)
\(692\) 26232.5 1.44106
\(693\) 0 0
\(694\) −4284.79 −0.234364
\(695\) −10399.5 −0.567589
\(696\) 166.645 0.00907564
\(697\) 1986.74 0.107967
\(698\) 18522.1 1.00440
\(699\) −11728.5 −0.634641
\(700\) −775.791 −0.0418888
\(701\) −1649.62 −0.0888803 −0.0444402 0.999012i \(-0.514150\pi\)
−0.0444402 + 0.999012i \(0.514150\pi\)
\(702\) 19704.8 1.05942
\(703\) −18282.7 −0.980859
\(704\) 0 0
\(705\) −14405.1 −0.769544
\(706\) −5488.55 −0.292584
\(707\) −2375.68 −0.126374
\(708\) 43395.1 2.30351
\(709\) 6209.02 0.328893 0.164446 0.986386i \(-0.447416\pi\)
0.164446 + 0.986386i \(0.447416\pi\)
\(710\) −36202.9 −1.91362
\(711\) 6396.08 0.337372
\(712\) −189.946 −0.00999794
\(713\) −21237.1 −1.11548
\(714\) −6019.66 −0.315519
\(715\) 0 0
\(716\) −26759.1 −1.39670
\(717\) 34257.5 1.78434
\(718\) −17978.6 −0.934476
\(719\) −28127.4 −1.45894 −0.729469 0.684014i \(-0.760233\pi\)
−0.729469 + 0.684014i \(0.760233\pi\)
\(720\) 9595.36 0.496664
\(721\) 7318.16 0.378007
\(722\) 8270.79 0.426326
\(723\) 13879.7 0.713956
\(724\) 19918.3 1.02245
\(725\) 1462.20 0.0749031
\(726\) 0 0
\(727\) −24136.1 −1.23130 −0.615652 0.788018i \(-0.711107\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(728\) −102.957 −0.00524155
\(729\) 1099.96 0.0558837
\(730\) −4461.74 −0.226214
\(731\) −8699.22 −0.440154
\(732\) 25506.6 1.28791
\(733\) −21669.1 −1.09191 −0.545953 0.837816i \(-0.683832\pi\)
−0.545953 + 0.837816i \(0.683832\pi\)
\(734\) 22950.8 1.15413
\(735\) −3322.39 −0.166732
\(736\) 40778.9 2.04230
\(737\) 0 0
\(738\) −3416.69 −0.170420
\(739\) 35191.4 1.75174 0.875870 0.482548i \(-0.160288\pi\)
0.875870 + 0.482548i \(0.160288\pi\)
\(740\) 22447.4 1.11511
\(741\) 26860.6 1.33164
\(742\) −15696.5 −0.776601
\(743\) −22771.0 −1.12434 −0.562172 0.827020i \(-0.690034\pi\)
−0.562172 + 0.827020i \(0.690034\pi\)
\(744\) 209.290 0.0103131
\(745\) −5522.69 −0.271592
\(746\) 53741.8 2.63757
\(747\) 13921.7 0.681884
\(748\) 0 0
\(749\) −7633.97 −0.372416
\(750\) −37702.3 −1.83559
\(751\) −31234.7 −1.51767 −0.758834 0.651284i \(-0.774231\pi\)
−0.758834 + 0.651284i \(0.774231\pi\)
\(752\) −13492.8 −0.654299
\(753\) −29747.5 −1.43966
\(754\) 25717.7 1.24216
\(755\) −14436.4 −0.695888
\(756\) −4597.87 −0.221194
\(757\) −3601.63 −0.172924 −0.0864619 0.996255i \(-0.527556\pi\)
−0.0864619 + 0.996255i \(0.527556\pi\)
\(758\) −47273.6 −2.26524
\(759\) 0 0
\(760\) 178.035 0.00849739
\(761\) 25457.1 1.21264 0.606319 0.795221i \(-0.292645\pi\)
0.606319 + 0.795221i \(0.292645\pi\)
\(762\) 25659.2 1.21986
\(763\) 10857.4 0.515155
\(764\) 37388.4 1.77051
\(765\) −5043.24 −0.238351
\(766\) 42737.2 2.01587
\(767\) 50532.2 2.37890
\(768\) 25925.7 1.21812
\(769\) −10381.4 −0.486816 −0.243408 0.969924i \(-0.578265\pi\)
−0.243408 + 0.969924i \(0.578265\pi\)
\(770\) 0 0
\(771\) 35665.4 1.66596
\(772\) 39091.6 1.82246
\(773\) −14476.9 −0.673607 −0.336804 0.941575i \(-0.609346\pi\)
−0.336804 + 0.941575i \(0.609346\pi\)
\(774\) 14960.4 0.694757
\(775\) 1836.39 0.0851163
\(776\) 430.611 0.0199201
\(777\) −11880.5 −0.548534
\(778\) −11749.0 −0.541415
\(779\) 4121.51 0.189562
\(780\) −32979.4 −1.51391
\(781\) 0 0
\(782\) −21270.1 −0.972655
\(783\) 8666.00 0.395527
\(784\) −3111.98 −0.141763
\(785\) 710.203 0.0322907
\(786\) −67251.9 −3.05191
\(787\) 11803.9 0.534645 0.267322 0.963607i \(-0.413861\pi\)
0.267322 + 0.963607i \(0.413861\pi\)
\(788\) −25739.9 −1.16364
\(789\) 3596.41 0.162276
\(790\) 18874.7 0.850042
\(791\) 9048.23 0.406723
\(792\) 0 0
\(793\) 29701.7 1.33006
\(794\) 33974.0 1.51851
\(795\) −37938.1 −1.69249
\(796\) −24671.4 −1.09856
\(797\) −5079.93 −0.225772 −0.112886 0.993608i \(-0.536010\pi\)
−0.112886 + 0.993608i \(0.536010\pi\)
\(798\) −12487.9 −0.553967
\(799\) 7091.71 0.314001
\(800\) −3526.19 −0.155837
\(801\) 11162.2 0.492381
\(802\) 48019.8 2.11426
\(803\) 0 0
\(804\) −20851.1 −0.914629
\(805\) −11739.4 −0.513988
\(806\) 32299.2 1.41153
\(807\) −25077.0 −1.09387
\(808\) 82.7256 0.00360183
\(809\) −8699.51 −0.378070 −0.189035 0.981970i \(-0.560536\pi\)
−0.189035 + 0.981970i \(0.560536\pi\)
\(810\) −38490.2 −1.66964
\(811\) 15480.1 0.670259 0.335130 0.942172i \(-0.391220\pi\)
0.335130 + 0.942172i \(0.391220\pi\)
\(812\) −6000.91 −0.259348
\(813\) 32568.2 1.40494
\(814\) 0 0
\(815\) −35911.4 −1.54346
\(816\) −13627.9 −0.584649
\(817\) −18046.6 −0.772793
\(818\) 28837.1 1.23260
\(819\) 6050.29 0.258137
\(820\) −5060.39 −0.215508
\(821\) −15593.0 −0.662849 −0.331425 0.943482i \(-0.607529\pi\)
−0.331425 + 0.943482i \(0.607529\pi\)
\(822\) −3030.63 −0.128595
\(823\) −36816.1 −1.55933 −0.779665 0.626197i \(-0.784611\pi\)
−0.779665 + 0.626197i \(0.784611\pi\)
\(824\) −254.832 −0.0107737
\(825\) 0 0
\(826\) −23493.1 −0.989626
\(827\) 12108.9 0.509149 0.254575 0.967053i \(-0.418065\pi\)
0.254575 + 0.967053i \(0.418065\pi\)
\(828\) 18358.8 0.770547
\(829\) 5851.08 0.245134 0.122567 0.992460i \(-0.460887\pi\)
0.122567 + 0.992460i \(0.460887\pi\)
\(830\) 41082.7 1.71807
\(831\) −40166.5 −1.67673
\(832\) −31362.3 −1.30684
\(833\) 1635.63 0.0680326
\(834\) −25400.7 −1.05462
\(835\) 30224.8 1.25266
\(836\) 0 0
\(837\) 10883.7 0.449458
\(838\) 212.311 0.00875199
\(839\) 22806.8 0.938473 0.469237 0.883072i \(-0.344529\pi\)
0.469237 + 0.883072i \(0.344529\pi\)
\(840\) 115.692 0.00475207
\(841\) −13078.6 −0.536249
\(842\) −10661.3 −0.436359
\(843\) 39409.6 1.61013
\(844\) −14954.5 −0.609900
\(845\) −15230.5 −0.620054
\(846\) −12195.9 −0.495633
\(847\) 0 0
\(848\) −35535.5 −1.43902
\(849\) 31008.6 1.25349
\(850\) 1839.24 0.0742183
\(851\) −41979.0 −1.69098
\(852\) −44380.2 −1.78455
\(853\) 42190.7 1.69353 0.846765 0.531968i \(-0.178547\pi\)
0.846765 + 0.531968i \(0.178547\pi\)
\(854\) −13808.7 −0.553308
\(855\) −10462.3 −0.418481
\(856\) 265.829 0.0106143
\(857\) 7162.44 0.285489 0.142745 0.989760i \(-0.454407\pi\)
0.142745 + 0.989760i \(0.454407\pi\)
\(858\) 0 0
\(859\) −38407.9 −1.52557 −0.762783 0.646654i \(-0.776168\pi\)
−0.762783 + 0.646654i \(0.776168\pi\)
\(860\) 22157.6 0.878569
\(861\) 2678.26 0.106010
\(862\) 11473.3 0.453344
\(863\) 10042.3 0.396112 0.198056 0.980191i \(-0.436537\pi\)
0.198056 + 0.980191i \(0.436537\pi\)
\(864\) −20898.6 −0.822900
\(865\) −34325.2 −1.34924
\(866\) 32700.0 1.28313
\(867\) −24419.9 −0.956568
\(868\) −7536.60 −0.294711
\(869\) 0 0
\(870\) −28898.7 −1.12616
\(871\) −24280.5 −0.944561
\(872\) −378.073 −0.0146825
\(873\) −25304.9 −0.981031
\(874\) −44125.0 −1.70772
\(875\) 10244.2 0.395793
\(876\) −5469.52 −0.210957
\(877\) 49108.6 1.89085 0.945427 0.325835i \(-0.105645\pi\)
0.945427 + 0.325835i \(0.105645\pi\)
\(878\) −29453.5 −1.13213
\(879\) 19140.6 0.734468
\(880\) 0 0
\(881\) 17395.9 0.665245 0.332623 0.943060i \(-0.392066\pi\)
0.332623 + 0.943060i \(0.392066\pi\)
\(882\) −2812.86 −0.107386
\(883\) −27861.5 −1.06185 −0.530925 0.847419i \(-0.678155\pi\)
−0.530925 + 0.847419i \(0.678155\pi\)
\(884\) 16235.9 0.617730
\(885\) −56782.3 −2.15674
\(886\) 6560.77 0.248774
\(887\) −30594.6 −1.15813 −0.579067 0.815280i \(-0.696583\pi\)
−0.579067 + 0.815280i \(0.696583\pi\)
\(888\) 413.701 0.0156339
\(889\) −6971.98 −0.263029
\(890\) 32939.5 1.24060
\(891\) 0 0
\(892\) 5129.73 0.192552
\(893\) 14711.8 0.551302
\(894\) −13489.1 −0.504636
\(895\) 35014.3 1.30771
\(896\) 218.396 0.00814297
\(897\) 61674.8 2.29572
\(898\) −25685.5 −0.954494
\(899\) 14204.9 0.526985
\(900\) −1587.51 −0.0587965
\(901\) 18677.1 0.690594
\(902\) 0 0
\(903\) −11727.1 −0.432176
\(904\) −315.076 −0.0115921
\(905\) −26063.0 −0.957307
\(906\) −35260.9 −1.29301
\(907\) 16597.9 0.607634 0.303817 0.952730i \(-0.401739\pi\)
0.303817 + 0.952730i \(0.401739\pi\)
\(908\) 40430.3 1.47767
\(909\) −4861.37 −0.177383
\(910\) 17854.3 0.650401
\(911\) 242.944 0.00883543 0.00441772 0.999990i \(-0.498594\pi\)
0.00441772 + 0.999990i \(0.498594\pi\)
\(912\) −28271.3 −1.02649
\(913\) 0 0
\(914\) −29917.0 −1.08268
\(915\) −33375.3 −1.20585
\(916\) 20828.0 0.751283
\(917\) 18273.3 0.658056
\(918\) 10900.6 0.391911
\(919\) −1920.43 −0.0689327 −0.0344663 0.999406i \(-0.510973\pi\)
−0.0344663 + 0.999406i \(0.510973\pi\)
\(920\) 408.788 0.0146493
\(921\) 3941.50 0.141017
\(922\) 55708.9 1.98989
\(923\) −51679.4 −1.84295
\(924\) 0 0
\(925\) 3629.96 0.129030
\(926\) 38130.7 1.35319
\(927\) 14975.2 0.530583
\(928\) −27275.9 −0.964842
\(929\) −49689.0 −1.75484 −0.877419 0.479725i \(-0.840736\pi\)
−0.877419 + 0.479725i \(0.840736\pi\)
\(930\) −36294.1 −1.27971
\(931\) 3393.13 0.119447
\(932\) −14706.9 −0.516889
\(933\) 23549.5 0.826342
\(934\) −32192.1 −1.12779
\(935\) 0 0
\(936\) −210.682 −0.00735722
\(937\) −38642.1 −1.34726 −0.673629 0.739069i \(-0.735266\pi\)
−0.673629 + 0.739069i \(0.735266\pi\)
\(938\) 11288.3 0.392939
\(939\) 24083.3 0.836984
\(940\) −18063.2 −0.626762
\(941\) −16537.8 −0.572921 −0.286460 0.958092i \(-0.592479\pi\)
−0.286460 + 0.958092i \(0.592479\pi\)
\(942\) 1734.67 0.0599984
\(943\) 9463.44 0.326800
\(944\) −53186.2 −1.83375
\(945\) 6016.30 0.207101
\(946\) 0 0
\(947\) −16166.1 −0.554729 −0.277365 0.960765i \(-0.589461\pi\)
−0.277365 + 0.960765i \(0.589461\pi\)
\(948\) 23138.0 0.792709
\(949\) −6369.09 −0.217860
\(950\) 3815.53 0.130308
\(951\) −33150.1 −1.13035
\(952\) −56.9555 −0.00193901
\(953\) 15004.7 0.510020 0.255010 0.966938i \(-0.417921\pi\)
0.255010 + 0.966938i \(0.417921\pi\)
\(954\) −32119.9 −1.09006
\(955\) −48922.7 −1.65770
\(956\) 42956.9 1.45327
\(957\) 0 0
\(958\) 18372.5 0.619612
\(959\) 823.466 0.0277279
\(960\) 35241.4 1.18480
\(961\) −11951.0 −0.401160
\(962\) 63845.2 2.13976
\(963\) −15621.4 −0.522735
\(964\) 17404.3 0.581488
\(965\) −51151.2 −1.70634
\(966\) −28673.5 −0.955025
\(967\) −23983.8 −0.797589 −0.398794 0.917040i \(-0.630571\pi\)
−0.398794 + 0.917040i \(0.630571\pi\)
\(968\) 0 0
\(969\) 14859.2 0.492616
\(970\) −74674.3 −2.47180
\(971\) −31184.5 −1.03065 −0.515323 0.856996i \(-0.672328\pi\)
−0.515323 + 0.856996i \(0.672328\pi\)
\(972\) −29449.4 −0.971800
\(973\) 6901.72 0.227399
\(974\) −67279.6 −2.21333
\(975\) −5333.09 −0.175175
\(976\) −31261.6 −1.02527
\(977\) −3320.82 −0.108744 −0.0543718 0.998521i \(-0.517316\pi\)
−0.0543718 + 0.998521i \(0.517316\pi\)
\(978\) −87713.4 −2.86786
\(979\) 0 0
\(980\) −4166.08 −0.135796
\(981\) 22217.5 0.723089
\(982\) 41535.9 1.34976
\(983\) 8000.50 0.259589 0.129795 0.991541i \(-0.458568\pi\)
0.129795 + 0.991541i \(0.458568\pi\)
\(984\) −93.2618 −0.00302142
\(985\) 33680.6 1.08949
\(986\) 14227.0 0.459512
\(987\) 9560.11 0.308310
\(988\) 33681.6 1.08457
\(989\) −41437.0 −1.33228
\(990\) 0 0
\(991\) 37294.6 1.19546 0.597731 0.801697i \(-0.296069\pi\)
0.597731 + 0.801697i \(0.296069\pi\)
\(992\) −34256.0 −1.09640
\(993\) 10304.2 0.329299
\(994\) 24026.5 0.766673
\(995\) 32282.4 1.02856
\(996\) 50362.1 1.60219
\(997\) −16065.0 −0.510315 −0.255158 0.966899i \(-0.582127\pi\)
−0.255158 + 0.966899i \(0.582127\pi\)
\(998\) 72437.1 2.29755
\(999\) 21513.7 0.681343
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.k.1.2 yes 8
11.10 odd 2 847.4.a.j.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.4.a.j.1.7 8 11.10 odd 2
847.4.a.k.1.2 yes 8 1.1 even 1 trivial