Properties

Label 2-847-1.1-c3-0-51
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.00·2-s + 6.42·3-s + 8.06·4-s − 10.5·5-s − 25.7·6-s + 7·7-s − 0.243·8-s + 14.3·9-s + 42.2·10-s + 51.8·12-s + 60.3·13-s − 28.0·14-s − 67.8·15-s − 63.5·16-s + 33.3·17-s − 57.4·18-s + 69.2·19-s − 85.0·20-s + 44.9·21-s + 158.·23-s − 1.56·24-s − 13.7·25-s − 241.·26-s − 81.4·27-s + 56.4·28-s − 106.·29-s + 271.·30-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.23·3-s + 1.00·4-s − 0.943·5-s − 1.75·6-s + 0.377·7-s − 0.0107·8-s + 0.530·9-s + 1.33·10-s + 1.24·12-s + 1.28·13-s − 0.535·14-s − 1.16·15-s − 0.992·16-s + 0.476·17-s − 0.751·18-s + 0.836·19-s − 0.950·20-s + 0.467·21-s + 1.44·23-s − 0.0133·24-s − 0.109·25-s − 1.82·26-s − 0.580·27-s + 0.380·28-s − 0.680·29-s + 1.65·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.380583027\)
\(L(\frac12)\) \(\approx\) \(1.380583027\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 + 4.00T + 8T^{2} \)
3 \( 1 - 6.42T + 27T^{2} \)
5 \( 1 + 10.5T + 125T^{2} \)
13 \( 1 - 60.3T + 2.19e3T^{2} \)
17 \( 1 - 33.3T + 4.91e3T^{2} \)
19 \( 1 - 69.2T + 6.85e3T^{2} \)
23 \( 1 - 158.T + 1.21e4T^{2} \)
29 \( 1 + 106.T + 2.43e4T^{2} \)
31 \( 1 + 133.T + 2.97e4T^{2} \)
37 \( 1 + 264.T + 5.06e4T^{2} \)
41 \( 1 - 59.5T + 6.89e4T^{2} \)
43 \( 1 + 260.T + 7.95e4T^{2} \)
47 \( 1 - 212.T + 1.03e5T^{2} \)
53 \( 1 - 559.T + 1.48e5T^{2} \)
59 \( 1 - 837.T + 2.05e5T^{2} \)
61 \( 1 - 492.T + 2.26e5T^{2} \)
67 \( 1 + 402.T + 3.00e5T^{2} \)
71 \( 1 + 856.T + 3.57e5T^{2} \)
73 \( 1 + 105.T + 3.89e5T^{2} \)
79 \( 1 - 446.T + 4.93e5T^{2} \)
83 \( 1 - 971.T + 5.71e5T^{2} \)
89 \( 1 - 779.T + 7.04e5T^{2} \)
97 \( 1 + 1.76e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.460725880174385999074603390132, −8.731963651829442138361340192164, −8.403202196944052548347872532992, −7.54724503778494531131185807331, −7.07754582821565292896398255011, −5.42784929046123380180982436608, −3.96945959670939617518896578832, −3.23162880820578030153787443255, −1.86691334685343582803074136337, −0.78529799546358322298581348352, 0.78529799546358322298581348352, 1.86691334685343582803074136337, 3.23162880820578030153787443255, 3.96945959670939617518896578832, 5.42784929046123380180982436608, 7.07754582821565292896398255011, 7.54724503778494531131185807331, 8.403202196944052548347872532992, 8.731963651829442138361340192164, 9.460725880174385999074603390132

Graph of the $Z$-function along the critical line