Properties

Label 847.4.a.f
Level $847$
Weight $4$
Character orbit 847.a
Self dual yes
Analytic conductor $49.975$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,4,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{3} q^{3} + (\beta_{2} + \beta_1 + 9) q^{4} + (\beta_{4} + \beta_{3} - 4) q^{5} + (2 \beta_{4} + 2 \beta_{3} + \beta_{2} + 1) q^{6} - 7 q^{7} + ( - 2 \beta_{4} - 2 \beta_{3} + \cdots - 11) q^{8}+ \cdots - 49 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 2 q^{3} + 45 q^{4} - 24 q^{5} - 4 q^{6} - 35 q^{7} - 57 q^{8} + 63 q^{9} + 10 q^{10} + 24 q^{12} + 50 q^{13} + 7 q^{14} - 146 q^{15} + 433 q^{16} - 222 q^{17} - 245 q^{18} - 160 q^{19} - 430 q^{20}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 34\nu^{2} + 34\nu + 152 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 5\nu^{3} + 38\nu^{2} - 138\nu - 264 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + 2\beta_{3} - \beta_{2} + 25\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 10\beta_{3} + 33\beta_{2} + 25\beta _1 + 437 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.41547
4.44399
−1.22767
−2.18888
−5.44291
−5.41547 −5.03332 21.3273 5.67299 27.2578 −7.00000 −72.1734 −1.66567 −30.7219
1.2 −4.44399 8.26395 11.7491 −22.0150 −36.7249 −7.00000 −16.6609 41.2928 97.8345
1.3 1.22767 −7.89221 −6.49284 −2.21191 −9.68899 −7.00000 −17.7924 35.2869 −2.71549
1.4 2.18888 6.48496 −3.20880 7.60736 14.1948 −7.00000 −24.5347 15.0547 16.6516
1.5 5.44291 0.176620 21.6253 −13.0534 0.961327 −7.00000 74.1613 −26.9688 −71.0487
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.4.a.f 5
11.b odd 2 1 77.4.a.e 5
33.d even 2 1 693.4.a.o 5
44.c even 2 1 1232.4.a.y 5
55.d odd 2 1 1925.4.a.r 5
77.b even 2 1 539.4.a.h 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.4.a.e 5 11.b odd 2 1
539.4.a.h 5 77.b even 2 1
693.4.a.o 5 33.d even 2 1
847.4.a.f 5 1.a even 1 1 trivial
1232.4.a.y 5 44.c even 2 1
1925.4.a.r 5 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + T_{2}^{4} - 42T_{2}^{3} - 18T_{2}^{2} + 368T_{2} - 352 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(847))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} + \cdots - 352 \) Copy content Toggle raw display
$3$ \( T^{5} - 2 T^{4} + \cdots - 376 \) Copy content Toggle raw display
$5$ \( T^{5} + 24 T^{4} + \cdots + 27432 \) Copy content Toggle raw display
$7$ \( (T + 7)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 50 T^{4} + \cdots + 592704 \) Copy content Toggle raw display
$17$ \( T^{5} + 222 T^{4} + \cdots + 848713296 \) Copy content Toggle raw display
$19$ \( T^{5} + 160 T^{4} + \cdots + 231728000 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 11393959488 \) Copy content Toggle raw display
$29$ \( T^{5} + 14 T^{4} + \cdots + 217521440 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 5076110528 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 338018607168 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 97487626768 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 326743954944 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 414600941568 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 10851403442304 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 360770783496 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 2506564965968 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 4961616838944 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 1058966690112 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 15144540953200 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 841495667968 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 729734179328 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 75449135393496 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 94604344400216 \) Copy content Toggle raw display
show more
show less