Properties

Label 847.4.a.f.1.2
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,4,Mod(1,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.44399\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.44399 q^{2} +8.26395 q^{3} +11.7491 q^{4} -22.0150 q^{5} -36.7249 q^{6} -7.00000 q^{7} -16.6609 q^{8} +41.2928 q^{9} +97.8345 q^{10} +97.0937 q^{12} +51.5769 q^{13} +31.1080 q^{14} -181.931 q^{15} -19.9519 q^{16} +26.5590 q^{17} -183.505 q^{18} -99.6432 q^{19} -258.656 q^{20} -57.8476 q^{21} +28.1455 q^{23} -137.684 q^{24} +359.660 q^{25} -229.207 q^{26} +118.115 q^{27} -82.2435 q^{28} +43.9369 q^{29} +808.499 q^{30} -83.8402 q^{31} +221.953 q^{32} -118.028 q^{34} +154.105 q^{35} +485.152 q^{36} +306.353 q^{37} +442.814 q^{38} +426.228 q^{39} +366.789 q^{40} -200.991 q^{41} +257.074 q^{42} +13.7546 q^{43} -909.062 q^{45} -125.079 q^{46} -266.533 q^{47} -164.881 q^{48} +49.0000 q^{49} -1598.33 q^{50} +219.482 q^{51} +605.980 q^{52} +308.867 q^{53} -524.903 q^{54} +116.626 q^{56} -823.446 q^{57} -195.255 q^{58} -622.446 q^{59} -2137.52 q^{60} +87.3303 q^{61} +372.585 q^{62} -289.050 q^{63} -826.742 q^{64} -1135.46 q^{65} +608.395 q^{67} +312.044 q^{68} +232.593 q^{69} -684.842 q^{70} -464.926 q^{71} -687.974 q^{72} +255.407 q^{73} -1361.43 q^{74} +2972.21 q^{75} -1170.72 q^{76} -1894.16 q^{78} -261.237 q^{79} +439.240 q^{80} -138.809 q^{81} +893.204 q^{82} -953.986 q^{83} -679.656 q^{84} -584.696 q^{85} -61.1255 q^{86} +363.092 q^{87} -839.910 q^{89} +4039.86 q^{90} -361.038 q^{91} +330.684 q^{92} -692.851 q^{93} +1184.47 q^{94} +2193.64 q^{95} +1834.21 q^{96} -349.146 q^{97} -217.756 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 2 q^{3} + 45 q^{4} - 24 q^{5} - 4 q^{6} - 35 q^{7} - 57 q^{8} + 63 q^{9} + 10 q^{10} + 24 q^{12} + 50 q^{13} + 7 q^{14} - 146 q^{15} + 433 q^{16} - 222 q^{17} - 245 q^{18} - 160 q^{19} - 430 q^{20}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.44399 −1.57119 −0.785594 0.618742i \(-0.787643\pi\)
−0.785594 + 0.618742i \(0.787643\pi\)
\(3\) 8.26395 1.59040 0.795199 0.606349i \(-0.207367\pi\)
0.795199 + 0.606349i \(0.207367\pi\)
\(4\) 11.7491 1.46863
\(5\) −22.0150 −1.96908 −0.984541 0.175155i \(-0.943957\pi\)
−0.984541 + 0.175155i \(0.943957\pi\)
\(6\) −36.7249 −2.49881
\(7\) −7.00000 −0.377964
\(8\) −16.6609 −0.736313
\(9\) 41.2928 1.52936
\(10\) 97.8345 3.09380
\(11\) 0 0
\(12\) 97.0937 2.33571
\(13\) 51.5769 1.10037 0.550186 0.835042i \(-0.314557\pi\)
0.550186 + 0.835042i \(0.314557\pi\)
\(14\) 31.1080 0.593854
\(15\) −181.931 −3.13162
\(16\) −19.9519 −0.311748
\(17\) 26.5590 0.378912 0.189456 0.981889i \(-0.439328\pi\)
0.189456 + 0.981889i \(0.439328\pi\)
\(18\) −183.505 −2.40292
\(19\) −99.6432 −1.20314 −0.601571 0.798819i \(-0.705458\pi\)
−0.601571 + 0.798819i \(0.705458\pi\)
\(20\) −258.656 −2.89186
\(21\) −57.8476 −0.601114
\(22\) 0 0
\(23\) 28.1455 0.255163 0.127582 0.991828i \(-0.459279\pi\)
0.127582 + 0.991828i \(0.459279\pi\)
\(24\) −137.684 −1.17103
\(25\) 359.660 2.87728
\(26\) −229.207 −1.72889
\(27\) 118.115 0.841899
\(28\) −82.2435 −0.555092
\(29\) 43.9369 0.281340 0.140670 0.990057i \(-0.455074\pi\)
0.140670 + 0.990057i \(0.455074\pi\)
\(30\) 808.499 4.92037
\(31\) −83.8402 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(32\) 221.953 1.22613
\(33\) 0 0
\(34\) −118.028 −0.595342
\(35\) 154.105 0.744243
\(36\) 485.152 2.24608
\(37\) 306.353 1.36119 0.680596 0.732659i \(-0.261721\pi\)
0.680596 + 0.732659i \(0.261721\pi\)
\(38\) 442.814 1.89036
\(39\) 426.228 1.75003
\(40\) 366.789 1.44986
\(41\) −200.991 −0.765599 −0.382800 0.923831i \(-0.625040\pi\)
−0.382800 + 0.923831i \(0.625040\pi\)
\(42\) 257.074 0.944463
\(43\) 13.7546 0.0487805 0.0243903 0.999703i \(-0.492236\pi\)
0.0243903 + 0.999703i \(0.492236\pi\)
\(44\) 0 0
\(45\) −909.062 −3.01144
\(46\) −125.079 −0.400909
\(47\) −266.533 −0.827189 −0.413594 0.910461i \(-0.635727\pi\)
−0.413594 + 0.910461i \(0.635727\pi\)
\(48\) −164.881 −0.495803
\(49\) 49.0000 0.142857
\(50\) −1598.33 −4.52075
\(51\) 219.482 0.602621
\(52\) 605.980 1.61605
\(53\) 308.867 0.800493 0.400247 0.916407i \(-0.368924\pi\)
0.400247 + 0.916407i \(0.368924\pi\)
\(54\) −524.903 −1.32278
\(55\) 0 0
\(56\) 116.626 0.278300
\(57\) −823.446 −1.91348
\(58\) −195.255 −0.442039
\(59\) −622.446 −1.37348 −0.686742 0.726901i \(-0.740960\pi\)
−0.686742 + 0.726901i \(0.740960\pi\)
\(60\) −2137.52 −4.59921
\(61\) 87.3303 0.183303 0.0916516 0.995791i \(-0.470785\pi\)
0.0916516 + 0.995791i \(0.470785\pi\)
\(62\) 372.585 0.763200
\(63\) −289.050 −0.578045
\(64\) −826.742 −1.61473
\(65\) −1135.46 −2.16672
\(66\) 0 0
\(67\) 608.395 1.10936 0.554681 0.832063i \(-0.312840\pi\)
0.554681 + 0.832063i \(0.312840\pi\)
\(68\) 312.044 0.556483
\(69\) 232.593 0.405811
\(70\) −684.842 −1.16935
\(71\) −464.926 −0.777135 −0.388567 0.921420i \(-0.627030\pi\)
−0.388567 + 0.921420i \(0.627030\pi\)
\(72\) −687.974 −1.12609
\(73\) 255.407 0.409495 0.204747 0.978815i \(-0.434363\pi\)
0.204747 + 0.978815i \(0.434363\pi\)
\(74\) −1361.43 −2.13869
\(75\) 2972.21 4.57602
\(76\) −1170.72 −1.76698
\(77\) 0 0
\(78\) −1894.16 −2.74963
\(79\) −261.237 −0.372043 −0.186022 0.982546i \(-0.559559\pi\)
−0.186022 + 0.982546i \(0.559559\pi\)
\(80\) 439.240 0.613857
\(81\) −138.809 −0.190410
\(82\) 893.204 1.20290
\(83\) −953.986 −1.26161 −0.630804 0.775942i \(-0.717275\pi\)
−0.630804 + 0.775942i \(0.717275\pi\)
\(84\) −679.656 −0.882816
\(85\) −584.696 −0.746109
\(86\) −61.1255 −0.0766434
\(87\) 363.092 0.447443
\(88\) 0 0
\(89\) −839.910 −1.00034 −0.500170 0.865927i \(-0.666729\pi\)
−0.500170 + 0.865927i \(0.666729\pi\)
\(90\) 4039.86 4.73154
\(91\) −361.038 −0.415902
\(92\) 330.684 0.374741
\(93\) −692.851 −0.772530
\(94\) 1184.47 1.29967
\(95\) 2193.64 2.36909
\(96\) 1834.21 1.95003
\(97\) −349.146 −0.365468 −0.182734 0.983162i \(-0.558495\pi\)
−0.182734 + 0.983162i \(0.558495\pi\)
\(98\) −217.756 −0.224456
\(99\) 0 0
\(100\) 4225.68 4.22568
\(101\) −1492.44 −1.47033 −0.735163 0.677890i \(-0.762894\pi\)
−0.735163 + 0.677890i \(0.762894\pi\)
\(102\) −975.377 −0.946831
\(103\) 558.687 0.534457 0.267228 0.963633i \(-0.413892\pi\)
0.267228 + 0.963633i \(0.413892\pi\)
\(104\) −859.314 −0.810218
\(105\) 1273.52 1.18364
\(106\) −1372.60 −1.25773
\(107\) 694.047 0.627066 0.313533 0.949577i \(-0.398487\pi\)
0.313533 + 0.949577i \(0.398487\pi\)
\(108\) 1387.74 1.23644
\(109\) 341.005 0.299654 0.149827 0.988712i \(-0.452128\pi\)
0.149827 + 0.988712i \(0.452128\pi\)
\(110\) 0 0
\(111\) 2531.68 2.16484
\(112\) 139.663 0.117830
\(113\) −990.910 −0.824929 −0.412464 0.910974i \(-0.635332\pi\)
−0.412464 + 0.910974i \(0.635332\pi\)
\(114\) 3659.39 3.00643
\(115\) −619.624 −0.502437
\(116\) 516.218 0.413186
\(117\) 2129.75 1.68287
\(118\) 2766.15 2.15800
\(119\) −185.913 −0.143215
\(120\) 3031.12 2.30585
\(121\) 0 0
\(122\) −388.095 −0.288004
\(123\) −1660.98 −1.21761
\(124\) −985.045 −0.713384
\(125\) −5166.05 −3.69652
\(126\) 1284.54 0.908218
\(127\) 666.090 0.465401 0.232700 0.972548i \(-0.425244\pi\)
0.232700 + 0.972548i \(0.425244\pi\)
\(128\) 1898.41 1.31092
\(129\) 113.668 0.0775804
\(130\) 5046.00 3.40433
\(131\) −30.4356 −0.0202990 −0.0101495 0.999948i \(-0.503231\pi\)
−0.0101495 + 0.999948i \(0.503231\pi\)
\(132\) 0 0
\(133\) 697.502 0.454745
\(134\) −2703.70 −1.74302
\(135\) −2600.31 −1.65777
\(136\) −442.496 −0.278998
\(137\) −2810.25 −1.75252 −0.876262 0.481836i \(-0.839970\pi\)
−0.876262 + 0.481836i \(0.839970\pi\)
\(138\) −1033.64 −0.637605
\(139\) −3110.49 −1.89804 −0.949021 0.315212i \(-0.897924\pi\)
−0.949021 + 0.315212i \(0.897924\pi\)
\(140\) 1810.59 1.09302
\(141\) −2202.62 −1.31556
\(142\) 2066.13 1.22103
\(143\) 0 0
\(144\) −823.869 −0.476776
\(145\) −967.270 −0.553982
\(146\) −1135.03 −0.643394
\(147\) 404.933 0.227200
\(148\) 3599.36 1.99909
\(149\) −1916.92 −1.05396 −0.526979 0.849878i \(-0.676675\pi\)
−0.526979 + 0.849878i \(0.676675\pi\)
\(150\) −13208.5 −7.18980
\(151\) 2289.28 1.23377 0.616883 0.787055i \(-0.288395\pi\)
0.616883 + 0.787055i \(0.288395\pi\)
\(152\) 1660.14 0.885889
\(153\) 1096.70 0.579494
\(154\) 0 0
\(155\) 1845.74 0.956475
\(156\) 5007.79 2.57015
\(157\) 280.036 0.142352 0.0711762 0.997464i \(-0.477325\pi\)
0.0711762 + 0.997464i \(0.477325\pi\)
\(158\) 1160.93 0.584550
\(159\) 2552.46 1.27310
\(160\) −4886.29 −2.41435
\(161\) −197.019 −0.0964426
\(162\) 616.865 0.299170
\(163\) −866.571 −0.416411 −0.208206 0.978085i \(-0.566762\pi\)
−0.208206 + 0.978085i \(0.566762\pi\)
\(164\) −2361.46 −1.12439
\(165\) 0 0
\(166\) 4239.51 1.98223
\(167\) 1965.18 0.910600 0.455300 0.890338i \(-0.349532\pi\)
0.455300 + 0.890338i \(0.349532\pi\)
\(168\) 963.791 0.442608
\(169\) 463.173 0.210820
\(170\) 2598.39 1.17228
\(171\) −4114.55 −1.84004
\(172\) 161.604 0.0716407
\(173\) −3956.88 −1.73894 −0.869469 0.493988i \(-0.835539\pi\)
−0.869469 + 0.493988i \(0.835539\pi\)
\(174\) −1613.58 −0.703018
\(175\) −2517.62 −1.08751
\(176\) 0 0
\(177\) −5143.86 −2.18439
\(178\) 3732.55 1.57172
\(179\) −3143.58 −1.31264 −0.656318 0.754484i \(-0.727887\pi\)
−0.656318 + 0.754484i \(0.727887\pi\)
\(180\) −10680.6 −4.42271
\(181\) 683.772 0.280798 0.140399 0.990095i \(-0.455162\pi\)
0.140399 + 0.990095i \(0.455162\pi\)
\(182\) 1604.45 0.653460
\(183\) 721.693 0.291525
\(184\) −468.929 −0.187880
\(185\) −6744.36 −2.68030
\(186\) 3079.03 1.21379
\(187\) 0 0
\(188\) −3131.52 −1.21484
\(189\) −826.806 −0.318208
\(190\) −9748.54 −3.72228
\(191\) 2739.68 1.03789 0.518944 0.854809i \(-0.326325\pi\)
0.518944 + 0.854809i \(0.326325\pi\)
\(192\) −6832.15 −2.56806
\(193\) −2651.93 −0.989067 −0.494534 0.869159i \(-0.664661\pi\)
−0.494534 + 0.869159i \(0.664661\pi\)
\(194\) 1551.60 0.574219
\(195\) −9383.42 −3.44595
\(196\) 575.705 0.209805
\(197\) 1879.52 0.679749 0.339874 0.940471i \(-0.389615\pi\)
0.339874 + 0.940471i \(0.389615\pi\)
\(198\) 0 0
\(199\) −3119.39 −1.11119 −0.555597 0.831452i \(-0.687510\pi\)
−0.555597 + 0.831452i \(0.687510\pi\)
\(200\) −5992.25 −2.11858
\(201\) 5027.75 1.76433
\(202\) 6632.37 2.31016
\(203\) −307.558 −0.106337
\(204\) 2578.71 0.885029
\(205\) 4424.82 1.50753
\(206\) −2482.80 −0.839733
\(207\) 1162.21 0.390237
\(208\) −1029.05 −0.343039
\(209\) 0 0
\(210\) −5659.49 −1.85972
\(211\) 520.718 0.169894 0.0849472 0.996385i \(-0.472928\pi\)
0.0849472 + 0.996385i \(0.472928\pi\)
\(212\) 3628.90 1.17563
\(213\) −3842.12 −1.23595
\(214\) −3084.34 −0.985238
\(215\) −302.808 −0.0960528
\(216\) −1967.90 −0.619901
\(217\) 586.881 0.183595
\(218\) −1515.42 −0.470814
\(219\) 2110.67 0.651260
\(220\) 0 0
\(221\) 1369.83 0.416944
\(222\) −11250.8 −3.40137
\(223\) 2101.08 0.630935 0.315467 0.948936i \(-0.397839\pi\)
0.315467 + 0.948936i \(0.397839\pi\)
\(224\) −1553.67 −0.463433
\(225\) 14851.4 4.40041
\(226\) 4403.60 1.29612
\(227\) 6051.96 1.76953 0.884764 0.466040i \(-0.154320\pi\)
0.884764 + 0.466040i \(0.154320\pi\)
\(228\) −9674.73 −2.81020
\(229\) −2995.73 −0.864470 −0.432235 0.901761i \(-0.642275\pi\)
−0.432235 + 0.901761i \(0.642275\pi\)
\(230\) 2753.61 0.789424
\(231\) 0 0
\(232\) −732.026 −0.207155
\(233\) 65.3656 0.0183787 0.00918936 0.999958i \(-0.497075\pi\)
0.00918936 + 0.999958i \(0.497075\pi\)
\(234\) −9464.61 −2.64411
\(235\) 5867.73 1.62880
\(236\) −7313.17 −2.01715
\(237\) −2158.85 −0.591697
\(238\) 826.196 0.225018
\(239\) 1102.33 0.298343 0.149171 0.988811i \(-0.452339\pi\)
0.149171 + 0.988811i \(0.452339\pi\)
\(240\) 3629.86 0.976277
\(241\) −5297.43 −1.41592 −0.707962 0.706250i \(-0.750385\pi\)
−0.707962 + 0.706250i \(0.750385\pi\)
\(242\) 0 0
\(243\) −4336.22 −1.14473
\(244\) 1026.05 0.269205
\(245\) −1078.74 −0.281297
\(246\) 7381.39 1.91309
\(247\) −5139.28 −1.32391
\(248\) 1396.85 0.357661
\(249\) −7883.69 −2.00646
\(250\) 22957.9 5.80793
\(251\) 177.964 0.0447530 0.0223765 0.999750i \(-0.492877\pi\)
0.0223765 + 0.999750i \(0.492877\pi\)
\(252\) −3396.07 −0.848937
\(253\) 0 0
\(254\) −2960.10 −0.731232
\(255\) −4831.90 −1.18661
\(256\) −1822.59 −0.444969
\(257\) 3496.69 0.848707 0.424354 0.905497i \(-0.360501\pi\)
0.424354 + 0.905497i \(0.360501\pi\)
\(258\) −505.138 −0.121893
\(259\) −2144.47 −0.514482
\(260\) −13340.7 −3.18212
\(261\) 1814.28 0.430272
\(262\) 135.256 0.0318936
\(263\) −5747.94 −1.34766 −0.673828 0.738889i \(-0.735351\pi\)
−0.673828 + 0.738889i \(0.735351\pi\)
\(264\) 0 0
\(265\) −6799.71 −1.57624
\(266\) −3099.70 −0.714491
\(267\) −6940.97 −1.59094
\(268\) 7148.08 1.62925
\(269\) 235.217 0.0533140 0.0266570 0.999645i \(-0.491514\pi\)
0.0266570 + 0.999645i \(0.491514\pi\)
\(270\) 11555.7 2.60467
\(271\) 1179.58 0.264406 0.132203 0.991223i \(-0.457795\pi\)
0.132203 + 0.991223i \(0.457795\pi\)
\(272\) −529.902 −0.118125
\(273\) −2983.60 −0.661449
\(274\) 12488.7 2.75354
\(275\) 0 0
\(276\) 2732.76 0.595988
\(277\) 3638.98 0.789331 0.394666 0.918825i \(-0.370860\pi\)
0.394666 + 0.918825i \(0.370860\pi\)
\(278\) 13823.0 2.98218
\(279\) −3462.00 −0.742883
\(280\) −2567.52 −0.547995
\(281\) −3236.81 −0.687160 −0.343580 0.939123i \(-0.611640\pi\)
−0.343580 + 0.939123i \(0.611640\pi\)
\(282\) 9788.42 2.06699
\(283\) −8303.78 −1.74420 −0.872100 0.489328i \(-0.837242\pi\)
−0.872100 + 0.489328i \(0.837242\pi\)
\(284\) −5462.45 −1.14133
\(285\) 18128.2 3.76779
\(286\) 0 0
\(287\) 1406.94 0.289369
\(288\) 9165.06 1.87520
\(289\) −4207.62 −0.856426
\(290\) 4298.54 0.870411
\(291\) −2885.32 −0.581239
\(292\) 3000.80 0.601398
\(293\) 1894.16 0.377672 0.188836 0.982009i \(-0.439529\pi\)
0.188836 + 0.982009i \(0.439529\pi\)
\(294\) −1799.52 −0.356974
\(295\) 13703.2 2.70450
\(296\) −5104.10 −1.00226
\(297\) 0 0
\(298\) 8518.76 1.65597
\(299\) 1451.66 0.280775
\(300\) 34920.8 6.72050
\(301\) −96.2825 −0.0184373
\(302\) −10173.5 −1.93848
\(303\) −12333.4 −2.33840
\(304\) 1988.07 0.375077
\(305\) −1922.58 −0.360939
\(306\) −4873.71 −0.910495
\(307\) −6596.30 −1.22629 −0.613144 0.789971i \(-0.710096\pi\)
−0.613144 + 0.789971i \(0.710096\pi\)
\(308\) 0 0
\(309\) 4616.96 0.849999
\(310\) −8202.47 −1.50280
\(311\) −5242.26 −0.955824 −0.477912 0.878408i \(-0.658606\pi\)
−0.477912 + 0.878408i \(0.658606\pi\)
\(312\) −7101.33 −1.28857
\(313\) 5338.75 0.964103 0.482051 0.876143i \(-0.339892\pi\)
0.482051 + 0.876143i \(0.339892\pi\)
\(314\) −1244.48 −0.223662
\(315\) 6363.43 1.13822
\(316\) −3069.29 −0.546395
\(317\) −5807.21 −1.02891 −0.514456 0.857517i \(-0.672006\pi\)
−0.514456 + 0.857517i \(0.672006\pi\)
\(318\) −11343.1 −2.00028
\(319\) 0 0
\(320\) 18200.7 3.17953
\(321\) 5735.56 0.997283
\(322\) 875.550 0.151530
\(323\) −2646.42 −0.455885
\(324\) −1630.87 −0.279642
\(325\) 18550.1 3.16608
\(326\) 3851.03 0.654261
\(327\) 2818.04 0.476570
\(328\) 3348.69 0.563720
\(329\) 1865.73 0.312648
\(330\) 0 0
\(331\) −1366.51 −0.226919 −0.113460 0.993543i \(-0.536193\pi\)
−0.113460 + 0.993543i \(0.536193\pi\)
\(332\) −11208.4 −1.85284
\(333\) 12650.2 2.08176
\(334\) −8733.25 −1.43072
\(335\) −13393.8 −2.18443
\(336\) 1154.17 0.187396
\(337\) 3363.75 0.543724 0.271862 0.962336i \(-0.412361\pi\)
0.271862 + 0.962336i \(0.412361\pi\)
\(338\) −2058.34 −0.331239
\(339\) −8188.83 −1.31196
\(340\) −6869.64 −1.09576
\(341\) 0 0
\(342\) 18285.0 2.89106
\(343\) −343.000 −0.0539949
\(344\) −229.164 −0.0359177
\(345\) −5120.54 −0.799075
\(346\) 17584.4 2.73220
\(347\) −2984.97 −0.461791 −0.230896 0.972979i \(-0.574166\pi\)
−0.230896 + 0.972979i \(0.574166\pi\)
\(348\) 4265.99 0.657130
\(349\) −1286.08 −0.197255 −0.0986276 0.995124i \(-0.531445\pi\)
−0.0986276 + 0.995124i \(0.531445\pi\)
\(350\) 11188.3 1.70868
\(351\) 6092.01 0.926403
\(352\) 0 0
\(353\) 8417.60 1.26919 0.634594 0.772846i \(-0.281167\pi\)
0.634594 + 0.772846i \(0.281167\pi\)
\(354\) 22859.3 3.43208
\(355\) 10235.3 1.53024
\(356\) −9868.16 −1.46913
\(357\) −1536.38 −0.227769
\(358\) 13970.0 2.06240
\(359\) −7483.47 −1.10017 −0.550087 0.835108i \(-0.685405\pi\)
−0.550087 + 0.835108i \(0.685405\pi\)
\(360\) 15145.7 2.21736
\(361\) 3069.76 0.447553
\(362\) −3038.68 −0.441186
\(363\) 0 0
\(364\) −4241.86 −0.610808
\(365\) −5622.79 −0.806329
\(366\) −3207.20 −0.458041
\(367\) 8588.73 1.22160 0.610801 0.791784i \(-0.290847\pi\)
0.610801 + 0.791784i \(0.290847\pi\)
\(368\) −561.556 −0.0795466
\(369\) −8299.50 −1.17088
\(370\) 29971.9 4.21125
\(371\) −2162.07 −0.302558
\(372\) −8140.36 −1.13456
\(373\) −11833.0 −1.64260 −0.821298 0.570500i \(-0.806749\pi\)
−0.821298 + 0.570500i \(0.806749\pi\)
\(374\) 0 0
\(375\) −42691.9 −5.87894
\(376\) 4440.67 0.609070
\(377\) 2266.13 0.309579
\(378\) 3674.32 0.499965
\(379\) 5056.39 0.685301 0.342651 0.939463i \(-0.388675\pi\)
0.342651 + 0.939463i \(0.388675\pi\)
\(380\) 25773.3 3.47932
\(381\) 5504.53 0.740172
\(382\) −12175.1 −1.63072
\(383\) 6457.09 0.861467 0.430733 0.902479i \(-0.358255\pi\)
0.430733 + 0.902479i \(0.358255\pi\)
\(384\) 15688.4 2.08488
\(385\) 0 0
\(386\) 11785.1 1.55401
\(387\) 567.968 0.0746032
\(388\) −4102.14 −0.536739
\(389\) 12444.5 1.62201 0.811004 0.585040i \(-0.198921\pi\)
0.811004 + 0.585040i \(0.198921\pi\)
\(390\) 41699.9 5.41424
\(391\) 747.518 0.0966844
\(392\) −816.382 −0.105188
\(393\) −251.518 −0.0322835
\(394\) −8352.59 −1.06801
\(395\) 5751.12 0.732584
\(396\) 0 0
\(397\) −619.207 −0.0782799 −0.0391400 0.999234i \(-0.512462\pi\)
−0.0391400 + 0.999234i \(0.512462\pi\)
\(398\) 13862.5 1.74589
\(399\) 5764.12 0.723226
\(400\) −7175.90 −0.896987
\(401\) 9731.89 1.21194 0.605969 0.795488i \(-0.292785\pi\)
0.605969 + 0.795488i \(0.292785\pi\)
\(402\) −22343.3 −2.77209
\(403\) −4324.22 −0.534502
\(404\) −17534.7 −2.15937
\(405\) 3055.87 0.374932
\(406\) 1366.79 0.167075
\(407\) 0 0
\(408\) −3656.76 −0.443717
\(409\) −4621.43 −0.558717 −0.279358 0.960187i \(-0.590122\pi\)
−0.279358 + 0.960187i \(0.590122\pi\)
\(410\) −19663.9 −2.36861
\(411\) −23223.7 −2.78721
\(412\) 6564.05 0.784922
\(413\) 4357.12 0.519128
\(414\) −5164.85 −0.613137
\(415\) 21002.0 2.48421
\(416\) 11447.6 1.34920
\(417\) −25704.9 −3.01864
\(418\) 0 0
\(419\) 186.428 0.0217365 0.0108682 0.999941i \(-0.496540\pi\)
0.0108682 + 0.999941i \(0.496540\pi\)
\(420\) 14962.6 1.73834
\(421\) 2670.29 0.309126 0.154563 0.987983i \(-0.450603\pi\)
0.154563 + 0.987983i \(0.450603\pi\)
\(422\) −2314.07 −0.266936
\(423\) −11005.9 −1.26507
\(424\) −5145.99 −0.589413
\(425\) 9552.22 1.09024
\(426\) 17074.4 1.94192
\(427\) −611.312 −0.0692821
\(428\) 8154.40 0.920930
\(429\) 0 0
\(430\) 1345.68 0.150917
\(431\) 12514.9 1.39866 0.699328 0.714801i \(-0.253483\pi\)
0.699328 + 0.714801i \(0.253483\pi\)
\(432\) −2356.62 −0.262460
\(433\) −16651.2 −1.84805 −0.924025 0.382332i \(-0.875121\pi\)
−0.924025 + 0.382332i \(0.875121\pi\)
\(434\) −2608.10 −0.288462
\(435\) −7993.47 −0.881052
\(436\) 4006.49 0.440083
\(437\) −2804.51 −0.306998
\(438\) −9379.80 −1.02325
\(439\) −6033.38 −0.655940 −0.327970 0.944688i \(-0.606364\pi\)
−0.327970 + 0.944688i \(0.606364\pi\)
\(440\) 0 0
\(441\) 2023.35 0.218481
\(442\) −6087.51 −0.655098
\(443\) 6320.03 0.677819 0.338910 0.940819i \(-0.389942\pi\)
0.338910 + 0.940819i \(0.389942\pi\)
\(444\) 29744.9 3.17935
\(445\) 18490.6 1.96975
\(446\) −9337.17 −0.991318
\(447\) −15841.3 −1.67621
\(448\) 5787.19 0.610311
\(449\) −17893.6 −1.88074 −0.940368 0.340159i \(-0.889519\pi\)
−0.940368 + 0.340159i \(0.889519\pi\)
\(450\) −65999.5 −6.91388
\(451\) 0 0
\(452\) −11642.3 −1.21152
\(453\) 18918.5 1.96218
\(454\) −26894.9 −2.78026
\(455\) 7948.25 0.818945
\(456\) 13719.3 1.40892
\(457\) −6208.00 −0.635444 −0.317722 0.948184i \(-0.602918\pi\)
−0.317722 + 0.948184i \(0.602918\pi\)
\(458\) 13313.0 1.35825
\(459\) 3137.02 0.319006
\(460\) −7280.01 −0.737896
\(461\) −7981.28 −0.806346 −0.403173 0.915124i \(-0.632093\pi\)
−0.403173 + 0.915124i \(0.632093\pi\)
\(462\) 0 0
\(463\) −7495.19 −0.752334 −0.376167 0.926552i \(-0.622758\pi\)
−0.376167 + 0.926552i \(0.622758\pi\)
\(464\) −876.623 −0.0877073
\(465\) 15253.1 1.52118
\(466\) −290.484 −0.0288765
\(467\) 1519.39 0.150555 0.0752773 0.997163i \(-0.476016\pi\)
0.0752773 + 0.997163i \(0.476016\pi\)
\(468\) 25022.6 2.47152
\(469\) −4258.77 −0.419300
\(470\) −26076.2 −2.55916
\(471\) 2314.20 0.226397
\(472\) 10370.5 1.01131
\(473\) 0 0
\(474\) 9593.90 0.929667
\(475\) −35837.7 −3.46178
\(476\) −2184.31 −0.210331
\(477\) 12754.0 1.22425
\(478\) −4898.75 −0.468753
\(479\) 16394.2 1.56382 0.781909 0.623393i \(-0.214246\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(480\) −40380.1 −3.83977
\(481\) 15800.7 1.49782
\(482\) 23541.8 2.22468
\(483\) −1628.15 −0.153382
\(484\) 0 0
\(485\) 7686.45 0.719636
\(486\) 19270.1 1.79858
\(487\) 2275.01 0.211685 0.105843 0.994383i \(-0.466246\pi\)
0.105843 + 0.994383i \(0.466246\pi\)
\(488\) −1455.00 −0.134968
\(489\) −7161.29 −0.662259
\(490\) 4793.89 0.441971
\(491\) 14629.2 1.34462 0.672308 0.740272i \(-0.265303\pi\)
0.672308 + 0.740272i \(0.265303\pi\)
\(492\) −19515.0 −1.78822
\(493\) 1166.92 0.106603
\(494\) 22838.9 2.08011
\(495\) 0 0
\(496\) 1672.77 0.151431
\(497\) 3254.48 0.293729
\(498\) 35035.1 3.15253
\(499\) 3534.01 0.317042 0.158521 0.987356i \(-0.449327\pi\)
0.158521 + 0.987356i \(0.449327\pi\)
\(500\) −60696.3 −5.42884
\(501\) 16240.1 1.44822
\(502\) −790.872 −0.0703155
\(503\) 9233.35 0.818479 0.409239 0.912427i \(-0.365794\pi\)
0.409239 + 0.912427i \(0.365794\pi\)
\(504\) 4815.82 0.425622
\(505\) 32856.0 2.89519
\(506\) 0 0
\(507\) 3827.63 0.335288
\(508\) 7825.93 0.683503
\(509\) 11565.3 1.00712 0.503560 0.863960i \(-0.332023\pi\)
0.503560 + 0.863960i \(0.332023\pi\)
\(510\) 21472.9 1.86439
\(511\) −1787.85 −0.154775
\(512\) −7087.70 −0.611787
\(513\) −11769.4 −1.01292
\(514\) −15539.3 −1.33348
\(515\) −12299.5 −1.05239
\(516\) 1335.49 0.113937
\(517\) 0 0
\(518\) 9530.01 0.808349
\(519\) −32699.5 −2.76560
\(520\) 18917.8 1.59539
\(521\) −2440.24 −0.205200 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(522\) −8062.64 −0.676038
\(523\) 911.213 0.0761847 0.0380923 0.999274i \(-0.487872\pi\)
0.0380923 + 0.999274i \(0.487872\pi\)
\(524\) −357.590 −0.0298119
\(525\) −20805.5 −1.72957
\(526\) 25543.8 2.11742
\(527\) −2226.71 −0.184055
\(528\) 0 0
\(529\) −11374.8 −0.934892
\(530\) 30217.9 2.47657
\(531\) −25702.6 −2.10056
\(532\) 8195.01 0.667854
\(533\) −10366.5 −0.842445
\(534\) 30845.6 2.49966
\(535\) −15279.4 −1.23474
\(536\) −10136.4 −0.816838
\(537\) −25978.3 −2.08761
\(538\) −1045.30 −0.0837663
\(539\) 0 0
\(540\) −30551.2 −2.43465
\(541\) −12277.5 −0.975692 −0.487846 0.872930i \(-0.662217\pi\)
−0.487846 + 0.872930i \(0.662217\pi\)
\(542\) −5242.02 −0.415432
\(543\) 5650.65 0.446580
\(544\) 5894.84 0.464594
\(545\) −7507.22 −0.590044
\(546\) 13259.1 1.03926
\(547\) 12539.2 0.980141 0.490071 0.871683i \(-0.336971\pi\)
0.490071 + 0.871683i \(0.336971\pi\)
\(548\) −33017.8 −2.57382
\(549\) 3606.11 0.280337
\(550\) 0 0
\(551\) −4378.01 −0.338493
\(552\) −3875.20 −0.298804
\(553\) 1828.66 0.140619
\(554\) −16171.6 −1.24019
\(555\) −55735.0 −4.26274
\(556\) −36545.3 −2.78753
\(557\) 14212.8 1.08118 0.540588 0.841287i \(-0.318202\pi\)
0.540588 + 0.841287i \(0.318202\pi\)
\(558\) 15385.1 1.16721
\(559\) 709.421 0.0536768
\(560\) −3074.68 −0.232016
\(561\) 0 0
\(562\) 14384.4 1.07966
\(563\) −4446.83 −0.332880 −0.166440 0.986052i \(-0.553227\pi\)
−0.166440 + 0.986052i \(0.553227\pi\)
\(564\) −25878.7 −1.93207
\(565\) 21814.9 1.62435
\(566\) 36901.9 2.74047
\(567\) 971.661 0.0719681
\(568\) 7746.07 0.572214
\(569\) −11258.8 −0.829511 −0.414756 0.909933i \(-0.636133\pi\)
−0.414756 + 0.909933i \(0.636133\pi\)
\(570\) −80561.4 −5.91991
\(571\) 16450.6 1.20567 0.602835 0.797866i \(-0.294038\pi\)
0.602835 + 0.797866i \(0.294038\pi\)
\(572\) 0 0
\(573\) 22640.6 1.65065
\(574\) −6252.43 −0.454654
\(575\) 10122.8 0.734176
\(576\) −34138.5 −2.46951
\(577\) 10175.6 0.734173 0.367086 0.930187i \(-0.380355\pi\)
0.367086 + 0.930187i \(0.380355\pi\)
\(578\) 18698.6 1.34561
\(579\) −21915.4 −1.57301
\(580\) −11364.5 −0.813597
\(581\) 6677.90 0.476843
\(582\) 12822.4 0.913237
\(583\) 0 0
\(584\) −4255.30 −0.301516
\(585\) −46886.5 −3.31371
\(586\) −8417.62 −0.593394
\(587\) −5123.98 −0.360289 −0.180144 0.983640i \(-0.557656\pi\)
−0.180144 + 0.983640i \(0.557656\pi\)
\(588\) 4757.59 0.333673
\(589\) 8354.11 0.584423
\(590\) −60896.7 −4.24929
\(591\) 15532.3 1.08107
\(592\) −6112.31 −0.424349
\(593\) 23816.7 1.64930 0.824650 0.565643i \(-0.191372\pi\)
0.824650 + 0.565643i \(0.191372\pi\)
\(594\) 0 0
\(595\) 4092.88 0.282003
\(596\) −22522.0 −1.54788
\(597\) −25778.4 −1.76724
\(598\) −6451.16 −0.441150
\(599\) 11801.0 0.804965 0.402482 0.915428i \(-0.368147\pi\)
0.402482 + 0.915428i \(0.368147\pi\)
\(600\) −49519.6 −3.36938
\(601\) 10944.5 0.742820 0.371410 0.928469i \(-0.378875\pi\)
0.371410 + 0.928469i \(0.378875\pi\)
\(602\) 427.879 0.0289685
\(603\) 25122.4 1.69662
\(604\) 26896.9 1.81195
\(605\) 0 0
\(606\) 54809.6 3.67407
\(607\) 1280.36 0.0856150 0.0428075 0.999083i \(-0.486370\pi\)
0.0428075 + 0.999083i \(0.486370\pi\)
\(608\) −22116.1 −1.47521
\(609\) −2541.64 −0.169118
\(610\) 8543.91 0.567103
\(611\) −13747.0 −0.910216
\(612\) 12885.2 0.851065
\(613\) 11029.9 0.726744 0.363372 0.931644i \(-0.381625\pi\)
0.363372 + 0.931644i \(0.381625\pi\)
\(614\) 29313.9 1.92673
\(615\) 36566.5 2.39757
\(616\) 0 0
\(617\) −20861.3 −1.36117 −0.680586 0.732668i \(-0.738275\pi\)
−0.680586 + 0.732668i \(0.738275\pi\)
\(618\) −20517.7 −1.33551
\(619\) −16877.9 −1.09593 −0.547966 0.836501i \(-0.684598\pi\)
−0.547966 + 0.836501i \(0.684598\pi\)
\(620\) 21685.8 1.40471
\(621\) 3324.42 0.214822
\(622\) 23296.6 1.50178
\(623\) 5879.37 0.378093
\(624\) −8504.06 −0.545568
\(625\) 68773.0 4.40147
\(626\) −23725.4 −1.51479
\(627\) 0 0
\(628\) 3290.17 0.209064
\(629\) 8136.43 0.515772
\(630\) −28279.0 −1.78836
\(631\) −1332.58 −0.0840719 −0.0420359 0.999116i \(-0.513384\pi\)
−0.0420359 + 0.999116i \(0.513384\pi\)
\(632\) 4352.42 0.273940
\(633\) 4303.19 0.270200
\(634\) 25807.2 1.61662
\(635\) −14664.0 −0.916412
\(636\) 29989.0 1.86972
\(637\) 2527.27 0.157196
\(638\) 0 0
\(639\) −19198.1 −1.18852
\(640\) −41793.5 −2.58130
\(641\) 20472.2 1.26147 0.630736 0.775998i \(-0.282753\pi\)
0.630736 + 0.775998i \(0.282753\pi\)
\(642\) −25488.8 −1.56692
\(643\) 27140.3 1.66455 0.832276 0.554361i \(-0.187037\pi\)
0.832276 + 0.554361i \(0.187037\pi\)
\(644\) −2314.79 −0.141639
\(645\) −2502.39 −0.152762
\(646\) 11760.7 0.716282
\(647\) 13662.1 0.830159 0.415079 0.909785i \(-0.363754\pi\)
0.415079 + 0.909785i \(0.363754\pi\)
\(648\) 2312.67 0.140201
\(649\) 0 0
\(650\) −82436.7 −4.97451
\(651\) 4849.96 0.291989
\(652\) −10181.4 −0.611556
\(653\) 1607.56 0.0963379 0.0481689 0.998839i \(-0.484661\pi\)
0.0481689 + 0.998839i \(0.484661\pi\)
\(654\) −12523.4 −0.748781
\(655\) 670.040 0.0399705
\(656\) 4010.15 0.238674
\(657\) 10546.5 0.626267
\(658\) −8291.30 −0.491229
\(659\) −27361.6 −1.61738 −0.808692 0.588233i \(-0.799824\pi\)
−0.808692 + 0.588233i \(0.799824\pi\)
\(660\) 0 0
\(661\) −5117.29 −0.301119 −0.150559 0.988601i \(-0.548107\pi\)
−0.150559 + 0.988601i \(0.548107\pi\)
\(662\) 6072.76 0.356533
\(663\) 11320.2 0.663107
\(664\) 15894.2 0.928939
\(665\) −15355.5 −0.895431
\(666\) −56217.3 −3.27083
\(667\) 1236.63 0.0717877
\(668\) 23089.0 1.33734
\(669\) 17363.2 1.00344
\(670\) 59522.1 3.43215
\(671\) 0 0
\(672\) −12839.4 −0.737042
\(673\) −11605.6 −0.664729 −0.332365 0.943151i \(-0.607846\pi\)
−0.332365 + 0.943151i \(0.607846\pi\)
\(674\) −14948.5 −0.854292
\(675\) 42481.3 2.42238
\(676\) 5441.85 0.309618
\(677\) −32514.6 −1.84584 −0.922922 0.384986i \(-0.874206\pi\)
−0.922922 + 0.384986i \(0.874206\pi\)
\(678\) 36391.1 2.06134
\(679\) 2444.02 0.138134
\(680\) 9741.54 0.549369
\(681\) 50013.1 2.81425
\(682\) 0 0
\(683\) 7201.06 0.403427 0.201714 0.979445i \(-0.435349\pi\)
0.201714 + 0.979445i \(0.435349\pi\)
\(684\) −48342.1 −2.70235
\(685\) 61867.6 3.45086
\(686\) 1524.29 0.0848362
\(687\) −24756.6 −1.37485
\(688\) −274.431 −0.0152072
\(689\) 15930.4 0.880841
\(690\) 22755.7 1.25550
\(691\) −32357.7 −1.78140 −0.890698 0.454596i \(-0.849784\pi\)
−0.890698 + 0.454596i \(0.849784\pi\)
\(692\) −46489.7 −2.55386
\(693\) 0 0
\(694\) 13265.2 0.725562
\(695\) 68477.3 3.73740
\(696\) −6049.42 −0.329458
\(697\) −5338.13 −0.290095
\(698\) 5715.31 0.309925
\(699\) 540.178 0.0292295
\(700\) −29579.7 −1.59716
\(701\) −11077.3 −0.596838 −0.298419 0.954435i \(-0.596459\pi\)
−0.298419 + 0.954435i \(0.596459\pi\)
\(702\) −27072.8 −1.45555
\(703\) −30526.0 −1.63771
\(704\) 0 0
\(705\) 48490.6 2.59044
\(706\) −37407.7 −1.99413
\(707\) 10447.1 0.555731
\(708\) −60435.6 −3.20806
\(709\) −28594.0 −1.51463 −0.757314 0.653051i \(-0.773489\pi\)
−0.757314 + 0.653051i \(0.773489\pi\)
\(710\) −45485.8 −2.40430
\(711\) −10787.2 −0.568990
\(712\) 13993.6 0.736563
\(713\) −2359.73 −0.123945
\(714\) 6827.64 0.357868
\(715\) 0 0
\(716\) −36934.1 −1.92778
\(717\) 9109.61 0.474483
\(718\) 33256.5 1.72858
\(719\) 18240.5 0.946114 0.473057 0.881032i \(-0.343150\pi\)
0.473057 + 0.881032i \(0.343150\pi\)
\(720\) 18137.5 0.938811
\(721\) −3910.81 −0.202006
\(722\) −13642.0 −0.703190
\(723\) −43777.7 −2.25188
\(724\) 8033.68 0.412389
\(725\) 15802.4 0.809496
\(726\) 0 0
\(727\) −9792.53 −0.499566 −0.249783 0.968302i \(-0.580359\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(728\) 6015.20 0.306234
\(729\) −32086.4 −1.63016
\(730\) 24987.6 1.26690
\(731\) 365.309 0.0184835
\(732\) 8479.22 0.428143
\(733\) 22723.8 1.14505 0.572525 0.819887i \(-0.305964\pi\)
0.572525 + 0.819887i \(0.305964\pi\)
\(734\) −38168.3 −1.91937
\(735\) −8914.61 −0.447375
\(736\) 6246.98 0.312863
\(737\) 0 0
\(738\) 36882.9 1.83967
\(739\) 24063.6 1.19783 0.598913 0.800814i \(-0.295599\pi\)
0.598913 + 0.800814i \(0.295599\pi\)
\(740\) −79240.0 −3.93638
\(741\) −42470.8 −2.10554
\(742\) 9608.22 0.475376
\(743\) 29211.6 1.44235 0.721177 0.692751i \(-0.243601\pi\)
0.721177 + 0.692751i \(0.243601\pi\)
\(744\) 11543.5 0.568824
\(745\) 42200.9 2.07533
\(746\) 52585.6 2.58083
\(747\) −39392.8 −1.92946
\(748\) 0 0
\(749\) −4858.33 −0.237008
\(750\) 189723. 9.23692
\(751\) 1880.93 0.0913931 0.0456965 0.998955i \(-0.485449\pi\)
0.0456965 + 0.998955i \(0.485449\pi\)
\(752\) 5317.84 0.257874
\(753\) 1470.69 0.0711751
\(754\) −10070.6 −0.486408
\(755\) −50398.4 −2.42939
\(756\) −9714.21 −0.467331
\(757\) −36218.7 −1.73896 −0.869480 0.493968i \(-0.835546\pi\)
−0.869480 + 0.493968i \(0.835546\pi\)
\(758\) −22470.5 −1.07674
\(759\) 0 0
\(760\) −36548.0 −1.74439
\(761\) −36966.4 −1.76088 −0.880441 0.474156i \(-0.842753\pi\)
−0.880441 + 0.474156i \(0.842753\pi\)
\(762\) −24462.1 −1.16295
\(763\) −2387.03 −0.113259
\(764\) 32188.7 1.52428
\(765\) −24143.8 −1.14107
\(766\) −28695.2 −1.35353
\(767\) −32103.8 −1.51135
\(768\) −15061.8 −0.707678
\(769\) 38975.5 1.82769 0.913845 0.406062i \(-0.133098\pi\)
0.913845 + 0.406062i \(0.133098\pi\)
\(770\) 0 0
\(771\) 28896.5 1.34978
\(772\) −31157.7 −1.45258
\(773\) 27341.9 1.27221 0.636105 0.771603i \(-0.280545\pi\)
0.636105 + 0.771603i \(0.280545\pi\)
\(774\) −2524.05 −0.117216
\(775\) −30154.0 −1.39763
\(776\) 5817.07 0.269099
\(777\) −17721.8 −0.818231
\(778\) −55303.3 −2.54848
\(779\) 20027.4 0.921125
\(780\) −110246. −5.06084
\(781\) 0 0
\(782\) −3321.96 −0.151909
\(783\) 5189.61 0.236860
\(784\) −977.642 −0.0445354
\(785\) −6165.00 −0.280303
\(786\) 1117.75 0.0507235
\(787\) 18268.5 0.827446 0.413723 0.910403i \(-0.364228\pi\)
0.413723 + 0.910403i \(0.364228\pi\)
\(788\) 22082.7 0.998302
\(789\) −47500.7 −2.14331
\(790\) −25558.0 −1.15103
\(791\) 6936.37 0.311794
\(792\) 0 0
\(793\) 4504.22 0.201702
\(794\) 2751.75 0.122993
\(795\) −56192.4 −2.50684
\(796\) −36649.9 −1.63194
\(797\) 12717.6 0.565219 0.282610 0.959235i \(-0.408800\pi\)
0.282610 + 0.959235i \(0.408800\pi\)
\(798\) −25615.7 −1.13632
\(799\) −7078.86 −0.313432
\(800\) 79827.6 3.52792
\(801\) −34682.2 −1.52988
\(802\) −43248.4 −1.90418
\(803\) 0 0
\(804\) 59071.4 2.59115
\(805\) 4337.37 0.189903
\(806\) 19216.8 0.839804
\(807\) 1943.82 0.0847904
\(808\) 24865.3 1.08262
\(809\) −12502.0 −0.543322 −0.271661 0.962393i \(-0.587573\pi\)
−0.271661 + 0.962393i \(0.587573\pi\)
\(810\) −13580.3 −0.589090
\(811\) 23431.3 1.01453 0.507264 0.861791i \(-0.330657\pi\)
0.507264 + 0.861791i \(0.330657\pi\)
\(812\) −3613.52 −0.156170
\(813\) 9747.95 0.420511
\(814\) 0 0
\(815\) 19077.6 0.819948
\(816\) −4379.08 −0.187866
\(817\) −1370.56 −0.0586899
\(818\) 20537.6 0.877850
\(819\) −14908.3 −0.636065
\(820\) 51987.6 2.21401
\(821\) −33116.5 −1.40776 −0.703881 0.710317i \(-0.748551\pi\)
−0.703881 + 0.710317i \(0.748551\pi\)
\(822\) 103206. 4.37923
\(823\) −6383.39 −0.270366 −0.135183 0.990821i \(-0.543162\pi\)
−0.135183 + 0.990821i \(0.543162\pi\)
\(824\) −9308.20 −0.393527
\(825\) 0 0
\(826\) −19363.0 −0.815649
\(827\) 27701.3 1.16477 0.582386 0.812912i \(-0.302119\pi\)
0.582386 + 0.812912i \(0.302119\pi\)
\(828\) 13654.9 0.573116
\(829\) −13160.2 −0.551353 −0.275676 0.961251i \(-0.588902\pi\)
−0.275676 + 0.961251i \(0.588902\pi\)
\(830\) −93332.7 −3.90316
\(831\) 30072.3 1.25535
\(832\) −42640.7 −1.77680
\(833\) 1301.39 0.0541303
\(834\) 114232. 4.74286
\(835\) −43263.4 −1.79305
\(836\) 0 0
\(837\) −9902.80 −0.408950
\(838\) −828.483 −0.0341521
\(839\) −24842.9 −1.02226 −0.511128 0.859505i \(-0.670772\pi\)
−0.511128 + 0.859505i \(0.670772\pi\)
\(840\) −21217.9 −0.871531
\(841\) −22458.6 −0.920848
\(842\) −11866.8 −0.485696
\(843\) −26748.8 −1.09286
\(844\) 6117.95 0.249513
\(845\) −10196.7 −0.415123
\(846\) 48910.2 1.98767
\(847\) 0 0
\(848\) −6162.48 −0.249552
\(849\) −68622.0 −2.77397
\(850\) −42450.0 −1.71297
\(851\) 8622.47 0.347326
\(852\) −45141.4 −1.81516
\(853\) 10131.6 0.406681 0.203340 0.979108i \(-0.434820\pi\)
0.203340 + 0.979108i \(0.434820\pi\)
\(854\) 2716.67 0.108855
\(855\) 90581.8 3.62320
\(856\) −11563.4 −0.461716
\(857\) −10115.6 −0.403199 −0.201599 0.979468i \(-0.564614\pi\)
−0.201599 + 0.979468i \(0.564614\pi\)
\(858\) 0 0
\(859\) −27491.4 −1.09196 −0.545980 0.837798i \(-0.683843\pi\)
−0.545980 + 0.837798i \(0.683843\pi\)
\(860\) −3557.72 −0.141066
\(861\) 11626.9 0.460212
\(862\) −55616.1 −2.19755
\(863\) −117.276 −0.00462588 −0.00231294 0.999997i \(-0.500736\pi\)
−0.00231294 + 0.999997i \(0.500736\pi\)
\(864\) 26216.0 1.03228
\(865\) 87110.8 3.42411
\(866\) 73997.8 2.90364
\(867\) −34771.5 −1.36206
\(868\) 6895.31 0.269634
\(869\) 0 0
\(870\) 35522.9 1.38430
\(871\) 31379.1 1.22071
\(872\) −5681.43 −0.220639
\(873\) −14417.2 −0.558933
\(874\) 12463.2 0.482351
\(875\) 36162.3 1.39715
\(876\) 24798.4 0.956462
\(877\) −11597.4 −0.446543 −0.223271 0.974756i \(-0.571674\pi\)
−0.223271 + 0.974756i \(0.571674\pi\)
\(878\) 26812.3 1.03061
\(879\) 15653.2 0.600648
\(880\) 0 0
\(881\) 7524.18 0.287737 0.143868 0.989597i \(-0.454046\pi\)
0.143868 + 0.989597i \(0.454046\pi\)
\(882\) −8991.75 −0.343274
\(883\) 13467.4 0.513266 0.256633 0.966509i \(-0.417387\pi\)
0.256633 + 0.966509i \(0.417387\pi\)
\(884\) 16094.2 0.612339
\(885\) 113242. 4.30124
\(886\) −28086.2 −1.06498
\(887\) 12955.7 0.490427 0.245214 0.969469i \(-0.421142\pi\)
0.245214 + 0.969469i \(0.421142\pi\)
\(888\) −42180.0 −1.59400
\(889\) −4662.63 −0.175905
\(890\) −82172.1 −3.09485
\(891\) 0 0
\(892\) 24685.7 0.926612
\(893\) 26558.2 0.995226
\(894\) 70398.6 2.63365
\(895\) 69205.8 2.58469
\(896\) −13288.9 −0.495480
\(897\) 11996.4 0.446543
\(898\) 79518.9 2.95499
\(899\) −3683.68 −0.136660
\(900\) 174490. 6.46260
\(901\) 8203.20 0.303317
\(902\) 0 0
\(903\) −795.673 −0.0293226
\(904\) 16509.4 0.607405
\(905\) −15053.2 −0.552913
\(906\) −84073.5 −3.08295
\(907\) 47843.5 1.75151 0.875753 0.482759i \(-0.160365\pi\)
0.875753 + 0.482759i \(0.160365\pi\)
\(908\) 71104.9 2.59879
\(909\) −61626.9 −2.24866
\(910\) −35322.0 −1.28672
\(911\) 16969.8 0.617162 0.308581 0.951198i \(-0.400146\pi\)
0.308581 + 0.951198i \(0.400146\pi\)
\(912\) 16429.3 0.596522
\(913\) 0 0
\(914\) 27588.3 0.998402
\(915\) −15888.1 −0.574036
\(916\) −35197.1 −1.26959
\(917\) 213.049 0.00767231
\(918\) −13940.9 −0.501218
\(919\) −12095.2 −0.434149 −0.217075 0.976155i \(-0.569652\pi\)
−0.217075 + 0.976155i \(0.569652\pi\)
\(920\) 10323.5 0.369951
\(921\) −54511.4 −1.95029
\(922\) 35468.8 1.26692
\(923\) −23979.4 −0.855138
\(924\) 0 0
\(925\) 110183. 3.91653
\(926\) 33308.6 1.18206
\(927\) 23069.8 0.817379
\(928\) 9751.91 0.344959
\(929\) −44544.3 −1.57314 −0.786571 0.617499i \(-0.788146\pi\)
−0.786571 + 0.617499i \(0.788146\pi\)
\(930\) −67784.8 −2.39005
\(931\) −4882.52 −0.171878
\(932\) 767.985 0.0269916
\(933\) −43321.8 −1.52014
\(934\) −6752.16 −0.236550
\(935\) 0 0
\(936\) −35483.5 −1.23912
\(937\) 49265.8 1.71766 0.858828 0.512264i \(-0.171193\pi\)
0.858828 + 0.512264i \(0.171193\pi\)
\(938\) 18925.9 0.658799
\(939\) 44119.2 1.53331
\(940\) 68940.4 2.39211
\(941\) 18403.1 0.637538 0.318769 0.947832i \(-0.396731\pi\)
0.318769 + 0.947832i \(0.396731\pi\)
\(942\) −10284.3 −0.355712
\(943\) −5657.01 −0.195353
\(944\) 12419.0 0.428181
\(945\) 18202.1 0.626577
\(946\) 0 0
\(947\) 17689.3 0.606996 0.303498 0.952832i \(-0.401845\pi\)
0.303498 + 0.952832i \(0.401845\pi\)
\(948\) −25364.4 −0.868986
\(949\) 13173.1 0.450597
\(950\) 159262. 5.43911
\(951\) −47990.5 −1.63638
\(952\) 3097.47 0.105451
\(953\) 5298.19 0.180090 0.0900448 0.995938i \(-0.471299\pi\)
0.0900448 + 0.995938i \(0.471299\pi\)
\(954\) −56678.7 −1.92352
\(955\) −60314.1 −2.04368
\(956\) 12951.4 0.438156
\(957\) 0 0
\(958\) −72855.6 −2.45705
\(959\) 19671.7 0.662392
\(960\) 150410. 5.05672
\(961\) −22761.8 −0.764050
\(962\) −70218.3 −2.35336
\(963\) 28659.1 0.959011
\(964\) −62239.9 −2.07947
\(965\) 58382.2 1.94755
\(966\) 7235.50 0.240992
\(967\) −33990.6 −1.13037 −0.565184 0.824965i \(-0.691195\pi\)
−0.565184 + 0.824965i \(0.691195\pi\)
\(968\) 0 0
\(969\) −21869.9 −0.725039
\(970\) −34158.5 −1.13068
\(971\) 41991.0 1.38780 0.693900 0.720071i \(-0.255891\pi\)
0.693900 + 0.720071i \(0.255891\pi\)
\(972\) −50946.5 −1.68118
\(973\) 21773.4 0.717393
\(974\) −10110.1 −0.332597
\(975\) 153297. 5.03533
\(976\) −1742.40 −0.0571444
\(977\) −31233.4 −1.02277 −0.511384 0.859352i \(-0.670867\pi\)
−0.511384 + 0.859352i \(0.670867\pi\)
\(978\) 31824.7 1.04053
\(979\) 0 0
\(980\) −12674.1 −0.413123
\(981\) 14081.0 0.458281
\(982\) −65012.0 −2.11264
\(983\) −45702.5 −1.48289 −0.741447 0.671012i \(-0.765860\pi\)
−0.741447 + 0.671012i \(0.765860\pi\)
\(984\) 27673.4 0.896540
\(985\) −41377.7 −1.33848
\(986\) −5185.78 −0.167494
\(987\) 15418.3 0.497235
\(988\) −60381.8 −1.94433
\(989\) 387.132 0.0124470
\(990\) 0 0
\(991\) −4310.72 −0.138178 −0.0690890 0.997611i \(-0.522009\pi\)
−0.0690890 + 0.997611i \(0.522009\pi\)
\(992\) −18608.6 −0.595587
\(993\) −11292.8 −0.360892
\(994\) −14462.9 −0.461504
\(995\) 68673.3 2.18803
\(996\) −92626.0 −2.94675
\(997\) 6103.28 0.193875 0.0969373 0.995290i \(-0.469095\pi\)
0.0969373 + 0.995290i \(0.469095\pi\)
\(998\) −15705.1 −0.498133
\(999\) 36184.9 1.14599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.f.1.2 5
11.10 odd 2 77.4.a.e.1.4 5
33.32 even 2 693.4.a.o.1.2 5
44.43 even 2 1232.4.a.y.1.1 5
55.54 odd 2 1925.4.a.r.1.2 5
77.76 even 2 539.4.a.h.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.4 5 11.10 odd 2
539.4.a.h.1.4 5 77.76 even 2
693.4.a.o.1.2 5 33.32 even 2
847.4.a.f.1.2 5 1.1 even 1 trivial
1232.4.a.y.1.1 5 44.43 even 2
1925.4.a.r.1.2 5 55.54 odd 2