Properties

Label 8450.2.a.da.1.9
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,7,9,0,7,1,9,8,0,4,7,0,1,0,9,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.39737\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.41573 q^{3} +1.00000 q^{4} +3.41573 q^{6} -0.459770 q^{7} +1.00000 q^{8} +8.66724 q^{9} -2.03092 q^{11} +3.41573 q^{12} -0.459770 q^{14} +1.00000 q^{16} +5.39187 q^{17} +8.66724 q^{18} +3.30639 q^{19} -1.57045 q^{21} -2.03092 q^{22} -4.15544 q^{23} +3.41573 q^{24} +19.3578 q^{27} -0.459770 q^{28} +6.05566 q^{29} -6.52262 q^{31} +1.00000 q^{32} -6.93709 q^{33} +5.39187 q^{34} +8.66724 q^{36} -8.07307 q^{37} +3.30639 q^{38} +4.14511 q^{41} -1.57045 q^{42} +1.26725 q^{43} -2.03092 q^{44} -4.15544 q^{46} -1.29310 q^{47} +3.41573 q^{48} -6.78861 q^{49} +18.4172 q^{51} +5.78588 q^{53} +19.3578 q^{54} -0.459770 q^{56} +11.2937 q^{57} +6.05566 q^{58} +6.77070 q^{59} -5.98450 q^{61} -6.52262 q^{62} -3.98494 q^{63} +1.00000 q^{64} -6.93709 q^{66} +8.41427 q^{67} +5.39187 q^{68} -14.1939 q^{69} +1.47782 q^{71} +8.66724 q^{72} +8.05573 q^{73} -8.07307 q^{74} +3.30639 q^{76} +0.933756 q^{77} -1.68287 q^{79} +40.1194 q^{81} +4.14511 q^{82} +9.99259 q^{83} -1.57045 q^{84} +1.26725 q^{86} +20.6845 q^{87} -2.03092 q^{88} -3.93934 q^{89} -4.15544 q^{92} -22.2796 q^{93} -1.29310 q^{94} +3.41573 q^{96} -7.05844 q^{97} -6.78861 q^{98} -17.6025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 7 q^{3} + 9 q^{4} + 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + 4 q^{11} + 7 q^{12} + q^{14} + 9 q^{16} + 12 q^{17} + 8 q^{18} + 6 q^{19} + 8 q^{21} + 4 q^{22} + 11 q^{23} + 7 q^{24} + 34 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.41573 1.97208 0.986038 0.166522i \(-0.0532538\pi\)
0.986038 + 0.166522i \(0.0532538\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.41573 1.39447
\(7\) −0.459770 −0.173777 −0.0868883 0.996218i \(-0.527692\pi\)
−0.0868883 + 0.996218i \(0.527692\pi\)
\(8\) 1.00000 0.353553
\(9\) 8.66724 2.88908
\(10\) 0 0
\(11\) −2.03092 −0.612346 −0.306173 0.951976i \(-0.599049\pi\)
−0.306173 + 0.951976i \(0.599049\pi\)
\(12\) 3.41573 0.986038
\(13\) 0 0
\(14\) −0.459770 −0.122879
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.39187 1.30772 0.653860 0.756616i \(-0.273149\pi\)
0.653860 + 0.756616i \(0.273149\pi\)
\(18\) 8.66724 2.04289
\(19\) 3.30639 0.758537 0.379269 0.925287i \(-0.376176\pi\)
0.379269 + 0.925287i \(0.376176\pi\)
\(20\) 0 0
\(21\) −1.57045 −0.342701
\(22\) −2.03092 −0.432994
\(23\) −4.15544 −0.866468 −0.433234 0.901281i \(-0.642628\pi\)
−0.433234 + 0.901281i \(0.642628\pi\)
\(24\) 3.41573 0.697234
\(25\) 0 0
\(26\) 0 0
\(27\) 19.3578 3.72541
\(28\) −0.459770 −0.0868883
\(29\) 6.05566 1.12451 0.562254 0.826965i \(-0.309934\pi\)
0.562254 + 0.826965i \(0.309934\pi\)
\(30\) 0 0
\(31\) −6.52262 −1.17150 −0.585749 0.810493i \(-0.699200\pi\)
−0.585749 + 0.810493i \(0.699200\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.93709 −1.20759
\(34\) 5.39187 0.924698
\(35\) 0 0
\(36\) 8.66724 1.44454
\(37\) −8.07307 −1.32720 −0.663602 0.748086i \(-0.730973\pi\)
−0.663602 + 0.748086i \(0.730973\pi\)
\(38\) 3.30639 0.536367
\(39\) 0 0
\(40\) 0 0
\(41\) 4.14511 0.647358 0.323679 0.946167i \(-0.395080\pi\)
0.323679 + 0.946167i \(0.395080\pi\)
\(42\) −1.57045 −0.242326
\(43\) 1.26725 0.193253 0.0966265 0.995321i \(-0.469195\pi\)
0.0966265 + 0.995321i \(0.469195\pi\)
\(44\) −2.03092 −0.306173
\(45\) 0 0
\(46\) −4.15544 −0.612686
\(47\) −1.29310 −0.188618 −0.0943088 0.995543i \(-0.530064\pi\)
−0.0943088 + 0.995543i \(0.530064\pi\)
\(48\) 3.41573 0.493019
\(49\) −6.78861 −0.969802
\(50\) 0 0
\(51\) 18.4172 2.57892
\(52\) 0 0
\(53\) 5.78588 0.794751 0.397376 0.917656i \(-0.369921\pi\)
0.397376 + 0.917656i \(0.369921\pi\)
\(54\) 19.3578 2.63426
\(55\) 0 0
\(56\) −0.459770 −0.0614393
\(57\) 11.2937 1.49589
\(58\) 6.05566 0.795147
\(59\) 6.77070 0.881470 0.440735 0.897637i \(-0.354718\pi\)
0.440735 + 0.897637i \(0.354718\pi\)
\(60\) 0 0
\(61\) −5.98450 −0.766237 −0.383119 0.923699i \(-0.625150\pi\)
−0.383119 + 0.923699i \(0.625150\pi\)
\(62\) −6.52262 −0.828374
\(63\) −3.98494 −0.502055
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.93709 −0.853896
\(67\) 8.41427 1.02797 0.513983 0.857800i \(-0.328169\pi\)
0.513983 + 0.857800i \(0.328169\pi\)
\(68\) 5.39187 0.653860
\(69\) −14.1939 −1.70874
\(70\) 0 0
\(71\) 1.47782 0.175385 0.0876927 0.996148i \(-0.472051\pi\)
0.0876927 + 0.996148i \(0.472051\pi\)
\(72\) 8.66724 1.02144
\(73\) 8.05573 0.942852 0.471426 0.881906i \(-0.343739\pi\)
0.471426 + 0.881906i \(0.343739\pi\)
\(74\) −8.07307 −0.938475
\(75\) 0 0
\(76\) 3.30639 0.379269
\(77\) 0.933756 0.106411
\(78\) 0 0
\(79\) −1.68287 −0.189338 −0.0946690 0.995509i \(-0.530179\pi\)
−0.0946690 + 0.995509i \(0.530179\pi\)
\(80\) 0 0
\(81\) 40.1194 4.45771
\(82\) 4.14511 0.457751
\(83\) 9.99259 1.09683 0.548415 0.836207i \(-0.315232\pi\)
0.548415 + 0.836207i \(0.315232\pi\)
\(84\) −1.57045 −0.171350
\(85\) 0 0
\(86\) 1.26725 0.136651
\(87\) 20.6845 2.21761
\(88\) −2.03092 −0.216497
\(89\) −3.93934 −0.417569 −0.208785 0.977962i \(-0.566951\pi\)
−0.208785 + 0.977962i \(0.566951\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.15544 −0.433234
\(93\) −22.2796 −2.31028
\(94\) −1.29310 −0.133373
\(95\) 0 0
\(96\) 3.41573 0.348617
\(97\) −7.05844 −0.716676 −0.358338 0.933592i \(-0.616657\pi\)
−0.358338 + 0.933592i \(0.616657\pi\)
\(98\) −6.78861 −0.685753
\(99\) −17.6025 −1.76912
\(100\) 0 0
\(101\) 2.37044 0.235868 0.117934 0.993021i \(-0.462373\pi\)
0.117934 + 0.993021i \(0.462373\pi\)
\(102\) 18.4172 1.82357
\(103\) −6.75491 −0.665581 −0.332790 0.943001i \(-0.607990\pi\)
−0.332790 + 0.943001i \(0.607990\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 5.78588 0.561974
\(107\) 0.0114398 0.00110593 0.000552966 1.00000i \(-0.499824\pi\)
0.000552966 1.00000i \(0.499824\pi\)
\(108\) 19.3578 1.86271
\(109\) −3.79448 −0.363445 −0.181723 0.983350i \(-0.558167\pi\)
−0.181723 + 0.983350i \(0.558167\pi\)
\(110\) 0 0
\(111\) −27.5755 −2.61735
\(112\) −0.459770 −0.0434442
\(113\) −5.57377 −0.524336 −0.262168 0.965022i \(-0.584438\pi\)
−0.262168 + 0.965022i \(0.584438\pi\)
\(114\) 11.2937 1.05776
\(115\) 0 0
\(116\) 6.05566 0.562254
\(117\) 0 0
\(118\) 6.77070 0.623294
\(119\) −2.47902 −0.227251
\(120\) 0 0
\(121\) −6.87536 −0.625033
\(122\) −5.98450 −0.541812
\(123\) 14.1586 1.27664
\(124\) −6.52262 −0.585749
\(125\) 0 0
\(126\) −3.98494 −0.355006
\(127\) 11.4002 1.01160 0.505801 0.862650i \(-0.331197\pi\)
0.505801 + 0.862650i \(0.331197\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.32857 0.381110
\(130\) 0 0
\(131\) −14.9906 −1.30974 −0.654869 0.755743i \(-0.727276\pi\)
−0.654869 + 0.755743i \(0.727276\pi\)
\(132\) −6.93709 −0.603796
\(133\) −1.52018 −0.131816
\(134\) 8.41427 0.726882
\(135\) 0 0
\(136\) 5.39187 0.462349
\(137\) −13.6727 −1.16814 −0.584069 0.811704i \(-0.698540\pi\)
−0.584069 + 0.811704i \(0.698540\pi\)
\(138\) −14.1939 −1.20826
\(139\) 11.8128 1.00195 0.500976 0.865461i \(-0.332974\pi\)
0.500976 + 0.865461i \(0.332974\pi\)
\(140\) 0 0
\(141\) −4.41688 −0.371968
\(142\) 1.47782 0.124016
\(143\) 0 0
\(144\) 8.66724 0.722270
\(145\) 0 0
\(146\) 8.05573 0.666697
\(147\) −23.1881 −1.91252
\(148\) −8.07307 −0.663602
\(149\) 21.3478 1.74888 0.874439 0.485136i \(-0.161230\pi\)
0.874439 + 0.485136i \(0.161230\pi\)
\(150\) 0 0
\(151\) −22.9456 −1.86729 −0.933644 0.358203i \(-0.883390\pi\)
−0.933644 + 0.358203i \(0.883390\pi\)
\(152\) 3.30639 0.268183
\(153\) 46.7326 3.77811
\(154\) 0.933756 0.0752442
\(155\) 0 0
\(156\) 0 0
\(157\) −15.2264 −1.21520 −0.607599 0.794244i \(-0.707867\pi\)
−0.607599 + 0.794244i \(0.707867\pi\)
\(158\) −1.68287 −0.133882
\(159\) 19.7630 1.56731
\(160\) 0 0
\(161\) 1.91054 0.150572
\(162\) 40.1194 3.15208
\(163\) −5.47677 −0.428974 −0.214487 0.976727i \(-0.568808\pi\)
−0.214487 + 0.976727i \(0.568808\pi\)
\(164\) 4.14511 0.323679
\(165\) 0 0
\(166\) 9.99259 0.775575
\(167\) 2.94085 0.227569 0.113785 0.993505i \(-0.463703\pi\)
0.113785 + 0.993505i \(0.463703\pi\)
\(168\) −1.57045 −0.121163
\(169\) 0 0
\(170\) 0 0
\(171\) 28.6573 2.19148
\(172\) 1.26725 0.0966265
\(173\) −3.88650 −0.295485 −0.147742 0.989026i \(-0.547201\pi\)
−0.147742 + 0.989026i \(0.547201\pi\)
\(174\) 20.6845 1.56809
\(175\) 0 0
\(176\) −2.03092 −0.153086
\(177\) 23.1269 1.73833
\(178\) −3.93934 −0.295266
\(179\) 10.3238 0.771636 0.385818 0.922575i \(-0.373919\pi\)
0.385818 + 0.922575i \(0.373919\pi\)
\(180\) 0 0
\(181\) 3.68088 0.273598 0.136799 0.990599i \(-0.456319\pi\)
0.136799 + 0.990599i \(0.456319\pi\)
\(182\) 0 0
\(183\) −20.4415 −1.51108
\(184\) −4.15544 −0.306343
\(185\) 0 0
\(186\) −22.2796 −1.63362
\(187\) −10.9505 −0.800777
\(188\) −1.29310 −0.0943088
\(189\) −8.90013 −0.647389
\(190\) 0 0
\(191\) 25.0076 1.80948 0.904742 0.425959i \(-0.140063\pi\)
0.904742 + 0.425959i \(0.140063\pi\)
\(192\) 3.41573 0.246509
\(193\) 1.97401 0.142093 0.0710463 0.997473i \(-0.477366\pi\)
0.0710463 + 0.997473i \(0.477366\pi\)
\(194\) −7.05844 −0.506767
\(195\) 0 0
\(196\) −6.78861 −0.484901
\(197\) −17.6446 −1.25712 −0.628562 0.777760i \(-0.716356\pi\)
−0.628562 + 0.777760i \(0.716356\pi\)
\(198\) −17.6025 −1.25095
\(199\) −16.1718 −1.14639 −0.573193 0.819421i \(-0.694295\pi\)
−0.573193 + 0.819421i \(0.694295\pi\)
\(200\) 0 0
\(201\) 28.7409 2.02723
\(202\) 2.37044 0.166784
\(203\) −2.78421 −0.195413
\(204\) 18.4172 1.28946
\(205\) 0 0
\(206\) −6.75491 −0.470637
\(207\) −36.0162 −2.50330
\(208\) 0 0
\(209\) −6.71501 −0.464487
\(210\) 0 0
\(211\) −13.3757 −0.920819 −0.460410 0.887707i \(-0.652297\pi\)
−0.460410 + 0.887707i \(0.652297\pi\)
\(212\) 5.78588 0.397376
\(213\) 5.04785 0.345873
\(214\) 0.0114398 0.000782011 0
\(215\) 0 0
\(216\) 19.3578 1.31713
\(217\) 2.99890 0.203579
\(218\) −3.79448 −0.256995
\(219\) 27.5162 1.85937
\(220\) 0 0
\(221\) 0 0
\(222\) −27.5755 −1.85074
\(223\) −3.02345 −0.202465 −0.101233 0.994863i \(-0.532279\pi\)
−0.101233 + 0.994863i \(0.532279\pi\)
\(224\) −0.459770 −0.0307197
\(225\) 0 0
\(226\) −5.57377 −0.370762
\(227\) −14.6074 −0.969525 −0.484762 0.874646i \(-0.661094\pi\)
−0.484762 + 0.874646i \(0.661094\pi\)
\(228\) 11.2937 0.747946
\(229\) 14.0176 0.926308 0.463154 0.886278i \(-0.346718\pi\)
0.463154 + 0.886278i \(0.346718\pi\)
\(230\) 0 0
\(231\) 3.18946 0.209851
\(232\) 6.05566 0.397573
\(233\) −26.5904 −1.74200 −0.870998 0.491286i \(-0.836527\pi\)
−0.870998 + 0.491286i \(0.836527\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.77070 0.440735
\(237\) −5.74825 −0.373389
\(238\) −2.47902 −0.160691
\(239\) −12.3423 −0.798356 −0.399178 0.916874i \(-0.630704\pi\)
−0.399178 + 0.916874i \(0.630704\pi\)
\(240\) 0 0
\(241\) 3.79308 0.244334 0.122167 0.992510i \(-0.461016\pi\)
0.122167 + 0.992510i \(0.461016\pi\)
\(242\) −6.87536 −0.441965
\(243\) 78.9638 5.06553
\(244\) −5.98450 −0.383119
\(245\) 0 0
\(246\) 14.1586 0.902719
\(247\) 0 0
\(248\) −6.52262 −0.414187
\(249\) 34.1320 2.16303
\(250\) 0 0
\(251\) −0.547631 −0.0345662 −0.0172831 0.999851i \(-0.505502\pi\)
−0.0172831 + 0.999851i \(0.505502\pi\)
\(252\) −3.98494 −0.251027
\(253\) 8.43936 0.530578
\(254\) 11.4002 0.715311
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 17.4033 1.08559 0.542793 0.839866i \(-0.317367\pi\)
0.542793 + 0.839866i \(0.317367\pi\)
\(258\) 4.32857 0.269485
\(259\) 3.71175 0.230637
\(260\) 0 0
\(261\) 52.4859 3.24879
\(262\) −14.9906 −0.926124
\(263\) 11.6459 0.718114 0.359057 0.933316i \(-0.383098\pi\)
0.359057 + 0.933316i \(0.383098\pi\)
\(264\) −6.93709 −0.426948
\(265\) 0 0
\(266\) −1.52018 −0.0932080
\(267\) −13.4557 −0.823478
\(268\) 8.41427 0.513983
\(269\) −16.9075 −1.03087 −0.515434 0.856929i \(-0.672369\pi\)
−0.515434 + 0.856929i \(0.672369\pi\)
\(270\) 0 0
\(271\) −9.94128 −0.603889 −0.301945 0.953325i \(-0.597636\pi\)
−0.301945 + 0.953325i \(0.597636\pi\)
\(272\) 5.39187 0.326930
\(273\) 0 0
\(274\) −13.6727 −0.825999
\(275\) 0 0
\(276\) −14.1939 −0.854370
\(277\) −4.24476 −0.255043 −0.127521 0.991836i \(-0.540702\pi\)
−0.127521 + 0.991836i \(0.540702\pi\)
\(278\) 11.8128 0.708487
\(279\) −56.5332 −3.38455
\(280\) 0 0
\(281\) 24.6567 1.47090 0.735449 0.677580i \(-0.236971\pi\)
0.735449 + 0.677580i \(0.236971\pi\)
\(282\) −4.41688 −0.263021
\(283\) 9.64034 0.573059 0.286529 0.958071i \(-0.407498\pi\)
0.286529 + 0.958071i \(0.407498\pi\)
\(284\) 1.47782 0.0876927
\(285\) 0 0
\(286\) 0 0
\(287\) −1.90580 −0.112496
\(288\) 8.66724 0.510722
\(289\) 12.0722 0.710131
\(290\) 0 0
\(291\) −24.1098 −1.41334
\(292\) 8.05573 0.471426
\(293\) −6.02494 −0.351981 −0.175990 0.984392i \(-0.556313\pi\)
−0.175990 + 0.984392i \(0.556313\pi\)
\(294\) −23.1881 −1.35236
\(295\) 0 0
\(296\) −8.07307 −0.469238
\(297\) −39.3142 −2.28124
\(298\) 21.3478 1.23664
\(299\) 0 0
\(300\) 0 0
\(301\) −0.582641 −0.0335829
\(302\) −22.9456 −1.32037
\(303\) 8.09679 0.465149
\(304\) 3.30639 0.189634
\(305\) 0 0
\(306\) 46.7326 2.67153
\(307\) −24.5247 −1.39970 −0.699850 0.714290i \(-0.746750\pi\)
−0.699850 + 0.714290i \(0.746750\pi\)
\(308\) 0.933756 0.0532057
\(309\) −23.0730 −1.31258
\(310\) 0 0
\(311\) −20.6188 −1.16918 −0.584591 0.811328i \(-0.698745\pi\)
−0.584591 + 0.811328i \(0.698745\pi\)
\(312\) 0 0
\(313\) 7.35529 0.415746 0.207873 0.978156i \(-0.433346\pi\)
0.207873 + 0.978156i \(0.433346\pi\)
\(314\) −15.2264 −0.859275
\(315\) 0 0
\(316\) −1.68287 −0.0946690
\(317\) −17.4476 −0.979954 −0.489977 0.871735i \(-0.662995\pi\)
−0.489977 + 0.871735i \(0.662995\pi\)
\(318\) 19.7630 1.10826
\(319\) −12.2986 −0.688587
\(320\) 0 0
\(321\) 0.0390755 0.00218098
\(322\) 1.91054 0.106470
\(323\) 17.8276 0.991954
\(324\) 40.1194 2.22885
\(325\) 0 0
\(326\) −5.47677 −0.303330
\(327\) −12.9609 −0.716742
\(328\) 4.14511 0.228875
\(329\) 0.594527 0.0327773
\(330\) 0 0
\(331\) −18.5906 −1.02183 −0.510917 0.859630i \(-0.670694\pi\)
−0.510917 + 0.859630i \(0.670694\pi\)
\(332\) 9.99259 0.548415
\(333\) −69.9713 −3.83440
\(334\) 2.94085 0.160916
\(335\) 0 0
\(336\) −1.57045 −0.0856752
\(337\) 11.2984 0.615463 0.307732 0.951473i \(-0.400430\pi\)
0.307732 + 0.951473i \(0.400430\pi\)
\(338\) 0 0
\(339\) −19.0385 −1.03403
\(340\) 0 0
\(341\) 13.2469 0.717362
\(342\) 28.6573 1.54961
\(343\) 6.33959 0.342305
\(344\) 1.26725 0.0683253
\(345\) 0 0
\(346\) −3.88650 −0.208939
\(347\) −22.2403 −1.19392 −0.596961 0.802270i \(-0.703625\pi\)
−0.596961 + 0.802270i \(0.703625\pi\)
\(348\) 20.6845 1.10881
\(349\) 22.6265 1.21117 0.605585 0.795781i \(-0.292939\pi\)
0.605585 + 0.795781i \(0.292939\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.03092 −0.108248
\(353\) 7.66644 0.408044 0.204022 0.978966i \(-0.434599\pi\)
0.204022 + 0.978966i \(0.434599\pi\)
\(354\) 23.1269 1.22918
\(355\) 0 0
\(356\) −3.93934 −0.208785
\(357\) −8.46766 −0.448156
\(358\) 10.3238 0.545629
\(359\) 31.5137 1.66323 0.831615 0.555353i \(-0.187417\pi\)
0.831615 + 0.555353i \(0.187417\pi\)
\(360\) 0 0
\(361\) −8.06780 −0.424621
\(362\) 3.68088 0.193463
\(363\) −23.4844 −1.23261
\(364\) 0 0
\(365\) 0 0
\(366\) −20.4415 −1.06849
\(367\) 25.5000 1.33109 0.665544 0.746359i \(-0.268200\pi\)
0.665544 + 0.746359i \(0.268200\pi\)
\(368\) −4.15544 −0.216617
\(369\) 35.9267 1.87027
\(370\) 0 0
\(371\) −2.66017 −0.138109
\(372\) −22.2796 −1.15514
\(373\) 15.2112 0.787604 0.393802 0.919195i \(-0.371159\pi\)
0.393802 + 0.919195i \(0.371159\pi\)
\(374\) −10.9505 −0.566235
\(375\) 0 0
\(376\) −1.29310 −0.0666864
\(377\) 0 0
\(378\) −8.90013 −0.457773
\(379\) −17.2766 −0.887439 −0.443719 0.896166i \(-0.646341\pi\)
−0.443719 + 0.896166i \(0.646341\pi\)
\(380\) 0 0
\(381\) 38.9400 1.99496
\(382\) 25.0076 1.27950
\(383\) −15.1262 −0.772915 −0.386458 0.922307i \(-0.626301\pi\)
−0.386458 + 0.922307i \(0.626301\pi\)
\(384\) 3.41573 0.174308
\(385\) 0 0
\(386\) 1.97401 0.100475
\(387\) 10.9835 0.558324
\(388\) −7.05844 −0.358338
\(389\) −32.0553 −1.62527 −0.812635 0.582774i \(-0.801967\pi\)
−0.812635 + 0.582774i \(0.801967\pi\)
\(390\) 0 0
\(391\) −22.4056 −1.13310
\(392\) −6.78861 −0.342877
\(393\) −51.2040 −2.58290
\(394\) −17.6446 −0.888920
\(395\) 0 0
\(396\) −17.6025 −0.884558
\(397\) −7.52503 −0.377670 −0.188835 0.982009i \(-0.560471\pi\)
−0.188835 + 0.982009i \(0.560471\pi\)
\(398\) −16.1718 −0.810617
\(399\) −5.19252 −0.259951
\(400\) 0 0
\(401\) 37.3359 1.86447 0.932233 0.361860i \(-0.117858\pi\)
0.932233 + 0.361860i \(0.117858\pi\)
\(402\) 28.7409 1.43347
\(403\) 0 0
\(404\) 2.37044 0.117934
\(405\) 0 0
\(406\) −2.78421 −0.138178
\(407\) 16.3958 0.812708
\(408\) 18.4172 0.911787
\(409\) 19.7733 0.977729 0.488864 0.872360i \(-0.337411\pi\)
0.488864 + 0.872360i \(0.337411\pi\)
\(410\) 0 0
\(411\) −46.7024 −2.30366
\(412\) −6.75491 −0.332790
\(413\) −3.11296 −0.153179
\(414\) −36.0162 −1.77010
\(415\) 0 0
\(416\) 0 0
\(417\) 40.3495 1.97592
\(418\) −6.71501 −0.328442
\(419\) −12.4677 −0.609086 −0.304543 0.952499i \(-0.598504\pi\)
−0.304543 + 0.952499i \(0.598504\pi\)
\(420\) 0 0
\(421\) 1.36944 0.0667423 0.0333712 0.999443i \(-0.489376\pi\)
0.0333712 + 0.999443i \(0.489376\pi\)
\(422\) −13.3757 −0.651118
\(423\) −11.2076 −0.544932
\(424\) 5.78588 0.280987
\(425\) 0 0
\(426\) 5.04785 0.244569
\(427\) 2.75149 0.133154
\(428\) 0.0114398 0.000552966 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1142 −0.535354 −0.267677 0.963509i \(-0.586256\pi\)
−0.267677 + 0.963509i \(0.586256\pi\)
\(432\) 19.3578 0.931353
\(433\) 30.2038 1.45150 0.725752 0.687957i \(-0.241492\pi\)
0.725752 + 0.687957i \(0.241492\pi\)
\(434\) 2.99890 0.143952
\(435\) 0 0
\(436\) −3.79448 −0.181723
\(437\) −13.7395 −0.657249
\(438\) 27.5162 1.31478
\(439\) 30.0084 1.43223 0.716113 0.697985i \(-0.245920\pi\)
0.716113 + 0.697985i \(0.245920\pi\)
\(440\) 0 0
\(441\) −58.8386 −2.80184
\(442\) 0 0
\(443\) −10.0957 −0.479661 −0.239830 0.970815i \(-0.577092\pi\)
−0.239830 + 0.970815i \(0.577092\pi\)
\(444\) −27.5755 −1.30867
\(445\) 0 0
\(446\) −3.02345 −0.143165
\(447\) 72.9183 3.44892
\(448\) −0.459770 −0.0217221
\(449\) −28.9563 −1.36653 −0.683266 0.730169i \(-0.739441\pi\)
−0.683266 + 0.730169i \(0.739441\pi\)
\(450\) 0 0
\(451\) −8.41839 −0.396407
\(452\) −5.57377 −0.262168
\(453\) −78.3761 −3.68243
\(454\) −14.6074 −0.685558
\(455\) 0 0
\(456\) 11.2937 0.528878
\(457\) 40.4620 1.89273 0.946367 0.323094i \(-0.104723\pi\)
0.946367 + 0.323094i \(0.104723\pi\)
\(458\) 14.0176 0.654998
\(459\) 104.375 4.87179
\(460\) 0 0
\(461\) −6.39717 −0.297946 −0.148973 0.988841i \(-0.547597\pi\)
−0.148973 + 0.988841i \(0.547597\pi\)
\(462\) 3.18946 0.148387
\(463\) 15.3751 0.714541 0.357270 0.934001i \(-0.383707\pi\)
0.357270 + 0.934001i \(0.383707\pi\)
\(464\) 6.05566 0.281127
\(465\) 0 0
\(466\) −26.5904 −1.23178
\(467\) 9.41379 0.435618 0.217809 0.975991i \(-0.430109\pi\)
0.217809 + 0.975991i \(0.430109\pi\)
\(468\) 0 0
\(469\) −3.86863 −0.178637
\(470\) 0 0
\(471\) −52.0093 −2.39646
\(472\) 6.77070 0.311647
\(473\) −2.57367 −0.118338
\(474\) −5.74825 −0.264026
\(475\) 0 0
\(476\) −2.47902 −0.113626
\(477\) 50.1476 2.29610
\(478\) −12.3423 −0.564523
\(479\) −24.7651 −1.13155 −0.565774 0.824560i \(-0.691423\pi\)
−0.565774 + 0.824560i \(0.691423\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 3.79308 0.172770
\(483\) 6.52591 0.296939
\(484\) −6.87536 −0.312516
\(485\) 0 0
\(486\) 78.9638 3.58187
\(487\) −27.2037 −1.23272 −0.616358 0.787466i \(-0.711393\pi\)
−0.616358 + 0.787466i \(0.711393\pi\)
\(488\) −5.98450 −0.270906
\(489\) −18.7072 −0.845969
\(490\) 0 0
\(491\) −27.4578 −1.23915 −0.619576 0.784937i \(-0.712695\pi\)
−0.619576 + 0.784937i \(0.712695\pi\)
\(492\) 14.1586 0.638319
\(493\) 32.6513 1.47054
\(494\) 0 0
\(495\) 0 0
\(496\) −6.52262 −0.292874
\(497\) −0.679459 −0.0304779
\(498\) 34.1320 1.52949
\(499\) −2.92681 −0.131022 −0.0655109 0.997852i \(-0.520868\pi\)
−0.0655109 + 0.997852i \(0.520868\pi\)
\(500\) 0 0
\(501\) 10.0451 0.448784
\(502\) −0.547631 −0.0244420
\(503\) −0.113123 −0.00504392 −0.00252196 0.999997i \(-0.500803\pi\)
−0.00252196 + 0.999997i \(0.500803\pi\)
\(504\) −3.98494 −0.177503
\(505\) 0 0
\(506\) 8.43936 0.375175
\(507\) 0 0
\(508\) 11.4002 0.505801
\(509\) −19.0806 −0.845731 −0.422865 0.906193i \(-0.638976\pi\)
−0.422865 + 0.906193i \(0.638976\pi\)
\(510\) 0 0
\(511\) −3.70378 −0.163846
\(512\) 1.00000 0.0441942
\(513\) 64.0044 2.82586
\(514\) 17.4033 0.767626
\(515\) 0 0
\(516\) 4.32857 0.190555
\(517\) 2.62618 0.115499
\(518\) 3.71175 0.163085
\(519\) −13.2752 −0.582718
\(520\) 0 0
\(521\) −6.88125 −0.301473 −0.150736 0.988574i \(-0.548164\pi\)
−0.150736 + 0.988574i \(0.548164\pi\)
\(522\) 52.4859 2.29724
\(523\) 19.7227 0.862414 0.431207 0.902253i \(-0.358088\pi\)
0.431207 + 0.902253i \(0.358088\pi\)
\(524\) −14.9906 −0.654869
\(525\) 0 0
\(526\) 11.6459 0.507783
\(527\) −35.1691 −1.53199
\(528\) −6.93709 −0.301898
\(529\) −5.73235 −0.249233
\(530\) 0 0
\(531\) 58.6833 2.54664
\(532\) −1.52018 −0.0659080
\(533\) 0 0
\(534\) −13.4557 −0.582287
\(535\) 0 0
\(536\) 8.41427 0.363441
\(537\) 35.2633 1.52173
\(538\) −16.9075 −0.728934
\(539\) 13.7871 0.593854
\(540\) 0 0
\(541\) 41.8747 1.80034 0.900168 0.435543i \(-0.143444\pi\)
0.900168 + 0.435543i \(0.143444\pi\)
\(542\) −9.94128 −0.427014
\(543\) 12.5729 0.539555
\(544\) 5.39187 0.231174
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0881 −1.20096 −0.600481 0.799639i \(-0.705024\pi\)
−0.600481 + 0.799639i \(0.705024\pi\)
\(548\) −13.6727 −0.584069
\(549\) −51.8692 −2.21372
\(550\) 0 0
\(551\) 20.0224 0.852981
\(552\) −14.1939 −0.604131
\(553\) 0.773734 0.0329025
\(554\) −4.24476 −0.180343
\(555\) 0 0
\(556\) 11.8128 0.500976
\(557\) −29.3170 −1.24220 −0.621101 0.783730i \(-0.713315\pi\)
−0.621101 + 0.783730i \(0.713315\pi\)
\(558\) −56.5332 −2.39324
\(559\) 0 0
\(560\) 0 0
\(561\) −37.4038 −1.57919
\(562\) 24.6567 1.04008
\(563\) 2.10937 0.0888995 0.0444497 0.999012i \(-0.485847\pi\)
0.0444497 + 0.999012i \(0.485847\pi\)
\(564\) −4.41688 −0.185984
\(565\) 0 0
\(566\) 9.64034 0.405214
\(567\) −18.4457 −0.774646
\(568\) 1.47782 0.0620081
\(569\) 14.0188 0.587697 0.293849 0.955852i \(-0.405064\pi\)
0.293849 + 0.955852i \(0.405064\pi\)
\(570\) 0 0
\(571\) −27.5675 −1.15366 −0.576831 0.816864i \(-0.695711\pi\)
−0.576831 + 0.816864i \(0.695711\pi\)
\(572\) 0 0
\(573\) 85.4192 3.56844
\(574\) −1.90580 −0.0795464
\(575\) 0 0
\(576\) 8.66724 0.361135
\(577\) 19.0434 0.792788 0.396394 0.918080i \(-0.370261\pi\)
0.396394 + 0.918080i \(0.370261\pi\)
\(578\) 12.0722 0.502138
\(579\) 6.74271 0.280217
\(580\) 0 0
\(581\) −4.59429 −0.190603
\(582\) −24.1098 −0.999382
\(583\) −11.7507 −0.486663
\(584\) 8.05573 0.333348
\(585\) 0 0
\(586\) −6.02494 −0.248888
\(587\) −16.0453 −0.662260 −0.331130 0.943585i \(-0.607430\pi\)
−0.331130 + 0.943585i \(0.607430\pi\)
\(588\) −23.1881 −0.956261
\(589\) −21.5663 −0.888625
\(590\) 0 0
\(591\) −60.2691 −2.47914
\(592\) −8.07307 −0.331801
\(593\) 43.3422 1.77985 0.889925 0.456107i \(-0.150756\pi\)
0.889925 + 0.456107i \(0.150756\pi\)
\(594\) −39.3142 −1.61308
\(595\) 0 0
\(596\) 21.3478 0.874439
\(597\) −55.2384 −2.26076
\(598\) 0 0
\(599\) −8.53779 −0.348845 −0.174422 0.984671i \(-0.555806\pi\)
−0.174422 + 0.984671i \(0.555806\pi\)
\(600\) 0 0
\(601\) −31.5044 −1.28509 −0.642545 0.766248i \(-0.722121\pi\)
−0.642545 + 0.766248i \(0.722121\pi\)
\(602\) −0.582641 −0.0237467
\(603\) 72.9285 2.96988
\(604\) −22.9456 −0.933644
\(605\) 0 0
\(606\) 8.09679 0.328910
\(607\) −14.8586 −0.603093 −0.301546 0.953451i \(-0.597503\pi\)
−0.301546 + 0.953451i \(0.597503\pi\)
\(608\) 3.30639 0.134092
\(609\) −9.51012 −0.385369
\(610\) 0 0
\(611\) 0 0
\(612\) 46.7326 1.88905
\(613\) −24.9342 −1.00708 −0.503541 0.863971i \(-0.667970\pi\)
−0.503541 + 0.863971i \(0.667970\pi\)
\(614\) −24.5247 −0.989737
\(615\) 0 0
\(616\) 0.933756 0.0376221
\(617\) 20.7921 0.837057 0.418528 0.908204i \(-0.362546\pi\)
0.418528 + 0.908204i \(0.362546\pi\)
\(618\) −23.0730 −0.928131
\(619\) −22.8769 −0.919501 −0.459751 0.888048i \(-0.652061\pi\)
−0.459751 + 0.888048i \(0.652061\pi\)
\(620\) 0 0
\(621\) −80.4401 −3.22795
\(622\) −20.6188 −0.826737
\(623\) 1.81119 0.0725638
\(624\) 0 0
\(625\) 0 0
\(626\) 7.35529 0.293977
\(627\) −22.9367 −0.916004
\(628\) −15.2264 −0.607599
\(629\) −43.5289 −1.73561
\(630\) 0 0
\(631\) 22.6688 0.902429 0.451214 0.892416i \(-0.350991\pi\)
0.451214 + 0.892416i \(0.350991\pi\)
\(632\) −1.68287 −0.0669411
\(633\) −45.6877 −1.81592
\(634\) −17.4476 −0.692932
\(635\) 0 0
\(636\) 19.7630 0.783655
\(637\) 0 0
\(638\) −12.2986 −0.486905
\(639\) 12.8087 0.506703
\(640\) 0 0
\(641\) −11.5650 −0.456789 −0.228394 0.973569i \(-0.573348\pi\)
−0.228394 + 0.973569i \(0.573348\pi\)
\(642\) 0.0390755 0.00154219
\(643\) −25.4887 −1.00518 −0.502588 0.864526i \(-0.667619\pi\)
−0.502588 + 0.864526i \(0.667619\pi\)
\(644\) 1.91054 0.0752860
\(645\) 0 0
\(646\) 17.8276 0.701418
\(647\) −0.686256 −0.0269795 −0.0134897 0.999909i \(-0.504294\pi\)
−0.0134897 + 0.999909i \(0.504294\pi\)
\(648\) 40.1194 1.57604
\(649\) −13.7508 −0.539764
\(650\) 0 0
\(651\) 10.2435 0.401473
\(652\) −5.47677 −0.214487
\(653\) −20.7584 −0.812338 −0.406169 0.913798i \(-0.633136\pi\)
−0.406169 + 0.913798i \(0.633136\pi\)
\(654\) −12.9609 −0.506813
\(655\) 0 0
\(656\) 4.14511 0.161839
\(657\) 69.8210 2.72398
\(658\) 0.594527 0.0231771
\(659\) −23.2146 −0.904312 −0.452156 0.891939i \(-0.649345\pi\)
−0.452156 + 0.891939i \(0.649345\pi\)
\(660\) 0 0
\(661\) −14.9740 −0.582422 −0.291211 0.956659i \(-0.594058\pi\)
−0.291211 + 0.956659i \(0.594058\pi\)
\(662\) −18.5906 −0.722546
\(663\) 0 0
\(664\) 9.99259 0.387788
\(665\) 0 0
\(666\) −69.9713 −2.71133
\(667\) −25.1639 −0.974350
\(668\) 2.94085 0.113785
\(669\) −10.3273 −0.399277
\(670\) 0 0
\(671\) 12.1541 0.469202
\(672\) −1.57045 −0.0605815
\(673\) 17.2347 0.664348 0.332174 0.943218i \(-0.392218\pi\)
0.332174 + 0.943218i \(0.392218\pi\)
\(674\) 11.2984 0.435198
\(675\) 0 0
\(676\) 0 0
\(677\) 12.1285 0.466136 0.233068 0.972460i \(-0.425124\pi\)
0.233068 + 0.972460i \(0.425124\pi\)
\(678\) −19.0385 −0.731170
\(679\) 3.24526 0.124542
\(680\) 0 0
\(681\) −49.8949 −1.91198
\(682\) 13.2469 0.507251
\(683\) 20.0828 0.768449 0.384224 0.923240i \(-0.374469\pi\)
0.384224 + 0.923240i \(0.374469\pi\)
\(684\) 28.6573 1.09574
\(685\) 0 0
\(686\) 6.33959 0.242047
\(687\) 47.8803 1.82675
\(688\) 1.26725 0.0483133
\(689\) 0 0
\(690\) 0 0
\(691\) −24.8495 −0.945320 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(692\) −3.88650 −0.147742
\(693\) 8.09309 0.307431
\(694\) −22.2403 −0.844231
\(695\) 0 0
\(696\) 20.6845 0.784045
\(697\) 22.3499 0.846562
\(698\) 22.6265 0.856427
\(699\) −90.8258 −3.43535
\(700\) 0 0
\(701\) −26.3896 −0.996720 −0.498360 0.866970i \(-0.666064\pi\)
−0.498360 + 0.866970i \(0.666064\pi\)
\(702\) 0 0
\(703\) −26.6927 −1.00673
\(704\) −2.03092 −0.0765432
\(705\) 0 0
\(706\) 7.66644 0.288530
\(707\) −1.08986 −0.0409883
\(708\) 23.1269 0.869163
\(709\) 28.0118 1.05201 0.526003 0.850483i \(-0.323690\pi\)
0.526003 + 0.850483i \(0.323690\pi\)
\(710\) 0 0
\(711\) −14.5859 −0.547013
\(712\) −3.93934 −0.147633
\(713\) 27.1043 1.01507
\(714\) −8.46766 −0.316894
\(715\) 0 0
\(716\) 10.3238 0.385818
\(717\) −42.1580 −1.57442
\(718\) 31.5137 1.17608
\(719\) −40.0185 −1.49244 −0.746219 0.665700i \(-0.768133\pi\)
−0.746219 + 0.665700i \(0.768133\pi\)
\(720\) 0 0
\(721\) 3.10570 0.115662
\(722\) −8.06780 −0.300252
\(723\) 12.9562 0.481845
\(724\) 3.68088 0.136799
\(725\) 0 0
\(726\) −23.4844 −0.871588
\(727\) 37.8003 1.40193 0.700967 0.713194i \(-0.252752\pi\)
0.700967 + 0.713194i \(0.252752\pi\)
\(728\) 0 0
\(729\) 149.361 5.53189
\(730\) 0 0
\(731\) 6.83282 0.252721
\(732\) −20.4415 −0.755539
\(733\) −6.65212 −0.245701 −0.122851 0.992425i \(-0.539204\pi\)
−0.122851 + 0.992425i \(0.539204\pi\)
\(734\) 25.5000 0.941221
\(735\) 0 0
\(736\) −4.15544 −0.153171
\(737\) −17.0887 −0.629471
\(738\) 35.9267 1.32248
\(739\) 28.4479 1.04647 0.523236 0.852188i \(-0.324725\pi\)
0.523236 + 0.852188i \(0.324725\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.66017 −0.0976580
\(743\) 16.3224 0.598809 0.299405 0.954126i \(-0.403212\pi\)
0.299405 + 0.954126i \(0.403212\pi\)
\(744\) −22.2796 −0.816808
\(745\) 0 0
\(746\) 15.2112 0.556920
\(747\) 86.6082 3.16883
\(748\) −10.9505 −0.400388
\(749\) −0.00525969 −0.000192185 0
\(750\) 0 0
\(751\) −0.398628 −0.0145461 −0.00727307 0.999974i \(-0.502315\pi\)
−0.00727307 + 0.999974i \(0.502315\pi\)
\(752\) −1.29310 −0.0471544
\(753\) −1.87056 −0.0681671
\(754\) 0 0
\(755\) 0 0
\(756\) −8.90013 −0.323695
\(757\) 40.1310 1.45859 0.729293 0.684201i \(-0.239849\pi\)
0.729293 + 0.684201i \(0.239849\pi\)
\(758\) −17.2766 −0.627514
\(759\) 28.8266 1.04634
\(760\) 0 0
\(761\) 3.64226 0.132032 0.0660158 0.997819i \(-0.478971\pi\)
0.0660158 + 0.997819i \(0.478971\pi\)
\(762\) 38.9400 1.41065
\(763\) 1.74459 0.0631583
\(764\) 25.0076 0.904742
\(765\) 0 0
\(766\) −15.1262 −0.546533
\(767\) 0 0
\(768\) 3.41573 0.123255
\(769\) −16.4037 −0.591533 −0.295767 0.955260i \(-0.595575\pi\)
−0.295767 + 0.955260i \(0.595575\pi\)
\(770\) 0 0
\(771\) 59.4450 2.14086
\(772\) 1.97401 0.0710463
\(773\) 11.3166 0.407028 0.203514 0.979072i \(-0.434764\pi\)
0.203514 + 0.979072i \(0.434764\pi\)
\(774\) 10.9835 0.394795
\(775\) 0 0
\(776\) −7.05844 −0.253383
\(777\) 12.6784 0.454834
\(778\) −32.0553 −1.14924
\(779\) 13.7053 0.491045
\(780\) 0 0
\(781\) −3.00134 −0.107396
\(782\) −22.4056 −0.801221
\(783\) 117.224 4.18925
\(784\) −6.78861 −0.242450
\(785\) 0 0
\(786\) −51.2040 −1.82639
\(787\) −23.6730 −0.843850 −0.421925 0.906631i \(-0.638646\pi\)
−0.421925 + 0.906631i \(0.638646\pi\)
\(788\) −17.6446 −0.628562
\(789\) 39.7791 1.41618
\(790\) 0 0
\(791\) 2.56265 0.0911174
\(792\) −17.6025 −0.625477
\(793\) 0 0
\(794\) −7.52503 −0.267053
\(795\) 0 0
\(796\) −16.1718 −0.573193
\(797\) −4.35054 −0.154104 −0.0770520 0.997027i \(-0.524551\pi\)
−0.0770520 + 0.997027i \(0.524551\pi\)
\(798\) −5.19252 −0.183813
\(799\) −6.97221 −0.246659
\(800\) 0 0
\(801\) −34.1432 −1.20639
\(802\) 37.3359 1.31838
\(803\) −16.3605 −0.577351
\(804\) 28.7409 1.01361
\(805\) 0 0
\(806\) 0 0
\(807\) −57.7516 −2.03295
\(808\) 2.37044 0.0833918
\(809\) −24.9033 −0.875552 −0.437776 0.899084i \(-0.644234\pi\)
−0.437776 + 0.899084i \(0.644234\pi\)
\(810\) 0 0
\(811\) −30.1105 −1.05732 −0.528661 0.848833i \(-0.677306\pi\)
−0.528661 + 0.848833i \(0.677306\pi\)
\(812\) −2.78421 −0.0977065
\(813\) −33.9568 −1.19092
\(814\) 16.3958 0.574671
\(815\) 0 0
\(816\) 18.4172 0.644730
\(817\) 4.19000 0.146590
\(818\) 19.7733 0.691359
\(819\) 0 0
\(820\) 0 0
\(821\) −33.9761 −1.18577 −0.592887 0.805286i \(-0.702012\pi\)
−0.592887 + 0.805286i \(0.702012\pi\)
\(822\) −46.7024 −1.62893
\(823\) 18.7804 0.654644 0.327322 0.944913i \(-0.393854\pi\)
0.327322 + 0.944913i \(0.393854\pi\)
\(824\) −6.75491 −0.235318
\(825\) 0 0
\(826\) −3.11296 −0.108314
\(827\) 56.4739 1.96379 0.981895 0.189426i \(-0.0606627\pi\)
0.981895 + 0.189426i \(0.0606627\pi\)
\(828\) −36.0162 −1.25165
\(829\) 37.9617 1.31846 0.659231 0.751940i \(-0.270882\pi\)
0.659231 + 0.751940i \(0.270882\pi\)
\(830\) 0 0
\(831\) −14.4990 −0.502964
\(832\) 0 0
\(833\) −36.6033 −1.26823
\(834\) 40.3495 1.39719
\(835\) 0 0
\(836\) −6.71501 −0.232244
\(837\) −126.264 −4.36431
\(838\) −12.4677 −0.430689
\(839\) −17.7895 −0.614162 −0.307081 0.951683i \(-0.599352\pi\)
−0.307081 + 0.951683i \(0.599352\pi\)
\(840\) 0 0
\(841\) 7.67098 0.264517
\(842\) 1.36944 0.0471940
\(843\) 84.2209 2.90072
\(844\) −13.3757 −0.460410
\(845\) 0 0
\(846\) −11.2076 −0.385325
\(847\) 3.16108 0.108616
\(848\) 5.78588 0.198688
\(849\) 32.9289 1.13012
\(850\) 0 0
\(851\) 33.5471 1.14998
\(852\) 5.04785 0.172937
\(853\) −12.0381 −0.412178 −0.206089 0.978533i \(-0.566074\pi\)
−0.206089 + 0.978533i \(0.566074\pi\)
\(854\) 2.75149 0.0941542
\(855\) 0 0
\(856\) 0.0114398 0.000391006 0
\(857\) −21.6745 −0.740388 −0.370194 0.928954i \(-0.620709\pi\)
−0.370194 + 0.928954i \(0.620709\pi\)
\(858\) 0 0
\(859\) −54.1515 −1.84762 −0.923812 0.382846i \(-0.874944\pi\)
−0.923812 + 0.382846i \(0.874944\pi\)
\(860\) 0 0
\(861\) −6.50969 −0.221850
\(862\) −11.1142 −0.378553
\(863\) 41.6531 1.41789 0.708943 0.705265i \(-0.249172\pi\)
0.708943 + 0.705265i \(0.249172\pi\)
\(864\) 19.3578 0.658566
\(865\) 0 0
\(866\) 30.2038 1.02637
\(867\) 41.2355 1.40043
\(868\) 2.99890 0.101789
\(869\) 3.41778 0.115940
\(870\) 0 0
\(871\) 0 0
\(872\) −3.79448 −0.128497
\(873\) −61.1773 −2.07054
\(874\) −13.7395 −0.464745
\(875\) 0 0
\(876\) 27.5162 0.929687
\(877\) 51.8500 1.75085 0.875425 0.483355i \(-0.160582\pi\)
0.875425 + 0.483355i \(0.160582\pi\)
\(878\) 30.0084 1.01274
\(879\) −20.5796 −0.694133
\(880\) 0 0
\(881\) 11.0112 0.370977 0.185488 0.982646i \(-0.440613\pi\)
0.185488 + 0.982646i \(0.440613\pi\)
\(882\) −58.8386 −1.98120
\(883\) −42.0418 −1.41482 −0.707410 0.706803i \(-0.750137\pi\)
−0.707410 + 0.706803i \(0.750137\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −10.0957 −0.339171
\(887\) −50.3024 −1.68899 −0.844495 0.535563i \(-0.820100\pi\)
−0.844495 + 0.535563i \(0.820100\pi\)
\(888\) −27.5755 −0.925372
\(889\) −5.24146 −0.175793
\(890\) 0 0
\(891\) −81.4793 −2.72966
\(892\) −3.02345 −0.101233
\(893\) −4.27548 −0.143073
\(894\) 72.9183 2.43875
\(895\) 0 0
\(896\) −0.459770 −0.0153598
\(897\) 0 0
\(898\) −28.9563 −0.966284
\(899\) −39.4988 −1.31736
\(900\) 0 0
\(901\) 31.1967 1.03931
\(902\) −8.41839 −0.280302
\(903\) −1.99015 −0.0662279
\(904\) −5.57377 −0.185381
\(905\) 0 0
\(906\) −78.3761 −2.60387
\(907\) −1.54390 −0.0512642 −0.0256321 0.999671i \(-0.508160\pi\)
−0.0256321 + 0.999671i \(0.508160\pi\)
\(908\) −14.6074 −0.484762
\(909\) 20.5452 0.681440
\(910\) 0 0
\(911\) 25.5772 0.847411 0.423705 0.905800i \(-0.360729\pi\)
0.423705 + 0.905800i \(0.360729\pi\)
\(912\) 11.2937 0.373973
\(913\) −20.2942 −0.671639
\(914\) 40.4620 1.33836
\(915\) 0 0
\(916\) 14.0176 0.463154
\(917\) 6.89224 0.227602
\(918\) 104.375 3.44488
\(919\) 49.1848 1.62246 0.811228 0.584730i \(-0.198799\pi\)
0.811228 + 0.584730i \(0.198799\pi\)
\(920\) 0 0
\(921\) −83.7700 −2.76031
\(922\) −6.39717 −0.210680
\(923\) 0 0
\(924\) 3.18946 0.104926
\(925\) 0 0
\(926\) 15.3751 0.505257
\(927\) −58.5464 −1.92292
\(928\) 6.05566 0.198787
\(929\) −9.91513 −0.325305 −0.162652 0.986683i \(-0.552005\pi\)
−0.162652 + 0.986683i \(0.552005\pi\)
\(930\) 0 0
\(931\) −22.4458 −0.735631
\(932\) −26.5904 −0.870998
\(933\) −70.4282 −2.30572
\(934\) 9.41379 0.308029
\(935\) 0 0
\(936\) 0 0
\(937\) −24.7485 −0.808497 −0.404248 0.914649i \(-0.632467\pi\)
−0.404248 + 0.914649i \(0.632467\pi\)
\(938\) −3.86863 −0.126315
\(939\) 25.1237 0.819882
\(940\) 0 0
\(941\) 40.4541 1.31877 0.659383 0.751807i \(-0.270817\pi\)
0.659383 + 0.751807i \(0.270817\pi\)
\(942\) −52.0093 −1.69455
\(943\) −17.2247 −0.560915
\(944\) 6.77070 0.220368
\(945\) 0 0
\(946\) −2.57367 −0.0836774
\(947\) 18.3367 0.595864 0.297932 0.954587i \(-0.403703\pi\)
0.297932 + 0.954587i \(0.403703\pi\)
\(948\) −5.74825 −0.186694
\(949\) 0 0
\(950\) 0 0
\(951\) −59.5963 −1.93254
\(952\) −2.47902 −0.0803454
\(953\) −4.21731 −0.136612 −0.0683060 0.997664i \(-0.521759\pi\)
−0.0683060 + 0.997664i \(0.521759\pi\)
\(954\) 50.1476 1.62359
\(955\) 0 0
\(956\) −12.3423 −0.399178
\(957\) −42.0086 −1.35795
\(958\) −24.7651 −0.800125
\(959\) 6.28630 0.202995
\(960\) 0 0
\(961\) 11.5446 0.372407
\(962\) 0 0
\(963\) 0.0991519 0.00319512
\(964\) 3.79308 0.122167
\(965\) 0 0
\(966\) 6.52591 0.209968
\(967\) −46.9135 −1.50864 −0.754318 0.656509i \(-0.772033\pi\)
−0.754318 + 0.656509i \(0.772033\pi\)
\(968\) −6.87536 −0.220982
\(969\) 60.8944 1.95621
\(970\) 0 0
\(971\) −40.5157 −1.30021 −0.650105 0.759844i \(-0.725275\pi\)
−0.650105 + 0.759844i \(0.725275\pi\)
\(972\) 78.9638 2.53276
\(973\) −5.43119 −0.174116
\(974\) −27.2037 −0.871662
\(975\) 0 0
\(976\) −5.98450 −0.191559
\(977\) −51.0911 −1.63455 −0.817275 0.576248i \(-0.804516\pi\)
−0.817275 + 0.576248i \(0.804516\pi\)
\(978\) −18.7072 −0.598190
\(979\) 8.00049 0.255697
\(980\) 0 0
\(981\) −32.8877 −1.05002
\(982\) −27.4578 −0.876213
\(983\) −47.7672 −1.52354 −0.761768 0.647850i \(-0.775668\pi\)
−0.761768 + 0.647850i \(0.775668\pi\)
\(984\) 14.1586 0.451360
\(985\) 0 0
\(986\) 32.6513 1.03983
\(987\) 2.03075 0.0646394
\(988\) 0 0
\(989\) −5.26596 −0.167448
\(990\) 0 0
\(991\) 36.5994 1.16262 0.581309 0.813683i \(-0.302541\pi\)
0.581309 + 0.813683i \(0.302541\pi\)
\(992\) −6.52262 −0.207094
\(993\) −63.5007 −2.01513
\(994\) −0.679459 −0.0215511
\(995\) 0 0
\(996\) 34.1320 1.08151
\(997\) −52.9031 −1.67546 −0.837729 0.546087i \(-0.816117\pi\)
−0.837729 + 0.546087i \(0.816117\pi\)
\(998\) −2.92681 −0.0926464
\(999\) −156.277 −4.94438
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.da.1.9 9
5.2 odd 4 1690.2.b.g.339.10 yes 18
5.3 odd 4 1690.2.b.g.339.9 yes 18
5.4 even 2 8450.2.a.ct.1.1 9
13.12 even 2 8450.2.a.cw.1.9 9
65.8 even 4 1690.2.c.h.1689.18 18
65.12 odd 4 1690.2.b.f.339.1 18
65.18 even 4 1690.2.c.g.1689.18 18
65.38 odd 4 1690.2.b.f.339.18 yes 18
65.47 even 4 1690.2.c.g.1689.1 18
65.57 even 4 1690.2.c.h.1689.1 18
65.64 even 2 8450.2.a.cx.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.1 18 65.12 odd 4
1690.2.b.f.339.18 yes 18 65.38 odd 4
1690.2.b.g.339.9 yes 18 5.3 odd 4
1690.2.b.g.339.10 yes 18 5.2 odd 4
1690.2.c.g.1689.1 18 65.47 even 4
1690.2.c.g.1689.18 18 65.18 even 4
1690.2.c.h.1689.1 18 65.57 even 4
1690.2.c.h.1689.18 18 65.8 even 4
8450.2.a.ct.1.1 9 5.4 even 2
8450.2.a.cw.1.9 9 13.12 even 2
8450.2.a.cx.1.1 9 65.64 even 2
8450.2.a.da.1.9 9 1.1 even 1 trivial