Properties

Label 1690.2.b.g.339.9
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,14,0,0,-16,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.9
Root \(-2.39737i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.g.339.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +3.41573i q^{3} -1.00000 q^{4} +(1.44308 + 1.70807i) q^{5} +3.41573 q^{6} +0.459770i q^{7} +1.00000i q^{8} -8.66724 q^{9} +(1.70807 - 1.44308i) q^{10} -2.03092 q^{11} -3.41573i q^{12} +0.459770 q^{14} +(-5.83433 + 4.92918i) q^{15} +1.00000 q^{16} -5.39187i q^{17} +8.66724i q^{18} -3.30639 q^{19} +(-1.44308 - 1.70807i) q^{20} -1.57045 q^{21} +2.03092i q^{22} -4.15544i q^{23} -3.41573 q^{24} +(-0.835031 + 4.92978i) q^{25} -19.3578i q^{27} -0.459770i q^{28} -6.05566 q^{29} +(4.92918 + 5.83433i) q^{30} -6.52262 q^{31} -1.00000i q^{32} -6.93709i q^{33} -5.39187 q^{34} +(-0.785321 + 0.663485i) q^{35} +8.66724 q^{36} +8.07307i q^{37} +3.30639i q^{38} +(-1.70807 + 1.44308i) q^{40} +4.14511 q^{41} +1.57045i q^{42} +1.26725i q^{43} +2.03092 q^{44} +(-12.5075 - 14.8043i) q^{45} -4.15544 q^{46} +1.29310i q^{47} +3.41573i q^{48} +6.78861 q^{49} +(4.92978 + 0.835031i) q^{50} +18.4172 q^{51} +5.78588i q^{53} -19.3578 q^{54} +(-2.93078 - 3.46896i) q^{55} -0.459770 q^{56} -11.2937i q^{57} +6.05566i q^{58} -6.77070 q^{59} +(5.83433 - 4.92918i) q^{60} -5.98450 q^{61} +6.52262i q^{62} -3.98494i q^{63} -1.00000 q^{64} -6.93709 q^{66} -8.41427i q^{67} +5.39187i q^{68} +14.1939 q^{69} +(0.663485 + 0.785321i) q^{70} +1.47782 q^{71} -8.66724i q^{72} +8.05573i q^{73} +8.07307 q^{74} +(-16.8388 - 2.85224i) q^{75} +3.30639 q^{76} -0.933756i q^{77} +1.68287 q^{79} +(1.44308 + 1.70807i) q^{80} +40.1194 q^{81} -4.14511i q^{82} +9.99259i q^{83} +1.57045 q^{84} +(9.20971 - 7.78090i) q^{85} +1.26725 q^{86} -20.6845i q^{87} -2.03092i q^{88} +3.93934 q^{89} +(-14.8043 + 12.5075i) q^{90} +4.15544i q^{92} -22.2796i q^{93} +1.29310 q^{94} +(-4.77139 - 5.64755i) q^{95} +3.41573 q^{96} +7.05844i q^{97} -6.78861i q^{98} +17.6025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} + 14 q^{6} - 16 q^{9} + 2 q^{10} + 8 q^{11} - 2 q^{14} + 8 q^{15} + 18 q^{16} - 12 q^{19} + 16 q^{21} - 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} - 12 q^{31} - 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 3.41573i 1.97208i 0.166522 + 0.986038i \(0.446746\pi\)
−0.166522 + 0.986038i \(0.553254\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.44308 + 1.70807i 0.645366 + 0.763874i
\(6\) 3.41573 1.39447
\(7\) 0.459770i 0.173777i 0.996218 + 0.0868883i \(0.0276923\pi\)
−0.996218 + 0.0868883i \(0.972308\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −8.66724 −2.88908
\(10\) 1.70807 1.44308i 0.540140 0.456342i
\(11\) −2.03092 −0.612346 −0.306173 0.951976i \(-0.599049\pi\)
−0.306173 + 0.951976i \(0.599049\pi\)
\(12\) 3.41573i 0.986038i
\(13\) 0 0
\(14\) 0.459770 0.122879
\(15\) −5.83433 + 4.92918i −1.50642 + 1.27271i
\(16\) 1.00000 0.250000
\(17\) 5.39187i 1.30772i −0.756616 0.653860i \(-0.773149\pi\)
0.756616 0.653860i \(-0.226851\pi\)
\(18\) 8.66724i 2.04289i
\(19\) −3.30639 −0.758537 −0.379269 0.925287i \(-0.623824\pi\)
−0.379269 + 0.925287i \(0.623824\pi\)
\(20\) −1.44308 1.70807i −0.322683 0.381937i
\(21\) −1.57045 −0.342701
\(22\) 2.03092i 0.432994i
\(23\) 4.15544i 0.866468i −0.901281 0.433234i \(-0.857372\pi\)
0.901281 0.433234i \(-0.142628\pi\)
\(24\) −3.41573 −0.697234
\(25\) −0.835031 + 4.92978i −0.167006 + 0.985956i
\(26\) 0 0
\(27\) 19.3578i 3.72541i
\(28\) 0.459770i 0.0868883i
\(29\) −6.05566 −1.12451 −0.562254 0.826965i \(-0.690066\pi\)
−0.562254 + 0.826965i \(0.690066\pi\)
\(30\) 4.92918 + 5.83433i 0.899942 + 1.06520i
\(31\) −6.52262 −1.17150 −0.585749 0.810493i \(-0.699200\pi\)
−0.585749 + 0.810493i \(0.699200\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 6.93709i 1.20759i
\(34\) −5.39187 −0.924698
\(35\) −0.785321 + 0.663485i −0.132743 + 0.112149i
\(36\) 8.66724 1.44454
\(37\) 8.07307i 1.32720i 0.748086 + 0.663602i \(0.230973\pi\)
−0.748086 + 0.663602i \(0.769027\pi\)
\(38\) 3.30639i 0.536367i
\(39\) 0 0
\(40\) −1.70807 + 1.44308i −0.270070 + 0.228171i
\(41\) 4.14511 0.647358 0.323679 0.946167i \(-0.395080\pi\)
0.323679 + 0.946167i \(0.395080\pi\)
\(42\) 1.57045i 0.242326i
\(43\) 1.26725i 0.193253i 0.995321 + 0.0966265i \(0.0308052\pi\)
−0.995321 + 0.0966265i \(0.969195\pi\)
\(44\) 2.03092 0.306173
\(45\) −12.5075 14.8043i −1.86451 2.20689i
\(46\) −4.15544 −0.612686
\(47\) 1.29310i 0.188618i 0.995543 + 0.0943088i \(0.0300641\pi\)
−0.995543 + 0.0943088i \(0.969936\pi\)
\(48\) 3.41573i 0.493019i
\(49\) 6.78861 0.969802
\(50\) 4.92978 + 0.835031i 0.697176 + 0.118091i
\(51\) 18.4172 2.57892
\(52\) 0 0
\(53\) 5.78588i 0.794751i 0.917656 + 0.397376i \(0.130079\pi\)
−0.917656 + 0.397376i \(0.869921\pi\)
\(54\) −19.3578 −2.63426
\(55\) −2.93078 3.46896i −0.395187 0.467755i
\(56\) −0.459770 −0.0614393
\(57\) 11.2937i 1.49589i
\(58\) 6.05566i 0.795147i
\(59\) −6.77070 −0.881470 −0.440735 0.897637i \(-0.645282\pi\)
−0.440735 + 0.897637i \(0.645282\pi\)
\(60\) 5.83433 4.92918i 0.753208 0.636355i
\(61\) −5.98450 −0.766237 −0.383119 0.923699i \(-0.625150\pi\)
−0.383119 + 0.923699i \(0.625150\pi\)
\(62\) 6.52262i 0.828374i
\(63\) 3.98494i 0.502055i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.93709 −0.853896
\(67\) 8.41427i 1.02797i −0.857800 0.513983i \(-0.828169\pi\)
0.857800 0.513983i \(-0.171831\pi\)
\(68\) 5.39187i 0.653860i
\(69\) 14.1939 1.70874
\(70\) 0.663485 + 0.785321i 0.0793017 + 0.0938638i
\(71\) 1.47782 0.175385 0.0876927 0.996148i \(-0.472051\pi\)
0.0876927 + 0.996148i \(0.472051\pi\)
\(72\) 8.66724i 1.02144i
\(73\) 8.05573i 0.942852i 0.881906 + 0.471426i \(0.156261\pi\)
−0.881906 + 0.471426i \(0.843739\pi\)
\(74\) 8.07307 0.938475
\(75\) −16.8388 2.85224i −1.94438 0.329349i
\(76\) 3.30639 0.379269
\(77\) 0.933756i 0.106411i
\(78\) 0 0
\(79\) 1.68287 0.189338 0.0946690 0.995509i \(-0.469821\pi\)
0.0946690 + 0.995509i \(0.469821\pi\)
\(80\) 1.44308 + 1.70807i 0.161341 + 0.190968i
\(81\) 40.1194 4.45771
\(82\) 4.14511i 0.457751i
\(83\) 9.99259i 1.09683i 0.836207 + 0.548415i \(0.184768\pi\)
−0.836207 + 0.548415i \(0.815232\pi\)
\(84\) 1.57045 0.171350
\(85\) 9.20971 7.78090i 0.998933 0.843957i
\(86\) 1.26725 0.136651
\(87\) 20.6845i 2.21761i
\(88\) 2.03092i 0.216497i
\(89\) 3.93934 0.417569 0.208785 0.977962i \(-0.433049\pi\)
0.208785 + 0.977962i \(0.433049\pi\)
\(90\) −14.8043 + 12.5075i −1.56051 + 1.31841i
\(91\) 0 0
\(92\) 4.15544i 0.433234i
\(93\) 22.2796i 2.31028i
\(94\) 1.29310 0.133373
\(95\) −4.77139 5.64755i −0.489534 0.579427i
\(96\) 3.41573 0.348617
\(97\) 7.05844i 0.716676i 0.933592 + 0.358338i \(0.116657\pi\)
−0.933592 + 0.358338i \(0.883343\pi\)
\(98\) 6.78861i 0.685753i
\(99\) 17.6025 1.76912
\(100\) 0.835031 4.92978i 0.0835031 0.492978i
\(101\) 2.37044 0.235868 0.117934 0.993021i \(-0.462373\pi\)
0.117934 + 0.993021i \(0.462373\pi\)
\(102\) 18.4172i 1.82357i
\(103\) 6.75491i 0.665581i −0.943001 0.332790i \(-0.892010\pi\)
0.943001 0.332790i \(-0.107990\pi\)
\(104\) 0 0
\(105\) −2.26629 2.68245i −0.221167 0.261780i
\(106\) 5.78588 0.561974
\(107\) 0.0114398i 0.00110593i −1.00000 0.000552966i \(-0.999824\pi\)
1.00000 0.000552966i \(-0.000176014\pi\)
\(108\) 19.3578i 1.86271i
\(109\) 3.79448 0.363445 0.181723 0.983350i \(-0.441833\pi\)
0.181723 + 0.983350i \(0.441833\pi\)
\(110\) −3.46896 + 2.93078i −0.330753 + 0.279439i
\(111\) −27.5755 −2.61735
\(112\) 0.459770i 0.0434442i
\(113\) 5.57377i 0.524336i −0.965022 0.262168i \(-0.915562\pi\)
0.965022 0.262168i \(-0.0844375\pi\)
\(114\) −11.2937 −1.05776
\(115\) 7.09779 5.99663i 0.661872 0.559189i
\(116\) 6.05566 0.562254
\(117\) 0 0
\(118\) 6.77070i 0.623294i
\(119\) 2.47902 0.227251
\(120\) −4.92918 5.83433i −0.449971 0.532599i
\(121\) −6.87536 −0.625033
\(122\) 5.98450i 0.541812i
\(123\) 14.1586i 1.27664i
\(124\) 6.52262 0.585749
\(125\) −9.62544 + 5.68778i −0.860926 + 0.508730i
\(126\) −3.98494 −0.355006
\(127\) 11.4002i 1.01160i −0.862650 0.505801i \(-0.831197\pi\)
0.862650 0.505801i \(-0.168803\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −4.32857 −0.381110
\(130\) 0 0
\(131\) −14.9906 −1.30974 −0.654869 0.755743i \(-0.727276\pi\)
−0.654869 + 0.755743i \(0.727276\pi\)
\(132\) 6.93709i 0.603796i
\(133\) 1.52018i 0.131816i
\(134\) −8.41427 −0.726882
\(135\) 33.0645 27.9349i 2.84574 2.40425i
\(136\) 5.39187 0.462349
\(137\) 13.6727i 1.16814i 0.811704 + 0.584069i \(0.198540\pi\)
−0.811704 + 0.584069i \(0.801460\pi\)
\(138\) 14.1939i 1.20826i
\(139\) −11.8128 −1.00195 −0.500976 0.865461i \(-0.667026\pi\)
−0.500976 + 0.865461i \(0.667026\pi\)
\(140\) 0.785321 0.663485i 0.0663717 0.0560747i
\(141\) −4.41688 −0.371968
\(142\) 1.47782i 0.124016i
\(143\) 0 0
\(144\) −8.66724 −0.722270
\(145\) −8.73881 10.3435i −0.725718 0.858982i
\(146\) 8.05573 0.666697
\(147\) 23.1881i 1.91252i
\(148\) 8.07307i 0.663602i
\(149\) −21.3478 −1.74888 −0.874439 0.485136i \(-0.838770\pi\)
−0.874439 + 0.485136i \(0.838770\pi\)
\(150\) −2.85224 + 16.8388i −0.232885 + 1.37488i
\(151\) −22.9456 −1.86729 −0.933644 0.358203i \(-0.883390\pi\)
−0.933644 + 0.358203i \(0.883390\pi\)
\(152\) 3.30639i 0.268183i
\(153\) 46.7326i 3.77811i
\(154\) −0.933756 −0.0752442
\(155\) −9.41268 11.1411i −0.756045 0.894876i
\(156\) 0 0
\(157\) 15.2264i 1.21520i 0.794244 + 0.607599i \(0.207867\pi\)
−0.794244 + 0.607599i \(0.792133\pi\)
\(158\) 1.68287i 0.133882i
\(159\) −19.7630 −1.56731
\(160\) 1.70807 1.44308i 0.135035 0.114086i
\(161\) 1.91054 0.150572
\(162\) 40.1194i 3.15208i
\(163\) 5.47677i 0.428974i −0.976727 0.214487i \(-0.931192\pi\)
0.976727 0.214487i \(-0.0688079\pi\)
\(164\) −4.14511 −0.323679
\(165\) 11.8491 10.0108i 0.922448 0.779338i
\(166\) 9.99259 0.775575
\(167\) 2.94085i 0.227569i −0.993505 0.113785i \(-0.963703\pi\)
0.993505 0.113785i \(-0.0362974\pi\)
\(168\) 1.57045i 0.121163i
\(169\) 0 0
\(170\) −7.78090 9.20971i −0.596768 0.706352i
\(171\) 28.6573 2.19148
\(172\) 1.26725i 0.0966265i
\(173\) 3.88650i 0.295485i −0.989026 0.147742i \(-0.952799\pi\)
0.989026 0.147742i \(-0.0472007\pi\)
\(174\) −20.6845 −1.56809
\(175\) −2.26656 0.383922i −0.171336 0.0290218i
\(176\) −2.03092 −0.153086
\(177\) 23.1269i 1.73833i
\(178\) 3.93934i 0.295266i
\(179\) −10.3238 −0.771636 −0.385818 0.922575i \(-0.626081\pi\)
−0.385818 + 0.922575i \(0.626081\pi\)
\(180\) 12.5075 + 14.8043i 0.932257 + 1.10345i
\(181\) 3.68088 0.273598 0.136799 0.990599i \(-0.456319\pi\)
0.136799 + 0.990599i \(0.456319\pi\)
\(182\) 0 0
\(183\) 20.4415i 1.51108i
\(184\) 4.15544 0.306343
\(185\) −13.7894 + 11.6501i −1.01382 + 0.856532i
\(186\) −22.2796 −1.63362
\(187\) 10.9505i 0.800777i
\(188\) 1.29310i 0.0943088i
\(189\) 8.90013 0.647389
\(190\) −5.64755 + 4.77139i −0.409717 + 0.346153i
\(191\) 25.0076 1.80948 0.904742 0.425959i \(-0.140063\pi\)
0.904742 + 0.425959i \(0.140063\pi\)
\(192\) 3.41573i 0.246509i
\(193\) 1.97401i 0.142093i 0.997473 + 0.0710463i \(0.0226338\pi\)
−0.997473 + 0.0710463i \(0.977366\pi\)
\(194\) 7.05844 0.506767
\(195\) 0 0
\(196\) −6.78861 −0.484901
\(197\) 17.6446i 1.25712i 0.777760 + 0.628562i \(0.216356\pi\)
−0.777760 + 0.628562i \(0.783644\pi\)
\(198\) 17.6025i 1.25095i
\(199\) 16.1718 1.14639 0.573193 0.819421i \(-0.305705\pi\)
0.573193 + 0.819421i \(0.305705\pi\)
\(200\) −4.92978 0.835031i −0.348588 0.0590456i
\(201\) 28.7409 2.02723
\(202\) 2.37044i 0.166784i
\(203\) 2.78421i 0.195413i
\(204\) −18.4172 −1.28946
\(205\) 5.98173 + 7.08015i 0.417782 + 0.494499i
\(206\) −6.75491 −0.470637
\(207\) 36.0162i 2.50330i
\(208\) 0 0
\(209\) 6.71501 0.464487
\(210\) −2.68245 + 2.26629i −0.185106 + 0.156389i
\(211\) −13.3757 −0.920819 −0.460410 0.887707i \(-0.652297\pi\)
−0.460410 + 0.887707i \(0.652297\pi\)
\(212\) 5.78588i 0.397376i
\(213\) 5.04785i 0.345873i
\(214\) −0.0114398 −0.000782011
\(215\) −2.16455 + 1.82874i −0.147621 + 0.124719i
\(216\) 19.3578 1.31713
\(217\) 2.99890i 0.203579i
\(218\) 3.79448i 0.256995i
\(219\) −27.5162 −1.85937
\(220\) 2.93078 + 3.46896i 0.197593 + 0.233877i
\(221\) 0 0
\(222\) 27.5755i 1.85074i
\(223\) 3.02345i 0.202465i −0.994863 0.101233i \(-0.967721\pi\)
0.994863 0.101233i \(-0.0322786\pi\)
\(224\) 0.459770 0.0307197
\(225\) 7.23742 42.7276i 0.482494 2.84851i
\(226\) −5.57377 −0.370762
\(227\) 14.6074i 0.969525i 0.874646 + 0.484762i \(0.161094\pi\)
−0.874646 + 0.484762i \(0.838906\pi\)
\(228\) 11.2937i 0.747946i
\(229\) −14.0176 −0.926308 −0.463154 0.886278i \(-0.653282\pi\)
−0.463154 + 0.886278i \(0.653282\pi\)
\(230\) −5.99663 7.09779i −0.395406 0.468014i
\(231\) 3.18946 0.209851
\(232\) 6.05566i 0.397573i
\(233\) 26.5904i 1.74200i −0.491286 0.870998i \(-0.663473\pi\)
0.491286 0.870998i \(-0.336527\pi\)
\(234\) 0 0
\(235\) −2.20870 + 1.86604i −0.144080 + 0.121727i
\(236\) 6.77070 0.440735
\(237\) 5.74825i 0.373389i
\(238\) 2.47902i 0.160691i
\(239\) 12.3423 0.798356 0.399178 0.916874i \(-0.369296\pi\)
0.399178 + 0.916874i \(0.369296\pi\)
\(240\) −5.83433 + 4.92918i −0.376604 + 0.318177i
\(241\) 3.79308 0.244334 0.122167 0.992510i \(-0.461016\pi\)
0.122167 + 0.992510i \(0.461016\pi\)
\(242\) 6.87536i 0.441965i
\(243\) 78.9638i 5.06553i
\(244\) 5.98450 0.383119
\(245\) 9.79652 + 11.5954i 0.625877 + 0.740806i
\(246\) 14.1586 0.902719
\(247\) 0 0
\(248\) 6.52262i 0.414187i
\(249\) −34.1320 −2.16303
\(250\) 5.68778 + 9.62544i 0.359727 + 0.608767i
\(251\) −0.547631 −0.0345662 −0.0172831 0.999851i \(-0.505502\pi\)
−0.0172831 + 0.999851i \(0.505502\pi\)
\(252\) 3.98494i 0.251027i
\(253\) 8.43936i 0.530578i
\(254\) −11.4002 −0.715311
\(255\) 26.5775 + 31.4579i 1.66435 + 1.96997i
\(256\) 1.00000 0.0625000
\(257\) 17.4033i 1.08559i −0.839866 0.542793i \(-0.817367\pi\)
0.839866 0.542793i \(-0.182633\pi\)
\(258\) 4.32857i 0.269485i
\(259\) −3.71175 −0.230637
\(260\) 0 0
\(261\) 52.4859 3.24879
\(262\) 14.9906i 0.926124i
\(263\) 11.6459i 0.718114i 0.933316 + 0.359057i \(0.116902\pi\)
−0.933316 + 0.359057i \(0.883098\pi\)
\(264\) 6.93709 0.426948
\(265\) −9.88271 + 8.34949i −0.607090 + 0.512905i
\(266\) −1.52018 −0.0932080
\(267\) 13.4557i 0.823478i
\(268\) 8.41427i 0.513983i
\(269\) 16.9075 1.03087 0.515434 0.856929i \(-0.327631\pi\)
0.515434 + 0.856929i \(0.327631\pi\)
\(270\) −27.9349 33.0645i −1.70006 2.01224i
\(271\) −9.94128 −0.603889 −0.301945 0.953325i \(-0.597636\pi\)
−0.301945 + 0.953325i \(0.597636\pi\)
\(272\) 5.39187i 0.326930i
\(273\) 0 0
\(274\) 13.6727 0.825999
\(275\) 1.69588 10.0120i 0.102266 0.603746i
\(276\) −14.1939 −0.854370
\(277\) 4.24476i 0.255043i 0.991836 + 0.127521i \(0.0407022\pi\)
−0.991836 + 0.127521i \(0.959298\pi\)
\(278\) 11.8128i 0.708487i
\(279\) 56.5332 3.38455
\(280\) −0.663485 0.785321i −0.0396508 0.0469319i
\(281\) 24.6567 1.47090 0.735449 0.677580i \(-0.236971\pi\)
0.735449 + 0.677580i \(0.236971\pi\)
\(282\) 4.41688i 0.263021i
\(283\) 9.64034i 0.573059i 0.958071 + 0.286529i \(0.0925016\pi\)
−0.958071 + 0.286529i \(0.907498\pi\)
\(284\) −1.47782 −0.0876927
\(285\) 19.2905 16.2978i 1.14267 0.965398i
\(286\) 0 0
\(287\) 1.90580i 0.112496i
\(288\) 8.66724i 0.510722i
\(289\) −12.0722 −0.710131
\(290\) −10.3435 + 8.73881i −0.607392 + 0.513160i
\(291\) −24.1098 −1.41334
\(292\) 8.05573i 0.471426i
\(293\) 6.02494i 0.351981i −0.984392 0.175990i \(-0.943687\pi\)
0.984392 0.175990i \(-0.0563128\pi\)
\(294\) 23.1881 1.35236
\(295\) −9.77067 11.5649i −0.568871 0.673332i
\(296\) −8.07307 −0.469238
\(297\) 39.3142i 2.28124i
\(298\) 21.3478i 1.23664i
\(299\) 0 0
\(300\) 16.8388 + 2.85224i 0.972190 + 0.164674i
\(301\) −0.582641 −0.0335829
\(302\) 22.9456i 1.32037i
\(303\) 8.09679i 0.465149i
\(304\) −3.30639 −0.189634
\(305\) −8.63613 10.2220i −0.494503 0.585308i
\(306\) 46.7326 2.67153
\(307\) 24.5247i 1.39970i 0.714290 + 0.699850i \(0.246750\pi\)
−0.714290 + 0.699850i \(0.753250\pi\)
\(308\) 0.933756i 0.0532057i
\(309\) 23.0730 1.31258
\(310\) −11.1411 + 9.41268i −0.632773 + 0.534604i
\(311\) −20.6188 −1.16918 −0.584591 0.811328i \(-0.698745\pi\)
−0.584591 + 0.811328i \(0.698745\pi\)
\(312\) 0 0
\(313\) 7.35529i 0.415746i 0.978156 + 0.207873i \(0.0666540\pi\)
−0.978156 + 0.207873i \(0.933346\pi\)
\(314\) 15.2264 0.859275
\(315\) 6.80656 5.75059i 0.383506 0.324009i
\(316\) −1.68287 −0.0946690
\(317\) 17.4476i 0.979954i 0.871735 + 0.489977i \(0.162995\pi\)
−0.871735 + 0.489977i \(0.837005\pi\)
\(318\) 19.7630i 1.10826i
\(319\) 12.2986 0.688587
\(320\) −1.44308 1.70807i −0.0806707 0.0954842i
\(321\) 0.0390755 0.00218098
\(322\) 1.91054i 0.106470i
\(323\) 17.8276i 0.991954i
\(324\) −40.1194 −2.22885
\(325\) 0 0
\(326\) −5.47677 −0.303330
\(327\) 12.9609i 0.716742i
\(328\) 4.14511i 0.228875i
\(329\) −0.594527 −0.0327773
\(330\) −10.0108 11.8491i −0.551075 0.652269i
\(331\) −18.5906 −1.02183 −0.510917 0.859630i \(-0.670694\pi\)
−0.510917 + 0.859630i \(0.670694\pi\)
\(332\) 9.99259i 0.548415i
\(333\) 69.9713i 3.83440i
\(334\) −2.94085 −0.160916
\(335\) 14.3722 12.1425i 0.785237 0.663414i
\(336\) −1.57045 −0.0856752
\(337\) 11.2984i 0.615463i −0.951473 0.307732i \(-0.900430\pi\)
0.951473 0.307732i \(-0.0995699\pi\)
\(338\) 0 0
\(339\) 19.0385 1.03403
\(340\) −9.20971 + 7.78090i −0.499466 + 0.421979i
\(341\) 13.2469 0.717362
\(342\) 28.6573i 1.54961i
\(343\) 6.33959i 0.342305i
\(344\) −1.26725 −0.0683253
\(345\) 20.4829 + 24.2442i 1.10276 + 1.30526i
\(346\) −3.88650 −0.208939
\(347\) 22.2403i 1.19392i 0.802270 + 0.596961i \(0.203625\pi\)
−0.802270 + 0.596961i \(0.796375\pi\)
\(348\) 20.6845i 1.10881i
\(349\) −22.6265 −1.21117 −0.605585 0.795781i \(-0.707061\pi\)
−0.605585 + 0.795781i \(0.707061\pi\)
\(350\) −0.383922 + 2.26656i −0.0205215 + 0.121153i
\(351\) 0 0
\(352\) 2.03092i 0.108248i
\(353\) 7.66644i 0.408044i 0.978966 + 0.204022i \(0.0654013\pi\)
−0.978966 + 0.204022i \(0.934599\pi\)
\(354\) −23.1269 −1.22918
\(355\) 2.13262 + 2.52423i 0.113188 + 0.133972i
\(356\) −3.93934 −0.208785
\(357\) 8.46766i 0.448156i
\(358\) 10.3238i 0.545629i
\(359\) −31.5137 −1.66323 −0.831615 0.555353i \(-0.812583\pi\)
−0.831615 + 0.555353i \(0.812583\pi\)
\(360\) 14.8043 12.5075i 0.780255 0.659205i
\(361\) −8.06780 −0.424621
\(362\) 3.68088i 0.193463i
\(363\) 23.4844i 1.23261i
\(364\) 0 0
\(365\) −13.7598 + 11.6251i −0.720220 + 0.608484i
\(366\) −20.4415 −1.06849
\(367\) 25.5000i 1.33109i −0.746359 0.665544i \(-0.768200\pi\)
0.746359 0.665544i \(-0.231800\pi\)
\(368\) 4.15544i 0.216617i
\(369\) −35.9267 −1.87027
\(370\) 11.6501 + 13.7894i 0.605660 + 0.716877i
\(371\) −2.66017 −0.138109
\(372\) 22.2796i 1.15514i
\(373\) 15.2112i 0.787604i 0.919195 + 0.393802i \(0.128841\pi\)
−0.919195 + 0.393802i \(0.871159\pi\)
\(374\) 10.9505 0.566235
\(375\) −19.4279 32.8780i −1.00325 1.69781i
\(376\) −1.29310 −0.0666864
\(377\) 0 0
\(378\) 8.90013i 0.457773i
\(379\) 17.2766 0.887439 0.443719 0.896166i \(-0.353659\pi\)
0.443719 + 0.896166i \(0.353659\pi\)
\(380\) 4.77139 + 5.64755i 0.244767 + 0.289713i
\(381\) 38.9400 1.99496
\(382\) 25.0076i 1.27950i
\(383\) 15.1262i 0.772915i −0.922307 0.386458i \(-0.873699\pi\)
0.922307 0.386458i \(-0.126301\pi\)
\(384\) −3.41573 −0.174308
\(385\) 1.59492 1.34749i 0.0812848 0.0686742i
\(386\) 1.97401 0.100475
\(387\) 10.9835i 0.558324i
\(388\) 7.05844i 0.358338i
\(389\) 32.0553 1.62527 0.812635 0.582774i \(-0.198033\pi\)
0.812635 + 0.582774i \(0.198033\pi\)
\(390\) 0 0
\(391\) −22.4056 −1.13310
\(392\) 6.78861i 0.342877i
\(393\) 51.2040i 2.58290i
\(394\) 17.6446 0.888920
\(395\) 2.42852 + 2.87447i 0.122192 + 0.144630i
\(396\) −17.6025 −0.884558
\(397\) 7.52503i 0.377670i 0.982009 + 0.188835i \(0.0604712\pi\)
−0.982009 + 0.188835i \(0.939529\pi\)
\(398\) 16.1718i 0.810617i
\(399\) 5.19252 0.259951
\(400\) −0.835031 + 4.92978i −0.0417515 + 0.246489i
\(401\) 37.3359 1.86447 0.932233 0.361860i \(-0.117858\pi\)
0.932233 + 0.361860i \(0.117858\pi\)
\(402\) 28.7409i 1.43347i
\(403\) 0 0
\(404\) −2.37044 −0.117934
\(405\) 57.8955 + 68.5269i 2.87685 + 3.40513i
\(406\) −2.78421 −0.138178
\(407\) 16.3958i 0.812708i
\(408\) 18.4172i 0.911787i
\(409\) −19.7733 −0.977729 −0.488864 0.872360i \(-0.662589\pi\)
−0.488864 + 0.872360i \(0.662589\pi\)
\(410\) 7.08015 5.98173i 0.349664 0.295417i
\(411\) −46.7024 −2.30366
\(412\) 6.75491i 0.332790i
\(413\) 3.11296i 0.153179i
\(414\) 36.0162 1.77010
\(415\) −17.0681 + 14.4201i −0.837839 + 0.707856i
\(416\) 0 0
\(417\) 40.3495i 1.97592i
\(418\) 6.71501i 0.328442i
\(419\) 12.4677 0.609086 0.304543 0.952499i \(-0.401496\pi\)
0.304543 + 0.952499i \(0.401496\pi\)
\(420\) 2.26629 + 2.68245i 0.110584 + 0.130890i
\(421\) 1.36944 0.0667423 0.0333712 0.999443i \(-0.489376\pi\)
0.0333712 + 0.999443i \(0.489376\pi\)
\(422\) 13.3757i 0.651118i
\(423\) 11.2076i 0.544932i
\(424\) −5.78588 −0.280987
\(425\) 26.5807 + 4.50238i 1.28935 + 0.218397i
\(426\) 5.04785 0.244569
\(427\) 2.75149i 0.133154i
\(428\) 0.0114398i 0.000552966i
\(429\) 0 0
\(430\) 1.82874 + 2.16455i 0.0881896 + 0.104384i
\(431\) −11.1142 −0.535354 −0.267677 0.963509i \(-0.586256\pi\)
−0.267677 + 0.963509i \(0.586256\pi\)
\(432\) 19.3578i 0.931353i
\(433\) 30.2038i 1.45150i 0.687957 + 0.725752i \(0.258508\pi\)
−0.687957 + 0.725752i \(0.741492\pi\)
\(434\) −2.99890 −0.143952
\(435\) 35.3307 29.8494i 1.69398 1.43117i
\(436\) −3.79448 −0.181723
\(437\) 13.7395i 0.657249i
\(438\) 27.5162i 1.31478i
\(439\) −30.0084 −1.43223 −0.716113 0.697985i \(-0.754080\pi\)
−0.716113 + 0.697985i \(0.754080\pi\)
\(440\) 3.46896 2.93078i 0.165376 0.139720i
\(441\) −58.8386 −2.80184
\(442\) 0 0
\(443\) 10.0957i 0.479661i −0.970815 0.239830i \(-0.922908\pi\)
0.970815 0.239830i \(-0.0770918\pi\)
\(444\) 27.5755 1.30867
\(445\) 5.68479 + 6.72868i 0.269485 + 0.318970i
\(446\) −3.02345 −0.143165
\(447\) 72.9183i 3.44892i
\(448\) 0.459770i 0.0217221i
\(449\) 28.9563 1.36653 0.683266 0.730169i \(-0.260559\pi\)
0.683266 + 0.730169i \(0.260559\pi\)
\(450\) −42.7276 7.23742i −2.01420 0.341175i
\(451\) −8.41839 −0.396407
\(452\) 5.57377i 0.262168i
\(453\) 78.3761i 3.68243i
\(454\) 14.6074 0.685558
\(455\) 0 0
\(456\) 11.2937 0.528878
\(457\) 40.4620i 1.89273i −0.323094 0.946367i \(-0.604723\pi\)
0.323094 0.946367i \(-0.395277\pi\)
\(458\) 14.0176i 0.654998i
\(459\) −104.375 −4.87179
\(460\) −7.09779 + 5.99663i −0.330936 + 0.279594i
\(461\) −6.39717 −0.297946 −0.148973 0.988841i \(-0.547597\pi\)
−0.148973 + 0.988841i \(0.547597\pi\)
\(462\) 3.18946i 0.148387i
\(463\) 15.3751i 0.714541i 0.934001 + 0.357270i \(0.116293\pi\)
−0.934001 + 0.357270i \(0.883707\pi\)
\(464\) −6.05566 −0.281127
\(465\) 38.0551 32.1512i 1.76476 1.49098i
\(466\) −26.5904 −1.23178
\(467\) 9.41379i 0.435618i −0.975991 0.217809i \(-0.930109\pi\)
0.975991 0.217809i \(-0.0698911\pi\)
\(468\) 0 0
\(469\) 3.86863 0.178637
\(470\) 1.86604 + 2.20870i 0.0860742 + 0.101880i
\(471\) −52.0093 −2.39646
\(472\) 6.77070i 0.311647i
\(473\) 2.57367i 0.118338i
\(474\) 5.74825 0.264026
\(475\) 2.76094 16.2998i 0.126680 0.747884i
\(476\) −2.47902 −0.113626
\(477\) 50.1476i 2.29610i
\(478\) 12.3423i 0.564523i
\(479\) 24.7651 1.13155 0.565774 0.824560i \(-0.308577\pi\)
0.565774 + 0.824560i \(0.308577\pi\)
\(480\) 4.92918 + 5.83433i 0.224985 + 0.266299i
\(481\) 0 0
\(482\) 3.79308i 0.172770i
\(483\) 6.52591i 0.296939i
\(484\) 6.87536 0.312516
\(485\) −12.0563 + 10.1859i −0.547450 + 0.462518i
\(486\) 78.9638 3.58187
\(487\) 27.2037i 1.23272i 0.787466 + 0.616358i \(0.211393\pi\)
−0.787466 + 0.616358i \(0.788607\pi\)
\(488\) 5.98450i 0.270906i
\(489\) 18.7072 0.845969
\(490\) 11.5954 9.79652i 0.523829 0.442562i
\(491\) −27.4578 −1.23915 −0.619576 0.784937i \(-0.712695\pi\)
−0.619576 + 0.784937i \(0.712695\pi\)
\(492\) 14.1586i 0.638319i
\(493\) 32.6513i 1.47054i
\(494\) 0 0
\(495\) 25.4018 + 30.0663i 1.14173 + 1.35138i
\(496\) −6.52262 −0.292874
\(497\) 0.679459i 0.0304779i
\(498\) 34.1320i 1.52949i
\(499\) 2.92681 0.131022 0.0655109 0.997852i \(-0.479132\pi\)
0.0655109 + 0.997852i \(0.479132\pi\)
\(500\) 9.62544 5.68778i 0.430463 0.254365i
\(501\) 10.0451 0.448784
\(502\) 0.547631i 0.0244420i
\(503\) 0.113123i 0.00504392i −0.999997 0.00252196i \(-0.999197\pi\)
0.999997 0.00252196i \(-0.000802766\pi\)
\(504\) 3.98494 0.177503
\(505\) 3.42074 + 4.04888i 0.152221 + 0.180173i
\(506\) 8.43936 0.375175
\(507\) 0 0
\(508\) 11.4002i 0.505801i
\(509\) 19.0806 0.845731 0.422865 0.906193i \(-0.361024\pi\)
0.422865 + 0.906193i \(0.361024\pi\)
\(510\) 31.4579 26.5775i 1.39298 1.17687i
\(511\) −3.70378 −0.163846
\(512\) 1.00000i 0.0441942i
\(513\) 64.0044i 2.82586i
\(514\) −17.4033 −0.767626
\(515\) 11.5379 9.74788i 0.508420 0.429543i
\(516\) 4.32857 0.190555
\(517\) 2.62618i 0.115499i
\(518\) 3.71175i 0.163085i
\(519\) 13.2752 0.582718
\(520\) 0 0
\(521\) −6.88125 −0.301473 −0.150736 0.988574i \(-0.548164\pi\)
−0.150736 + 0.988574i \(0.548164\pi\)
\(522\) 52.4859i 2.29724i
\(523\) 19.7227i 0.862414i 0.902253 + 0.431207i \(0.141912\pi\)
−0.902253 + 0.431207i \(0.858088\pi\)
\(524\) 14.9906 0.654869
\(525\) 1.31138 7.74198i 0.0572331 0.337888i
\(526\) 11.6459 0.507783
\(527\) 35.1691i 1.53199i
\(528\) 6.93709i 0.301898i
\(529\) 5.73235 0.249233
\(530\) 8.34949 + 9.88271i 0.362679 + 0.429277i
\(531\) 58.6833 2.54664
\(532\) 1.52018i 0.0659080i
\(533\) 0 0
\(534\) 13.4557 0.582287
\(535\) 0.0195401 0.0165086i 0.000844792 0.000713730i
\(536\) 8.41427 0.363441
\(537\) 35.2633i 1.52173i
\(538\) 16.9075i 0.728934i
\(539\) −13.7871 −0.593854
\(540\) −33.0645 + 27.9349i −1.42287 + 1.20213i
\(541\) 41.8747 1.80034 0.900168 0.435543i \(-0.143444\pi\)
0.900168 + 0.435543i \(0.143444\pi\)
\(542\) 9.94128i 0.427014i
\(543\) 12.5729i 0.539555i
\(544\) −5.39187 −0.231174
\(545\) 5.47575 + 6.48125i 0.234555 + 0.277626i
\(546\) 0 0
\(547\) 28.0881i 1.20096i 0.799639 + 0.600481i \(0.205024\pi\)
−0.799639 + 0.600481i \(0.794976\pi\)
\(548\) 13.6727i 0.584069i
\(549\) 51.8692 2.21372
\(550\) −10.0120 1.69588i −0.426913 0.0723126i
\(551\) 20.0224 0.852981
\(552\) 14.1939i 0.604131i
\(553\) 0.773734i 0.0329025i
\(554\) 4.24476 0.180343
\(555\) −39.7936 47.1009i −1.68915 1.99932i
\(556\) 11.8128 0.500976
\(557\) 29.3170i 1.24220i 0.783730 + 0.621101i \(0.213315\pi\)
−0.783730 + 0.621101i \(0.786685\pi\)
\(558\) 56.5332i 2.39324i
\(559\) 0 0
\(560\) −0.785321 + 0.663485i −0.0331859 + 0.0280374i
\(561\) −37.4038 −1.57919
\(562\) 24.6567i 1.04008i
\(563\) 2.10937i 0.0888995i 0.999012 + 0.0444497i \(0.0141535\pi\)
−0.999012 + 0.0444497i \(0.985847\pi\)
\(564\) 4.41688 0.185984
\(565\) 9.52041 8.04341i 0.400527 0.338389i
\(566\) 9.64034 0.405214
\(567\) 18.4457i 0.774646i
\(568\) 1.47782i 0.0620081i
\(569\) −14.0188 −0.587697 −0.293849 0.955852i \(-0.594936\pi\)
−0.293849 + 0.955852i \(0.594936\pi\)
\(570\) −16.2978 19.2905i −0.682640 0.807992i
\(571\) −27.5675 −1.15366 −0.576831 0.816864i \(-0.695711\pi\)
−0.576831 + 0.816864i \(0.695711\pi\)
\(572\) 0 0
\(573\) 85.4192i 3.56844i
\(574\) 1.90580 0.0795464
\(575\) 20.4854 + 3.46992i 0.854300 + 0.144706i
\(576\) 8.66724 0.361135
\(577\) 19.0434i 0.792788i −0.918080 0.396394i \(-0.870261\pi\)
0.918080 0.396394i \(-0.129739\pi\)
\(578\) 12.0722i 0.502138i
\(579\) −6.74271 −0.280217
\(580\) 8.73881 + 10.3435i 0.362859 + 0.429491i
\(581\) −4.59429 −0.190603
\(582\) 24.1098i 0.999382i
\(583\) 11.7507i 0.486663i
\(584\) −8.05573 −0.333348
\(585\) 0 0
\(586\) −6.02494 −0.248888
\(587\) 16.0453i 0.662260i 0.943585 + 0.331130i \(0.107430\pi\)
−0.943585 + 0.331130i \(0.892570\pi\)
\(588\) 23.1881i 0.956261i
\(589\) 21.5663 0.888625
\(590\) −11.5649 + 9.77067i −0.476118 + 0.402252i
\(591\) −60.2691 −2.47914
\(592\) 8.07307i 0.331801i
\(593\) 43.3422i 1.77985i 0.456107 + 0.889925i \(0.349244\pi\)
−0.456107 + 0.889925i \(0.650756\pi\)
\(594\) 39.3142 1.61308
\(595\) 3.57742 + 4.23434i 0.146660 + 0.173591i
\(596\) 21.3478 0.874439
\(597\) 55.2384i 2.26076i
\(598\) 0 0
\(599\) 8.53779 0.348845 0.174422 0.984671i \(-0.444194\pi\)
0.174422 + 0.984671i \(0.444194\pi\)
\(600\) 2.85224 16.8388i 0.116442 0.687442i
\(601\) −31.5044 −1.28509 −0.642545 0.766248i \(-0.722121\pi\)
−0.642545 + 0.766248i \(0.722121\pi\)
\(602\) 0.582641i 0.0237467i
\(603\) 72.9285i 2.96988i
\(604\) 22.9456 0.933644
\(605\) −9.92171 11.7436i −0.403375 0.477446i
\(606\) 8.09679 0.328910
\(607\) 14.8586i 0.603093i 0.953451 + 0.301546i \(0.0975028\pi\)
−0.953451 + 0.301546i \(0.902497\pi\)
\(608\) 3.30639i 0.134092i
\(609\) 9.51012 0.385369
\(610\) −10.2220 + 8.63613i −0.413876 + 0.349667i
\(611\) 0 0
\(612\) 46.7326i 1.88905i
\(613\) 24.9342i 1.00708i −0.863971 0.503541i \(-0.832030\pi\)
0.863971 0.503541i \(-0.167970\pi\)
\(614\) 24.5247 0.989737
\(615\) −24.1839 + 20.4320i −0.975190 + 0.823898i
\(616\) 0.933756 0.0376221
\(617\) 20.7921i 0.837057i −0.908204 0.418528i \(-0.862546\pi\)
0.908204 0.418528i \(-0.137454\pi\)
\(618\) 23.0730i 0.928131i
\(619\) 22.8769 0.919501 0.459751 0.888048i \(-0.347939\pi\)
0.459751 + 0.888048i \(0.347939\pi\)
\(620\) 9.41268 + 11.1411i 0.378022 + 0.447438i
\(621\) −80.4401 −3.22795
\(622\) 20.6188i 0.826737i
\(623\) 1.81119i 0.0725638i
\(624\) 0 0
\(625\) −23.6054 8.23304i −0.944218 0.329321i
\(626\) 7.35529 0.293977
\(627\) 22.9367i 0.916004i
\(628\) 15.2264i 0.607599i
\(629\) 43.5289 1.73561
\(630\) −5.75059 6.80656i −0.229109 0.271180i
\(631\) 22.6688 0.902429 0.451214 0.892416i \(-0.350991\pi\)
0.451214 + 0.892416i \(0.350991\pi\)
\(632\) 1.68287i 0.0669411i
\(633\) 45.6877i 1.81592i
\(634\) 17.4476 0.692932
\(635\) 19.4724 16.4514i 0.772737 0.652854i
\(636\) 19.7630 0.783655
\(637\) 0 0
\(638\) 12.2986i 0.486905i
\(639\) −12.8087 −0.506703
\(640\) −1.70807 + 1.44308i −0.0675175 + 0.0570428i
\(641\) −11.5650 −0.456789 −0.228394 0.973569i \(-0.573348\pi\)
−0.228394 + 0.973569i \(0.573348\pi\)
\(642\) 0.0390755i 0.00154219i
\(643\) 25.4887i 1.00518i −0.864526 0.502588i \(-0.832381\pi\)
0.864526 0.502588i \(-0.167619\pi\)
\(644\) −1.91054 −0.0752860
\(645\) −6.24648 7.39352i −0.245955 0.291120i
\(646\) 17.8276 0.701418
\(647\) 0.686256i 0.0269795i 0.999909 + 0.0134897i \(0.00429405\pi\)
−0.999909 + 0.0134897i \(0.995706\pi\)
\(648\) 40.1194i 1.57604i
\(649\) 13.7508 0.539764
\(650\) 0 0
\(651\) 10.2435 0.401473
\(652\) 5.47677i 0.214487i
\(653\) 20.7584i 0.812338i −0.913798 0.406169i \(-0.866864\pi\)
0.913798 0.406169i \(-0.133136\pi\)
\(654\) 12.9609 0.506813
\(655\) −21.6327 25.6051i −0.845259 1.00047i
\(656\) 4.14511 0.161839
\(657\) 69.8210i 2.72398i
\(658\) 0.594527i 0.0231771i
\(659\) 23.2146 0.904312 0.452156 0.891939i \(-0.350655\pi\)
0.452156 + 0.891939i \(0.350655\pi\)
\(660\) −11.8491 + 10.0108i −0.461224 + 0.389669i
\(661\) −14.9740 −0.582422 −0.291211 0.956659i \(-0.594058\pi\)
−0.291211 + 0.956659i \(0.594058\pi\)
\(662\) 18.5906i 0.722546i
\(663\) 0 0
\(664\) −9.99259 −0.387788
\(665\) 2.59657 2.19374i 0.100691 0.0850696i
\(666\) −69.9713 −2.71133
\(667\) 25.1639i 0.974350i
\(668\) 2.94085i 0.113785i
\(669\) 10.3273 0.399277
\(670\) −12.1425 14.3722i −0.469105 0.555246i
\(671\) 12.1541 0.469202
\(672\) 1.57045i 0.0605815i
\(673\) 17.2347i 0.664348i 0.943218 + 0.332174i \(0.107782\pi\)
−0.943218 + 0.332174i \(0.892218\pi\)
\(674\) −11.2984 −0.435198
\(675\) 95.4297 + 16.1644i 3.67309 + 0.622167i
\(676\) 0 0
\(677\) 12.1285i 0.466136i −0.972460 0.233068i \(-0.925124\pi\)
0.972460 0.233068i \(-0.0748765\pi\)
\(678\) 19.0385i 0.731170i
\(679\) −3.24526 −0.124542
\(680\) 7.78090 + 9.20971i 0.298384 + 0.353176i
\(681\) −49.8949 −1.91198
\(682\) 13.2469i 0.507251i
\(683\) 20.0828i 0.768449i 0.923240 + 0.384224i \(0.125531\pi\)
−0.923240 + 0.384224i \(0.874469\pi\)
\(684\) −28.6573 −1.09574
\(685\) −23.3540 + 19.7308i −0.892311 + 0.753877i
\(686\) 6.33959 0.242047
\(687\) 47.8803i 1.82675i
\(688\) 1.26725i 0.0483133i
\(689\) 0 0
\(690\) 24.2442 20.4829i 0.922960 0.779771i
\(691\) −24.8495 −0.945320 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(692\) 3.88650i 0.147742i
\(693\) 8.09309i 0.307431i
\(694\) 22.2403 0.844231
\(695\) −17.0469 20.1772i −0.646625 0.765365i
\(696\) 20.6845 0.784045
\(697\) 22.3499i 0.846562i
\(698\) 22.6265i 0.856427i
\(699\) 90.8258 3.43535
\(700\) 2.26656 + 0.383922i 0.0856680 + 0.0145109i
\(701\) −26.3896 −0.996720 −0.498360 0.866970i \(-0.666064\pi\)
−0.498360 + 0.866970i \(0.666064\pi\)
\(702\) 0 0
\(703\) 26.6927i 1.00673i
\(704\) 2.03092 0.0765432
\(705\) −6.37391 7.54435i −0.240055 0.284137i
\(706\) 7.66644 0.288530
\(707\) 1.08986i 0.0409883i
\(708\) 23.1269i 0.869163i
\(709\) −28.0118 −1.05201 −0.526003 0.850483i \(-0.676310\pi\)
−0.526003 + 0.850483i \(0.676310\pi\)
\(710\) 2.52423 2.13262i 0.0947327 0.0800358i
\(711\) −14.5859 −0.547013
\(712\) 3.93934i 0.147633i
\(713\) 27.1043i 1.01507i
\(714\) 8.46766 0.316894
\(715\) 0 0
\(716\) 10.3238 0.385818
\(717\) 42.1580i 1.57442i
\(718\) 31.5137i 1.17608i
\(719\) 40.0185 1.49244 0.746219 0.665700i \(-0.231867\pi\)
0.746219 + 0.665700i \(0.231867\pi\)
\(720\) −12.5075 14.8043i −0.466128 0.551723i
\(721\) 3.10570 0.115662
\(722\) 8.06780i 0.300252i
\(723\) 12.9562i 0.481845i
\(724\) −3.68088 −0.136799
\(725\) 5.05666 29.8531i 0.187800 1.10871i
\(726\) −23.4844 −0.871588
\(727\) 37.8003i 1.40193i −0.713194 0.700967i \(-0.752752\pi\)
0.713194 0.700967i \(-0.247248\pi\)
\(728\) 0 0
\(729\) −149.361 −5.53189
\(730\) 11.6251 + 13.7598i 0.430263 + 0.509272i
\(731\) 6.83282 0.252721
\(732\) 20.4415i 0.755539i
\(733\) 6.65212i 0.245701i −0.992425 0.122851i \(-0.960796\pi\)
0.992425 0.122851i \(-0.0392036\pi\)
\(734\) −25.5000 −0.941221
\(735\) −39.6070 + 33.4623i −1.46093 + 1.23428i
\(736\) −4.15544 −0.153171
\(737\) 17.0887i 0.629471i
\(738\) 35.9267i 1.32248i
\(739\) −28.4479 −1.04647 −0.523236 0.852188i \(-0.675275\pi\)
−0.523236 + 0.852188i \(0.675275\pi\)
\(740\) 13.7894 11.6501i 0.506908 0.428266i
\(741\) 0 0
\(742\) 2.66017i 0.0976580i
\(743\) 16.3224i 0.598809i 0.954126 + 0.299405i \(0.0967881\pi\)
−0.954126 + 0.299405i \(0.903212\pi\)
\(744\) 22.2796 0.816808
\(745\) −30.8066 36.4636i −1.12867 1.33592i
\(746\) 15.2112 0.556920
\(747\) 86.6082i 3.16883i
\(748\) 10.9505i 0.400388i
\(749\) 0.00525969 0.000192185
\(750\) −32.8780 + 19.4279i −1.20053 + 0.709408i
\(751\) −0.398628 −0.0145461 −0.00727307 0.999974i \(-0.502315\pi\)
−0.00727307 + 0.999974i \(0.502315\pi\)
\(752\) 1.29310i 0.0471544i
\(753\) 1.87056i 0.0681671i
\(754\) 0 0
\(755\) −33.1124 39.1928i −1.20508 1.42637i
\(756\) −8.90013 −0.323695
\(757\) 40.1310i 1.45859i −0.684201 0.729293i \(-0.739849\pi\)
0.684201 0.729293i \(-0.260151\pi\)
\(758\) 17.2766i 0.627514i
\(759\) −28.8266 −1.04634
\(760\) 5.64755 4.77139i 0.204858 0.173076i
\(761\) 3.64226 0.132032 0.0660158 0.997819i \(-0.478971\pi\)
0.0660158 + 0.997819i \(0.478971\pi\)
\(762\) 38.9400i 1.41065i
\(763\) 1.74459i 0.0631583i
\(764\) −25.0076 −0.904742
\(765\) −79.8228 + 67.4390i −2.88600 + 2.43826i
\(766\) −15.1262 −0.546533
\(767\) 0 0
\(768\) 3.41573i 0.123255i
\(769\) 16.4037 0.591533 0.295767 0.955260i \(-0.404425\pi\)
0.295767 + 0.955260i \(0.404425\pi\)
\(770\) −1.34749 1.59492i −0.0485600 0.0574771i
\(771\) 59.4450 2.14086
\(772\) 1.97401i 0.0710463i
\(773\) 11.3166i 0.407028i 0.979072 + 0.203514i \(0.0652363\pi\)
−0.979072 + 0.203514i \(0.934764\pi\)
\(774\) −10.9835 −0.394795
\(775\) 5.44659 32.1551i 0.195647 1.15505i
\(776\) −7.05844 −0.253383
\(777\) 12.6784i 0.454834i
\(778\) 32.0553i 1.14924i
\(779\) −13.7053 −0.491045
\(780\) 0 0
\(781\) −3.00134 −0.107396
\(782\) 22.4056i 0.801221i
\(783\) 117.224i 4.18925i
\(784\) 6.78861 0.242450
\(785\) −26.0078 + 21.9729i −0.928258 + 0.784247i
\(786\) −51.2040 −1.82639
\(787\) 23.6730i 0.843850i 0.906631 + 0.421925i \(0.138646\pi\)
−0.906631 + 0.421925i \(0.861354\pi\)
\(788\) 17.6446i 0.628562i
\(789\) −39.7791 −1.41618
\(790\) 2.87447 2.42852i 0.102269 0.0864030i
\(791\) 2.56265 0.0911174
\(792\) 17.6025i 0.625477i
\(793\) 0 0
\(794\) 7.52503 0.267053
\(795\) −28.5197 33.7567i −1.01149 1.19723i
\(796\) −16.1718 −0.573193
\(797\) 4.35054i 0.154104i 0.997027 + 0.0770520i \(0.0245507\pi\)
−0.997027 + 0.0770520i \(0.975449\pi\)
\(798\) 5.19252i 0.183813i
\(799\) 6.97221 0.246659
\(800\) 4.92978 + 0.835031i 0.174294 + 0.0295228i
\(801\) −34.1432 −1.20639
\(802\) 37.3359i 1.31838i
\(803\) 16.3605i 0.577351i
\(804\) −28.7409 −1.01361
\(805\) 2.75707 + 3.26335i 0.0971740 + 0.115018i
\(806\) 0 0
\(807\) 57.7516i 2.03295i
\(808\) 2.37044i 0.0833918i
\(809\) 24.9033 0.875552 0.437776 0.899084i \(-0.355766\pi\)
0.437776 + 0.899084i \(0.355766\pi\)
\(810\) 68.5269 57.8955i 2.40779 2.03424i
\(811\) −30.1105 −1.05732 −0.528661 0.848833i \(-0.677306\pi\)
−0.528661 + 0.848833i \(0.677306\pi\)
\(812\) 2.78421i 0.0977065i
\(813\) 33.9568i 1.19092i
\(814\) −16.3958 −0.574671
\(815\) 9.35473 7.90343i 0.327682 0.276845i
\(816\) 18.4172 0.644730
\(817\) 4.19000i 0.146590i
\(818\) 19.7733i 0.691359i
\(819\) 0 0
\(820\) −5.98173 7.08015i −0.208891 0.247250i
\(821\) −33.9761 −1.18577 −0.592887 0.805286i \(-0.702012\pi\)
−0.592887 + 0.805286i \(0.702012\pi\)
\(822\) 46.7024i 1.62893i
\(823\) 18.7804i 0.654644i 0.944913 + 0.327322i \(0.106146\pi\)
−0.944913 + 0.327322i \(0.893854\pi\)
\(824\) 6.75491 0.235318
\(825\) 34.1983 + 5.79268i 1.19063 + 0.201675i
\(826\) −3.11296 −0.108314
\(827\) 56.4739i 1.96379i −0.189426 0.981895i \(-0.560663\pi\)
0.189426 0.981895i \(-0.439337\pi\)
\(828\) 36.0162i 1.25165i
\(829\) −37.9617 −1.31846 −0.659231 0.751940i \(-0.729118\pi\)
−0.659231 + 0.751940i \(0.729118\pi\)
\(830\) 14.4201 + 17.0681i 0.500530 + 0.592442i
\(831\) −14.4990 −0.502964
\(832\) 0 0
\(833\) 36.6033i 1.26823i
\(834\) −40.3495 −1.39719
\(835\) 5.02318 4.24388i 0.173834 0.146866i
\(836\) −6.71501 −0.232244
\(837\) 126.264i 4.36431i
\(838\) 12.4677i 0.430689i
\(839\) 17.7895 0.614162 0.307081 0.951683i \(-0.400648\pi\)
0.307081 + 0.951683i \(0.400648\pi\)
\(840\) 2.68245 2.26629i 0.0925532 0.0781944i
\(841\) 7.67098 0.264517
\(842\) 1.36944i 0.0471940i
\(843\) 84.2209i 2.90072i
\(844\) 13.3757 0.460410
\(845\) 0 0
\(846\) −11.2076 −0.385325
\(847\) 3.16108i 0.108616i
\(848\) 5.78588i 0.198688i
\(849\) −32.9289 −1.13012
\(850\) 4.50238 26.5807i 0.154430 0.911711i
\(851\) 33.5471 1.14998
\(852\) 5.04785i 0.172937i
\(853\) 12.0381i 0.412178i −0.978533 0.206089i \(-0.933926\pi\)
0.978533 0.206089i \(-0.0660737\pi\)
\(854\) −2.75149 −0.0941542
\(855\) 41.3548 + 48.9487i 1.41430 + 1.67401i
\(856\) 0.0114398 0.000391006
\(857\) 21.6745i 0.740388i 0.928954 + 0.370194i \(0.120709\pi\)
−0.928954 + 0.370194i \(0.879291\pi\)
\(858\) 0 0
\(859\) 54.1515 1.84762 0.923812 0.382846i \(-0.125056\pi\)
0.923812 + 0.382846i \(0.125056\pi\)
\(860\) 2.16455 1.82874i 0.0738105 0.0623595i
\(861\) −6.50969 −0.221850
\(862\) 11.1142i 0.378553i
\(863\) 41.6531i 1.41789i 0.705265 + 0.708943i \(0.250828\pi\)
−0.705265 + 0.708943i \(0.749172\pi\)
\(864\) −19.3578 −0.658566
\(865\) 6.63842 5.60853i 0.225713 0.190696i
\(866\) 30.2038 1.02637
\(867\) 41.2355i 1.40043i
\(868\) 2.99890i 0.101789i
\(869\) −3.41778 −0.115940
\(870\) −29.8494 35.3307i −1.01199 1.19782i
\(871\) 0 0
\(872\) 3.79448i 0.128497i
\(873\) 61.1773i 2.07054i
\(874\) 13.7395 0.464745
\(875\) −2.61507 4.42549i −0.0884055 0.149609i
\(876\) 27.5162 0.929687
\(877\) 51.8500i 1.75085i −0.483355 0.875425i \(-0.660582\pi\)
0.483355 0.875425i \(-0.339418\pi\)
\(878\) 30.0084i 1.01274i
\(879\) 20.5796 0.694133
\(880\) −2.93078 3.46896i −0.0987967 0.116939i
\(881\) 11.0112 0.370977 0.185488 0.982646i \(-0.440613\pi\)
0.185488 + 0.982646i \(0.440613\pi\)
\(882\) 58.8386i 1.98120i
\(883\) 42.0418i 1.41482i −0.706803 0.707410i \(-0.749863\pi\)
0.706803 0.707410i \(-0.250137\pi\)
\(884\) 0 0
\(885\) 39.5025 33.3740i 1.32786 1.12186i
\(886\) −10.0957 −0.339171
\(887\) 50.3024i 1.68899i 0.535563 + 0.844495i \(0.320100\pi\)
−0.535563 + 0.844495i \(0.679900\pi\)
\(888\) 27.5755i 0.925372i
\(889\) 5.24146 0.175793
\(890\) 6.72868 5.68479i 0.225546 0.190555i
\(891\) −81.4793 −2.72966
\(892\) 3.02345i 0.101233i
\(893\) 4.27548i 0.143073i
\(894\) −72.9183 −2.43875
\(895\) −14.8981 17.6338i −0.497988 0.589433i
\(896\) −0.459770 −0.0153598
\(897\) 0 0
\(898\) 28.9563i 0.966284i
\(899\) 39.4988 1.31736
\(900\) −7.23742 + 42.7276i −0.241247 + 1.42425i
\(901\) 31.1967 1.03931
\(902\) 8.41839i 0.280302i
\(903\) 1.99015i 0.0662279i
\(904\) 5.57377 0.185381
\(905\) 5.31181 + 6.28721i 0.176571 + 0.208994i
\(906\) −78.3761 −2.60387
\(907\) 1.54390i 0.0512642i 0.999671 + 0.0256321i \(0.00815985\pi\)
−0.999671 + 0.0256321i \(0.991840\pi\)
\(908\) 14.6074i 0.484762i
\(909\) −20.5452 −0.681440
\(910\) 0 0
\(911\) 25.5772 0.847411 0.423705 0.905800i \(-0.360729\pi\)
0.423705 + 0.905800i \(0.360729\pi\)
\(912\) 11.2937i 0.373973i
\(913\) 20.2942i 0.671639i
\(914\) −40.4620 −1.33836
\(915\) 34.9155 29.4987i 1.15427 0.975198i
\(916\) 14.0176 0.463154
\(917\) 6.89224i 0.227602i
\(918\) 104.375i 3.44488i
\(919\) −49.1848 −1.62246 −0.811228 0.584730i \(-0.801201\pi\)
−0.811228 + 0.584730i \(0.801201\pi\)
\(920\) 5.99663 + 7.09779i 0.197703 + 0.234007i
\(921\) −83.7700 −2.76031
\(922\) 6.39717i 0.210680i
\(923\) 0 0
\(924\) −3.18946 −0.104926
\(925\) −39.7985 6.74126i −1.30856 0.221651i
\(926\) 15.3751 0.505257
\(927\) 58.5464i 1.92292i
\(928\) 6.05566i 0.198787i
\(929\) 9.91513 0.325305 0.162652 0.986683i \(-0.447995\pi\)
0.162652 + 0.986683i \(0.447995\pi\)
\(930\) −32.1512 38.0551i −1.05428 1.24788i
\(931\) −22.4458 −0.735631
\(932\) 26.5904i 0.870998i
\(933\) 70.4282i 2.30572i
\(934\) −9.41379 −0.308029
\(935\) −18.7042 + 15.8024i −0.611692 + 0.516794i
\(936\) 0 0
\(937\) 24.7485i 0.808497i 0.914649 + 0.404248i \(0.132467\pi\)
−0.914649 + 0.404248i \(0.867533\pi\)
\(938\) 3.86863i 0.126315i
\(939\) −25.1237 −0.819882
\(940\) 2.20870 1.86604i 0.0720400 0.0608637i
\(941\) 40.4541 1.31877 0.659383 0.751807i \(-0.270817\pi\)
0.659383 + 0.751807i \(0.270817\pi\)
\(942\) 52.0093i 1.69455i
\(943\) 17.2247i 0.560915i
\(944\) −6.77070 −0.220368
\(945\) 12.8436 + 15.2021i 0.417803 + 0.494524i
\(946\) −2.57367 −0.0836774
\(947\) 18.3367i 0.595864i −0.954587 0.297932i \(-0.903703\pi\)
0.954587 0.297932i \(-0.0962968\pi\)
\(948\) 5.74825i 0.186694i
\(949\) 0 0
\(950\) −16.2998 2.76094i −0.528834 0.0895766i
\(951\) −59.5963 −1.93254
\(952\) 2.47902i 0.0803454i
\(953\) 4.21731i 0.136612i −0.997664 0.0683060i \(-0.978241\pi\)
0.997664 0.0683060i \(-0.0217594\pi\)
\(954\) −50.1476 −1.62359
\(955\) 36.0880 + 42.7148i 1.16778 + 1.38222i
\(956\) −12.3423 −0.399178
\(957\) 42.0086i 1.35795i
\(958\) 24.7651i 0.800125i
\(959\) −6.28630 −0.202995
\(960\) 5.83433 4.92918i 0.188302 0.159089i
\(961\) 11.5446 0.372407
\(962\) 0 0
\(963\) 0.0991519i 0.00319512i
\(964\) −3.79308 −0.122167
\(965\) −3.37176 + 2.84866i −0.108541 + 0.0917018i
\(966\) 6.52591 0.209968
\(967\) 46.9135i 1.50864i 0.656509 + 0.754318i \(0.272033\pi\)
−0.656509 + 0.754318i \(0.727967\pi\)
\(968\) 6.87536i 0.220982i
\(969\) −60.8944 −1.95621
\(970\) 10.1859 + 12.0563i 0.327050 + 0.387106i
\(971\) −40.5157 −1.30021 −0.650105 0.759844i \(-0.725275\pi\)
−0.650105 + 0.759844i \(0.725275\pi\)
\(972\) 78.9638i 2.53276i
\(973\) 5.43119i 0.174116i
\(974\) 27.2037 0.871662
\(975\) 0 0
\(976\) −5.98450 −0.191559
\(977\) 51.0911i 1.63455i 0.576248 + 0.817275i \(0.304516\pi\)
−0.576248 + 0.817275i \(0.695484\pi\)
\(978\) 18.7072i 0.598190i
\(979\) −8.00049 −0.255697
\(980\) −9.79652 11.5954i −0.312938 0.370403i
\(981\) −32.8877 −1.05002
\(982\) 27.4578i 0.876213i
\(983\) 47.7672i 1.52354i −0.647850 0.761768i \(-0.724332\pi\)
0.647850 0.761768i \(-0.275668\pi\)
\(984\) −14.1586 −0.451360
\(985\) −30.1382 + 25.4625i −0.960283 + 0.811304i
\(986\) 32.6513 1.03983
\(987\) 2.03075i 0.0646394i
\(988\) 0 0
\(989\) 5.26596 0.167448
\(990\) 30.0663 25.4018i 0.955571 0.807323i
\(991\) 36.5994 1.16262 0.581309 0.813683i \(-0.302541\pi\)
0.581309 + 0.813683i \(0.302541\pi\)
\(992\) 6.52262i 0.207094i
\(993\) 63.5007i 2.01513i
\(994\) 0.679459 0.0215511
\(995\) 23.3372 + 27.6225i 0.739838 + 0.875693i
\(996\) 34.1320 1.08151
\(997\) 52.9031i 1.67546i 0.546087 + 0.837729i \(0.316117\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(998\) 2.92681i 0.0926464i
\(999\) 156.277 4.94438
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.g.339.9 yes 18
5.2 odd 4 8450.2.a.da.1.9 9
5.3 odd 4 8450.2.a.ct.1.1 9
5.4 even 2 inner 1690.2.b.g.339.10 yes 18
13.5 odd 4 1690.2.c.g.1689.18 18
13.8 odd 4 1690.2.c.h.1689.18 18
13.12 even 2 1690.2.b.f.339.18 yes 18
65.12 odd 4 8450.2.a.cw.1.9 9
65.34 odd 4 1690.2.c.g.1689.1 18
65.38 odd 4 8450.2.a.cx.1.1 9
65.44 odd 4 1690.2.c.h.1689.1 18
65.64 even 2 1690.2.b.f.339.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.1 18 65.64 even 2
1690.2.b.f.339.18 yes 18 13.12 even 2
1690.2.b.g.339.9 yes 18 1.1 even 1 trivial
1690.2.b.g.339.10 yes 18 5.4 even 2 inner
1690.2.c.g.1689.1 18 65.34 odd 4
1690.2.c.g.1689.18 18 13.5 odd 4
1690.2.c.h.1689.1 18 65.44 odd 4
1690.2.c.h.1689.18 18 13.8 odd 4
8450.2.a.ct.1.1 9 5.3 odd 4
8450.2.a.cw.1.9 9 65.12 odd 4
8450.2.a.cx.1.1 9 65.38 odd 4
8450.2.a.da.1.9 9 5.2 odd 4