L(s) = 1 | − i·2-s + 3.41i·3-s − 4-s + (1.44 + 1.70i)5-s + 3.41·6-s + 0.459i·7-s + i·8-s − 8.66·9-s + (1.70 − 1.44i)10-s − 2.03·11-s − 3.41i·12-s + 0.459·14-s + (−5.83 + 4.92i)15-s + 16-s − 5.39i·17-s + 8.66i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.97i·3-s − 0.5·4-s + (0.645 + 0.763i)5-s + 1.39·6-s + 0.173i·7-s + 0.353i·8-s − 2.88·9-s + (0.540 − 0.456i)10-s − 0.612·11-s − 0.986i·12-s + 0.122·14-s + (−1.50 + 1.27i)15-s + 0.250·16-s − 1.30i·17-s + 2.04i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.763 + 0.645i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.763 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4355706934\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4355706934\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (-1.44 - 1.70i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 3.41iT - 3T^{2} \) |
| 7 | \( 1 - 0.459iT - 7T^{2} \) |
| 11 | \( 1 + 2.03T + 11T^{2} \) |
| 17 | \( 1 + 5.39iT - 17T^{2} \) |
| 19 | \( 1 + 3.30T + 19T^{2} \) |
| 23 | \( 1 + 4.15iT - 23T^{2} \) |
| 29 | \( 1 + 6.05T + 29T^{2} \) |
| 31 | \( 1 + 6.52T + 31T^{2} \) |
| 37 | \( 1 - 8.07iT - 37T^{2} \) |
| 41 | \( 1 - 4.14T + 41T^{2} \) |
| 43 | \( 1 - 1.26iT - 43T^{2} \) |
| 47 | \( 1 - 1.29iT - 47T^{2} \) |
| 53 | \( 1 - 5.78iT - 53T^{2} \) |
| 59 | \( 1 + 6.77T + 59T^{2} \) |
| 61 | \( 1 + 5.98T + 61T^{2} \) |
| 67 | \( 1 + 8.41iT - 67T^{2} \) |
| 71 | \( 1 - 1.47T + 71T^{2} \) |
| 73 | \( 1 - 8.05iT - 73T^{2} \) |
| 79 | \( 1 - 1.68T + 79T^{2} \) |
| 83 | \( 1 - 9.99iT - 83T^{2} \) |
| 89 | \( 1 - 3.93T + 89T^{2} \) |
| 97 | \( 1 - 7.05iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.873980373176991532967883587453, −9.331720344362874236287842122623, −8.780757142160272614907233687748, −7.66040548131060122771411062742, −6.27859196976184238689314279783, −5.44166007841185616654689242691, −4.81164302446503256134314272084, −3.89689492226917566912105779688, −2.97090946825688350914668373668, −2.40066279633254712203900177416,
0.15483989264099229879947520316, 1.51464898330310025867480988673, 2.24188648682255049732080011580, 3.77367209052551314274156771464, 5.27295856553908838297268511122, 5.83866552614595617531140995832, 6.38507317873163266333164580937, 7.48358954290417183818432466972, 7.73394924940795663844319367474, 8.739552219071676935417668001304