Properties

Label 8450.2.a.da.1.2
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,7,9,0,7,1,9,8,0,4,7,0,1,0,9,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.08395\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.49535 q^{3} +1.00000 q^{4} -1.49535 q^{6} +1.01867 q^{7} +1.00000 q^{8} -0.763924 q^{9} +2.42025 q^{11} -1.49535 q^{12} +1.01867 q^{14} +1.00000 q^{16} +5.04699 q^{17} -0.763924 q^{18} +7.36506 q^{19} -1.52327 q^{21} +2.42025 q^{22} +4.52359 q^{23} -1.49535 q^{24} +5.62839 q^{27} +1.01867 q^{28} +6.38898 q^{29} -6.28274 q^{31} +1.00000 q^{32} -3.61912 q^{33} +5.04699 q^{34} -0.763924 q^{36} +1.80149 q^{37} +7.36506 q^{38} -0.399553 q^{41} -1.52327 q^{42} -8.41814 q^{43} +2.42025 q^{44} +4.52359 q^{46} -0.146040 q^{47} -1.49535 q^{48} -5.96231 q^{49} -7.54702 q^{51} +1.52601 q^{53} +5.62839 q^{54} +1.01867 q^{56} -11.0134 q^{57} +6.38898 q^{58} +3.23605 q^{59} -14.1612 q^{61} -6.28274 q^{62} -0.778187 q^{63} +1.00000 q^{64} -3.61912 q^{66} -6.59001 q^{67} +5.04699 q^{68} -6.76435 q^{69} +1.36946 q^{71} -0.763924 q^{72} +15.9009 q^{73} +1.80149 q^{74} +7.36506 q^{76} +2.46544 q^{77} -3.53802 q^{79} -6.12465 q^{81} -0.399553 q^{82} -4.64985 q^{83} -1.52327 q^{84} -8.41814 q^{86} -9.55376 q^{87} +2.42025 q^{88} +5.60882 q^{89} +4.52359 q^{92} +9.39490 q^{93} -0.146040 q^{94} -1.49535 q^{96} -8.27379 q^{97} -5.96231 q^{98} -1.84889 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 7 q^{3} + 9 q^{4} + 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + 4 q^{11} + 7 q^{12} + q^{14} + 9 q^{16} + 12 q^{17} + 8 q^{18} + 6 q^{19} + 8 q^{21} + 4 q^{22} + 11 q^{23} + 7 q^{24} + 34 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.49535 −0.863342 −0.431671 0.902031i \(-0.642076\pi\)
−0.431671 + 0.902031i \(0.642076\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.49535 −0.610475
\(7\) 1.01867 0.385021 0.192511 0.981295i \(-0.438337\pi\)
0.192511 + 0.981295i \(0.438337\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.763924 −0.254641
\(10\) 0 0
\(11\) 2.42025 0.729733 0.364866 0.931060i \(-0.381115\pi\)
0.364866 + 0.931060i \(0.381115\pi\)
\(12\) −1.49535 −0.431671
\(13\) 0 0
\(14\) 1.01867 0.272251
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.04699 1.22407 0.612037 0.790829i \(-0.290350\pi\)
0.612037 + 0.790829i \(0.290350\pi\)
\(18\) −0.763924 −0.180059
\(19\) 7.36506 1.68966 0.844830 0.535034i \(-0.179701\pi\)
0.844830 + 0.535034i \(0.179701\pi\)
\(20\) 0 0
\(21\) −1.52327 −0.332405
\(22\) 2.42025 0.515999
\(23\) 4.52359 0.943233 0.471616 0.881804i \(-0.343671\pi\)
0.471616 + 0.881804i \(0.343671\pi\)
\(24\) −1.49535 −0.305237
\(25\) 0 0
\(26\) 0 0
\(27\) 5.62839 1.08318
\(28\) 1.01867 0.192511
\(29\) 6.38898 1.18640 0.593202 0.805054i \(-0.297864\pi\)
0.593202 + 0.805054i \(0.297864\pi\)
\(30\) 0 0
\(31\) −6.28274 −1.12841 −0.564207 0.825634i \(-0.690818\pi\)
−0.564207 + 0.825634i \(0.690818\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.61912 −0.630009
\(34\) 5.04699 0.865551
\(35\) 0 0
\(36\) −0.763924 −0.127321
\(37\) 1.80149 0.296163 0.148081 0.988975i \(-0.452690\pi\)
0.148081 + 0.988975i \(0.452690\pi\)
\(38\) 7.36506 1.19477
\(39\) 0 0
\(40\) 0 0
\(41\) −0.399553 −0.0623997 −0.0311999 0.999513i \(-0.509933\pi\)
−0.0311999 + 0.999513i \(0.509933\pi\)
\(42\) −1.52327 −0.235046
\(43\) −8.41814 −1.28375 −0.641877 0.766808i \(-0.721844\pi\)
−0.641877 + 0.766808i \(0.721844\pi\)
\(44\) 2.42025 0.364866
\(45\) 0 0
\(46\) 4.52359 0.666966
\(47\) −0.146040 −0.0213021 −0.0106511 0.999943i \(-0.503390\pi\)
−0.0106511 + 0.999943i \(0.503390\pi\)
\(48\) −1.49535 −0.215835
\(49\) −5.96231 −0.851758
\(50\) 0 0
\(51\) −7.54702 −1.05679
\(52\) 0 0
\(53\) 1.52601 0.209614 0.104807 0.994493i \(-0.466578\pi\)
0.104807 + 0.994493i \(0.466578\pi\)
\(54\) 5.62839 0.765927
\(55\) 0 0
\(56\) 1.01867 0.136126
\(57\) −11.0134 −1.45875
\(58\) 6.38898 0.838914
\(59\) 3.23605 0.421298 0.210649 0.977562i \(-0.432442\pi\)
0.210649 + 0.977562i \(0.432442\pi\)
\(60\) 0 0
\(61\) −14.1612 −1.81316 −0.906580 0.422034i \(-0.861316\pi\)
−0.906580 + 0.422034i \(0.861316\pi\)
\(62\) −6.28274 −0.797909
\(63\) −0.778187 −0.0980424
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.61912 −0.445483
\(67\) −6.59001 −0.805098 −0.402549 0.915398i \(-0.631876\pi\)
−0.402549 + 0.915398i \(0.631876\pi\)
\(68\) 5.04699 0.612037
\(69\) −6.76435 −0.814332
\(70\) 0 0
\(71\) 1.36946 0.162525 0.0812623 0.996693i \(-0.474105\pi\)
0.0812623 + 0.996693i \(0.474105\pi\)
\(72\) −0.763924 −0.0900293
\(73\) 15.9009 1.86106 0.930531 0.366213i \(-0.119346\pi\)
0.930531 + 0.366213i \(0.119346\pi\)
\(74\) 1.80149 0.209419
\(75\) 0 0
\(76\) 7.36506 0.844830
\(77\) 2.46544 0.280963
\(78\) 0 0
\(79\) −3.53802 −0.398059 −0.199029 0.979994i \(-0.563779\pi\)
−0.199029 + 0.979994i \(0.563779\pi\)
\(80\) 0 0
\(81\) −6.12465 −0.680516
\(82\) −0.399553 −0.0441233
\(83\) −4.64985 −0.510387 −0.255194 0.966890i \(-0.582139\pi\)
−0.255194 + 0.966890i \(0.582139\pi\)
\(84\) −1.52327 −0.166203
\(85\) 0 0
\(86\) −8.41814 −0.907751
\(87\) −9.55376 −1.02427
\(88\) 2.42025 0.258000
\(89\) 5.60882 0.594533 0.297267 0.954794i \(-0.403925\pi\)
0.297267 + 0.954794i \(0.403925\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.52359 0.471616
\(93\) 9.39490 0.974206
\(94\) −0.146040 −0.0150629
\(95\) 0 0
\(96\) −1.49535 −0.152619
\(97\) −8.27379 −0.840076 −0.420038 0.907507i \(-0.637983\pi\)
−0.420038 + 0.907507i \(0.637983\pi\)
\(98\) −5.96231 −0.602284
\(99\) −1.84889 −0.185820
\(100\) 0 0
\(101\) −19.9369 −1.98379 −0.991896 0.127053i \(-0.959448\pi\)
−0.991896 + 0.127053i \(0.959448\pi\)
\(102\) −7.54702 −0.747266
\(103\) 14.4702 1.42579 0.712893 0.701272i \(-0.247384\pi\)
0.712893 + 0.701272i \(0.247384\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.52601 0.148219
\(107\) 6.49059 0.627469 0.313734 0.949511i \(-0.398420\pi\)
0.313734 + 0.949511i \(0.398420\pi\)
\(108\) 5.62839 0.541592
\(109\) 13.8750 1.32899 0.664494 0.747293i \(-0.268647\pi\)
0.664494 + 0.747293i \(0.268647\pi\)
\(110\) 0 0
\(111\) −2.69386 −0.255690
\(112\) 1.01867 0.0962554
\(113\) −12.0565 −1.13418 −0.567089 0.823656i \(-0.691931\pi\)
−0.567089 + 0.823656i \(0.691931\pi\)
\(114\) −11.0134 −1.03149
\(115\) 0 0
\(116\) 6.38898 0.593202
\(117\) 0 0
\(118\) 3.23605 0.297903
\(119\) 5.14122 0.471295
\(120\) 0 0
\(121\) −5.14239 −0.467490
\(122\) −14.1612 −1.28210
\(123\) 0.597472 0.0538723
\(124\) −6.28274 −0.564207
\(125\) 0 0
\(126\) −0.778187 −0.0693264
\(127\) 18.2962 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.5881 1.10832
\(130\) 0 0
\(131\) 21.8260 1.90694 0.953472 0.301481i \(-0.0974808\pi\)
0.953472 + 0.301481i \(0.0974808\pi\)
\(132\) −3.61912 −0.315004
\(133\) 7.50257 0.650556
\(134\) −6.59001 −0.569290
\(135\) 0 0
\(136\) 5.04699 0.432776
\(137\) 8.05446 0.688139 0.344070 0.938944i \(-0.388194\pi\)
0.344070 + 0.938944i \(0.388194\pi\)
\(138\) −6.76435 −0.575820
\(139\) −12.8464 −1.08962 −0.544809 0.838560i \(-0.683398\pi\)
−0.544809 + 0.838560i \(0.683398\pi\)
\(140\) 0 0
\(141\) 0.218381 0.0183910
\(142\) 1.36946 0.114922
\(143\) 0 0
\(144\) −0.763924 −0.0636603
\(145\) 0 0
\(146\) 15.9009 1.31597
\(147\) 8.91575 0.735358
\(148\) 1.80149 0.148081
\(149\) 11.6532 0.954669 0.477335 0.878722i \(-0.341603\pi\)
0.477335 + 0.878722i \(0.341603\pi\)
\(150\) 0 0
\(151\) −3.93672 −0.320365 −0.160183 0.987087i \(-0.551208\pi\)
−0.160183 + 0.987087i \(0.551208\pi\)
\(152\) 7.36506 0.597385
\(153\) −3.85552 −0.311700
\(154\) 2.46544 0.198671
\(155\) 0 0
\(156\) 0 0
\(157\) 1.86131 0.148548 0.0742742 0.997238i \(-0.476336\pi\)
0.0742742 + 0.997238i \(0.476336\pi\)
\(158\) −3.53802 −0.281470
\(159\) −2.28193 −0.180968
\(160\) 0 0
\(161\) 4.60805 0.363165
\(162\) −6.12465 −0.481198
\(163\) −23.0167 −1.80280 −0.901402 0.432984i \(-0.857461\pi\)
−0.901402 + 0.432984i \(0.857461\pi\)
\(164\) −0.399553 −0.0311999
\(165\) 0 0
\(166\) −4.64985 −0.360898
\(167\) 6.11064 0.472856 0.236428 0.971649i \(-0.424023\pi\)
0.236428 + 0.971649i \(0.424023\pi\)
\(168\) −1.52327 −0.117523
\(169\) 0 0
\(170\) 0 0
\(171\) −5.62635 −0.430257
\(172\) −8.41814 −0.641877
\(173\) 23.0755 1.75440 0.877200 0.480125i \(-0.159409\pi\)
0.877200 + 0.480125i \(0.159409\pi\)
\(174\) −9.55376 −0.724269
\(175\) 0 0
\(176\) 2.42025 0.182433
\(177\) −4.83904 −0.363724
\(178\) 5.60882 0.420399
\(179\) 7.81690 0.584263 0.292131 0.956378i \(-0.405636\pi\)
0.292131 + 0.956378i \(0.405636\pi\)
\(180\) 0 0
\(181\) −5.21467 −0.387603 −0.193802 0.981041i \(-0.562082\pi\)
−0.193802 + 0.981041i \(0.562082\pi\)
\(182\) 0 0
\(183\) 21.1760 1.56538
\(184\) 4.52359 0.333483
\(185\) 0 0
\(186\) 9.39490 0.688868
\(187\) 12.2150 0.893248
\(188\) −0.146040 −0.0106511
\(189\) 5.73348 0.417049
\(190\) 0 0
\(191\) 10.4143 0.753554 0.376777 0.926304i \(-0.377032\pi\)
0.376777 + 0.926304i \(0.377032\pi\)
\(192\) −1.49535 −0.107918
\(193\) 1.40263 0.100964 0.0504819 0.998725i \(-0.483924\pi\)
0.0504819 + 0.998725i \(0.483924\pi\)
\(194\) −8.27379 −0.594023
\(195\) 0 0
\(196\) −5.96231 −0.425879
\(197\) 25.3455 1.80579 0.902897 0.429857i \(-0.141436\pi\)
0.902897 + 0.429857i \(0.141436\pi\)
\(198\) −1.84889 −0.131395
\(199\) 13.7630 0.975636 0.487818 0.872945i \(-0.337793\pi\)
0.487818 + 0.872945i \(0.337793\pi\)
\(200\) 0 0
\(201\) 9.85438 0.695074
\(202\) −19.9369 −1.40275
\(203\) 6.50826 0.456791
\(204\) −7.54702 −0.528397
\(205\) 0 0
\(206\) 14.4702 1.00818
\(207\) −3.45568 −0.240186
\(208\) 0 0
\(209\) 17.8253 1.23300
\(210\) 0 0
\(211\) 9.82347 0.676275 0.338138 0.941097i \(-0.390203\pi\)
0.338138 + 0.941097i \(0.390203\pi\)
\(212\) 1.52601 0.104807
\(213\) −2.04782 −0.140314
\(214\) 6.49059 0.443688
\(215\) 0 0
\(216\) 5.62839 0.382963
\(217\) −6.40004 −0.434463
\(218\) 13.8750 0.939737
\(219\) −23.7775 −1.60673
\(220\) 0 0
\(221\) 0 0
\(222\) −2.69386 −0.180800
\(223\) 19.3560 1.29618 0.648088 0.761565i \(-0.275569\pi\)
0.648088 + 0.761565i \(0.275569\pi\)
\(224\) 1.01867 0.0680628
\(225\) 0 0
\(226\) −12.0565 −0.801986
\(227\) 20.7535 1.37746 0.688729 0.725019i \(-0.258169\pi\)
0.688729 + 0.725019i \(0.258169\pi\)
\(228\) −11.0134 −0.729377
\(229\) −23.2933 −1.53927 −0.769634 0.638486i \(-0.779561\pi\)
−0.769634 + 0.638486i \(0.779561\pi\)
\(230\) 0 0
\(231\) −3.68670 −0.242567
\(232\) 6.38898 0.419457
\(233\) 0.585969 0.0383881 0.0191941 0.999816i \(-0.493890\pi\)
0.0191941 + 0.999816i \(0.493890\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.23605 0.210649
\(237\) 5.29059 0.343660
\(238\) 5.14122 0.333256
\(239\) −9.56019 −0.618397 −0.309199 0.950998i \(-0.600061\pi\)
−0.309199 + 0.950998i \(0.600061\pi\)
\(240\) 0 0
\(241\) −11.5135 −0.741650 −0.370825 0.928703i \(-0.620925\pi\)
−0.370825 + 0.928703i \(0.620925\pi\)
\(242\) −5.14239 −0.330565
\(243\) −7.72667 −0.495666
\(244\) −14.1612 −0.906580
\(245\) 0 0
\(246\) 0.597472 0.0380935
\(247\) 0 0
\(248\) −6.28274 −0.398954
\(249\) 6.95316 0.440639
\(250\) 0 0
\(251\) −15.0024 −0.946942 −0.473471 0.880809i \(-0.656999\pi\)
−0.473471 + 0.880809i \(0.656999\pi\)
\(252\) −0.778187 −0.0490212
\(253\) 10.9482 0.688308
\(254\) 18.2962 1.14800
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.902680 −0.0563077 −0.0281538 0.999604i \(-0.508963\pi\)
−0.0281538 + 0.999604i \(0.508963\pi\)
\(258\) 12.5881 0.783699
\(259\) 1.83512 0.114029
\(260\) 0 0
\(261\) −4.88069 −0.302107
\(262\) 21.8260 1.34841
\(263\) −17.5243 −1.08059 −0.540297 0.841475i \(-0.681688\pi\)
−0.540297 + 0.841475i \(0.681688\pi\)
\(264\) −3.61912 −0.222742
\(265\) 0 0
\(266\) 7.50257 0.460012
\(267\) −8.38715 −0.513285
\(268\) −6.59001 −0.402549
\(269\) 3.17990 0.193882 0.0969410 0.995290i \(-0.469094\pi\)
0.0969410 + 0.995290i \(0.469094\pi\)
\(270\) 0 0
\(271\) −13.8015 −0.838382 −0.419191 0.907898i \(-0.637686\pi\)
−0.419191 + 0.907898i \(0.637686\pi\)
\(272\) 5.04699 0.306019
\(273\) 0 0
\(274\) 8.05446 0.486588
\(275\) 0 0
\(276\) −6.76435 −0.407166
\(277\) −4.77040 −0.286626 −0.143313 0.989677i \(-0.545775\pi\)
−0.143313 + 0.989677i \(0.545775\pi\)
\(278\) −12.8464 −0.770476
\(279\) 4.79954 0.287341
\(280\) 0 0
\(281\) −5.70927 −0.340586 −0.170293 0.985393i \(-0.554471\pi\)
−0.170293 + 0.985393i \(0.554471\pi\)
\(282\) 0.218381 0.0130044
\(283\) 21.2228 1.26157 0.630783 0.775960i \(-0.282734\pi\)
0.630783 + 0.775960i \(0.282734\pi\)
\(284\) 1.36946 0.0812623
\(285\) 0 0
\(286\) 0 0
\(287\) −0.407013 −0.0240252
\(288\) −0.763924 −0.0450147
\(289\) 8.47209 0.498359
\(290\) 0 0
\(291\) 12.3722 0.725272
\(292\) 15.9009 0.930531
\(293\) −23.9835 −1.40113 −0.700565 0.713588i \(-0.747069\pi\)
−0.700565 + 0.713588i \(0.747069\pi\)
\(294\) 8.91575 0.519977
\(295\) 0 0
\(296\) 1.80149 0.104709
\(297\) 13.6221 0.790435
\(298\) 11.6532 0.675053
\(299\) 0 0
\(300\) 0 0
\(301\) −8.57531 −0.494273
\(302\) −3.93672 −0.226533
\(303\) 29.8126 1.71269
\(304\) 7.36506 0.422415
\(305\) 0 0
\(306\) −3.85552 −0.220405
\(307\) 17.0892 0.975334 0.487667 0.873030i \(-0.337848\pi\)
0.487667 + 0.873030i \(0.337848\pi\)
\(308\) 2.46544 0.140481
\(309\) −21.6380 −1.23094
\(310\) 0 0
\(311\) 5.17968 0.293713 0.146856 0.989158i \(-0.453084\pi\)
0.146856 + 0.989158i \(0.453084\pi\)
\(312\) 0 0
\(313\) 33.7809 1.90941 0.954704 0.297556i \(-0.0961717\pi\)
0.954704 + 0.297556i \(0.0961717\pi\)
\(314\) 1.86131 0.105040
\(315\) 0 0
\(316\) −3.53802 −0.199029
\(317\) 23.3968 1.31409 0.657047 0.753850i \(-0.271805\pi\)
0.657047 + 0.753850i \(0.271805\pi\)
\(318\) −2.28193 −0.127964
\(319\) 15.4629 0.865757
\(320\) 0 0
\(321\) −9.70571 −0.541720
\(322\) 4.60805 0.256796
\(323\) 37.1714 2.06827
\(324\) −6.12465 −0.340258
\(325\) 0 0
\(326\) −23.0167 −1.27477
\(327\) −20.7481 −1.14737
\(328\) −0.399553 −0.0220616
\(329\) −0.148767 −0.00820178
\(330\) 0 0
\(331\) −5.46645 −0.300463 −0.150232 0.988651i \(-0.548002\pi\)
−0.150232 + 0.988651i \(0.548002\pi\)
\(332\) −4.64985 −0.255194
\(333\) −1.37620 −0.0754153
\(334\) 6.11064 0.334359
\(335\) 0 0
\(336\) −1.52327 −0.0831013
\(337\) 25.4138 1.38438 0.692188 0.721717i \(-0.256647\pi\)
0.692188 + 0.721717i \(0.256647\pi\)
\(338\) 0 0
\(339\) 18.0287 0.979184
\(340\) 0 0
\(341\) −15.2058 −0.823440
\(342\) −5.62635 −0.304238
\(343\) −13.2043 −0.712967
\(344\) −8.41814 −0.453876
\(345\) 0 0
\(346\) 23.0755 1.24055
\(347\) −17.1079 −0.918402 −0.459201 0.888332i \(-0.651864\pi\)
−0.459201 + 0.888332i \(0.651864\pi\)
\(348\) −9.55376 −0.512136
\(349\) 0.935233 0.0500619 0.0250309 0.999687i \(-0.492032\pi\)
0.0250309 + 0.999687i \(0.492032\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.42025 0.129000
\(353\) −0.243550 −0.0129628 −0.00648142 0.999979i \(-0.502063\pi\)
−0.00648142 + 0.999979i \(0.502063\pi\)
\(354\) −4.83904 −0.257192
\(355\) 0 0
\(356\) 5.60882 0.297267
\(357\) −7.68793 −0.406889
\(358\) 7.81690 0.413136
\(359\) −14.7698 −0.779520 −0.389760 0.920916i \(-0.627442\pi\)
−0.389760 + 0.920916i \(0.627442\pi\)
\(360\) 0 0
\(361\) 35.2441 1.85495
\(362\) −5.21467 −0.274077
\(363\) 7.68968 0.403603
\(364\) 0 0
\(365\) 0 0
\(366\) 21.1760 1.10689
\(367\) −3.29260 −0.171872 −0.0859362 0.996301i \(-0.527388\pi\)
−0.0859362 + 0.996301i \(0.527388\pi\)
\(368\) 4.52359 0.235808
\(369\) 0.305228 0.0158896
\(370\) 0 0
\(371\) 1.55450 0.0807059
\(372\) 9.39490 0.487103
\(373\) −18.9067 −0.978950 −0.489475 0.872017i \(-0.662812\pi\)
−0.489475 + 0.872017i \(0.662812\pi\)
\(374\) 12.2150 0.631621
\(375\) 0 0
\(376\) −0.146040 −0.00753144
\(377\) 0 0
\(378\) 5.73348 0.294898
\(379\) −13.7733 −0.707489 −0.353744 0.935342i \(-0.615092\pi\)
−0.353744 + 0.935342i \(0.615092\pi\)
\(380\) 0 0
\(381\) −27.3592 −1.40165
\(382\) 10.4143 0.532843
\(383\) −33.3243 −1.70279 −0.851395 0.524525i \(-0.824243\pi\)
−0.851395 + 0.524525i \(0.824243\pi\)
\(384\) −1.49535 −0.0763093
\(385\) 0 0
\(386\) 1.40263 0.0713922
\(387\) 6.43082 0.326897
\(388\) −8.27379 −0.420038
\(389\) −1.91117 −0.0969004 −0.0484502 0.998826i \(-0.515428\pi\)
−0.0484502 + 0.998826i \(0.515428\pi\)
\(390\) 0 0
\(391\) 22.8305 1.15459
\(392\) −5.96231 −0.301142
\(393\) −32.6375 −1.64634
\(394\) 25.3455 1.27689
\(395\) 0 0
\(396\) −1.84889 −0.0929101
\(397\) −13.5405 −0.679579 −0.339789 0.940502i \(-0.610356\pi\)
−0.339789 + 0.940502i \(0.610356\pi\)
\(398\) 13.7630 0.689878
\(399\) −11.2190 −0.561652
\(400\) 0 0
\(401\) −28.9798 −1.44718 −0.723592 0.690228i \(-0.757510\pi\)
−0.723592 + 0.690228i \(0.757510\pi\)
\(402\) 9.85438 0.491492
\(403\) 0 0
\(404\) −19.9369 −0.991896
\(405\) 0 0
\(406\) 6.50826 0.323000
\(407\) 4.36005 0.216120
\(408\) −7.54702 −0.373633
\(409\) −9.77252 −0.483220 −0.241610 0.970373i \(-0.577675\pi\)
−0.241610 + 0.970373i \(0.577675\pi\)
\(410\) 0 0
\(411\) −12.0442 −0.594099
\(412\) 14.4702 0.712893
\(413\) 3.29647 0.162209
\(414\) −3.45568 −0.169837
\(415\) 0 0
\(416\) 0 0
\(417\) 19.2099 0.940712
\(418\) 17.8253 0.871863
\(419\) −24.9288 −1.21785 −0.608926 0.793227i \(-0.708399\pi\)
−0.608926 + 0.793227i \(0.708399\pi\)
\(420\) 0 0
\(421\) 12.7436 0.621087 0.310544 0.950559i \(-0.399489\pi\)
0.310544 + 0.950559i \(0.399489\pi\)
\(422\) 9.82347 0.478199
\(423\) 0.111564 0.00542441
\(424\) 1.52601 0.0741097
\(425\) 0 0
\(426\) −2.04782 −0.0992172
\(427\) −14.4256 −0.698105
\(428\) 6.49059 0.313734
\(429\) 0 0
\(430\) 0 0
\(431\) 22.2564 1.07205 0.536026 0.844202i \(-0.319925\pi\)
0.536026 + 0.844202i \(0.319925\pi\)
\(432\) 5.62839 0.270796
\(433\) 30.4130 1.46156 0.730778 0.682615i \(-0.239157\pi\)
0.730778 + 0.682615i \(0.239157\pi\)
\(434\) −6.40004 −0.307212
\(435\) 0 0
\(436\) 13.8750 0.664494
\(437\) 33.3165 1.59374
\(438\) −23.7775 −1.13613
\(439\) −12.5984 −0.601287 −0.300644 0.953737i \(-0.597201\pi\)
−0.300644 + 0.953737i \(0.597201\pi\)
\(440\) 0 0
\(441\) 4.55475 0.216893
\(442\) 0 0
\(443\) 2.42243 0.115093 0.0575467 0.998343i \(-0.481672\pi\)
0.0575467 + 0.998343i \(0.481672\pi\)
\(444\) −2.69386 −0.127845
\(445\) 0 0
\(446\) 19.3560 0.916535
\(447\) −17.4257 −0.824206
\(448\) 1.01867 0.0481277
\(449\) −29.0963 −1.37314 −0.686568 0.727065i \(-0.740884\pi\)
−0.686568 + 0.727065i \(0.740884\pi\)
\(450\) 0 0
\(451\) −0.967019 −0.0455351
\(452\) −12.0565 −0.567089
\(453\) 5.88677 0.276585
\(454\) 20.7535 0.974010
\(455\) 0 0
\(456\) −11.0134 −0.515747
\(457\) −5.25707 −0.245916 −0.122958 0.992412i \(-0.539238\pi\)
−0.122958 + 0.992412i \(0.539238\pi\)
\(458\) −23.2933 −1.08843
\(459\) 28.4064 1.32590
\(460\) 0 0
\(461\) 21.6948 1.01043 0.505213 0.862995i \(-0.331414\pi\)
0.505213 + 0.862995i \(0.331414\pi\)
\(462\) −3.68670 −0.171521
\(463\) −6.17734 −0.287085 −0.143543 0.989644i \(-0.545849\pi\)
−0.143543 + 0.989644i \(0.545849\pi\)
\(464\) 6.38898 0.296601
\(465\) 0 0
\(466\) 0.585969 0.0271445
\(467\) 9.01521 0.417174 0.208587 0.978004i \(-0.433114\pi\)
0.208587 + 0.978004i \(0.433114\pi\)
\(468\) 0 0
\(469\) −6.71305 −0.309980
\(470\) 0 0
\(471\) −2.78331 −0.128248
\(472\) 3.23605 0.148951
\(473\) −20.3740 −0.936798
\(474\) 5.29059 0.243005
\(475\) 0 0
\(476\) 5.14122 0.235647
\(477\) −1.16576 −0.0533764
\(478\) −9.56019 −0.437273
\(479\) 14.3406 0.655240 0.327620 0.944810i \(-0.393753\pi\)
0.327620 + 0.944810i \(0.393753\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −11.5135 −0.524426
\(483\) −6.89065 −0.313535
\(484\) −5.14239 −0.233745
\(485\) 0 0
\(486\) −7.72667 −0.350489
\(487\) −15.5121 −0.702921 −0.351460 0.936203i \(-0.614315\pi\)
−0.351460 + 0.936203i \(0.614315\pi\)
\(488\) −14.1612 −0.641049
\(489\) 34.4180 1.55644
\(490\) 0 0
\(491\) 2.60458 0.117543 0.0587715 0.998271i \(-0.481282\pi\)
0.0587715 + 0.998271i \(0.481282\pi\)
\(492\) 0.597472 0.0269361
\(493\) 32.2451 1.45225
\(494\) 0 0
\(495\) 0 0
\(496\) −6.28274 −0.282103
\(497\) 1.39503 0.0625755
\(498\) 6.95316 0.311579
\(499\) 4.88458 0.218664 0.109332 0.994005i \(-0.465129\pi\)
0.109332 + 0.994005i \(0.465129\pi\)
\(500\) 0 0
\(501\) −9.13756 −0.408236
\(502\) −15.0024 −0.669589
\(503\) −1.67768 −0.0748041 −0.0374020 0.999300i \(-0.511908\pi\)
−0.0374020 + 0.999300i \(0.511908\pi\)
\(504\) −0.778187 −0.0346632
\(505\) 0 0
\(506\) 10.9482 0.486707
\(507\) 0 0
\(508\) 18.2962 0.811761
\(509\) −24.0762 −1.06716 −0.533580 0.845750i \(-0.679154\pi\)
−0.533580 + 0.845750i \(0.679154\pi\)
\(510\) 0 0
\(511\) 16.1978 0.716549
\(512\) 1.00000 0.0441942
\(513\) 41.4534 1.83021
\(514\) −0.902680 −0.0398155
\(515\) 0 0
\(516\) 12.5881 0.554159
\(517\) −0.353454 −0.0155449
\(518\) 1.83512 0.0806307
\(519\) −34.5060 −1.51465
\(520\) 0 0
\(521\) 4.74906 0.208060 0.104030 0.994574i \(-0.466826\pi\)
0.104030 + 0.994574i \(0.466826\pi\)
\(522\) −4.88069 −0.213622
\(523\) 21.1351 0.924174 0.462087 0.886835i \(-0.347101\pi\)
0.462087 + 0.886835i \(0.347101\pi\)
\(524\) 21.8260 0.953472
\(525\) 0 0
\(526\) −17.5243 −0.764095
\(527\) −31.7089 −1.38126
\(528\) −3.61912 −0.157502
\(529\) −2.53718 −0.110312
\(530\) 0 0
\(531\) −2.47210 −0.107280
\(532\) 7.50257 0.325278
\(533\) 0 0
\(534\) −8.38715 −0.362948
\(535\) 0 0
\(536\) −6.59001 −0.284645
\(537\) −11.6890 −0.504418
\(538\) 3.17990 0.137095
\(539\) −14.4303 −0.621556
\(540\) 0 0
\(541\) 16.3708 0.703835 0.351917 0.936031i \(-0.385530\pi\)
0.351917 + 0.936031i \(0.385530\pi\)
\(542\) −13.8015 −0.592825
\(543\) 7.79776 0.334634
\(544\) 5.04699 0.216388
\(545\) 0 0
\(546\) 0 0
\(547\) −25.9050 −1.10762 −0.553810 0.832643i \(-0.686827\pi\)
−0.553810 + 0.832643i \(0.686827\pi\)
\(548\) 8.05446 0.344070
\(549\) 10.8181 0.461706
\(550\) 0 0
\(551\) 47.0552 2.00462
\(552\) −6.76435 −0.287910
\(553\) −3.60408 −0.153261
\(554\) −4.77040 −0.202675
\(555\) 0 0
\(556\) −12.8464 −0.544809
\(557\) 18.3250 0.776453 0.388227 0.921564i \(-0.373088\pi\)
0.388227 + 0.921564i \(0.373088\pi\)
\(558\) 4.79954 0.203181
\(559\) 0 0
\(560\) 0 0
\(561\) −18.2657 −0.771178
\(562\) −5.70927 −0.240831
\(563\) −17.3172 −0.729832 −0.364916 0.931040i \(-0.618902\pi\)
−0.364916 + 0.931040i \(0.618902\pi\)
\(564\) 0.218381 0.00919551
\(565\) 0 0
\(566\) 21.2228 0.892061
\(567\) −6.23900 −0.262013
\(568\) 1.36946 0.0574612
\(569\) 36.5689 1.53305 0.766524 0.642216i \(-0.221985\pi\)
0.766524 + 0.642216i \(0.221985\pi\)
\(570\) 0 0
\(571\) 31.7878 1.33028 0.665139 0.746720i \(-0.268372\pi\)
0.665139 + 0.746720i \(0.268372\pi\)
\(572\) 0 0
\(573\) −15.5731 −0.650575
\(574\) −0.407013 −0.0169884
\(575\) 0 0
\(576\) −0.763924 −0.0318302
\(577\) 26.0002 1.08240 0.541202 0.840893i \(-0.317970\pi\)
0.541202 + 0.840893i \(0.317970\pi\)
\(578\) 8.47209 0.352393
\(579\) −2.09743 −0.0871663
\(580\) 0 0
\(581\) −4.73667 −0.196510
\(582\) 12.3722 0.512845
\(583\) 3.69333 0.152962
\(584\) 15.9009 0.657985
\(585\) 0 0
\(586\) −23.9835 −0.990749
\(587\) 27.4016 1.13098 0.565492 0.824754i \(-0.308686\pi\)
0.565492 + 0.824754i \(0.308686\pi\)
\(588\) 8.91575 0.367679
\(589\) −46.2728 −1.90664
\(590\) 0 0
\(591\) −37.9005 −1.55902
\(592\) 1.80149 0.0740407
\(593\) 10.5439 0.432985 0.216492 0.976284i \(-0.430538\pi\)
0.216492 + 0.976284i \(0.430538\pi\)
\(594\) 13.6221 0.558922
\(595\) 0 0
\(596\) 11.6532 0.477335
\(597\) −20.5806 −0.842307
\(598\) 0 0
\(599\) −15.3122 −0.625640 −0.312820 0.949812i \(-0.601274\pi\)
−0.312820 + 0.949812i \(0.601274\pi\)
\(600\) 0 0
\(601\) 12.1851 0.497041 0.248521 0.968627i \(-0.420056\pi\)
0.248521 + 0.968627i \(0.420056\pi\)
\(602\) −8.57531 −0.349504
\(603\) 5.03427 0.205011
\(604\) −3.93672 −0.160183
\(605\) 0 0
\(606\) 29.8126 1.21105
\(607\) 18.3971 0.746716 0.373358 0.927687i \(-0.378206\pi\)
0.373358 + 0.927687i \(0.378206\pi\)
\(608\) 7.36506 0.298693
\(609\) −9.73214 −0.394366
\(610\) 0 0
\(611\) 0 0
\(612\) −3.85552 −0.155850
\(613\) 14.7497 0.595734 0.297867 0.954607i \(-0.403725\pi\)
0.297867 + 0.954607i \(0.403725\pi\)
\(614\) 17.0892 0.689666
\(615\) 0 0
\(616\) 2.46544 0.0993354
\(617\) 12.2578 0.493482 0.246741 0.969081i \(-0.420640\pi\)
0.246741 + 0.969081i \(0.420640\pi\)
\(618\) −21.6380 −0.870407
\(619\) −5.15917 −0.207365 −0.103682 0.994610i \(-0.533063\pi\)
−0.103682 + 0.994610i \(0.533063\pi\)
\(620\) 0 0
\(621\) 25.4605 1.02169
\(622\) 5.17968 0.207686
\(623\) 5.71354 0.228908
\(624\) 0 0
\(625\) 0 0
\(626\) 33.7809 1.35016
\(627\) −26.6551 −1.06450
\(628\) 1.86131 0.0742742
\(629\) 9.09208 0.362525
\(630\) 0 0
\(631\) 11.4906 0.457432 0.228716 0.973493i \(-0.426547\pi\)
0.228716 + 0.973493i \(0.426547\pi\)
\(632\) −3.53802 −0.140735
\(633\) −14.6895 −0.583857
\(634\) 23.3968 0.929205
\(635\) 0 0
\(636\) −2.28193 −0.0904842
\(637\) 0 0
\(638\) 15.4629 0.612183
\(639\) −1.04616 −0.0413855
\(640\) 0 0
\(641\) 42.6494 1.68455 0.842275 0.539048i \(-0.181216\pi\)
0.842275 + 0.539048i \(0.181216\pi\)
\(642\) −9.70571 −0.383054
\(643\) −33.4244 −1.31813 −0.659064 0.752087i \(-0.729047\pi\)
−0.659064 + 0.752087i \(0.729047\pi\)
\(644\) 4.60805 0.181582
\(645\) 0 0
\(646\) 37.1714 1.46249
\(647\) −21.1277 −0.830616 −0.415308 0.909681i \(-0.636326\pi\)
−0.415308 + 0.909681i \(0.636326\pi\)
\(648\) −6.12465 −0.240599
\(649\) 7.83206 0.307435
\(650\) 0 0
\(651\) 9.57032 0.375090
\(652\) −23.0167 −0.901402
\(653\) 23.4000 0.915711 0.457855 0.889027i \(-0.348618\pi\)
0.457855 + 0.889027i \(0.348618\pi\)
\(654\) −20.7481 −0.811314
\(655\) 0 0
\(656\) −0.399553 −0.0155999
\(657\) −12.1471 −0.473903
\(658\) −0.148767 −0.00579953
\(659\) 34.8524 1.35766 0.678829 0.734297i \(-0.262488\pi\)
0.678829 + 0.734297i \(0.262488\pi\)
\(660\) 0 0
\(661\) −28.2985 −1.10068 −0.550342 0.834939i \(-0.685503\pi\)
−0.550342 + 0.834939i \(0.685503\pi\)
\(662\) −5.46645 −0.212460
\(663\) 0 0
\(664\) −4.64985 −0.180449
\(665\) 0 0
\(666\) −1.37620 −0.0533266
\(667\) 28.9011 1.11905
\(668\) 6.11064 0.236428
\(669\) −28.9441 −1.11904
\(670\) 0 0
\(671\) −34.2737 −1.32312
\(672\) −1.52327 −0.0587615
\(673\) −12.7929 −0.493132 −0.246566 0.969126i \(-0.579302\pi\)
−0.246566 + 0.969126i \(0.579302\pi\)
\(674\) 25.4138 0.978902
\(675\) 0 0
\(676\) 0 0
\(677\) 31.8535 1.22423 0.612114 0.790769i \(-0.290319\pi\)
0.612114 + 0.790769i \(0.290319\pi\)
\(678\) 18.0287 0.692387
\(679\) −8.42827 −0.323447
\(680\) 0 0
\(681\) −31.0338 −1.18922
\(682\) −15.2058 −0.582260
\(683\) −51.5084 −1.97091 −0.985456 0.169928i \(-0.945646\pi\)
−0.985456 + 0.169928i \(0.945646\pi\)
\(684\) −5.62635 −0.215129
\(685\) 0 0
\(686\) −13.2043 −0.504144
\(687\) 34.8317 1.32891
\(688\) −8.41814 −0.320938
\(689\) 0 0
\(690\) 0 0
\(691\) −42.1525 −1.60356 −0.801778 0.597622i \(-0.796112\pi\)
−0.801778 + 0.597622i \(0.796112\pi\)
\(692\) 23.0755 0.877200
\(693\) −1.88341 −0.0715448
\(694\) −17.1079 −0.649408
\(695\) 0 0
\(696\) −9.55376 −0.362134
\(697\) −2.01654 −0.0763819
\(698\) 0.935233 0.0353991
\(699\) −0.876230 −0.0331420
\(700\) 0 0
\(701\) −31.6516 −1.19546 −0.597732 0.801696i \(-0.703931\pi\)
−0.597732 + 0.801696i \(0.703931\pi\)
\(702\) 0 0
\(703\) 13.2681 0.500414
\(704\) 2.42025 0.0912166
\(705\) 0 0
\(706\) −0.243550 −0.00916612
\(707\) −20.3091 −0.763802
\(708\) −4.83904 −0.181862
\(709\) 24.5801 0.923126 0.461563 0.887108i \(-0.347289\pi\)
0.461563 + 0.887108i \(0.347289\pi\)
\(710\) 0 0
\(711\) 2.70278 0.101362
\(712\) 5.60882 0.210199
\(713\) −28.4205 −1.06436
\(714\) −7.68793 −0.287714
\(715\) 0 0
\(716\) 7.81690 0.292131
\(717\) 14.2958 0.533888
\(718\) −14.7698 −0.551204
\(719\) −4.11098 −0.153314 −0.0766568 0.997058i \(-0.524425\pi\)
−0.0766568 + 0.997058i \(0.524425\pi\)
\(720\) 0 0
\(721\) 14.7403 0.548959
\(722\) 35.2441 1.31165
\(723\) 17.2167 0.640298
\(724\) −5.21467 −0.193802
\(725\) 0 0
\(726\) 7.68968 0.285391
\(727\) −13.2521 −0.491492 −0.245746 0.969334i \(-0.579033\pi\)
−0.245746 + 0.969334i \(0.579033\pi\)
\(728\) 0 0
\(729\) 29.9280 1.10845
\(730\) 0 0
\(731\) −42.4862 −1.57141
\(732\) 21.1760 0.782688
\(733\) 11.6585 0.430617 0.215309 0.976546i \(-0.430924\pi\)
0.215309 + 0.976546i \(0.430924\pi\)
\(734\) −3.29260 −0.121532
\(735\) 0 0
\(736\) 4.52359 0.166742
\(737\) −15.9495 −0.587506
\(738\) 0.305228 0.0112356
\(739\) −33.7614 −1.24193 −0.620967 0.783836i \(-0.713260\pi\)
−0.620967 + 0.783836i \(0.713260\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.55450 0.0570677
\(743\) −32.1265 −1.17861 −0.589303 0.807912i \(-0.700598\pi\)
−0.589303 + 0.807912i \(0.700598\pi\)
\(744\) 9.39490 0.344434
\(745\) 0 0
\(746\) −18.9067 −0.692222
\(747\) 3.55213 0.129966
\(748\) 12.2150 0.446624
\(749\) 6.61178 0.241589
\(750\) 0 0
\(751\) 40.3734 1.47325 0.736623 0.676304i \(-0.236419\pi\)
0.736623 + 0.676304i \(0.236419\pi\)
\(752\) −0.146040 −0.00532553
\(753\) 22.4338 0.817534
\(754\) 0 0
\(755\) 0 0
\(756\) 5.73348 0.208525
\(757\) −12.1790 −0.442652 −0.221326 0.975200i \(-0.571038\pi\)
−0.221326 + 0.975200i \(0.571038\pi\)
\(758\) −13.7733 −0.500270
\(759\) −16.3714 −0.594245
\(760\) 0 0
\(761\) 5.73188 0.207781 0.103890 0.994589i \(-0.466871\pi\)
0.103890 + 0.994589i \(0.466871\pi\)
\(762\) −27.3592 −0.991119
\(763\) 14.1341 0.511689
\(764\) 10.4143 0.376777
\(765\) 0 0
\(766\) −33.3243 −1.20405
\(767\) 0 0
\(768\) −1.49535 −0.0539588
\(769\) 50.3927 1.81721 0.908603 0.417661i \(-0.137150\pi\)
0.908603 + 0.417661i \(0.137150\pi\)
\(770\) 0 0
\(771\) 1.34982 0.0486127
\(772\) 1.40263 0.0504819
\(773\) 31.9774 1.15015 0.575074 0.818102i \(-0.304973\pi\)
0.575074 + 0.818102i \(0.304973\pi\)
\(774\) 6.43082 0.231151
\(775\) 0 0
\(776\) −8.27379 −0.297012
\(777\) −2.74415 −0.0984459
\(778\) −1.91117 −0.0685189
\(779\) −2.94273 −0.105434
\(780\) 0 0
\(781\) 3.31443 0.118600
\(782\) 22.8305 0.816416
\(783\) 35.9596 1.28509
\(784\) −5.96231 −0.212940
\(785\) 0 0
\(786\) −32.6375 −1.16414
\(787\) 23.1697 0.825910 0.412955 0.910751i \(-0.364497\pi\)
0.412955 + 0.910751i \(0.364497\pi\)
\(788\) 25.3455 0.902897
\(789\) 26.2050 0.932921
\(790\) 0 0
\(791\) −12.2816 −0.436683
\(792\) −1.84889 −0.0656974
\(793\) 0 0
\(794\) −13.5405 −0.480535
\(795\) 0 0
\(796\) 13.7630 0.487818
\(797\) 8.43667 0.298842 0.149421 0.988774i \(-0.452259\pi\)
0.149421 + 0.988774i \(0.452259\pi\)
\(798\) −11.2190 −0.397148
\(799\) −0.737063 −0.0260754
\(800\) 0 0
\(801\) −4.28471 −0.151393
\(802\) −28.9798 −1.02331
\(803\) 38.4842 1.35808
\(804\) 9.85438 0.347537
\(805\) 0 0
\(806\) 0 0
\(807\) −4.75507 −0.167386
\(808\) −19.9369 −0.701376
\(809\) −11.8560 −0.416834 −0.208417 0.978040i \(-0.566831\pi\)
−0.208417 + 0.978040i \(0.566831\pi\)
\(810\) 0 0
\(811\) −16.6388 −0.584268 −0.292134 0.956377i \(-0.594365\pi\)
−0.292134 + 0.956377i \(0.594365\pi\)
\(812\) 6.50826 0.228395
\(813\) 20.6381 0.723810
\(814\) 4.36005 0.152820
\(815\) 0 0
\(816\) −7.54702 −0.264199
\(817\) −62.0001 −2.16911
\(818\) −9.77252 −0.341688
\(819\) 0 0
\(820\) 0 0
\(821\) −25.6079 −0.893723 −0.446861 0.894603i \(-0.647458\pi\)
−0.446861 + 0.894603i \(0.647458\pi\)
\(822\) −12.0442 −0.420091
\(823\) 24.1832 0.842974 0.421487 0.906834i \(-0.361508\pi\)
0.421487 + 0.906834i \(0.361508\pi\)
\(824\) 14.4702 0.504092
\(825\) 0 0
\(826\) 3.29647 0.114699
\(827\) −15.5125 −0.539422 −0.269711 0.962941i \(-0.586928\pi\)
−0.269711 + 0.962941i \(0.586928\pi\)
\(828\) −3.45568 −0.120093
\(829\) 47.4436 1.64779 0.823893 0.566746i \(-0.191798\pi\)
0.823893 + 0.566746i \(0.191798\pi\)
\(830\) 0 0
\(831\) 7.13342 0.247456
\(832\) 0 0
\(833\) −30.0917 −1.04262
\(834\) 19.2099 0.665184
\(835\) 0 0
\(836\) 17.8253 0.616500
\(837\) −35.3617 −1.22228
\(838\) −24.9288 −0.861151
\(839\) −38.9320 −1.34408 −0.672040 0.740514i \(-0.734582\pi\)
−0.672040 + 0.740514i \(0.734582\pi\)
\(840\) 0 0
\(841\) 11.8190 0.407552
\(842\) 12.7436 0.439175
\(843\) 8.53736 0.294042
\(844\) 9.82347 0.338138
\(845\) 0 0
\(846\) 0.111564 0.00383563
\(847\) −5.23840 −0.179994
\(848\) 1.52601 0.0524035
\(849\) −31.7356 −1.08916
\(850\) 0 0
\(851\) 8.14918 0.279350
\(852\) −2.04782 −0.0701572
\(853\) −11.8046 −0.404183 −0.202091 0.979367i \(-0.564774\pi\)
−0.202091 + 0.979367i \(0.564774\pi\)
\(854\) −14.4256 −0.493635
\(855\) 0 0
\(856\) 6.49059 0.221844
\(857\) 26.7499 0.913759 0.456880 0.889529i \(-0.348967\pi\)
0.456880 + 0.889529i \(0.348967\pi\)
\(858\) 0 0
\(859\) −21.2441 −0.724839 −0.362420 0.932015i \(-0.618049\pi\)
−0.362420 + 0.932015i \(0.618049\pi\)
\(860\) 0 0
\(861\) 0.608628 0.0207420
\(862\) 22.2564 0.758055
\(863\) 9.36613 0.318827 0.159413 0.987212i \(-0.449040\pi\)
0.159413 + 0.987212i \(0.449040\pi\)
\(864\) 5.62839 0.191482
\(865\) 0 0
\(866\) 30.4130 1.03348
\(867\) −12.6688 −0.430254
\(868\) −6.40004 −0.217232
\(869\) −8.56290 −0.290476
\(870\) 0 0
\(871\) 0 0
\(872\) 13.8750 0.469868
\(873\) 6.32055 0.213918
\(874\) 33.3165 1.12695
\(875\) 0 0
\(876\) −23.7775 −0.803366
\(877\) −40.9589 −1.38308 −0.691542 0.722336i \(-0.743068\pi\)
−0.691542 + 0.722336i \(0.743068\pi\)
\(878\) −12.5984 −0.425174
\(879\) 35.8637 1.20965
\(880\) 0 0
\(881\) 32.8926 1.10818 0.554090 0.832457i \(-0.313066\pi\)
0.554090 + 0.832457i \(0.313066\pi\)
\(882\) 4.55475 0.153366
\(883\) 28.2606 0.951044 0.475522 0.879704i \(-0.342259\pi\)
0.475522 + 0.879704i \(0.342259\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.42243 0.0813833
\(887\) 6.76650 0.227197 0.113598 0.993527i \(-0.463762\pi\)
0.113598 + 0.993527i \(0.463762\pi\)
\(888\) −2.69386 −0.0903999
\(889\) 18.6378 0.625091
\(890\) 0 0
\(891\) −14.8232 −0.496595
\(892\) 19.3560 0.648088
\(893\) −1.07559 −0.0359934
\(894\) −17.4257 −0.582802
\(895\) 0 0
\(896\) 1.01867 0.0340314
\(897\) 0 0
\(898\) −29.0963 −0.970954
\(899\) −40.1403 −1.33875
\(900\) 0 0
\(901\) 7.70177 0.256583
\(902\) −0.967019 −0.0321982
\(903\) 12.8231 0.426726
\(904\) −12.0565 −0.400993
\(905\) 0 0
\(906\) 5.88677 0.195575
\(907\) 18.3605 0.609649 0.304824 0.952409i \(-0.401402\pi\)
0.304824 + 0.952409i \(0.401402\pi\)
\(908\) 20.7535 0.688729
\(909\) 15.2302 0.505155
\(910\) 0 0
\(911\) −4.36340 −0.144566 −0.0722830 0.997384i \(-0.523028\pi\)
−0.0722830 + 0.997384i \(0.523028\pi\)
\(912\) −11.0134 −0.364689
\(913\) −11.2538 −0.372446
\(914\) −5.25707 −0.173889
\(915\) 0 0
\(916\) −23.2933 −0.769634
\(917\) 22.2335 0.734215
\(918\) 28.4064 0.937551
\(919\) −42.7654 −1.41070 −0.705350 0.708859i \(-0.749210\pi\)
−0.705350 + 0.708859i \(0.749210\pi\)
\(920\) 0 0
\(921\) −25.5544 −0.842047
\(922\) 21.6948 0.714479
\(923\) 0 0
\(924\) −3.68670 −0.121283
\(925\) 0 0
\(926\) −6.17734 −0.203000
\(927\) −11.0541 −0.363064
\(928\) 6.38898 0.209728
\(929\) 22.2843 0.731124 0.365562 0.930787i \(-0.380877\pi\)
0.365562 + 0.930787i \(0.380877\pi\)
\(930\) 0 0
\(931\) −43.9128 −1.43918
\(932\) 0.585969 0.0191941
\(933\) −7.74545 −0.253575
\(934\) 9.01521 0.294987
\(935\) 0 0
\(936\) 0 0
\(937\) 28.0120 0.915113 0.457557 0.889180i \(-0.348725\pi\)
0.457557 + 0.889180i \(0.348725\pi\)
\(938\) −6.71305 −0.219189
\(939\) −50.5143 −1.64847
\(940\) 0 0
\(941\) 25.9180 0.844904 0.422452 0.906385i \(-0.361169\pi\)
0.422452 + 0.906385i \(0.361169\pi\)
\(942\) −2.78331 −0.0906851
\(943\) −1.80741 −0.0588575
\(944\) 3.23605 0.105325
\(945\) 0 0
\(946\) −20.3740 −0.662416
\(947\) −39.2544 −1.27560 −0.637798 0.770204i \(-0.720154\pi\)
−0.637798 + 0.770204i \(0.720154\pi\)
\(948\) 5.29059 0.171830
\(949\) 0 0
\(950\) 0 0
\(951\) −34.9864 −1.13451
\(952\) 5.14122 0.166628
\(953\) −38.9069 −1.26032 −0.630159 0.776466i \(-0.717010\pi\)
−0.630159 + 0.776466i \(0.717010\pi\)
\(954\) −1.16576 −0.0377428
\(955\) 0 0
\(956\) −9.56019 −0.309199
\(957\) −23.1225 −0.747444
\(958\) 14.3406 0.463325
\(959\) 8.20485 0.264948
\(960\) 0 0
\(961\) 8.47282 0.273317
\(962\) 0 0
\(963\) −4.95832 −0.159780
\(964\) −11.5135 −0.370825
\(965\) 0 0
\(966\) −6.89065 −0.221703
\(967\) −49.1503 −1.58057 −0.790283 0.612742i \(-0.790066\pi\)
−0.790283 + 0.612742i \(0.790066\pi\)
\(968\) −5.14239 −0.165283
\(969\) −55.5843 −1.78562
\(970\) 0 0
\(971\) 2.29451 0.0736344 0.0368172 0.999322i \(-0.488278\pi\)
0.0368172 + 0.999322i \(0.488278\pi\)
\(972\) −7.72667 −0.247833
\(973\) −13.0863 −0.419526
\(974\) −15.5121 −0.497040
\(975\) 0 0
\(976\) −14.1612 −0.453290
\(977\) −40.4141 −1.29296 −0.646481 0.762930i \(-0.723760\pi\)
−0.646481 + 0.762930i \(0.723760\pi\)
\(978\) 34.4180 1.10057
\(979\) 13.5747 0.433851
\(980\) 0 0
\(981\) −10.5995 −0.338415
\(982\) 2.60458 0.0831155
\(983\) −5.97411 −0.190544 −0.0952722 0.995451i \(-0.530372\pi\)
−0.0952722 + 0.995451i \(0.530372\pi\)
\(984\) 0.597472 0.0190467
\(985\) 0 0
\(986\) 32.2451 1.02689
\(987\) 0.222459 0.00708094
\(988\) 0 0
\(989\) −38.0802 −1.21088
\(990\) 0 0
\(991\) −19.2849 −0.612604 −0.306302 0.951934i \(-0.599092\pi\)
−0.306302 + 0.951934i \(0.599092\pi\)
\(992\) −6.28274 −0.199477
\(993\) 8.17426 0.259402
\(994\) 1.39503 0.0442476
\(995\) 0 0
\(996\) 6.95316 0.220319
\(997\) 52.5850 1.66538 0.832692 0.553736i \(-0.186798\pi\)
0.832692 + 0.553736i \(0.186798\pi\)
\(998\) 4.88458 0.154619
\(999\) 10.1395 0.320799
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.da.1.2 9
5.2 odd 4 1690.2.b.g.339.17 yes 18
5.3 odd 4 1690.2.b.g.339.2 yes 18
5.4 even 2 8450.2.a.ct.1.8 9
13.12 even 2 8450.2.a.cw.1.2 9
65.8 even 4 1690.2.c.h.1689.5 18
65.12 odd 4 1690.2.b.f.339.8 18
65.18 even 4 1690.2.c.g.1689.5 18
65.38 odd 4 1690.2.b.f.339.11 yes 18
65.47 even 4 1690.2.c.g.1689.14 18
65.57 even 4 1690.2.c.h.1689.14 18
65.64 even 2 8450.2.a.cx.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.8 18 65.12 odd 4
1690.2.b.f.339.11 yes 18 65.38 odd 4
1690.2.b.g.339.2 yes 18 5.3 odd 4
1690.2.b.g.339.17 yes 18 5.2 odd 4
1690.2.c.g.1689.5 18 65.18 even 4
1690.2.c.g.1689.14 18 65.47 even 4
1690.2.c.h.1689.5 18 65.8 even 4
1690.2.c.h.1689.14 18 65.57 even 4
8450.2.a.ct.1.8 9 5.4 even 2
8450.2.a.cw.1.2 9 13.12 even 2
8450.2.a.cx.1.8 9 65.64 even 2
8450.2.a.da.1.2 9 1.1 even 1 trivial