Properties

Label 1690.2.c.h.1689.5
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,18,0,18,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.5
Root \(2.08395i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.h.1689.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.49535i q^{3} +1.00000 q^{4} +(-1.45979 - 1.69382i) q^{5} -1.49535i q^{6} -1.01867 q^{7} +1.00000 q^{8} +0.763924 q^{9} +(-1.45979 - 1.69382i) q^{10} -2.42025i q^{11} -1.49535i q^{12} -1.01867 q^{14} +(-2.53286 + 2.18289i) q^{15} +1.00000 q^{16} +5.04699i q^{17} +0.763924 q^{18} -7.36506i q^{19} +(-1.45979 - 1.69382i) q^{20} +1.52327i q^{21} -2.42025i q^{22} -4.52359i q^{23} -1.49535i q^{24} +(-0.738047 + 4.94523i) q^{25} -5.62839i q^{27} -1.01867 q^{28} -6.38898 q^{29} +(-2.53286 + 2.18289i) q^{30} -6.28274i q^{31} +1.00000 q^{32} -3.61912 q^{33} +5.04699i q^{34} +(1.48704 + 1.72544i) q^{35} +0.763924 q^{36} -1.80149 q^{37} -7.36506i q^{38} +(-1.45979 - 1.69382i) q^{40} -0.399553i q^{41} +1.52327i q^{42} +8.41814i q^{43} -2.42025i q^{44} +(-1.11517 - 1.29395i) q^{45} -4.52359i q^{46} +0.146040 q^{47} -1.49535i q^{48} -5.96231 q^{49} +(-0.738047 + 4.94523i) q^{50} +7.54702 q^{51} +1.52601i q^{53} -5.62839i q^{54} +(-4.09947 + 3.53305i) q^{55} -1.01867 q^{56} -11.0134 q^{57} -6.38898 q^{58} +3.23605i q^{59} +(-2.53286 + 2.18289i) q^{60} -14.1612 q^{61} -6.28274i q^{62} -0.778187 q^{63} +1.00000 q^{64} -3.61912 q^{66} -6.59001 q^{67} +5.04699i q^{68} -6.76435 q^{69} +(1.48704 + 1.72544i) q^{70} +1.36946i q^{71} +0.763924 q^{72} +15.9009 q^{73} -1.80149 q^{74} +(7.39485 + 1.10364i) q^{75} -7.36506i q^{76} +2.46544i q^{77} +3.53802 q^{79} +(-1.45979 - 1.69382i) q^{80} -6.12465 q^{81} -0.399553i q^{82} +4.64985 q^{83} +1.52327i q^{84} +(8.54869 - 7.36753i) q^{85} +8.41814i q^{86} +9.55376i q^{87} -2.42025i q^{88} +5.60882i q^{89} +(-1.11517 - 1.29395i) q^{90} -4.52359i q^{92} -9.39490 q^{93} +0.146040 q^{94} +(-12.4751 + 10.7514i) q^{95} -1.49535i q^{96} -8.27379 q^{97} -5.96231 q^{98} -1.84889i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{2} + 18 q^{4} - 2 q^{5} - 2 q^{7} + 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} + 14 q^{15} + 18 q^{16} - 16 q^{18} - 2 q^{20} - 22 q^{25} - 2 q^{28} - 30 q^{29} + 14 q^{30} + 18 q^{32} - 28 q^{33}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.49535i 0.863342i −0.902031 0.431671i \(-0.857924\pi\)
0.902031 0.431671i \(-0.142076\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.45979 1.69382i −0.652836 0.757499i
\(6\) 1.49535i 0.610475i
\(7\) −1.01867 −0.385021 −0.192511 0.981295i \(-0.561663\pi\)
−0.192511 + 0.981295i \(0.561663\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.763924 0.254641
\(10\) −1.45979 1.69382i −0.461625 0.535633i
\(11\) 2.42025i 0.729733i −0.931060 0.364866i \(-0.881115\pi\)
0.931060 0.364866i \(-0.118885\pi\)
\(12\) 1.49535i 0.431671i
\(13\) 0 0
\(14\) −1.01867 −0.272251
\(15\) −2.53286 + 2.18289i −0.653980 + 0.563621i
\(16\) 1.00000 0.250000
\(17\) 5.04699i 1.22407i 0.790829 + 0.612037i \(0.209650\pi\)
−0.790829 + 0.612037i \(0.790350\pi\)
\(18\) 0.763924 0.180059
\(19\) 7.36506i 1.68966i −0.535034 0.844830i \(-0.679701\pi\)
0.535034 0.844830i \(-0.320299\pi\)
\(20\) −1.45979 1.69382i −0.326418 0.378750i
\(21\) 1.52327i 0.332405i
\(22\) 2.42025i 0.515999i
\(23\) 4.52359i 0.943233i −0.881804 0.471616i \(-0.843671\pi\)
0.881804 0.471616i \(-0.156329\pi\)
\(24\) 1.49535i 0.305237i
\(25\) −0.738047 + 4.94523i −0.147609 + 0.989046i
\(26\) 0 0
\(27\) 5.62839i 1.08318i
\(28\) −1.01867 −0.192511
\(29\) −6.38898 −1.18640 −0.593202 0.805054i \(-0.702136\pi\)
−0.593202 + 0.805054i \(0.702136\pi\)
\(30\) −2.53286 + 2.18289i −0.462434 + 0.398540i
\(31\) 6.28274i 1.12841i −0.825634 0.564207i \(-0.809182\pi\)
0.825634 0.564207i \(-0.190818\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.61912 −0.630009
\(34\) 5.04699i 0.865551i
\(35\) 1.48704 + 1.72544i 0.251356 + 0.291653i
\(36\) 0.763924 0.127321
\(37\) −1.80149 −0.296163 −0.148081 0.988975i \(-0.547310\pi\)
−0.148081 + 0.988975i \(0.547310\pi\)
\(38\) 7.36506i 1.19477i
\(39\) 0 0
\(40\) −1.45979 1.69382i −0.230812 0.267816i
\(41\) 0.399553i 0.0623997i −0.999513 0.0311999i \(-0.990067\pi\)
0.999513 0.0311999i \(-0.00993284\pi\)
\(42\) 1.52327i 0.235046i
\(43\) 8.41814i 1.28375i 0.766808 + 0.641877i \(0.221844\pi\)
−0.766808 + 0.641877i \(0.778156\pi\)
\(44\) 2.42025i 0.364866i
\(45\) −1.11517 1.29395i −0.166239 0.192891i
\(46\) 4.52359i 0.666966i
\(47\) 0.146040 0.0213021 0.0106511 0.999943i \(-0.496610\pi\)
0.0106511 + 0.999943i \(0.496610\pi\)
\(48\) 1.49535i 0.215835i
\(49\) −5.96231 −0.851758
\(50\) −0.738047 + 4.94523i −0.104376 + 0.699361i
\(51\) 7.54702 1.05679
\(52\) 0 0
\(53\) 1.52601i 0.209614i 0.994493 + 0.104807i \(0.0334225\pi\)
−0.994493 + 0.104807i \(0.966578\pi\)
\(54\) 5.62839i 0.765927i
\(55\) −4.09947 + 3.53305i −0.552772 + 0.476396i
\(56\) −1.01867 −0.136126
\(57\) −11.0134 −1.45875
\(58\) −6.38898 −0.838914
\(59\) 3.23605i 0.421298i 0.977562 + 0.210649i \(0.0675578\pi\)
−0.977562 + 0.210649i \(0.932442\pi\)
\(60\) −2.53286 + 2.18289i −0.326990 + 0.281810i
\(61\) −14.1612 −1.81316 −0.906580 0.422034i \(-0.861316\pi\)
−0.906580 + 0.422034i \(0.861316\pi\)
\(62\) 6.28274i 0.797909i
\(63\) −0.778187 −0.0980424
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.61912 −0.445483
\(67\) −6.59001 −0.805098 −0.402549 0.915398i \(-0.631876\pi\)
−0.402549 + 0.915398i \(0.631876\pi\)
\(68\) 5.04699i 0.612037i
\(69\) −6.76435 −0.814332
\(70\) 1.48704 + 1.72544i 0.177736 + 0.206230i
\(71\) 1.36946i 0.162525i 0.996693 + 0.0812623i \(0.0258952\pi\)
−0.996693 + 0.0812623i \(0.974105\pi\)
\(72\) 0.763924 0.0900293
\(73\) 15.9009 1.86106 0.930531 0.366213i \(-0.119346\pi\)
0.930531 + 0.366213i \(0.119346\pi\)
\(74\) −1.80149 −0.209419
\(75\) 7.39485 + 1.10364i 0.853884 + 0.127437i
\(76\) 7.36506i 0.844830i
\(77\) 2.46544i 0.280963i
\(78\) 0 0
\(79\) 3.53802 0.398059 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(80\) −1.45979 1.69382i −0.163209 0.189375i
\(81\) −6.12465 −0.680516
\(82\) 0.399553i 0.0441233i
\(83\) 4.64985 0.510387 0.255194 0.966890i \(-0.417861\pi\)
0.255194 + 0.966890i \(0.417861\pi\)
\(84\) 1.52327i 0.166203i
\(85\) 8.54869 7.36753i 0.927235 0.799120i
\(86\) 8.41814i 0.907751i
\(87\) 9.55376i 1.02427i
\(88\) 2.42025i 0.258000i
\(89\) 5.60882i 0.594533i 0.954794 + 0.297267i \(0.0960750\pi\)
−0.954794 + 0.297267i \(0.903925\pi\)
\(90\) −1.11517 1.29395i −0.117549 0.136394i
\(91\) 0 0
\(92\) 4.52359i 0.471616i
\(93\) −9.39490 −0.974206
\(94\) 0.146040 0.0150629
\(95\) −12.4751 + 10.7514i −1.27992 + 1.10307i
\(96\) 1.49535i 0.152619i
\(97\) −8.27379 −0.840076 −0.420038 0.907507i \(-0.637983\pi\)
−0.420038 + 0.907507i \(0.637983\pi\)
\(98\) −5.96231 −0.602284
\(99\) 1.84889i 0.185820i
\(100\) −0.738047 + 4.94523i −0.0738047 + 0.494523i
\(101\) 19.9369 1.98379 0.991896 0.127053i \(-0.0405519\pi\)
0.991896 + 0.127053i \(0.0405519\pi\)
\(102\) 7.54702 0.747266
\(103\) 14.4702i 1.42579i −0.701272 0.712893i \(-0.747384\pi\)
0.701272 0.712893i \(-0.252616\pi\)
\(104\) 0 0
\(105\) 2.58015 2.22365i 0.251796 0.217006i
\(106\) 1.52601i 0.148219i
\(107\) 6.49059i 0.627469i −0.949511 0.313734i \(-0.898420\pi\)
0.949511 0.313734i \(-0.101580\pi\)
\(108\) 5.62839i 0.541592i
\(109\) 13.8750i 1.32899i −0.747293 0.664494i \(-0.768647\pi\)
0.747293 0.664494i \(-0.231353\pi\)
\(110\) −4.09947 + 3.53305i −0.390869 + 0.336863i
\(111\) 2.69386i 0.255690i
\(112\) −1.01867 −0.0962554
\(113\) 12.0565i 1.13418i −0.823656 0.567089i \(-0.808069\pi\)
0.823656 0.567089i \(-0.191931\pi\)
\(114\) −11.0134 −1.03149
\(115\) −7.66214 + 6.60347i −0.714498 + 0.615777i
\(116\) −6.38898 −0.593202
\(117\) 0 0
\(118\) 3.23605i 0.297903i
\(119\) 5.14122i 0.471295i
\(120\) −2.53286 + 2.18289i −0.231217 + 0.199270i
\(121\) 5.14239 0.467490
\(122\) −14.1612 −1.28210
\(123\) −0.597472 −0.0538723
\(124\) 6.28274i 0.564207i
\(125\) 9.45372 5.96886i 0.845566 0.533871i
\(126\) −0.778187 −0.0693264
\(127\) 18.2962i 1.62352i 0.583990 + 0.811761i \(0.301491\pi\)
−0.583990 + 0.811761i \(0.698509\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.5881 1.10832
\(130\) 0 0
\(131\) 21.8260 1.90694 0.953472 0.301481i \(-0.0974808\pi\)
0.953472 + 0.301481i \(0.0974808\pi\)
\(132\) −3.61912 −0.315004
\(133\) 7.50257i 0.650556i
\(134\) −6.59001 −0.569290
\(135\) −9.53347 + 8.21625i −0.820511 + 0.707142i
\(136\) 5.04699i 0.432776i
\(137\) −8.05446 −0.688139 −0.344070 0.938944i \(-0.611806\pi\)
−0.344070 + 0.938944i \(0.611806\pi\)
\(138\) −6.76435 −0.575820
\(139\) 12.8464 1.08962 0.544809 0.838560i \(-0.316602\pi\)
0.544809 + 0.838560i \(0.316602\pi\)
\(140\) 1.48704 + 1.72544i 0.125678 + 0.145827i
\(141\) 0.218381i 0.0183910i
\(142\) 1.36946i 0.114922i
\(143\) 0 0
\(144\) 0.763924 0.0636603
\(145\) 9.32654 + 10.8218i 0.774527 + 0.898699i
\(146\) 15.9009 1.31597
\(147\) 8.91575i 0.735358i
\(148\) −1.80149 −0.148081
\(149\) 11.6532i 0.954669i −0.878722 0.477335i \(-0.841603\pi\)
0.878722 0.477335i \(-0.158397\pi\)
\(150\) 7.39485 + 1.10364i 0.603787 + 0.0901118i
\(151\) 3.93672i 0.320365i 0.987087 + 0.160183i \(0.0512083\pi\)
−0.987087 + 0.160183i \(0.948792\pi\)
\(152\) 7.36506i 0.597385i
\(153\) 3.85552i 0.311700i
\(154\) 2.46544i 0.198671i
\(155\) −10.6418 + 9.17146i −0.854772 + 0.736669i
\(156\) 0 0
\(157\) 1.86131i 0.148548i −0.997238 0.0742742i \(-0.976336\pi\)
0.997238 0.0742742i \(-0.0236640\pi\)
\(158\) 3.53802 0.281470
\(159\) 2.28193 0.180968
\(160\) −1.45979 1.69382i −0.115406 0.133908i
\(161\) 4.60805i 0.363165i
\(162\) −6.12465 −0.481198
\(163\) −23.0167 −1.80280 −0.901402 0.432984i \(-0.857461\pi\)
−0.901402 + 0.432984i \(0.857461\pi\)
\(164\) 0.399553i 0.0311999i
\(165\) 5.28315 + 6.13014i 0.411293 + 0.477231i
\(166\) 4.64985 0.360898
\(167\) −6.11064 −0.472856 −0.236428 0.971649i \(-0.575977\pi\)
−0.236428 + 0.971649i \(0.575977\pi\)
\(168\) 1.52327i 0.117523i
\(169\) 0 0
\(170\) 8.54869 7.36753i 0.655654 0.565063i
\(171\) 5.62635i 0.430257i
\(172\) 8.41814i 0.641877i
\(173\) 23.0755i 1.75440i −0.480125 0.877200i \(-0.659409\pi\)
0.480125 0.877200i \(-0.340591\pi\)
\(174\) 9.55376i 0.724269i
\(175\) 0.751828 5.03756i 0.0568328 0.380804i
\(176\) 2.42025i 0.182433i
\(177\) 4.83904 0.363724
\(178\) 5.60882i 0.420399i
\(179\) 7.81690 0.584263 0.292131 0.956378i \(-0.405636\pi\)
0.292131 + 0.956378i \(0.405636\pi\)
\(180\) −1.11517 1.29395i −0.0831196 0.0964453i
\(181\) 5.21467 0.387603 0.193802 0.981041i \(-0.437918\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(182\) 0 0
\(183\) 21.1760i 1.56538i
\(184\) 4.52359i 0.333483i
\(185\) 2.62979 + 3.05139i 0.193346 + 0.224343i
\(186\) −9.39490 −0.688868
\(187\) 12.2150 0.893248
\(188\) 0.146040 0.0106511
\(189\) 5.73348i 0.417049i
\(190\) −12.4751 + 10.7514i −0.905037 + 0.779990i
\(191\) 10.4143 0.753554 0.376777 0.926304i \(-0.377032\pi\)
0.376777 + 0.926304i \(0.377032\pi\)
\(192\) 1.49535i 0.107918i
\(193\) 1.40263 0.100964 0.0504819 0.998725i \(-0.483924\pi\)
0.0504819 + 0.998725i \(0.483924\pi\)
\(194\) −8.27379 −0.594023
\(195\) 0 0
\(196\) −5.96231 −0.425879
\(197\) 25.3455 1.80579 0.902897 0.429857i \(-0.141436\pi\)
0.902897 + 0.429857i \(0.141436\pi\)
\(198\) 1.84889i 0.131395i
\(199\) 13.7630 0.975636 0.487818 0.872945i \(-0.337793\pi\)
0.487818 + 0.872945i \(0.337793\pi\)
\(200\) −0.738047 + 4.94523i −0.0521878 + 0.349680i
\(201\) 9.85438i 0.695074i
\(202\) 19.9369 1.40275
\(203\) 6.50826 0.456791
\(204\) 7.54702 0.528397
\(205\) −0.676771 + 0.583262i −0.0472677 + 0.0407368i
\(206\) 14.4702i 1.00818i
\(207\) 3.45568i 0.240186i
\(208\) 0 0
\(209\) −17.8253 −1.23300
\(210\) 2.58015 2.22365i 0.178047 0.153446i
\(211\) 9.82347 0.676275 0.338138 0.941097i \(-0.390203\pi\)
0.338138 + 0.941097i \(0.390203\pi\)
\(212\) 1.52601i 0.104807i
\(213\) 2.04782 0.140314
\(214\) 6.49059i 0.443688i
\(215\) 14.2588 12.2887i 0.972442 0.838081i
\(216\) 5.62839i 0.382963i
\(217\) 6.40004i 0.434463i
\(218\) 13.8750i 0.939737i
\(219\) 23.7775i 1.60673i
\(220\) −4.09947 + 3.53305i −0.276386 + 0.238198i
\(221\) 0 0
\(222\) 2.69386i 0.180800i
\(223\) −19.3560 −1.29618 −0.648088 0.761565i \(-0.724431\pi\)
−0.648088 + 0.761565i \(0.724431\pi\)
\(224\) −1.01867 −0.0680628
\(225\) −0.563812 + 3.77778i −0.0375875 + 0.251852i
\(226\) 12.0565i 0.801986i
\(227\) 20.7535 1.37746 0.688729 0.725019i \(-0.258169\pi\)
0.688729 + 0.725019i \(0.258169\pi\)
\(228\) −11.0134 −0.729377
\(229\) 23.2933i 1.53927i −0.638486 0.769634i \(-0.720439\pi\)
0.638486 0.769634i \(-0.279561\pi\)
\(230\) −7.66214 + 6.60347i −0.505226 + 0.435420i
\(231\) 3.68670 0.242567
\(232\) −6.38898 −0.419457
\(233\) 0.585969i 0.0383881i −0.999816 0.0191941i \(-0.993890\pi\)
0.999816 0.0191941i \(-0.00611003\pi\)
\(234\) 0 0
\(235\) −0.213187 0.247366i −0.0139068 0.0161363i
\(236\) 3.23605i 0.210649i
\(237\) 5.29059i 0.343660i
\(238\) 5.14122i 0.333256i
\(239\) 9.56019i 0.618397i 0.950998 + 0.309199i \(0.100061\pi\)
−0.950998 + 0.309199i \(0.899939\pi\)
\(240\) −2.53286 + 2.18289i −0.163495 + 0.140905i
\(241\) 11.5135i 0.741650i 0.928703 + 0.370825i \(0.120925\pi\)
−0.928703 + 0.370825i \(0.879075\pi\)
\(242\) 5.14239 0.330565
\(243\) 7.72667i 0.495666i
\(244\) −14.1612 −0.906580
\(245\) 8.70370 + 10.0991i 0.556059 + 0.645206i
\(246\) −0.597472 −0.0380935
\(247\) 0 0
\(248\) 6.28274i 0.398954i
\(249\) 6.95316i 0.440639i
\(250\) 9.45372 5.96886i 0.597905 0.377504i
\(251\) 15.0024 0.946942 0.473471 0.880809i \(-0.343001\pi\)
0.473471 + 0.880809i \(0.343001\pi\)
\(252\) −0.778187 −0.0490212
\(253\) −10.9482 −0.688308
\(254\) 18.2962i 1.14800i
\(255\) −11.0170 12.7833i −0.689914 0.800521i
\(256\) 1.00000 0.0625000
\(257\) 0.902680i 0.0563077i −0.999604 0.0281538i \(-0.991037\pi\)
0.999604 0.0281538i \(-0.00896283\pi\)
\(258\) 12.5881 0.783699
\(259\) 1.83512 0.114029
\(260\) 0 0
\(261\) −4.88069 −0.302107
\(262\) 21.8260 1.34841
\(263\) 17.5243i 1.08059i −0.841475 0.540297i \(-0.818312\pi\)
0.841475 0.540297i \(-0.181688\pi\)
\(264\) −3.61912 −0.222742
\(265\) 2.58479 2.22765i 0.158782 0.136844i
\(266\) 7.50257i 0.460012i
\(267\) 8.38715 0.513285
\(268\) −6.59001 −0.402549
\(269\) −3.17990 −0.193882 −0.0969410 0.995290i \(-0.530906\pi\)
−0.0969410 + 0.995290i \(0.530906\pi\)
\(270\) −9.53347 + 8.21625i −0.580189 + 0.500025i
\(271\) 13.8015i 0.838382i 0.907898 + 0.419191i \(0.137686\pi\)
−0.907898 + 0.419191i \(0.862314\pi\)
\(272\) 5.04699i 0.306019i
\(273\) 0 0
\(274\) −8.05446 −0.486588
\(275\) 11.9687 + 1.78626i 0.721739 + 0.107716i
\(276\) −6.76435 −0.407166
\(277\) 4.77040i 0.286626i −0.989677 0.143313i \(-0.954225\pi\)
0.989677 0.143313i \(-0.0457755\pi\)
\(278\) 12.8464 0.770476
\(279\) 4.79954i 0.287341i
\(280\) 1.48704 + 1.72544i 0.0888678 + 0.103115i
\(281\) 5.70927i 0.340586i 0.985393 + 0.170293i \(0.0544715\pi\)
−0.985393 + 0.170293i \(0.945529\pi\)
\(282\) 0.218381i 0.0130044i
\(283\) 21.2228i 1.26157i −0.775960 0.630783i \(-0.782734\pi\)
0.775960 0.630783i \(-0.217266\pi\)
\(284\) 1.36946i 0.0812623i
\(285\) 16.0771 + 18.6546i 0.952328 + 1.10500i
\(286\) 0 0
\(287\) 0.407013i 0.0240252i
\(288\) 0.763924 0.0450147
\(289\) −8.47209 −0.498359
\(290\) 9.32654 + 10.8218i 0.547673 + 0.635476i
\(291\) 12.3722i 0.725272i
\(292\) 15.9009 0.930531
\(293\) −23.9835 −1.40113 −0.700565 0.713588i \(-0.747069\pi\)
−0.700565 + 0.713588i \(0.747069\pi\)
\(294\) 8.91575i 0.519977i
\(295\) 5.48129 4.72395i 0.319133 0.275039i
\(296\) −1.80149 −0.104709
\(297\) −13.6221 −0.790435
\(298\) 11.6532i 0.675053i
\(299\) 0 0
\(300\) 7.39485 + 1.10364i 0.426942 + 0.0637187i
\(301\) 8.57531i 0.494273i
\(302\) 3.93672i 0.226533i
\(303\) 29.8126i 1.71269i
\(304\) 7.36506i 0.422415i
\(305\) 20.6724 + 23.9866i 1.18370 + 1.37347i
\(306\) 3.85552i 0.220405i
\(307\) −17.0892 −0.975334 −0.487667 0.873030i \(-0.662152\pi\)
−0.487667 + 0.873030i \(0.662152\pi\)
\(308\) 2.46544i 0.140481i
\(309\) −21.6380 −1.23094
\(310\) −10.6418 + 9.17146i −0.604415 + 0.520904i
\(311\) −5.17968 −0.293713 −0.146856 0.989158i \(-0.546916\pi\)
−0.146856 + 0.989158i \(0.546916\pi\)
\(312\) 0 0
\(313\) 33.7809i 1.90941i 0.297556 + 0.954704i \(0.403828\pi\)
−0.297556 + 0.954704i \(0.596172\pi\)
\(314\) 1.86131i 0.105040i
\(315\) 1.13599 + 1.31811i 0.0640056 + 0.0742670i
\(316\) 3.53802 0.199029
\(317\) 23.3968 1.31409 0.657047 0.753850i \(-0.271805\pi\)
0.657047 + 0.753850i \(0.271805\pi\)
\(318\) 2.28193 0.127964
\(319\) 15.4629i 0.865757i
\(320\) −1.45979 1.69382i −0.0816045 0.0946874i
\(321\) −9.70571 −0.541720
\(322\) 4.60805i 0.256796i
\(323\) 37.1714 2.06827
\(324\) −6.12465 −0.340258
\(325\) 0 0
\(326\) −23.0167 −1.27477
\(327\) −20.7481 −1.14737
\(328\) 0.399553i 0.0220616i
\(329\) −0.148767 −0.00820178
\(330\) 5.28315 + 6.13014i 0.290828 + 0.337453i
\(331\) 5.46645i 0.300463i −0.988651 0.150232i \(-0.951998\pi\)
0.988651 0.150232i \(-0.0480019\pi\)
\(332\) 4.64985 0.255194
\(333\) −1.37620 −0.0754153
\(334\) −6.11064 −0.334359
\(335\) 9.62001 + 11.1623i 0.525597 + 0.609861i
\(336\) 1.52327i 0.0831013i
\(337\) 25.4138i 1.38438i 0.721717 + 0.692188i \(0.243353\pi\)
−0.721717 + 0.692188i \(0.756647\pi\)
\(338\) 0 0
\(339\) −18.0287 −0.979184
\(340\) 8.54869 7.36753i 0.463618 0.399560i
\(341\) −15.2058 −0.823440
\(342\) 5.62635i 0.304238i
\(343\) 13.2043 0.712967
\(344\) 8.41814i 0.453876i
\(345\) 9.87451 + 11.4576i 0.531626 + 0.616856i
\(346\) 23.0755i 1.24055i
\(347\) 17.1079i 0.918402i 0.888332 + 0.459201i \(0.151864\pi\)
−0.888332 + 0.459201i \(0.848136\pi\)
\(348\) 9.55376i 0.512136i
\(349\) 0.935233i 0.0500619i 0.999687 + 0.0250309i \(0.00796843\pi\)
−0.999687 + 0.0250309i \(0.992032\pi\)
\(350\) 0.751828 5.03756i 0.0401869 0.269269i
\(351\) 0 0
\(352\) 2.42025i 0.129000i
\(353\) 0.243550 0.0129628 0.00648142 0.999979i \(-0.497937\pi\)
0.00648142 + 0.999979i \(0.497937\pi\)
\(354\) 4.83904 0.257192
\(355\) 2.31961 1.99912i 0.123112 0.106102i
\(356\) 5.60882i 0.297267i
\(357\) −7.68793 −0.406889
\(358\) 7.81690 0.413136
\(359\) 14.7698i 0.779520i −0.920916 0.389760i \(-0.872558\pi\)
0.920916 0.389760i \(-0.127442\pi\)
\(360\) −1.11517 1.29395i −0.0587744 0.0681971i
\(361\) −35.2441 −1.85495
\(362\) 5.21467 0.274077
\(363\) 7.68968i 0.403603i
\(364\) 0 0
\(365\) −23.2120 26.9333i −1.21497 1.40975i
\(366\) 21.1760i 1.10689i
\(367\) 3.29260i 0.171872i 0.996301 + 0.0859362i \(0.0273881\pi\)
−0.996301 + 0.0859362i \(0.972612\pi\)
\(368\) 4.52359i 0.235808i
\(369\) 0.305228i 0.0158896i
\(370\) 2.62979 + 3.05139i 0.136716 + 0.158634i
\(371\) 1.55450i 0.0807059i
\(372\) −9.39490 −0.487103
\(373\) 18.9067i 0.978950i −0.872017 0.489475i \(-0.837188\pi\)
0.872017 0.489475i \(-0.162812\pi\)
\(374\) 12.2150 0.631621
\(375\) −8.92554 14.1366i −0.460913 0.730012i
\(376\) 0.146040 0.00753144
\(377\) 0 0
\(378\) 5.73348i 0.294898i
\(379\) 13.7733i 0.707489i 0.935342 + 0.353744i \(0.115092\pi\)
−0.935342 + 0.353744i \(0.884908\pi\)
\(380\) −12.4751 + 10.7514i −0.639958 + 0.551536i
\(381\) 27.3592 1.40165
\(382\) 10.4143 0.532843
\(383\) 33.3243 1.70279 0.851395 0.524525i \(-0.175757\pi\)
0.851395 + 0.524525i \(0.175757\pi\)
\(384\) 1.49535i 0.0763093i
\(385\) 4.17601 3.59901i 0.212829 0.183423i
\(386\) 1.40263 0.0713922
\(387\) 6.43082i 0.326897i
\(388\) −8.27379 −0.420038
\(389\) −1.91117 −0.0969004 −0.0484502 0.998826i \(-0.515428\pi\)
−0.0484502 + 0.998826i \(0.515428\pi\)
\(390\) 0 0
\(391\) 22.8305 1.15459
\(392\) −5.96231 −0.301142
\(393\) 32.6375i 1.64634i
\(394\) 25.3455 1.27689
\(395\) −5.16476 5.99277i −0.259867 0.301529i
\(396\) 1.84889i 0.0929101i
\(397\) 13.5405 0.679579 0.339789 0.940502i \(-0.389644\pi\)
0.339789 + 0.940502i \(0.389644\pi\)
\(398\) 13.7630 0.689878
\(399\) 11.2190 0.561652
\(400\) −0.738047 + 4.94523i −0.0369024 + 0.247261i
\(401\) 28.9798i 1.44718i 0.690228 + 0.723592i \(0.257510\pi\)
−0.690228 + 0.723592i \(0.742490\pi\)
\(402\) 9.85438i 0.491492i
\(403\) 0 0
\(404\) 19.9369 0.991896
\(405\) 8.94068 + 10.3740i 0.444266 + 0.515490i
\(406\) 6.50826 0.323000
\(407\) 4.36005i 0.216120i
\(408\) 7.54702 0.373633
\(409\) 9.77252i 0.483220i 0.970373 + 0.241610i \(0.0776755\pi\)
−0.970373 + 0.241610i \(0.922325\pi\)
\(410\) −0.676771 + 0.583262i −0.0334233 + 0.0288053i
\(411\) 12.0442i 0.594099i
\(412\) 14.4702i 0.712893i
\(413\) 3.29647i 0.162209i
\(414\) 3.45568i 0.169837i
\(415\) −6.78779 7.87601i −0.333199 0.386618i
\(416\) 0 0
\(417\) 19.2099i 0.940712i
\(418\) −17.8253 −0.871863
\(419\) 24.9288 1.21785 0.608926 0.793227i \(-0.291601\pi\)
0.608926 + 0.793227i \(0.291601\pi\)
\(420\) 2.58015 2.22365i 0.125898 0.108503i
\(421\) 12.7436i 0.621087i 0.950559 + 0.310544i \(0.100511\pi\)
−0.950559 + 0.310544i \(0.899489\pi\)
\(422\) 9.82347 0.478199
\(423\) 0.111564 0.00542441
\(424\) 1.52601i 0.0741097i
\(425\) −24.9585 3.72492i −1.21067 0.180685i
\(426\) 2.04782 0.0992172
\(427\) 14.4256 0.698105
\(428\) 6.49059i 0.313734i
\(429\) 0 0
\(430\) 14.2588 12.2887i 0.687621 0.592613i
\(431\) 22.2564i 1.07205i 0.844202 + 0.536026i \(0.180075\pi\)
−0.844202 + 0.536026i \(0.819925\pi\)
\(432\) 5.62839i 0.270796i
\(433\) 30.4130i 1.46156i −0.682615 0.730778i \(-0.739157\pi\)
0.682615 0.730778i \(-0.260843\pi\)
\(434\) 6.40004i 0.307212i
\(435\) 16.1823 13.9465i 0.775884 0.668681i
\(436\) 13.8750i 0.664494i
\(437\) −33.3165 −1.59374
\(438\) 23.7775i 1.13613i
\(439\) −12.5984 −0.601287 −0.300644 0.953737i \(-0.597201\pi\)
−0.300644 + 0.953737i \(0.597201\pi\)
\(440\) −4.09947 + 3.53305i −0.195434 + 0.168431i
\(441\) −4.55475 −0.216893
\(442\) 0 0
\(443\) 2.42243i 0.115093i 0.998343 + 0.0575467i \(0.0183278\pi\)
−0.998343 + 0.0575467i \(0.981672\pi\)
\(444\) 2.69386i 0.127845i
\(445\) 9.50032 8.18767i 0.450358 0.388133i
\(446\) −19.3560 −0.916535
\(447\) −17.4257 −0.824206
\(448\) −1.01867 −0.0481277
\(449\) 29.0963i 1.37314i −0.727065 0.686568i \(-0.759116\pi\)
0.727065 0.686568i \(-0.240884\pi\)
\(450\) −0.563812 + 3.77778i −0.0265784 + 0.178086i
\(451\) −0.967019 −0.0455351
\(452\) 12.0565i 0.567089i
\(453\) 5.88677 0.276585
\(454\) 20.7535 0.974010
\(455\) 0 0
\(456\) −11.0134 −0.515747
\(457\) −5.25707 −0.245916 −0.122958 0.992412i \(-0.539238\pi\)
−0.122958 + 0.992412i \(0.539238\pi\)
\(458\) 23.2933i 1.08843i
\(459\) 28.4064 1.32590
\(460\) −7.66214 + 6.60347i −0.357249 + 0.307888i
\(461\) 21.6948i 1.01043i 0.862995 + 0.505213i \(0.168586\pi\)
−0.862995 + 0.505213i \(0.831414\pi\)
\(462\) 3.68670 0.171521
\(463\) −6.17734 −0.287085 −0.143543 0.989644i \(-0.545849\pi\)
−0.143543 + 0.989644i \(0.545849\pi\)
\(464\) −6.38898 −0.296601
\(465\) 13.7146 + 15.9133i 0.635997 + 0.737960i
\(466\) 0.585969i 0.0271445i
\(467\) 9.01521i 0.417174i 0.978004 + 0.208587i \(0.0668865\pi\)
−0.978004 + 0.208587i \(0.933114\pi\)
\(468\) 0 0
\(469\) 6.71305 0.309980
\(470\) −0.213187 0.247366i −0.00983360 0.0114101i
\(471\) −2.78331 −0.128248
\(472\) 3.23605i 0.148951i
\(473\) 20.3740 0.936798
\(474\) 5.29059i 0.243005i
\(475\) 36.4219 + 5.43576i 1.67115 + 0.249410i
\(476\) 5.14122i 0.235647i
\(477\) 1.16576i 0.0533764i
\(478\) 9.56019i 0.437273i
\(479\) 14.3406i 0.655240i 0.944810 + 0.327620i \(0.106247\pi\)
−0.944810 + 0.327620i \(0.893753\pi\)
\(480\) −2.53286 + 2.18289i −0.115608 + 0.0996350i
\(481\) 0 0
\(482\) 11.5135i 0.524426i
\(483\) 6.89065 0.313535
\(484\) 5.14239 0.233745
\(485\) 12.0780 + 14.0143i 0.548432 + 0.636357i
\(486\) 7.72667i 0.350489i
\(487\) −15.5121 −0.702921 −0.351460 0.936203i \(-0.614315\pi\)
−0.351460 + 0.936203i \(0.614315\pi\)
\(488\) −14.1612 −0.641049
\(489\) 34.4180i 1.55644i
\(490\) 8.70370 + 10.0991i 0.393193 + 0.456230i
\(491\) −2.60458 −0.117543 −0.0587715 0.998271i \(-0.518718\pi\)
−0.0587715 + 0.998271i \(0.518718\pi\)
\(492\) −0.597472 −0.0269361
\(493\) 32.2451i 1.45225i
\(494\) 0 0
\(495\) −3.13168 + 2.69898i −0.140759 + 0.121310i
\(496\) 6.28274i 0.282103i
\(497\) 1.39503i 0.0625755i
\(498\) 6.95316i 0.311579i
\(499\) 4.88458i 0.218664i −0.994005 0.109332i \(-0.965129\pi\)
0.994005 0.109332i \(-0.0348712\pi\)
\(500\) 9.45372 5.96886i 0.422783 0.266935i
\(501\) 9.13756i 0.408236i
\(502\) 15.0024 0.669589
\(503\) 1.67768i 0.0748041i −0.999300 0.0374020i \(-0.988092\pi\)
0.999300 0.0374020i \(-0.0119082\pi\)
\(504\) −0.778187 −0.0346632
\(505\) −29.1036 33.7694i −1.29509 1.50272i
\(506\) −10.9482 −0.486707
\(507\) 0 0
\(508\) 18.2962i 0.811761i
\(509\) 24.0762i 1.06716i 0.845750 + 0.533580i \(0.179154\pi\)
−0.845750 + 0.533580i \(0.820846\pi\)
\(510\) −11.0170 12.7833i −0.487843 0.566054i
\(511\) −16.1978 −0.716549
\(512\) 1.00000 0.0441942
\(513\) −41.4534 −1.83021
\(514\) 0.902680i 0.0398155i
\(515\) −24.5098 + 21.1233i −1.08003 + 0.930805i
\(516\) 12.5881 0.554159
\(517\) 0.353454i 0.0155449i
\(518\) 1.83512 0.0806307
\(519\) −34.5060 −1.51465
\(520\) 0 0
\(521\) 4.74906 0.208060 0.104030 0.994574i \(-0.466826\pi\)
0.104030 + 0.994574i \(0.466826\pi\)
\(522\) −4.88069 −0.213622
\(523\) 21.1351i 0.924174i 0.886835 + 0.462087i \(0.152899\pi\)
−0.886835 + 0.462087i \(0.847101\pi\)
\(524\) 21.8260 0.953472
\(525\) −7.53292 1.12425i −0.328764 0.0490661i
\(526\) 17.5243i 0.764095i
\(527\) 31.7089 1.38126
\(528\) −3.61912 −0.157502
\(529\) 2.53718 0.110312
\(530\) 2.58479 2.22765i 0.112276 0.0967631i
\(531\) 2.47210i 0.107280i
\(532\) 7.50257i 0.325278i
\(533\) 0 0
\(534\) 8.38715 0.362948
\(535\) −10.9939 + 9.47487i −0.475307 + 0.409635i
\(536\) −6.59001 −0.284645
\(537\) 11.6890i 0.504418i
\(538\) −3.17990 −0.137095
\(539\) 14.4303i 0.621556i
\(540\) −9.53347 + 8.21625i −0.410255 + 0.353571i
\(541\) 16.3708i 0.703835i −0.936031 0.351917i \(-0.885530\pi\)
0.936031 0.351917i \(-0.114470\pi\)
\(542\) 13.8015i 0.592825i
\(543\) 7.79776i 0.334634i
\(544\) 5.04699i 0.216388i
\(545\) −23.5018 + 20.2546i −1.00671 + 0.867612i
\(546\) 0 0
\(547\) 25.9050i 1.10762i 0.832643 + 0.553810i \(0.186827\pi\)
−0.832643 + 0.553810i \(0.813173\pi\)
\(548\) −8.05446 −0.344070
\(549\) −10.8181 −0.461706
\(550\) 11.9687 + 1.78626i 0.510347 + 0.0761664i
\(551\) 47.0552i 2.00462i
\(552\) −6.76435 −0.287910
\(553\) −3.60408 −0.153261
\(554\) 4.77040i 0.202675i
\(555\) 4.56291 3.93245i 0.193685 0.166923i
\(556\) 12.8464 0.544809
\(557\) −18.3250 −0.776453 −0.388227 0.921564i \(-0.626912\pi\)
−0.388227 + 0.921564i \(0.626912\pi\)
\(558\) 4.79954i 0.203181i
\(559\) 0 0
\(560\) 1.48704 + 1.72544i 0.0628390 + 0.0729133i
\(561\) 18.2657i 0.771178i
\(562\) 5.70927i 0.240831i
\(563\) 17.3172i 0.729832i 0.931040 + 0.364916i \(0.118902\pi\)
−0.931040 + 0.364916i \(0.881098\pi\)
\(564\) 0.218381i 0.00919551i
\(565\) −20.4215 + 17.5999i −0.859139 + 0.740433i
\(566\) 21.2228i 0.892061i
\(567\) 6.23900 0.262013
\(568\) 1.36946i 0.0574612i
\(569\) 36.5689 1.53305 0.766524 0.642216i \(-0.221985\pi\)
0.766524 + 0.642216i \(0.221985\pi\)
\(570\) 16.0771 + 18.6546i 0.673397 + 0.781356i
\(571\) −31.7878 −1.33028 −0.665139 0.746720i \(-0.731628\pi\)
−0.665139 + 0.746720i \(0.731628\pi\)
\(572\) 0 0
\(573\) 15.5731i 0.650575i
\(574\) 0.407013i 0.0169884i
\(575\) 22.3702 + 3.33862i 0.932900 + 0.139230i
\(576\) 0.763924 0.0318302
\(577\) 26.0002 1.08240 0.541202 0.840893i \(-0.317970\pi\)
0.541202 + 0.840893i \(0.317970\pi\)
\(578\) −8.47209 −0.352393
\(579\) 2.09743i 0.0871663i
\(580\) 9.32654 + 10.8218i 0.387263 + 0.449350i
\(581\) −4.73667 −0.196510
\(582\) 12.3722i 0.512845i
\(583\) 3.69333 0.152962
\(584\) 15.9009 0.657985
\(585\) 0 0
\(586\) −23.9835 −0.990749
\(587\) 27.4016 1.13098 0.565492 0.824754i \(-0.308686\pi\)
0.565492 + 0.824754i \(0.308686\pi\)
\(588\) 8.91575i 0.367679i
\(589\) −46.2728 −1.90664
\(590\) 5.48129 4.72395i 0.225661 0.194482i
\(591\) 37.9005i 1.55902i
\(592\) −1.80149 −0.0740407
\(593\) 10.5439 0.432985 0.216492 0.976284i \(-0.430538\pi\)
0.216492 + 0.976284i \(0.430538\pi\)
\(594\) −13.6221 −0.558922
\(595\) −8.70830 + 7.50508i −0.357005 + 0.307678i
\(596\) 11.6532i 0.477335i
\(597\) 20.5806i 0.842307i
\(598\) 0 0
\(599\) 15.3122 0.625640 0.312820 0.949812i \(-0.398726\pi\)
0.312820 + 0.949812i \(0.398726\pi\)
\(600\) 7.39485 + 1.10364i 0.301894 + 0.0450559i
\(601\) 12.1851 0.497041 0.248521 0.968627i \(-0.420056\pi\)
0.248521 + 0.968627i \(0.420056\pi\)
\(602\) 8.57531i 0.349504i
\(603\) −5.03427 −0.205011
\(604\) 3.93672i 0.160183i
\(605\) −7.50679 8.71028i −0.305194 0.354123i
\(606\) 29.8126i 1.21105i
\(607\) 18.3971i 0.746716i −0.927687 0.373358i \(-0.878206\pi\)
0.927687 0.373358i \(-0.121794\pi\)
\(608\) 7.36506i 0.298693i
\(609\) 9.73214i 0.394366i
\(610\) 20.6724 + 23.9866i 0.837000 + 0.971188i
\(611\) 0 0
\(612\) 3.85552i 0.155850i
\(613\) −14.7497 −0.595734 −0.297867 0.954607i \(-0.596275\pi\)
−0.297867 + 0.954607i \(0.596275\pi\)
\(614\) −17.0892 −0.689666
\(615\) 0.872182 + 1.01201i 0.0351698 + 0.0408082i
\(616\) 2.46544i 0.0993354i
\(617\) 12.2578 0.493482 0.246741 0.969081i \(-0.420640\pi\)
0.246741 + 0.969081i \(0.420640\pi\)
\(618\) −21.6380 −0.870407
\(619\) 5.15917i 0.207365i −0.994610 0.103682i \(-0.966937\pi\)
0.994610 0.103682i \(-0.0330625\pi\)
\(620\) −10.6418 + 9.17146i −0.427386 + 0.368335i
\(621\) −25.4605 −1.02169
\(622\) −5.17968 −0.207686
\(623\) 5.71354i 0.228908i
\(624\) 0 0
\(625\) −23.9106 7.29963i −0.956423 0.291985i
\(626\) 33.7809i 1.35016i
\(627\) 26.6551i 1.06450i
\(628\) 1.86131i 0.0742742i
\(629\) 9.09208i 0.362525i
\(630\) 1.13599 + 1.31811i 0.0452588 + 0.0525147i
\(631\) 11.4906i 0.457432i −0.973493 0.228716i \(-0.926547\pi\)
0.973493 0.228716i \(-0.0734527\pi\)
\(632\) 3.53802 0.140735
\(633\) 14.6895i 0.583857i
\(634\) 23.3968 0.929205
\(635\) 30.9904 26.7085i 1.22982 1.05989i
\(636\) 2.28193 0.0904842
\(637\) 0 0
\(638\) 15.4629i 0.612183i
\(639\) 1.04616i 0.0413855i
\(640\) −1.45979 1.69382i −0.0577031 0.0669541i
\(641\) −42.6494 −1.68455 −0.842275 0.539048i \(-0.818784\pi\)
−0.842275 + 0.539048i \(0.818784\pi\)
\(642\) −9.70571 −0.383054
\(643\) 33.4244 1.31813 0.659064 0.752087i \(-0.270953\pi\)
0.659064 + 0.752087i \(0.270953\pi\)
\(644\) 4.60805i 0.181582i
\(645\) −18.3759 21.3219i −0.723550 0.839550i
\(646\) 37.1714 1.46249
\(647\) 21.1277i 0.830616i −0.909681 0.415308i \(-0.863674\pi\)
0.909681 0.415308i \(-0.136326\pi\)
\(648\) −6.12465 −0.240599
\(649\) 7.83206 0.307435
\(650\) 0 0
\(651\) 9.57032 0.375090
\(652\) −23.0167 −0.901402
\(653\) 23.4000i 0.915711i 0.889027 + 0.457855i \(0.151382\pi\)
−0.889027 + 0.457855i \(0.848618\pi\)
\(654\) −20.7481 −0.811314
\(655\) −31.8613 36.9693i −1.24492 1.44451i
\(656\) 0.399553i 0.0155999i
\(657\) 12.1471 0.473903
\(658\) −0.148767 −0.00579953
\(659\) −34.8524 −1.35766 −0.678829 0.734297i \(-0.737512\pi\)
−0.678829 + 0.734297i \(0.737512\pi\)
\(660\) 5.28315 + 6.13014i 0.205646 + 0.238616i
\(661\) 28.2985i 1.10068i 0.834939 + 0.550342i \(0.185503\pi\)
−0.834939 + 0.550342i \(0.814497\pi\)
\(662\) 5.46645i 0.212460i
\(663\) 0 0
\(664\) 4.64985 0.180449
\(665\) 12.7080 10.9522i 0.492795 0.424706i
\(666\) −1.37620 −0.0533266
\(667\) 28.9011i 1.11905i
\(668\) −6.11064 −0.236428
\(669\) 28.9441i 1.11904i
\(670\) 9.62001 + 11.1623i 0.371653 + 0.431237i
\(671\) 34.2737i 1.32312i
\(672\) 1.52327i 0.0587615i
\(673\) 12.7929i 0.493132i 0.969126 + 0.246566i \(0.0793022\pi\)
−0.969126 + 0.246566i \(0.920698\pi\)
\(674\) 25.4138i 0.978902i
\(675\) 27.8337 + 4.15402i 1.07132 + 0.159888i
\(676\) 0 0
\(677\) 31.8535i 1.22423i −0.790769 0.612114i \(-0.790319\pi\)
0.790769 0.612114i \(-0.209681\pi\)
\(678\) −18.0287 −0.692387
\(679\) 8.42827 0.323447
\(680\) 8.54869 7.36753i 0.327827 0.282532i
\(681\) 31.0338i 1.18922i
\(682\) −15.2058 −0.582260
\(683\) −51.5084 −1.97091 −0.985456 0.169928i \(-0.945646\pi\)
−0.985456 + 0.169928i \(0.945646\pi\)
\(684\) 5.62635i 0.215129i
\(685\) 11.7578 + 13.6428i 0.449242 + 0.521265i
\(686\) 13.2043 0.504144
\(687\) −34.8317 −1.32891
\(688\) 8.41814i 0.320938i
\(689\) 0 0
\(690\) 9.87451 + 11.4576i 0.375916 + 0.436183i
\(691\) 42.1525i 1.60356i −0.597622 0.801778i \(-0.703888\pi\)
0.597622 0.801778i \(-0.296112\pi\)
\(692\) 23.0755i 0.877200i
\(693\) 1.88341i 0.0715448i
\(694\) 17.1079i 0.649408i
\(695\) −18.7530 21.7595i −0.711342 0.825384i
\(696\) 9.55376i 0.362134i
\(697\) 2.01654 0.0763819
\(698\) 0.935233i 0.0353991i
\(699\) −0.876230 −0.0331420
\(700\) 0.751828 5.03756i 0.0284164 0.190402i
\(701\) 31.6516 1.19546 0.597732 0.801696i \(-0.296069\pi\)
0.597732 + 0.801696i \(0.296069\pi\)
\(702\) 0 0
\(703\) 13.2681i 0.500414i
\(704\) 2.42025i 0.0912166i
\(705\) −0.369898 + 0.318790i −0.0139312 + 0.0120063i
\(706\) 0.243550 0.00916612
\(707\) −20.3091 −0.763802
\(708\) 4.83904 0.181862
\(709\) 24.5801i 0.923126i 0.887108 + 0.461563i \(0.152711\pi\)
−0.887108 + 0.461563i \(0.847289\pi\)
\(710\) 2.31961 1.99912i 0.0870535 0.0750255i
\(711\) 2.70278 0.101362
\(712\) 5.60882i 0.210199i
\(713\) −28.4205 −1.06436
\(714\) −7.68793 −0.287714
\(715\) 0 0
\(716\) 7.81690 0.292131
\(717\) 14.2958 0.533888
\(718\) 14.7698i 0.551204i
\(719\) −4.11098 −0.153314 −0.0766568 0.997058i \(-0.524425\pi\)
−0.0766568 + 0.997058i \(0.524425\pi\)
\(720\) −1.11517 1.29395i −0.0415598 0.0482226i
\(721\) 14.7403i 0.548959i
\(722\) −35.2441 −1.31165
\(723\) 17.2167 0.640298
\(724\) 5.21467 0.193802
\(725\) 4.71537 31.5949i 0.175124 1.17341i
\(726\) 7.68968i 0.285391i
\(727\) 13.2521i 0.491492i −0.969334 0.245746i \(-0.920967\pi\)
0.969334 0.245746i \(-0.0790330\pi\)
\(728\) 0 0
\(729\) −29.9280 −1.10845
\(730\) −23.2120 26.9333i −0.859113 0.996846i
\(731\) −42.4862 −1.57141
\(732\) 21.1760i 0.782688i
\(733\) −11.6585 −0.430617 −0.215309 0.976546i \(-0.569076\pi\)
−0.215309 + 0.976546i \(0.569076\pi\)
\(734\) 3.29260i 0.121532i
\(735\) 15.1017 13.0151i 0.557033 0.480069i
\(736\) 4.52359i 0.166742i
\(737\) 15.9495i 0.587506i
\(738\) 0.305228i 0.0112356i
\(739\) 33.7614i 1.24193i −0.783836 0.620967i \(-0.786740\pi\)
0.783836 0.620967i \(-0.213260\pi\)
\(740\) 2.62979 + 3.05139i 0.0966729 + 0.112171i
\(741\) 0 0
\(742\) 1.55450i 0.0570677i
\(743\) 32.1265 1.17861 0.589303 0.807912i \(-0.299402\pi\)
0.589303 + 0.807912i \(0.299402\pi\)
\(744\) −9.39490 −0.344434
\(745\) −19.7385 + 17.0112i −0.723161 + 0.623243i
\(746\) 18.9067i 0.692222i
\(747\) 3.55213 0.129966
\(748\) 12.2150 0.446624
\(749\) 6.61178i 0.241589i
\(750\) −8.92554 14.1366i −0.325915 0.516197i
\(751\) −40.3734 −1.47325 −0.736623 0.676304i \(-0.763581\pi\)
−0.736623 + 0.676304i \(0.763581\pi\)
\(752\) 0.146040 0.00532553
\(753\) 22.4338i 0.817534i
\(754\) 0 0
\(755\) 6.66809 5.74676i 0.242676 0.209146i
\(756\) 5.73348i 0.208525i
\(757\) 12.1790i 0.442652i 0.975200 + 0.221326i \(0.0710385\pi\)
−0.975200 + 0.221326i \(0.928962\pi\)
\(758\) 13.7733i 0.500270i
\(759\) 16.3714i 0.594245i
\(760\) −12.4751 + 10.7514i −0.452519 + 0.389995i
\(761\) 5.73188i 0.207781i −0.994589 0.103890i \(-0.966871\pi\)
0.994589 0.103890i \(-0.0331291\pi\)
\(762\) 27.3592 0.991119
\(763\) 14.1341i 0.511689i
\(764\) 10.4143 0.376777
\(765\) 6.53055 5.62823i 0.236112 0.203489i
\(766\) 33.3243 1.20405
\(767\) 0 0
\(768\) 1.49535i 0.0539588i
\(769\) 50.3927i 1.81721i −0.417661 0.908603i \(-0.637150\pi\)
0.417661 0.908603i \(-0.362850\pi\)
\(770\) 4.17601 3.59901i 0.150493 0.129699i
\(771\) −1.34982 −0.0486127
\(772\) 1.40263 0.0504819
\(773\) −31.9774 −1.15015 −0.575074 0.818102i \(-0.695027\pi\)
−0.575074 + 0.818102i \(0.695027\pi\)
\(774\) 6.43082i 0.231151i
\(775\) 31.0696 + 4.63696i 1.11605 + 0.166565i
\(776\) −8.27379 −0.297012
\(777\) 2.74415i 0.0984459i
\(778\) −1.91117 −0.0685189
\(779\) −2.94273 −0.105434
\(780\) 0 0
\(781\) 3.31443 0.118600
\(782\) 22.8305 0.816416
\(783\) 35.9596i 1.28509i
\(784\) −5.96231 −0.212940
\(785\) −3.15272 + 2.71711i −0.112525 + 0.0969778i
\(786\) 32.6375i 1.16414i
\(787\) −23.1697 −0.825910 −0.412955 0.910751i \(-0.635503\pi\)
−0.412955 + 0.910751i \(0.635503\pi\)
\(788\) 25.3455 0.902897
\(789\) −26.2050 −0.932921
\(790\) −5.16476 5.99277i −0.183754 0.213213i
\(791\) 12.2816i 0.436683i
\(792\) 1.84889i 0.0656974i
\(793\) 0 0
\(794\) 13.5405 0.480535
\(795\) −3.33112 3.86517i −0.118143 0.137083i
\(796\) 13.7630 0.487818
\(797\) 8.43667i 0.298842i 0.988774 + 0.149421i \(0.0477410\pi\)
−0.988774 + 0.149421i \(0.952259\pi\)
\(798\) 11.2190 0.397148
\(799\) 0.737063i 0.0260754i
\(800\) −0.738047 + 4.94523i −0.0260939 + 0.174840i
\(801\) 4.28471i 0.151393i
\(802\) 28.9798i 1.02331i
\(803\) 38.4842i 1.35808i
\(804\) 9.85438i 0.347537i
\(805\) 7.80520 6.72676i 0.275097 0.237087i
\(806\) 0 0
\(807\) 4.75507i 0.167386i
\(808\) 19.9369 0.701376
\(809\) 11.8560 0.416834 0.208417 0.978040i \(-0.433169\pi\)
0.208417 + 0.978040i \(0.433169\pi\)
\(810\) 8.94068 + 10.3740i 0.314143 + 0.364507i
\(811\) 16.6388i 0.584268i −0.956377 0.292134i \(-0.905635\pi\)
0.956377 0.292134i \(-0.0943653\pi\)
\(812\) 6.50826 0.228395
\(813\) 20.6381 0.723810
\(814\) 4.36005i 0.152820i
\(815\) 33.5994 + 38.9861i 1.17694 + 1.36562i
\(816\) 7.54702 0.264199
\(817\) 62.0001 2.16911
\(818\) 9.77252i 0.341688i
\(819\) 0 0
\(820\) −0.676771 + 0.583262i −0.0236339 + 0.0203684i
\(821\) 25.6079i 0.893723i −0.894603 0.446861i \(-0.852542\pi\)
0.894603 0.446861i \(-0.147458\pi\)
\(822\) 12.0442i 0.420091i
\(823\) 24.1832i 0.842974i −0.906834 0.421487i \(-0.861508\pi\)
0.906834 0.421487i \(-0.138492\pi\)
\(824\) 14.4702i 0.504092i
\(825\) 2.67109 17.8974i 0.0929953 0.623107i
\(826\) 3.29647i 0.114699i
\(827\) 15.5125 0.539422 0.269711 0.962941i \(-0.413072\pi\)
0.269711 + 0.962941i \(0.413072\pi\)
\(828\) 3.45568i 0.120093i
\(829\) 47.4436 1.64779 0.823893 0.566746i \(-0.191798\pi\)
0.823893 + 0.566746i \(0.191798\pi\)
\(830\) −6.78779 7.87601i −0.235608 0.273380i
\(831\) −7.13342 −0.247456
\(832\) 0 0
\(833\) 30.0917i 1.04262i
\(834\) 19.2099i 0.665184i
\(835\) 8.92023 + 10.3503i 0.308697 + 0.358188i
\(836\) −17.8253 −0.616500
\(837\) −35.3617 −1.22228
\(838\) 24.9288 0.861151
\(839\) 38.9320i 1.34408i −0.740514 0.672040i \(-0.765418\pi\)
0.740514 0.672040i \(-0.234582\pi\)
\(840\) 2.58015 2.22365i 0.0890235 0.0767232i
\(841\) 11.8190 0.407552
\(842\) 12.7436i 0.439175i
\(843\) 8.53736 0.294042
\(844\) 9.82347 0.338138
\(845\) 0 0
\(846\) 0.111564 0.00383563
\(847\) −5.23840 −0.179994
\(848\) 1.52601i 0.0524035i
\(849\) −31.7356 −1.08916
\(850\) −24.9585 3.72492i −0.856070 0.127764i
\(851\) 8.14918i 0.279350i
\(852\) 2.04782 0.0701572
\(853\) −11.8046 −0.404183 −0.202091 0.979367i \(-0.564774\pi\)
−0.202091 + 0.979367i \(0.564774\pi\)
\(854\) 14.4256 0.493635
\(855\) −9.53001 + 8.21326i −0.325920 + 0.280888i
\(856\) 6.49059i 0.221844i
\(857\) 26.7499i 0.913759i 0.889529 + 0.456880i \(0.151033\pi\)
−0.889529 + 0.456880i \(0.848967\pi\)
\(858\) 0 0
\(859\) 21.2441 0.724839 0.362420 0.932015i \(-0.381951\pi\)
0.362420 + 0.932015i \(0.381951\pi\)
\(860\) 14.2588 12.2887i 0.486221 0.419041i
\(861\) 0.608628 0.0207420
\(862\) 22.2564i 0.758055i
\(863\) −9.36613 −0.318827 −0.159413 0.987212i \(-0.550960\pi\)
−0.159413 + 0.987212i \(0.550960\pi\)
\(864\) 5.62839i 0.191482i
\(865\) −39.0858 + 33.6853i −1.32896 + 1.14534i
\(866\) 30.4130i 1.03348i
\(867\) 12.6688i 0.430254i
\(868\) 6.40004i 0.217232i
\(869\) 8.56290i 0.290476i
\(870\) 16.1823 13.9465i 0.548633 0.472829i
\(871\) 0 0
\(872\) 13.8750i 0.469868i
\(873\) −6.32055 −0.213918
\(874\) −33.3165 −1.12695
\(875\) −9.63023 + 6.08030i −0.325561 + 0.205552i
\(876\) 23.7775i 0.803366i
\(877\) −40.9589 −1.38308 −0.691542 0.722336i \(-0.743068\pi\)
−0.691542 + 0.722336i \(0.743068\pi\)
\(878\) −12.5984 −0.425174
\(879\) 35.8637i 1.20965i
\(880\) −4.09947 + 3.53305i −0.138193 + 0.119099i
\(881\) −32.8926 −1.10818 −0.554090 0.832457i \(-0.686934\pi\)
−0.554090 + 0.832457i \(0.686934\pi\)
\(882\) −4.55475 −0.153366
\(883\) 28.2606i 0.951044i −0.879704 0.475522i \(-0.842259\pi\)
0.879704 0.475522i \(-0.157741\pi\)
\(884\) 0 0
\(885\) −7.06396 8.19646i −0.237452 0.275521i
\(886\) 2.42243i 0.0813833i
\(887\) 6.76650i 0.227197i −0.993527 0.113598i \(-0.963762\pi\)
0.993527 0.113598i \(-0.0362377\pi\)
\(888\) 2.69386i 0.0903999i
\(889\) 18.6378i 0.625091i
\(890\) 9.50032 8.18767i 0.318451 0.274451i
\(891\) 14.8232i 0.496595i
\(892\) −19.3560 −0.648088
\(893\) 1.07559i 0.0359934i
\(894\) −17.4257 −0.582802
\(895\) −11.4110 13.2404i −0.381428 0.442578i
\(896\) −1.01867 −0.0340314
\(897\) 0 0
\(898\) 29.0963i 0.970954i
\(899\) 40.1403i 1.33875i
\(900\) −0.563812 + 3.77778i −0.0187937 + 0.125926i
\(901\) −7.70177 −0.256583
\(902\) −0.967019 −0.0321982
\(903\) −12.8231 −0.426726
\(904\) 12.0565i 0.400993i
\(905\) −7.61230 8.83271i −0.253041 0.293609i
\(906\) 5.88677 0.195575
\(907\) 18.3605i 0.609649i 0.952409 + 0.304824i \(0.0985978\pi\)
−0.952409 + 0.304824i \(0.901402\pi\)
\(908\) 20.7535 0.688729
\(909\) 15.2302 0.505155
\(910\) 0 0
\(911\) −4.36340 −0.144566 −0.0722830 0.997384i \(-0.523028\pi\)
−0.0722830 + 0.997384i \(0.523028\pi\)
\(912\) −11.0134 −0.364689
\(913\) 11.2538i 0.372446i
\(914\) −5.25707 −0.173889
\(915\) 35.8683 30.9125i 1.18577 1.02193i
\(916\) 23.2933i 0.769634i
\(917\) −22.2335 −0.734215
\(918\) 28.4064 0.937551
\(919\) 42.7654 1.41070 0.705350 0.708859i \(-0.250790\pi\)
0.705350 + 0.708859i \(0.250790\pi\)
\(920\) −7.66214 + 6.60347i −0.252613 + 0.217710i
\(921\) 25.5544i 0.842047i
\(922\) 21.6948i 0.714479i
\(923\) 0 0
\(924\) 3.68670 0.121283
\(925\) 1.32958 8.90877i 0.0437164 0.292918i
\(926\) −6.17734 −0.203000
\(927\) 11.0541i 0.363064i
\(928\) −6.38898 −0.209728
\(929\) 22.2843i 0.731124i −0.930787 0.365562i \(-0.880877\pi\)
0.930787 0.365562i \(-0.119123\pi\)
\(930\) 13.7146 + 15.9133i 0.449718 + 0.521817i
\(931\) 43.9128i 1.43918i
\(932\) 0.585969i 0.0191941i
\(933\) 7.74545i 0.253575i
\(934\) 9.01521i 0.294987i
\(935\) −17.8313 20.6900i −0.583144 0.676634i
\(936\) 0 0
\(937\) 28.0120i 0.915113i −0.889180 0.457557i \(-0.848725\pi\)
0.889180 0.457557i \(-0.151275\pi\)
\(938\) 6.71305 0.219189
\(939\) 50.5143 1.64847
\(940\) −0.213187 0.247366i −0.00695340 0.00806817i
\(941\) 25.9180i 0.844904i 0.906385 + 0.422452i \(0.138831\pi\)
−0.906385 + 0.422452i \(0.861169\pi\)
\(942\) −2.78331 −0.0906851
\(943\) −1.80741 −0.0588575
\(944\) 3.23605i 0.105325i
\(945\) 9.71147 8.36965i 0.315914 0.272265i
\(946\) 20.3740 0.662416
\(947\) 39.2544 1.27560 0.637798 0.770204i \(-0.279846\pi\)
0.637798 + 0.770204i \(0.279846\pi\)
\(948\) 5.29059i 0.171830i
\(949\) 0 0
\(950\) 36.4219 + 5.43576i 1.18168 + 0.176359i
\(951\) 34.9864i 1.13451i
\(952\) 5.14122i 0.166628i
\(953\) 38.9069i 1.26032i 0.776466 + 0.630159i \(0.217010\pi\)
−0.776466 + 0.630159i \(0.782990\pi\)
\(954\) 1.16576i 0.0377428i
\(955\) −15.2027 17.6400i −0.491948 0.570817i
\(956\) 9.56019i 0.309199i
\(957\) 23.1225 0.747444
\(958\) 14.3406i 0.463325i
\(959\) 8.20485 0.264948
\(960\) −2.53286 + 2.18289i −0.0817475 + 0.0704526i
\(961\) −8.47282 −0.273317
\(962\) 0 0
\(963\) 4.95832i 0.159780i
\(964\) 11.5135i 0.370825i
\(965\) −2.04755 2.37581i −0.0659128 0.0764800i
\(966\) 6.89065 0.221703
\(967\) −49.1503 −1.58057 −0.790283 0.612742i \(-0.790066\pi\)
−0.790283 + 0.612742i \(0.790066\pi\)
\(968\) 5.14239 0.165283
\(969\) 55.5843i 1.78562i
\(970\) 12.0780 + 14.0143i 0.387800 + 0.449972i
\(971\) 2.29451 0.0736344 0.0368172 0.999322i \(-0.488278\pi\)
0.0368172 + 0.999322i \(0.488278\pi\)
\(972\) 7.72667i 0.247833i
\(973\) −13.0863 −0.419526
\(974\) −15.5121 −0.497040
\(975\) 0 0
\(976\) −14.1612 −0.453290
\(977\) −40.4141 −1.29296 −0.646481 0.762930i \(-0.723760\pi\)
−0.646481 + 0.762930i \(0.723760\pi\)
\(978\) 34.4180i 1.10057i
\(979\) 13.5747 0.433851
\(980\) 8.70370 + 10.0991i 0.278029 + 0.322603i
\(981\) 10.5995i 0.338415i
\(982\) −2.60458 −0.0831155
\(983\) −5.97411 −0.190544 −0.0952722 0.995451i \(-0.530372\pi\)
−0.0952722 + 0.995451i \(0.530372\pi\)
\(984\) −0.597472 −0.0190467
\(985\) −36.9991 42.9307i −1.17889 1.36789i
\(986\) 32.2451i 1.02689i
\(987\) 0.222459i 0.00708094i
\(988\) 0 0
\(989\) 38.0802 1.21088
\(990\) −3.13168 + 2.69898i −0.0995314 + 0.0857793i
\(991\) −19.2849 −0.612604 −0.306302 0.951934i \(-0.599092\pi\)
−0.306302 + 0.951934i \(0.599092\pi\)
\(992\) 6.28274i 0.199477i
\(993\) −8.17426 −0.259402
\(994\) 1.39503i 0.0442476i
\(995\) −20.0911 23.3121i −0.636930 0.739043i
\(996\) 6.95316i 0.220319i
\(997\) 52.5850i 1.66538i −0.553736 0.832692i \(-0.686798\pi\)
0.553736 0.832692i \(-0.313202\pi\)
\(998\) 4.88458i 0.154619i
\(999\) 10.1395i 0.320799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.h.1689.5 18
5.4 even 2 1690.2.c.g.1689.14 18
13.5 odd 4 1690.2.b.g.339.2 yes 18
13.8 odd 4 1690.2.b.f.339.11 yes 18
13.12 even 2 1690.2.c.g.1689.5 18
65.8 even 4 8450.2.a.cx.1.8 9
65.18 even 4 8450.2.a.ct.1.8 9
65.34 odd 4 1690.2.b.f.339.8 18
65.44 odd 4 1690.2.b.g.339.17 yes 18
65.47 even 4 8450.2.a.cw.1.2 9
65.57 even 4 8450.2.a.da.1.2 9
65.64 even 2 inner 1690.2.c.h.1689.14 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.8 18 65.34 odd 4
1690.2.b.f.339.11 yes 18 13.8 odd 4
1690.2.b.g.339.2 yes 18 13.5 odd 4
1690.2.b.g.339.17 yes 18 65.44 odd 4
1690.2.c.g.1689.5 18 13.12 even 2
1690.2.c.g.1689.14 18 5.4 even 2
1690.2.c.h.1689.5 18 1.1 even 1 trivial
1690.2.c.h.1689.14 18 65.64 even 2 inner
8450.2.a.ct.1.8 9 65.18 even 4
8450.2.a.cw.1.2 9 65.47 even 4
8450.2.a.cx.1.8 9 65.8 even 4
8450.2.a.da.1.2 9 65.57 even 4