Properties

Label 8450.2.a.cw.1.4
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-9,7,9,0,-7,-1,-9,8,0,-4,7,0,1,0,9,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.506152\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.0670024 q^{3} +1.00000 q^{4} -0.0670024 q^{6} +5.03568 q^{7} -1.00000 q^{8} -2.99551 q^{9} +3.28967 q^{11} +0.0670024 q^{12} -5.03568 q^{14} +1.00000 q^{16} +0.516695 q^{17} +2.99551 q^{18} +5.26981 q^{19} +0.337403 q^{21} -3.28967 q^{22} +0.524116 q^{23} -0.0670024 q^{24} -0.401714 q^{27} +5.03568 q^{28} +6.36392 q^{29} +6.84648 q^{31} -1.00000 q^{32} +0.220416 q^{33} -0.516695 q^{34} -2.99551 q^{36} +5.49639 q^{37} -5.26981 q^{38} -5.54869 q^{41} -0.337403 q^{42} +9.35921 q^{43} +3.28967 q^{44} -0.524116 q^{46} +1.65182 q^{47} +0.0670024 q^{48} +18.3580 q^{49} +0.0346198 q^{51} -9.30982 q^{53} +0.401714 q^{54} -5.03568 q^{56} +0.353090 q^{57} -6.36392 q^{58} -12.8188 q^{59} -11.5310 q^{61} -6.84648 q^{62} -15.0844 q^{63} +1.00000 q^{64} -0.220416 q^{66} -3.38856 q^{67} +0.516695 q^{68} +0.0351171 q^{69} +3.86643 q^{71} +2.99551 q^{72} +6.43004 q^{73} -5.49639 q^{74} +5.26981 q^{76} +16.5657 q^{77} -7.28413 q^{79} +8.95962 q^{81} +5.54869 q^{82} -2.57870 q^{83} +0.337403 q^{84} -9.35921 q^{86} +0.426398 q^{87} -3.28967 q^{88} -4.82497 q^{89} +0.524116 q^{92} +0.458731 q^{93} -1.65182 q^{94} -0.0670024 q^{96} +1.88098 q^{97} -18.3580 q^{98} -9.85425 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{2} + 7 q^{3} + 9 q^{4} - 7 q^{6} - q^{7} - 9 q^{8} + 8 q^{9} - 4 q^{11} + 7 q^{12} + q^{14} + 9 q^{16} + 12 q^{17} - 8 q^{18} - 6 q^{19} - 8 q^{21} + 4 q^{22} + 11 q^{23} - 7 q^{24} + 34 q^{27}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.0670024 0.0386839 0.0193419 0.999813i \(-0.493843\pi\)
0.0193419 + 0.999813i \(0.493843\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.0670024 −0.0273536
\(7\) 5.03568 1.90331 0.951653 0.307174i \(-0.0993833\pi\)
0.951653 + 0.307174i \(0.0993833\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.99551 −0.998504
\(10\) 0 0
\(11\) 3.28967 0.991874 0.495937 0.868358i \(-0.334825\pi\)
0.495937 + 0.868358i \(0.334825\pi\)
\(12\) 0.0670024 0.0193419
\(13\) 0 0
\(14\) −5.03568 −1.34584
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.516695 0.125317 0.0626584 0.998035i \(-0.480042\pi\)
0.0626584 + 0.998035i \(0.480042\pi\)
\(18\) 2.99551 0.706049
\(19\) 5.26981 1.20898 0.604489 0.796614i \(-0.293377\pi\)
0.604489 + 0.796614i \(0.293377\pi\)
\(20\) 0 0
\(21\) 0.337403 0.0736273
\(22\) −3.28967 −0.701361
\(23\) 0.524116 0.109286 0.0546429 0.998506i \(-0.482598\pi\)
0.0546429 + 0.998506i \(0.482598\pi\)
\(24\) −0.0670024 −0.0136768
\(25\) 0 0
\(26\) 0 0
\(27\) −0.401714 −0.0773099
\(28\) 5.03568 0.951653
\(29\) 6.36392 1.18175 0.590875 0.806763i \(-0.298783\pi\)
0.590875 + 0.806763i \(0.298783\pi\)
\(30\) 0 0
\(31\) 6.84648 1.22966 0.614832 0.788658i \(-0.289224\pi\)
0.614832 + 0.788658i \(0.289224\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.220416 0.0383695
\(34\) −0.516695 −0.0886124
\(35\) 0 0
\(36\) −2.99551 −0.499252
\(37\) 5.49639 0.903600 0.451800 0.892119i \(-0.350782\pi\)
0.451800 + 0.892119i \(0.350782\pi\)
\(38\) −5.26981 −0.854876
\(39\) 0 0
\(40\) 0 0
\(41\) −5.54869 −0.866560 −0.433280 0.901259i \(-0.642644\pi\)
−0.433280 + 0.901259i \(0.642644\pi\)
\(42\) −0.337403 −0.0520624
\(43\) 9.35921 1.42727 0.713633 0.700520i \(-0.247048\pi\)
0.713633 + 0.700520i \(0.247048\pi\)
\(44\) 3.28967 0.495937
\(45\) 0 0
\(46\) −0.524116 −0.0772767
\(47\) 1.65182 0.240942 0.120471 0.992717i \(-0.461560\pi\)
0.120471 + 0.992717i \(0.461560\pi\)
\(48\) 0.0670024 0.00967097
\(49\) 18.3580 2.62258
\(50\) 0 0
\(51\) 0.0346198 0.00484774
\(52\) 0 0
\(53\) −9.30982 −1.27880 −0.639401 0.768873i \(-0.720818\pi\)
−0.639401 + 0.768873i \(0.720818\pi\)
\(54\) 0.401714 0.0546663
\(55\) 0 0
\(56\) −5.03568 −0.672921
\(57\) 0.353090 0.0467679
\(58\) −6.36392 −0.835624
\(59\) −12.8188 −1.66887 −0.834434 0.551108i \(-0.814205\pi\)
−0.834434 + 0.551108i \(0.814205\pi\)
\(60\) 0 0
\(61\) −11.5310 −1.47639 −0.738196 0.674586i \(-0.764322\pi\)
−0.738196 + 0.674586i \(0.764322\pi\)
\(62\) −6.84648 −0.869503
\(63\) −15.0844 −1.90046
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.220416 −0.0271314
\(67\) −3.38856 −0.413978 −0.206989 0.978343i \(-0.566366\pi\)
−0.206989 + 0.978343i \(0.566366\pi\)
\(68\) 0.516695 0.0626584
\(69\) 0.0351171 0.00422760
\(70\) 0 0
\(71\) 3.86643 0.458861 0.229430 0.973325i \(-0.426314\pi\)
0.229430 + 0.973325i \(0.426314\pi\)
\(72\) 2.99551 0.353024
\(73\) 6.43004 0.752579 0.376290 0.926502i \(-0.377200\pi\)
0.376290 + 0.926502i \(0.377200\pi\)
\(74\) −5.49639 −0.638942
\(75\) 0 0
\(76\) 5.26981 0.604489
\(77\) 16.5657 1.88784
\(78\) 0 0
\(79\) −7.28413 −0.819528 −0.409764 0.912191i \(-0.634389\pi\)
−0.409764 + 0.912191i \(0.634389\pi\)
\(80\) 0 0
\(81\) 8.95962 0.995513
\(82\) 5.54869 0.612750
\(83\) −2.57870 −0.283050 −0.141525 0.989935i \(-0.545200\pi\)
−0.141525 + 0.989935i \(0.545200\pi\)
\(84\) 0.337403 0.0368136
\(85\) 0 0
\(86\) −9.35921 −1.00923
\(87\) 0.426398 0.0457147
\(88\) −3.28967 −0.350680
\(89\) −4.82497 −0.511446 −0.255723 0.966750i \(-0.582313\pi\)
−0.255723 + 0.966750i \(0.582313\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.524116 0.0546429
\(93\) 0.458731 0.0475681
\(94\) −1.65182 −0.170372
\(95\) 0 0
\(96\) −0.0670024 −0.00683841
\(97\) 1.88098 0.190985 0.0954925 0.995430i \(-0.469557\pi\)
0.0954925 + 0.995430i \(0.469557\pi\)
\(98\) −18.3580 −1.85444
\(99\) −9.85425 −0.990390
\(100\) 0 0
\(101\) 3.10344 0.308804 0.154402 0.988008i \(-0.450655\pi\)
0.154402 + 0.988008i \(0.450655\pi\)
\(102\) −0.0346198 −0.00342787
\(103\) 14.9509 1.47316 0.736580 0.676351i \(-0.236440\pi\)
0.736580 + 0.676351i \(0.236440\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 9.30982 0.904250
\(107\) 15.3210 1.48113 0.740567 0.671983i \(-0.234557\pi\)
0.740567 + 0.671983i \(0.234557\pi\)
\(108\) −0.401714 −0.0386549
\(109\) 4.19883 0.402175 0.201087 0.979573i \(-0.435553\pi\)
0.201087 + 0.979573i \(0.435553\pi\)
\(110\) 0 0
\(111\) 0.368271 0.0349548
\(112\) 5.03568 0.475827
\(113\) 11.7363 1.10406 0.552029 0.833825i \(-0.313854\pi\)
0.552029 + 0.833825i \(0.313854\pi\)
\(114\) −0.353090 −0.0330699
\(115\) 0 0
\(116\) 6.36392 0.590875
\(117\) 0 0
\(118\) 12.8188 1.18007
\(119\) 2.60191 0.238516
\(120\) 0 0
\(121\) −0.178043 −0.0161857
\(122\) 11.5310 1.04397
\(123\) −0.371776 −0.0335219
\(124\) 6.84648 0.614832
\(125\) 0 0
\(126\) 15.0844 1.34383
\(127\) −9.96441 −0.884198 −0.442099 0.896966i \(-0.645766\pi\)
−0.442099 + 0.896966i \(0.645766\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.627090 0.0552122
\(130\) 0 0
\(131\) −3.43248 −0.299897 −0.149948 0.988694i \(-0.547911\pi\)
−0.149948 + 0.988694i \(0.547911\pi\)
\(132\) 0.220416 0.0191848
\(133\) 26.5371 2.30106
\(134\) 3.38856 0.292727
\(135\) 0 0
\(136\) −0.516695 −0.0443062
\(137\) −17.1983 −1.46935 −0.734677 0.678417i \(-0.762666\pi\)
−0.734677 + 0.678417i \(0.762666\pi\)
\(138\) −0.0351171 −0.00298936
\(139\) −6.56328 −0.556690 −0.278345 0.960481i \(-0.589786\pi\)
−0.278345 + 0.960481i \(0.589786\pi\)
\(140\) 0 0
\(141\) 0.110676 0.00932057
\(142\) −3.86643 −0.324464
\(143\) 0 0
\(144\) −2.99551 −0.249626
\(145\) 0 0
\(146\) −6.43004 −0.532154
\(147\) 1.23003 0.101451
\(148\) 5.49639 0.451800
\(149\) −12.7625 −1.04554 −0.522772 0.852473i \(-0.675102\pi\)
−0.522772 + 0.852473i \(0.675102\pi\)
\(150\) 0 0
\(151\) 9.73737 0.792416 0.396208 0.918161i \(-0.370326\pi\)
0.396208 + 0.918161i \(0.370326\pi\)
\(152\) −5.26981 −0.427438
\(153\) −1.54776 −0.125129
\(154\) −16.5657 −1.33491
\(155\) 0 0
\(156\) 0 0
\(157\) 21.3156 1.70117 0.850587 0.525835i \(-0.176247\pi\)
0.850587 + 0.525835i \(0.176247\pi\)
\(158\) 7.28413 0.579494
\(159\) −0.623781 −0.0494690
\(160\) 0 0
\(161\) 2.63928 0.208004
\(162\) −8.95962 −0.703934
\(163\) −1.27897 −0.100177 −0.0500883 0.998745i \(-0.515950\pi\)
−0.0500883 + 0.998745i \(0.515950\pi\)
\(164\) −5.54869 −0.433280
\(165\) 0 0
\(166\) 2.57870 0.200146
\(167\) −1.90682 −0.147554 −0.0737770 0.997275i \(-0.523505\pi\)
−0.0737770 + 0.997275i \(0.523505\pi\)
\(168\) −0.337403 −0.0260312
\(169\) 0 0
\(170\) 0 0
\(171\) −15.7858 −1.20717
\(172\) 9.35921 0.713633
\(173\) 0.112802 0.00857615 0.00428807 0.999991i \(-0.498635\pi\)
0.00428807 + 0.999991i \(0.498635\pi\)
\(174\) −0.426398 −0.0323252
\(175\) 0 0
\(176\) 3.28967 0.247969
\(177\) −0.858892 −0.0645583
\(178\) 4.82497 0.361647
\(179\) −9.78320 −0.731231 −0.365615 0.930766i \(-0.619141\pi\)
−0.365615 + 0.930766i \(0.619141\pi\)
\(180\) 0 0
\(181\) 8.36184 0.621531 0.310765 0.950487i \(-0.399415\pi\)
0.310765 + 0.950487i \(0.399415\pi\)
\(182\) 0 0
\(183\) −0.772604 −0.0571126
\(184\) −0.524116 −0.0386384
\(185\) 0 0
\(186\) −0.458731 −0.0336358
\(187\) 1.69976 0.124299
\(188\) 1.65182 0.120471
\(189\) −2.02290 −0.147144
\(190\) 0 0
\(191\) −9.25588 −0.669732 −0.334866 0.942266i \(-0.608691\pi\)
−0.334866 + 0.942266i \(0.608691\pi\)
\(192\) 0.0670024 0.00483548
\(193\) −17.5149 −1.26075 −0.630374 0.776292i \(-0.717098\pi\)
−0.630374 + 0.776292i \(0.717098\pi\)
\(194\) −1.88098 −0.135047
\(195\) 0 0
\(196\) 18.3580 1.31129
\(197\) 20.2809 1.44496 0.722479 0.691393i \(-0.243003\pi\)
0.722479 + 0.691393i \(0.243003\pi\)
\(198\) 9.85425 0.700311
\(199\) −27.0802 −1.91966 −0.959832 0.280577i \(-0.909474\pi\)
−0.959832 + 0.280577i \(0.909474\pi\)
\(200\) 0 0
\(201\) −0.227042 −0.0160143
\(202\) −3.10344 −0.218357
\(203\) 32.0466 2.24923
\(204\) 0.0346198 0.00242387
\(205\) 0 0
\(206\) −14.9509 −1.04168
\(207\) −1.57000 −0.109122
\(208\) 0 0
\(209\) 17.3360 1.19915
\(210\) 0 0
\(211\) −11.9828 −0.824928 −0.412464 0.910974i \(-0.635332\pi\)
−0.412464 + 0.910974i \(0.635332\pi\)
\(212\) −9.30982 −0.639401
\(213\) 0.259060 0.0177505
\(214\) −15.3210 −1.04732
\(215\) 0 0
\(216\) 0.401714 0.0273332
\(217\) 34.4766 2.34043
\(218\) −4.19883 −0.284380
\(219\) 0.430828 0.0291127
\(220\) 0 0
\(221\) 0 0
\(222\) −0.368271 −0.0247167
\(223\) −12.7910 −0.856546 −0.428273 0.903649i \(-0.640878\pi\)
−0.428273 + 0.903649i \(0.640878\pi\)
\(224\) −5.03568 −0.336460
\(225\) 0 0
\(226\) −11.7363 −0.780687
\(227\) −5.83533 −0.387305 −0.193652 0.981070i \(-0.562033\pi\)
−0.193652 + 0.981070i \(0.562033\pi\)
\(228\) 0.353090 0.0233840
\(229\) −15.2208 −1.00582 −0.502909 0.864340i \(-0.667737\pi\)
−0.502909 + 0.864340i \(0.667737\pi\)
\(230\) 0 0
\(231\) 1.10994 0.0730290
\(232\) −6.36392 −0.417812
\(233\) 18.4629 1.20955 0.604773 0.796398i \(-0.293264\pi\)
0.604773 + 0.796398i \(0.293264\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.8188 −0.834434
\(237\) −0.488054 −0.0317025
\(238\) −2.60191 −0.168657
\(239\) −3.76483 −0.243526 −0.121763 0.992559i \(-0.538855\pi\)
−0.121763 + 0.992559i \(0.538855\pi\)
\(240\) 0 0
\(241\) 15.4771 0.996965 0.498482 0.866900i \(-0.333891\pi\)
0.498482 + 0.866900i \(0.333891\pi\)
\(242\) 0.178043 0.0114450
\(243\) 1.80546 0.115820
\(244\) −11.5310 −0.738196
\(245\) 0 0
\(246\) 0.371776 0.0237035
\(247\) 0 0
\(248\) −6.84648 −0.434752
\(249\) −0.172779 −0.0109495
\(250\) 0 0
\(251\) 1.26747 0.0800019 0.0400010 0.999200i \(-0.487264\pi\)
0.0400010 + 0.999200i \(0.487264\pi\)
\(252\) −15.0844 −0.950229
\(253\) 1.72417 0.108398
\(254\) 9.96441 0.625223
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 29.7338 1.85474 0.927371 0.374143i \(-0.122063\pi\)
0.927371 + 0.374143i \(0.122063\pi\)
\(258\) −0.627090 −0.0390409
\(259\) 27.6780 1.71983
\(260\) 0 0
\(261\) −19.0632 −1.17998
\(262\) 3.43248 0.212059
\(263\) 20.2454 1.24839 0.624193 0.781270i \(-0.285428\pi\)
0.624193 + 0.781270i \(0.285428\pi\)
\(264\) −0.220416 −0.0135657
\(265\) 0 0
\(266\) −26.5371 −1.62709
\(267\) −0.323285 −0.0197847
\(268\) −3.38856 −0.206989
\(269\) 12.2284 0.745576 0.372788 0.927917i \(-0.378402\pi\)
0.372788 + 0.927917i \(0.378402\pi\)
\(270\) 0 0
\(271\) −13.3526 −0.811114 −0.405557 0.914070i \(-0.632922\pi\)
−0.405557 + 0.914070i \(0.632922\pi\)
\(272\) 0.516695 0.0313292
\(273\) 0 0
\(274\) 17.1983 1.03899
\(275\) 0 0
\(276\) 0.0351171 0.00211380
\(277\) −9.36534 −0.562709 −0.281354 0.959604i \(-0.590784\pi\)
−0.281354 + 0.959604i \(0.590784\pi\)
\(278\) 6.56328 0.393640
\(279\) −20.5087 −1.22782
\(280\) 0 0
\(281\) −20.5996 −1.22887 −0.614434 0.788968i \(-0.710616\pi\)
−0.614434 + 0.788968i \(0.710616\pi\)
\(282\) −0.110676 −0.00659064
\(283\) −14.4039 −0.856225 −0.428112 0.903726i \(-0.640821\pi\)
−0.428112 + 0.903726i \(0.640821\pi\)
\(284\) 3.86643 0.229430
\(285\) 0 0
\(286\) 0 0
\(287\) −27.9414 −1.64933
\(288\) 2.99551 0.176512
\(289\) −16.7330 −0.984296
\(290\) 0 0
\(291\) 0.126031 0.00738804
\(292\) 6.43004 0.376290
\(293\) −15.0823 −0.881117 −0.440559 0.897724i \(-0.645220\pi\)
−0.440559 + 0.897724i \(0.645220\pi\)
\(294\) −1.23003 −0.0717370
\(295\) 0 0
\(296\) −5.49639 −0.319471
\(297\) −1.32151 −0.0766816
\(298\) 12.7625 0.739311
\(299\) 0 0
\(300\) 0 0
\(301\) 47.1300 2.71653
\(302\) −9.73737 −0.560323
\(303\) 0.207938 0.0119457
\(304\) 5.26981 0.302244
\(305\) 0 0
\(306\) 1.54776 0.0884798
\(307\) 1.59681 0.0911346 0.0455673 0.998961i \(-0.485490\pi\)
0.0455673 + 0.998961i \(0.485490\pi\)
\(308\) 16.5657 0.943920
\(309\) 1.00175 0.0569875
\(310\) 0 0
\(311\) 3.52287 0.199764 0.0998819 0.994999i \(-0.468154\pi\)
0.0998819 + 0.994999i \(0.468154\pi\)
\(312\) 0 0
\(313\) 20.7603 1.17344 0.586722 0.809788i \(-0.300418\pi\)
0.586722 + 0.809788i \(0.300418\pi\)
\(314\) −21.3156 −1.20291
\(315\) 0 0
\(316\) −7.28413 −0.409764
\(317\) 4.92085 0.276382 0.138191 0.990406i \(-0.455871\pi\)
0.138191 + 0.990406i \(0.455871\pi\)
\(318\) 0.623781 0.0349799
\(319\) 20.9352 1.17215
\(320\) 0 0
\(321\) 1.02654 0.0572960
\(322\) −2.63928 −0.147081
\(323\) 2.72288 0.151505
\(324\) 8.95962 0.497756
\(325\) 0 0
\(326\) 1.27897 0.0708355
\(327\) 0.281332 0.0155577
\(328\) 5.54869 0.306375
\(329\) 8.31801 0.458587
\(330\) 0 0
\(331\) 14.1568 0.778126 0.389063 0.921211i \(-0.372799\pi\)
0.389063 + 0.921211i \(0.372799\pi\)
\(332\) −2.57870 −0.141525
\(333\) −16.4645 −0.902248
\(334\) 1.90682 0.104336
\(335\) 0 0
\(336\) 0.337403 0.0184068
\(337\) −18.7663 −1.02227 −0.511133 0.859502i \(-0.670774\pi\)
−0.511133 + 0.859502i \(0.670774\pi\)
\(338\) 0 0
\(339\) 0.786361 0.0427093
\(340\) 0 0
\(341\) 22.5227 1.21967
\(342\) 15.7858 0.853597
\(343\) 57.1954 3.08826
\(344\) −9.35921 −0.504615
\(345\) 0 0
\(346\) −0.112802 −0.00606425
\(347\) −32.2646 −1.73205 −0.866027 0.499997i \(-0.833335\pi\)
−0.866027 + 0.499997i \(0.833335\pi\)
\(348\) 0.426398 0.0228573
\(349\) −8.62949 −0.461926 −0.230963 0.972963i \(-0.574188\pi\)
−0.230963 + 0.972963i \(0.574188\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.28967 −0.175340
\(353\) 19.0692 1.01495 0.507474 0.861667i \(-0.330579\pi\)
0.507474 + 0.861667i \(0.330579\pi\)
\(354\) 0.858892 0.0456496
\(355\) 0 0
\(356\) −4.82497 −0.255723
\(357\) 0.174334 0.00922674
\(358\) 9.78320 0.517058
\(359\) −2.70589 −0.142811 −0.0714056 0.997447i \(-0.522748\pi\)
−0.0714056 + 0.997447i \(0.522748\pi\)
\(360\) 0 0
\(361\) 8.77090 0.461627
\(362\) −8.36184 −0.439489
\(363\) −0.0119293 −0.000626126 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0.772604 0.0403847
\(367\) −7.80278 −0.407302 −0.203651 0.979044i \(-0.565281\pi\)
−0.203651 + 0.979044i \(0.565281\pi\)
\(368\) 0.524116 0.0273214
\(369\) 16.6212 0.865263
\(370\) 0 0
\(371\) −46.8812 −2.43395
\(372\) 0.458731 0.0237841
\(373\) 14.0835 0.729218 0.364609 0.931161i \(-0.381203\pi\)
0.364609 + 0.931161i \(0.381203\pi\)
\(374\) −1.69976 −0.0878923
\(375\) 0 0
\(376\) −1.65182 −0.0851859
\(377\) 0 0
\(378\) 2.02290 0.104047
\(379\) −0.236252 −0.0121354 −0.00606772 0.999982i \(-0.501931\pi\)
−0.00606772 + 0.999982i \(0.501931\pi\)
\(380\) 0 0
\(381\) −0.667640 −0.0342042
\(382\) 9.25588 0.473572
\(383\) −11.7086 −0.598281 −0.299140 0.954209i \(-0.596700\pi\)
−0.299140 + 0.954209i \(0.596700\pi\)
\(384\) −0.0670024 −0.00341920
\(385\) 0 0
\(386\) 17.5149 0.891483
\(387\) −28.0356 −1.42513
\(388\) 1.88098 0.0954925
\(389\) −2.05842 −0.104366 −0.0521830 0.998638i \(-0.516618\pi\)
−0.0521830 + 0.998638i \(0.516618\pi\)
\(390\) 0 0
\(391\) 0.270808 0.0136953
\(392\) −18.3580 −0.927221
\(393\) −0.229984 −0.0116012
\(394\) −20.2809 −1.02174
\(395\) 0 0
\(396\) −9.85425 −0.495195
\(397\) −10.6417 −0.534091 −0.267046 0.963684i \(-0.586047\pi\)
−0.267046 + 0.963684i \(0.586047\pi\)
\(398\) 27.0802 1.35741
\(399\) 1.77805 0.0890137
\(400\) 0 0
\(401\) −7.49704 −0.374384 −0.187192 0.982323i \(-0.559939\pi\)
−0.187192 + 0.982323i \(0.559939\pi\)
\(402\) 0.227042 0.0113238
\(403\) 0 0
\(404\) 3.10344 0.154402
\(405\) 0 0
\(406\) −32.0466 −1.59045
\(407\) 18.0813 0.896258
\(408\) −0.0346198 −0.00171394
\(409\) 21.5011 1.06316 0.531582 0.847007i \(-0.321598\pi\)
0.531582 + 0.847007i \(0.321598\pi\)
\(410\) 0 0
\(411\) −1.15233 −0.0568403
\(412\) 14.9509 0.736580
\(413\) −64.5514 −3.17637
\(414\) 1.57000 0.0771611
\(415\) 0 0
\(416\) 0 0
\(417\) −0.439756 −0.0215349
\(418\) −17.3360 −0.847930
\(419\) 12.8640 0.628449 0.314224 0.949349i \(-0.398256\pi\)
0.314224 + 0.949349i \(0.398256\pi\)
\(420\) 0 0
\(421\) −4.00323 −0.195105 −0.0975527 0.995230i \(-0.531101\pi\)
−0.0975527 + 0.995230i \(0.531101\pi\)
\(422\) 11.9828 0.583312
\(423\) −4.94803 −0.240581
\(424\) 9.30982 0.452125
\(425\) 0 0
\(426\) −0.259060 −0.0125515
\(427\) −58.0663 −2.81003
\(428\) 15.3210 0.740567
\(429\) 0 0
\(430\) 0 0
\(431\) −21.6439 −1.04255 −0.521274 0.853389i \(-0.674543\pi\)
−0.521274 + 0.853389i \(0.674543\pi\)
\(432\) −0.401714 −0.0193275
\(433\) 1.51015 0.0725733 0.0362866 0.999341i \(-0.488447\pi\)
0.0362866 + 0.999341i \(0.488447\pi\)
\(434\) −34.4766 −1.65493
\(435\) 0 0
\(436\) 4.19883 0.201087
\(437\) 2.76199 0.132124
\(438\) −0.430828 −0.0205858
\(439\) −16.1800 −0.772229 −0.386114 0.922451i \(-0.626183\pi\)
−0.386114 + 0.922451i \(0.626183\pi\)
\(440\) 0 0
\(441\) −54.9917 −2.61865
\(442\) 0 0
\(443\) 3.49878 0.166232 0.0831161 0.996540i \(-0.473513\pi\)
0.0831161 + 0.996540i \(0.473513\pi\)
\(444\) 0.368271 0.0174774
\(445\) 0 0
\(446\) 12.7910 0.605669
\(447\) −0.855118 −0.0404457
\(448\) 5.03568 0.237913
\(449\) 7.98505 0.376838 0.188419 0.982089i \(-0.439664\pi\)
0.188419 + 0.982089i \(0.439664\pi\)
\(450\) 0 0
\(451\) −18.2534 −0.859518
\(452\) 11.7363 0.552029
\(453\) 0.652428 0.0306537
\(454\) 5.83533 0.273866
\(455\) 0 0
\(456\) −0.353090 −0.0165350
\(457\) −17.4867 −0.817992 −0.408996 0.912536i \(-0.634121\pi\)
−0.408996 + 0.912536i \(0.634121\pi\)
\(458\) 15.2208 0.711220
\(459\) −0.207563 −0.00968823
\(460\) 0 0
\(461\) 15.0988 0.703222 0.351611 0.936146i \(-0.385634\pi\)
0.351611 + 0.936146i \(0.385634\pi\)
\(462\) −1.10994 −0.0516393
\(463\) 12.3107 0.572127 0.286064 0.958211i \(-0.407653\pi\)
0.286064 + 0.958211i \(0.407653\pi\)
\(464\) 6.36392 0.295438
\(465\) 0 0
\(466\) −18.4629 −0.855278
\(467\) 9.27853 0.429359 0.214680 0.976685i \(-0.431129\pi\)
0.214680 + 0.976685i \(0.431129\pi\)
\(468\) 0 0
\(469\) −17.0637 −0.787928
\(470\) 0 0
\(471\) 1.42820 0.0658080
\(472\) 12.8188 0.590034
\(473\) 30.7888 1.41567
\(474\) 0.488054 0.0224171
\(475\) 0 0
\(476\) 2.60191 0.119258
\(477\) 27.8877 1.27689
\(478\) 3.76483 0.172199
\(479\) 38.6780 1.76724 0.883622 0.468201i \(-0.155098\pi\)
0.883622 + 0.468201i \(0.155098\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −15.4771 −0.704961
\(483\) 0.176838 0.00804642
\(484\) −0.178043 −0.00809286
\(485\) 0 0
\(486\) −1.80546 −0.0818972
\(487\) 19.3496 0.876812 0.438406 0.898777i \(-0.355543\pi\)
0.438406 + 0.898777i \(0.355543\pi\)
\(488\) 11.5310 0.521983
\(489\) −0.0856940 −0.00387522
\(490\) 0 0
\(491\) 27.7335 1.25160 0.625798 0.779986i \(-0.284774\pi\)
0.625798 + 0.779986i \(0.284774\pi\)
\(492\) −0.371776 −0.0167609
\(493\) 3.28820 0.148093
\(494\) 0 0
\(495\) 0 0
\(496\) 6.84648 0.307416
\(497\) 19.4701 0.873353
\(498\) 0.172779 0.00774243
\(499\) 22.2962 0.998116 0.499058 0.866569i \(-0.333679\pi\)
0.499058 + 0.866569i \(0.333679\pi\)
\(500\) 0 0
\(501\) −0.127761 −0.00570796
\(502\) −1.26747 −0.0565699
\(503\) 5.15651 0.229918 0.114959 0.993370i \(-0.463326\pi\)
0.114959 + 0.993370i \(0.463326\pi\)
\(504\) 15.0844 0.671914
\(505\) 0 0
\(506\) −1.72417 −0.0766488
\(507\) 0 0
\(508\) −9.96441 −0.442099
\(509\) −9.11596 −0.404058 −0.202029 0.979380i \(-0.564754\pi\)
−0.202029 + 0.979380i \(0.564754\pi\)
\(510\) 0 0
\(511\) 32.3796 1.43239
\(512\) −1.00000 −0.0441942
\(513\) −2.11696 −0.0934659
\(514\) −29.7338 −1.31150
\(515\) 0 0
\(516\) 0.627090 0.0276061
\(517\) 5.43393 0.238984
\(518\) −27.6780 −1.21610
\(519\) 0.00755798 0.000331759 0
\(520\) 0 0
\(521\) −28.0573 −1.22921 −0.614606 0.788834i \(-0.710685\pi\)
−0.614606 + 0.788834i \(0.710685\pi\)
\(522\) 19.0632 0.834373
\(523\) 20.2889 0.887170 0.443585 0.896232i \(-0.353706\pi\)
0.443585 + 0.896232i \(0.353706\pi\)
\(524\) −3.43248 −0.149948
\(525\) 0 0
\(526\) −20.2454 −0.882743
\(527\) 3.53754 0.154098
\(528\) 0.220416 0.00959238
\(529\) −22.7253 −0.988057
\(530\) 0 0
\(531\) 38.3989 1.66637
\(532\) 26.5371 1.15053
\(533\) 0 0
\(534\) 0.323285 0.0139899
\(535\) 0 0
\(536\) 3.38856 0.146363
\(537\) −0.655498 −0.0282868
\(538\) −12.2284 −0.527202
\(539\) 60.3920 2.60127
\(540\) 0 0
\(541\) 34.8443 1.49807 0.749036 0.662529i \(-0.230517\pi\)
0.749036 + 0.662529i \(0.230517\pi\)
\(542\) 13.3526 0.573544
\(543\) 0.560264 0.0240432
\(544\) −0.516695 −0.0221531
\(545\) 0 0
\(546\) 0 0
\(547\) −6.66151 −0.284825 −0.142413 0.989807i \(-0.545486\pi\)
−0.142413 + 0.989807i \(0.545486\pi\)
\(548\) −17.1983 −0.734677
\(549\) 34.5412 1.47418
\(550\) 0 0
\(551\) 33.5367 1.42871
\(552\) −0.0351171 −0.00149468
\(553\) −36.6805 −1.55981
\(554\) 9.36534 0.397895
\(555\) 0 0
\(556\) −6.56328 −0.278345
\(557\) −1.12641 −0.0477277 −0.0238638 0.999715i \(-0.507597\pi\)
−0.0238638 + 0.999715i \(0.507597\pi\)
\(558\) 20.5087 0.868202
\(559\) 0 0
\(560\) 0 0
\(561\) 0.113888 0.00480835
\(562\) 20.5996 0.868941
\(563\) 12.0651 0.508484 0.254242 0.967141i \(-0.418174\pi\)
0.254242 + 0.967141i \(0.418174\pi\)
\(564\) 0.110676 0.00466028
\(565\) 0 0
\(566\) 14.4039 0.605442
\(567\) 45.1177 1.89477
\(568\) −3.86643 −0.162232
\(569\) 26.4132 1.10730 0.553650 0.832750i \(-0.313235\pi\)
0.553650 + 0.832750i \(0.313235\pi\)
\(570\) 0 0
\(571\) 29.7751 1.24605 0.623025 0.782202i \(-0.285904\pi\)
0.623025 + 0.782202i \(0.285904\pi\)
\(572\) 0 0
\(573\) −0.620167 −0.0259078
\(574\) 27.9414 1.16625
\(575\) 0 0
\(576\) −2.99551 −0.124813
\(577\) 28.5908 1.19025 0.595126 0.803633i \(-0.297102\pi\)
0.595126 + 0.803633i \(0.297102\pi\)
\(578\) 16.7330 0.696002
\(579\) −1.17354 −0.0487706
\(580\) 0 0
\(581\) −12.9855 −0.538730
\(582\) −0.126031 −0.00522413
\(583\) −30.6263 −1.26841
\(584\) −6.43004 −0.266077
\(585\) 0 0
\(586\) 15.0823 0.623044
\(587\) −1.57376 −0.0649562 −0.0324781 0.999472i \(-0.510340\pi\)
−0.0324781 + 0.999472i \(0.510340\pi\)
\(588\) 1.23003 0.0507257
\(589\) 36.0796 1.48664
\(590\) 0 0
\(591\) 1.35887 0.0558965
\(592\) 5.49639 0.225900
\(593\) 31.9506 1.31205 0.656027 0.754737i \(-0.272236\pi\)
0.656027 + 0.754737i \(0.272236\pi\)
\(594\) 1.32151 0.0542221
\(595\) 0 0
\(596\) −12.7625 −0.522772
\(597\) −1.81444 −0.0742600
\(598\) 0 0
\(599\) −29.2165 −1.19375 −0.596877 0.802332i \(-0.703592\pi\)
−0.596877 + 0.802332i \(0.703592\pi\)
\(600\) 0 0
\(601\) 24.1056 0.983287 0.491643 0.870797i \(-0.336396\pi\)
0.491643 + 0.870797i \(0.336396\pi\)
\(602\) −47.1300 −1.92087
\(603\) 10.1505 0.413359
\(604\) 9.73737 0.396208
\(605\) 0 0
\(606\) −0.207938 −0.00844690
\(607\) −22.1386 −0.898579 −0.449290 0.893386i \(-0.648323\pi\)
−0.449290 + 0.893386i \(0.648323\pi\)
\(608\) −5.26981 −0.213719
\(609\) 2.14720 0.0870091
\(610\) 0 0
\(611\) 0 0
\(612\) −1.54776 −0.0625647
\(613\) 37.1880 1.50201 0.751004 0.660297i \(-0.229570\pi\)
0.751004 + 0.660297i \(0.229570\pi\)
\(614\) −1.59681 −0.0644419
\(615\) 0 0
\(616\) −16.5657 −0.667453
\(617\) −40.8840 −1.64593 −0.822963 0.568094i \(-0.807681\pi\)
−0.822963 + 0.568094i \(0.807681\pi\)
\(618\) −1.00175 −0.0402963
\(619\) 17.3785 0.698501 0.349250 0.937029i \(-0.386436\pi\)
0.349250 + 0.937029i \(0.386436\pi\)
\(620\) 0 0
\(621\) −0.210545 −0.00844887
\(622\) −3.52287 −0.141254
\(623\) −24.2970 −0.973438
\(624\) 0 0
\(625\) 0 0
\(626\) −20.7603 −0.829750
\(627\) 1.16155 0.0463879
\(628\) 21.3156 0.850587
\(629\) 2.83995 0.113236
\(630\) 0 0
\(631\) −1.17310 −0.0467005 −0.0233503 0.999727i \(-0.507433\pi\)
−0.0233503 + 0.999727i \(0.507433\pi\)
\(632\) 7.28413 0.289747
\(633\) −0.802875 −0.0319114
\(634\) −4.92085 −0.195432
\(635\) 0 0
\(636\) −0.623781 −0.0247345
\(637\) 0 0
\(638\) −20.9352 −0.828834
\(639\) −11.5819 −0.458174
\(640\) 0 0
\(641\) −30.0814 −1.18815 −0.594073 0.804411i \(-0.702481\pi\)
−0.594073 + 0.804411i \(0.702481\pi\)
\(642\) −1.02654 −0.0405144
\(643\) −39.2988 −1.54979 −0.774896 0.632089i \(-0.782198\pi\)
−0.774896 + 0.632089i \(0.782198\pi\)
\(644\) 2.63928 0.104002
\(645\) 0 0
\(646\) −2.72288 −0.107130
\(647\) −47.8194 −1.87997 −0.939987 0.341211i \(-0.889163\pi\)
−0.939987 + 0.341211i \(0.889163\pi\)
\(648\) −8.95962 −0.351967
\(649\) −42.1697 −1.65531
\(650\) 0 0
\(651\) 2.31002 0.0905368
\(652\) −1.27897 −0.0500883
\(653\) 32.7143 1.28021 0.640104 0.768288i \(-0.278891\pi\)
0.640104 + 0.768288i \(0.278891\pi\)
\(654\) −0.281332 −0.0110009
\(655\) 0 0
\(656\) −5.54869 −0.216640
\(657\) −19.2613 −0.751453
\(658\) −8.31801 −0.324270
\(659\) −41.9069 −1.63246 −0.816231 0.577725i \(-0.803940\pi\)
−0.816231 + 0.577725i \(0.803940\pi\)
\(660\) 0 0
\(661\) 21.6745 0.843039 0.421520 0.906819i \(-0.361497\pi\)
0.421520 + 0.906819i \(0.361497\pi\)
\(662\) −14.1568 −0.550218
\(663\) 0 0
\(664\) 2.57870 0.100073
\(665\) 0 0
\(666\) 16.4645 0.637986
\(667\) 3.33543 0.129149
\(668\) −1.90682 −0.0737770
\(669\) −0.857025 −0.0331345
\(670\) 0 0
\(671\) −37.9332 −1.46440
\(672\) −0.337403 −0.0130156
\(673\) 37.9352 1.46230 0.731148 0.682219i \(-0.238985\pi\)
0.731148 + 0.682219i \(0.238985\pi\)
\(674\) 18.7663 0.722851
\(675\) 0 0
\(676\) 0 0
\(677\) 10.4768 0.402654 0.201327 0.979524i \(-0.435475\pi\)
0.201327 + 0.979524i \(0.435475\pi\)
\(678\) −0.786361 −0.0302000
\(679\) 9.47203 0.363503
\(680\) 0 0
\(681\) −0.390981 −0.0149824
\(682\) −22.5227 −0.862438
\(683\) −24.4591 −0.935903 −0.467952 0.883754i \(-0.655008\pi\)
−0.467952 + 0.883754i \(0.655008\pi\)
\(684\) −15.7858 −0.603584
\(685\) 0 0
\(686\) −57.1954 −2.18373
\(687\) −1.01983 −0.0389089
\(688\) 9.35921 0.356817
\(689\) 0 0
\(690\) 0 0
\(691\) 20.4414 0.777626 0.388813 0.921317i \(-0.372885\pi\)
0.388813 + 0.921317i \(0.372885\pi\)
\(692\) 0.112802 0.00428807
\(693\) −49.6228 −1.88502
\(694\) 32.2646 1.22475
\(695\) 0 0
\(696\) −0.426398 −0.0161626
\(697\) −2.86698 −0.108594
\(698\) 8.62949 0.326631
\(699\) 1.23706 0.0467899
\(700\) 0 0
\(701\) 11.4168 0.431208 0.215604 0.976481i \(-0.430828\pi\)
0.215604 + 0.976481i \(0.430828\pi\)
\(702\) 0 0
\(703\) 28.9649 1.09243
\(704\) 3.28967 0.123984
\(705\) 0 0
\(706\) −19.0692 −0.717677
\(707\) 15.6279 0.587748
\(708\) −0.858892 −0.0322791
\(709\) −39.7802 −1.49398 −0.746989 0.664836i \(-0.768501\pi\)
−0.746989 + 0.664836i \(0.768501\pi\)
\(710\) 0 0
\(711\) 21.8197 0.818302
\(712\) 4.82497 0.180823
\(713\) 3.58835 0.134385
\(714\) −0.174334 −0.00652429
\(715\) 0 0
\(716\) −9.78320 −0.365615
\(717\) −0.252253 −0.00942054
\(718\) 2.70589 0.100983
\(719\) 21.4776 0.800980 0.400490 0.916301i \(-0.368840\pi\)
0.400490 + 0.916301i \(0.368840\pi\)
\(720\) 0 0
\(721\) 75.2881 2.80387
\(722\) −8.77090 −0.326419
\(723\) 1.03700 0.0385665
\(724\) 8.36184 0.310765
\(725\) 0 0
\(726\) 0.0119293 0.000442738 0
\(727\) −26.5625 −0.985148 −0.492574 0.870271i \(-0.663944\pi\)
−0.492574 + 0.870271i \(0.663944\pi\)
\(728\) 0 0
\(729\) −26.7579 −0.991033
\(730\) 0 0
\(731\) 4.83585 0.178861
\(732\) −0.772604 −0.0285563
\(733\) −28.8341 −1.06501 −0.532505 0.846427i \(-0.678749\pi\)
−0.532505 + 0.846427i \(0.678749\pi\)
\(734\) 7.80278 0.288006
\(735\) 0 0
\(736\) −0.524116 −0.0193192
\(737\) −11.1473 −0.410614
\(738\) −16.6212 −0.611833
\(739\) 9.48392 0.348872 0.174436 0.984669i \(-0.444190\pi\)
0.174436 + 0.984669i \(0.444190\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46.8812 1.72106
\(743\) −10.2767 −0.377017 −0.188508 0.982072i \(-0.560365\pi\)
−0.188508 + 0.982072i \(0.560365\pi\)
\(744\) −0.458731 −0.0168179
\(745\) 0 0
\(746\) −14.0835 −0.515635
\(747\) 7.72454 0.282626
\(748\) 1.69976 0.0621493
\(749\) 77.1514 2.81905
\(750\) 0 0
\(751\) 29.7407 1.08525 0.542627 0.839974i \(-0.317430\pi\)
0.542627 + 0.839974i \(0.317430\pi\)
\(752\) 1.65182 0.0602355
\(753\) 0.0849235 0.00309478
\(754\) 0 0
\(755\) 0 0
\(756\) −2.02290 −0.0735722
\(757\) −2.50703 −0.0911197 −0.0455599 0.998962i \(-0.514507\pi\)
−0.0455599 + 0.998962i \(0.514507\pi\)
\(758\) 0.236252 0.00858106
\(759\) 0.115524 0.00419324
\(760\) 0 0
\(761\) −36.3569 −1.31794 −0.658969 0.752170i \(-0.729007\pi\)
−0.658969 + 0.752170i \(0.729007\pi\)
\(762\) 0.667640 0.0241860
\(763\) 21.1439 0.765462
\(764\) −9.25588 −0.334866
\(765\) 0 0
\(766\) 11.7086 0.423048
\(767\) 0 0
\(768\) 0.0670024 0.00241774
\(769\) 9.73400 0.351017 0.175509 0.984478i \(-0.443843\pi\)
0.175509 + 0.984478i \(0.443843\pi\)
\(770\) 0 0
\(771\) 1.99224 0.0717486
\(772\) −17.5149 −0.630374
\(773\) 40.0014 1.43875 0.719375 0.694621i \(-0.244428\pi\)
0.719375 + 0.694621i \(0.244428\pi\)
\(774\) 28.0356 1.00772
\(775\) 0 0
\(776\) −1.88098 −0.0675234
\(777\) 1.85449 0.0665296
\(778\) 2.05842 0.0737979
\(779\) −29.2405 −1.04765
\(780\) 0 0
\(781\) 12.7193 0.455132
\(782\) −0.270808 −0.00968407
\(783\) −2.55647 −0.0913610
\(784\) 18.3580 0.655644
\(785\) 0 0
\(786\) 0.229984 0.00820327
\(787\) 46.0334 1.64091 0.820456 0.571710i \(-0.193720\pi\)
0.820456 + 0.571710i \(0.193720\pi\)
\(788\) 20.2809 0.722479
\(789\) 1.35649 0.0482924
\(790\) 0 0
\(791\) 59.1002 2.10136
\(792\) 9.85425 0.350156
\(793\) 0 0
\(794\) 10.6417 0.377660
\(795\) 0 0
\(796\) −27.0802 −0.959832
\(797\) −5.63521 −0.199610 −0.0998048 0.995007i \(-0.531822\pi\)
−0.0998048 + 0.995007i \(0.531822\pi\)
\(798\) −1.77805 −0.0629422
\(799\) 0.853484 0.0301941
\(800\) 0 0
\(801\) 14.4533 0.510680
\(802\) 7.49704 0.264730
\(803\) 21.1527 0.746464
\(804\) −0.227042 −0.00800714
\(805\) 0 0
\(806\) 0 0
\(807\) 0.819330 0.0288418
\(808\) −3.10344 −0.109179
\(809\) −35.5797 −1.25092 −0.625459 0.780257i \(-0.715088\pi\)
−0.625459 + 0.780257i \(0.715088\pi\)
\(810\) 0 0
\(811\) 23.1724 0.813694 0.406847 0.913496i \(-0.366628\pi\)
0.406847 + 0.913496i \(0.366628\pi\)
\(812\) 32.0466 1.12462
\(813\) −0.894658 −0.0313770
\(814\) −18.0813 −0.633750
\(815\) 0 0
\(816\) 0.0346198 0.00121194
\(817\) 49.3213 1.72553
\(818\) −21.5011 −0.751770
\(819\) 0 0
\(820\) 0 0
\(821\) −22.8480 −0.797401 −0.398701 0.917081i \(-0.630539\pi\)
−0.398701 + 0.917081i \(0.630539\pi\)
\(822\) 1.15233 0.0401922
\(823\) 23.7086 0.826431 0.413216 0.910633i \(-0.364406\pi\)
0.413216 + 0.910633i \(0.364406\pi\)
\(824\) −14.9509 −0.520840
\(825\) 0 0
\(826\) 64.5514 2.24603
\(827\) −47.3108 −1.64516 −0.822579 0.568650i \(-0.807466\pi\)
−0.822579 + 0.568650i \(0.807466\pi\)
\(828\) −1.57000 −0.0545611
\(829\) 43.6231 1.51509 0.757547 0.652781i \(-0.226398\pi\)
0.757547 + 0.652781i \(0.226398\pi\)
\(830\) 0 0
\(831\) −0.627501 −0.0217678
\(832\) 0 0
\(833\) 9.48550 0.328653
\(834\) 0.439756 0.0152275
\(835\) 0 0
\(836\) 17.3360 0.599577
\(837\) −2.75032 −0.0950651
\(838\) −12.8640 −0.444380
\(839\) −33.9488 −1.17204 −0.586021 0.810296i \(-0.699306\pi\)
−0.586021 + 0.810296i \(0.699306\pi\)
\(840\) 0 0
\(841\) 11.4995 0.396534
\(842\) 4.00323 0.137960
\(843\) −1.38022 −0.0475374
\(844\) −11.9828 −0.412464
\(845\) 0 0
\(846\) 4.94803 0.170117
\(847\) −0.896566 −0.0308064
\(848\) −9.30982 −0.319701
\(849\) −0.965098 −0.0331221
\(850\) 0 0
\(851\) 2.88075 0.0987507
\(852\) 0.259060 0.00887526
\(853\) −30.4292 −1.04187 −0.520937 0.853595i \(-0.674417\pi\)
−0.520937 + 0.853595i \(0.674417\pi\)
\(854\) 58.0663 1.98699
\(855\) 0 0
\(856\) −15.3210 −0.523660
\(857\) 50.9646 1.74092 0.870459 0.492240i \(-0.163822\pi\)
0.870459 + 0.492240i \(0.163822\pi\)
\(858\) 0 0
\(859\) 38.5183 1.31423 0.657114 0.753791i \(-0.271777\pi\)
0.657114 + 0.753791i \(0.271777\pi\)
\(860\) 0 0
\(861\) −1.87214 −0.0638024
\(862\) 21.6439 0.737193
\(863\) −56.6567 −1.92862 −0.964308 0.264784i \(-0.914699\pi\)
−0.964308 + 0.264784i \(0.914699\pi\)
\(864\) 0.401714 0.0136666
\(865\) 0 0
\(866\) −1.51015 −0.0513170
\(867\) −1.12115 −0.0380764
\(868\) 34.4766 1.17021
\(869\) −23.9624 −0.812869
\(870\) 0 0
\(871\) 0 0
\(872\) −4.19883 −0.142190
\(873\) −5.63451 −0.190699
\(874\) −2.76199 −0.0934258
\(875\) 0 0
\(876\) 0.430828 0.0145563
\(877\) 41.9193 1.41551 0.707757 0.706456i \(-0.249707\pi\)
0.707757 + 0.706456i \(0.249707\pi\)
\(878\) 16.1800 0.546048
\(879\) −1.01055 −0.0340850
\(880\) 0 0
\(881\) 1.17194 0.0394836 0.0197418 0.999805i \(-0.493716\pi\)
0.0197418 + 0.999805i \(0.493716\pi\)
\(882\) 54.9917 1.85167
\(883\) 24.3462 0.819314 0.409657 0.912240i \(-0.365648\pi\)
0.409657 + 0.912240i \(0.365648\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −3.49878 −0.117544
\(887\) 8.57827 0.288030 0.144015 0.989575i \(-0.453999\pi\)
0.144015 + 0.989575i \(0.453999\pi\)
\(888\) −0.368271 −0.0123584
\(889\) −50.1775 −1.68290
\(890\) 0 0
\(891\) 29.4742 0.987424
\(892\) −12.7910 −0.428273
\(893\) 8.70475 0.291293
\(894\) 0.855118 0.0285994
\(895\) 0 0
\(896\) −5.03568 −0.168230
\(897\) 0 0
\(898\) −7.98505 −0.266465
\(899\) 43.5704 1.45316
\(900\) 0 0
\(901\) −4.81033 −0.160255
\(902\) 18.2534 0.607771
\(903\) 3.15782 0.105086
\(904\) −11.7363 −0.390344
\(905\) 0 0
\(906\) −0.652428 −0.0216755
\(907\) 25.2134 0.837197 0.418598 0.908172i \(-0.362522\pi\)
0.418598 + 0.908172i \(0.362522\pi\)
\(908\) −5.83533 −0.193652
\(909\) −9.29638 −0.308341
\(910\) 0 0
\(911\) 27.1861 0.900715 0.450358 0.892848i \(-0.351296\pi\)
0.450358 + 0.892848i \(0.351296\pi\)
\(912\) 0.353090 0.0116920
\(913\) −8.48310 −0.280750
\(914\) 17.4867 0.578408
\(915\) 0 0
\(916\) −15.2208 −0.502909
\(917\) −17.2848 −0.570796
\(918\) 0.207563 0.00685061
\(919\) 13.6082 0.448893 0.224446 0.974486i \(-0.427943\pi\)
0.224446 + 0.974486i \(0.427943\pi\)
\(920\) 0 0
\(921\) 0.106990 0.00352544
\(922\) −15.0988 −0.497253
\(923\) 0 0
\(924\) 1.10994 0.0365145
\(925\) 0 0
\(926\) −12.3107 −0.404555
\(927\) −44.7857 −1.47095
\(928\) −6.36392 −0.208906
\(929\) −14.8556 −0.487396 −0.243698 0.969851i \(-0.578361\pi\)
−0.243698 + 0.969851i \(0.578361\pi\)
\(930\) 0 0
\(931\) 96.7434 3.17064
\(932\) 18.4629 0.604773
\(933\) 0.236041 0.00772764
\(934\) −9.27853 −0.303603
\(935\) 0 0
\(936\) 0 0
\(937\) 47.7682 1.56052 0.780259 0.625457i \(-0.215087\pi\)
0.780259 + 0.625457i \(0.215087\pi\)
\(938\) 17.0637 0.557149
\(939\) 1.39099 0.0453934
\(940\) 0 0
\(941\) −11.2464 −0.366623 −0.183311 0.983055i \(-0.558682\pi\)
−0.183311 + 0.983055i \(0.558682\pi\)
\(942\) −1.42820 −0.0465333
\(943\) −2.90816 −0.0947026
\(944\) −12.8188 −0.417217
\(945\) 0 0
\(946\) −30.7888 −1.00103
\(947\) 35.7394 1.16137 0.580687 0.814127i \(-0.302784\pi\)
0.580687 + 0.814127i \(0.302784\pi\)
\(948\) −0.488054 −0.0158513
\(949\) 0 0
\(950\) 0 0
\(951\) 0.329709 0.0106915
\(952\) −2.60191 −0.0843283
\(953\) 40.0847 1.29847 0.649236 0.760587i \(-0.275089\pi\)
0.649236 + 0.760587i \(0.275089\pi\)
\(954\) −27.8877 −0.902896
\(955\) 0 0
\(956\) −3.76483 −0.121763
\(957\) 1.40271 0.0453432
\(958\) −38.6780 −1.24963
\(959\) −86.6053 −2.79663
\(960\) 0 0
\(961\) 15.8742 0.512072
\(962\) 0 0
\(963\) −45.8941 −1.47892
\(964\) 15.4771 0.498482
\(965\) 0 0
\(966\) −0.176838 −0.00568968
\(967\) −24.2441 −0.779639 −0.389820 0.920891i \(-0.627463\pi\)
−0.389820 + 0.920891i \(0.627463\pi\)
\(968\) 0.178043 0.00572251
\(969\) 0.182440 0.00586081
\(970\) 0 0
\(971\) −33.3744 −1.07104 −0.535519 0.844523i \(-0.679884\pi\)
−0.535519 + 0.844523i \(0.679884\pi\)
\(972\) 1.80546 0.0579101
\(973\) −33.0506 −1.05955
\(974\) −19.3496 −0.620000
\(975\) 0 0
\(976\) −11.5310 −0.369098
\(977\) −6.21560 −0.198855 −0.0994273 0.995045i \(-0.531701\pi\)
−0.0994273 + 0.995045i \(0.531701\pi\)
\(978\) 0.0856940 0.00274019
\(979\) −15.8726 −0.507290
\(980\) 0 0
\(981\) −12.5776 −0.401573
\(982\) −27.7335 −0.885011
\(983\) −42.7293 −1.36285 −0.681427 0.731886i \(-0.738640\pi\)
−0.681427 + 0.731886i \(0.738640\pi\)
\(984\) 0.371776 0.0118518
\(985\) 0 0
\(986\) −3.28820 −0.104718
\(987\) 0.557327 0.0177399
\(988\) 0 0
\(989\) 4.90531 0.155980
\(990\) 0 0
\(991\) 40.0026 1.27072 0.635362 0.772214i \(-0.280851\pi\)
0.635362 + 0.772214i \(0.280851\pi\)
\(992\) −6.84648 −0.217376
\(993\) 0.948538 0.0301009
\(994\) −19.4701 −0.617554
\(995\) 0 0
\(996\) −0.172779 −0.00547473
\(997\) −15.9741 −0.505904 −0.252952 0.967479i \(-0.581401\pi\)
−0.252952 + 0.967479i \(0.581401\pi\)
\(998\) −22.2962 −0.705775
\(999\) −2.20797 −0.0698572
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cw.1.4 9
5.2 odd 4 1690.2.b.f.339.6 18
5.3 odd 4 1690.2.b.f.339.13 yes 18
5.4 even 2 8450.2.a.cx.1.6 9
13.12 even 2 8450.2.a.da.1.4 9
65.8 even 4 1690.2.c.g.1689.10 18
65.12 odd 4 1690.2.b.g.339.15 yes 18
65.18 even 4 1690.2.c.h.1689.10 18
65.38 odd 4 1690.2.b.g.339.4 yes 18
65.47 even 4 1690.2.c.h.1689.9 18
65.57 even 4 1690.2.c.g.1689.9 18
65.64 even 2 8450.2.a.ct.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.6 18 5.2 odd 4
1690.2.b.f.339.13 yes 18 5.3 odd 4
1690.2.b.g.339.4 yes 18 65.38 odd 4
1690.2.b.g.339.15 yes 18 65.12 odd 4
1690.2.c.g.1689.9 18 65.57 even 4
1690.2.c.g.1689.10 18 65.8 even 4
1690.2.c.h.1689.9 18 65.47 even 4
1690.2.c.h.1689.10 18 65.18 even 4
8450.2.a.ct.1.6 9 65.64 even 2
8450.2.a.cw.1.4 9 1.1 even 1 trivial
8450.2.a.cx.1.6 9 5.4 even 2
8450.2.a.da.1.4 9 13.12 even 2