Properties

Label 1690.2.c.g.1689.9
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-18,0,18,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.9
Root \(0.506152i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.g.1689.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.0670024i q^{3} +1.00000 q^{4} +(1.50791 - 1.65112i) q^{5} +0.0670024i q^{6} -5.03568 q^{7} -1.00000 q^{8} +2.99551 q^{9} +(-1.50791 + 1.65112i) q^{10} +3.28967i q^{11} -0.0670024i q^{12} +5.03568 q^{14} +(-0.110629 - 0.101034i) q^{15} +1.00000 q^{16} -0.516695i q^{17} -2.99551 q^{18} +5.26981i q^{19} +(1.50791 - 1.65112i) q^{20} +0.337403i q^{21} -3.28967i q^{22} +0.524116i q^{23} +0.0670024i q^{24} +(-0.452390 - 4.97949i) q^{25} -0.401714i q^{27} -5.03568 q^{28} -6.36392 q^{29} +(0.110629 + 0.101034i) q^{30} -6.84648i q^{31} -1.00000 q^{32} +0.220416 q^{33} +0.516695i q^{34} +(-7.59337 + 8.31450i) q^{35} +2.99551 q^{36} -5.49639 q^{37} -5.26981i q^{38} +(-1.50791 + 1.65112i) q^{40} +5.54869i q^{41} -0.337403i q^{42} +9.35921i q^{43} +3.28967i q^{44} +(4.51697 - 4.94595i) q^{45} -0.524116i q^{46} -1.65182 q^{47} -0.0670024i q^{48} +18.3580 q^{49} +(0.452390 + 4.97949i) q^{50} -0.0346198 q^{51} +9.30982i q^{53} +0.401714i q^{54} +(5.43164 + 4.96055i) q^{55} +5.03568 q^{56} +0.353090 q^{57} +6.36392 q^{58} +12.8188i q^{59} +(-0.110629 - 0.101034i) q^{60} -11.5310 q^{61} +6.84648i q^{62} -15.0844 q^{63} +1.00000 q^{64} -0.220416 q^{66} -3.38856 q^{67} -0.516695i q^{68} +0.0351171 q^{69} +(7.59337 - 8.31450i) q^{70} -3.86643i q^{71} -2.99551 q^{72} +6.43004 q^{73} +5.49639 q^{74} +(-0.333638 + 0.0303112i) q^{75} +5.26981i q^{76} -16.5657i q^{77} +7.28413 q^{79} +(1.50791 - 1.65112i) q^{80} +8.95962 q^{81} -5.54869i q^{82} +2.57870 q^{83} +0.337403i q^{84} +(-0.853124 - 0.779131i) q^{85} -9.35921i q^{86} +0.426398i q^{87} -3.28967i q^{88} +4.82497i q^{89} +(-4.51697 + 4.94595i) q^{90} +0.524116i q^{92} -0.458731 q^{93} +1.65182 q^{94} +(8.70109 + 7.94642i) q^{95} +0.0670024i q^{96} +1.88098 q^{97} -18.3580 q^{98} +9.85425i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{2} + 18 q^{4} + 2 q^{5} + 2 q^{7} - 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} - 14 q^{15} + 18 q^{16} + 16 q^{18} + 2 q^{20} - 22 q^{25} + 2 q^{28} - 30 q^{29} + 14 q^{30} - 18 q^{32} + 28 q^{33}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.0670024i 0.0386839i −0.999813 0.0193419i \(-0.993843\pi\)
0.999813 0.0193419i \(-0.00615711\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.50791 1.65112i 0.674360 0.738403i
\(6\) 0.0670024i 0.0273536i
\(7\) −5.03568 −1.90331 −0.951653 0.307174i \(-0.900617\pi\)
−0.951653 + 0.307174i \(0.900617\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.99551 0.998504
\(10\) −1.50791 + 1.65112i −0.476844 + 0.522130i
\(11\) 3.28967i 0.991874i 0.868358 + 0.495937i \(0.165175\pi\)
−0.868358 + 0.495937i \(0.834825\pi\)
\(12\) 0.0670024i 0.0193419i
\(13\) 0 0
\(14\) 5.03568 1.34584
\(15\) −0.110629 0.101034i −0.0285643 0.0260868i
\(16\) 1.00000 0.250000
\(17\) 0.516695i 0.125317i −0.998035 0.0626584i \(-0.980042\pi\)
0.998035 0.0626584i \(-0.0199579\pi\)
\(18\) −2.99551 −0.706049
\(19\) 5.26981i 1.20898i 0.796614 + 0.604489i \(0.206623\pi\)
−0.796614 + 0.604489i \(0.793377\pi\)
\(20\) 1.50791 1.65112i 0.337180 0.369201i
\(21\) 0.337403i 0.0736273i
\(22\) 3.28967i 0.701361i
\(23\) 0.524116i 0.109286i 0.998506 + 0.0546429i \(0.0174020\pi\)
−0.998506 + 0.0546429i \(0.982598\pi\)
\(24\) 0.0670024i 0.0136768i
\(25\) −0.452390 4.97949i −0.0904780 0.995898i
\(26\) 0 0
\(27\) 0.401714i 0.0773099i
\(28\) −5.03568 −0.951653
\(29\) −6.36392 −1.18175 −0.590875 0.806763i \(-0.701217\pi\)
−0.590875 + 0.806763i \(0.701217\pi\)
\(30\) 0.110629 + 0.101034i 0.0201980 + 0.0184462i
\(31\) 6.84648i 1.22966i −0.788658 0.614832i \(-0.789224\pi\)
0.788658 0.614832i \(-0.210776\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.220416 0.0383695
\(34\) 0.516695i 0.0886124i
\(35\) −7.59337 + 8.31450i −1.28351 + 1.40541i
\(36\) 2.99551 0.499252
\(37\) −5.49639 −0.903600 −0.451800 0.892119i \(-0.649218\pi\)
−0.451800 + 0.892119i \(0.649218\pi\)
\(38\) 5.26981i 0.854876i
\(39\) 0 0
\(40\) −1.50791 + 1.65112i −0.238422 + 0.261065i
\(41\) 5.54869i 0.866560i 0.901259 + 0.433280i \(0.142644\pi\)
−0.901259 + 0.433280i \(0.857356\pi\)
\(42\) 0.337403i 0.0520624i
\(43\) 9.35921i 1.42727i 0.700520 + 0.713633i \(0.252952\pi\)
−0.700520 + 0.713633i \(0.747048\pi\)
\(44\) 3.28967i 0.495937i
\(45\) 4.51697 4.94595i 0.673351 0.737298i
\(46\) 0.524116i 0.0772767i
\(47\) −1.65182 −0.240942 −0.120471 0.992717i \(-0.538440\pi\)
−0.120471 + 0.992717i \(0.538440\pi\)
\(48\) 0.0670024i 0.00967097i
\(49\) 18.3580 2.62258
\(50\) 0.452390 + 4.97949i 0.0639776 + 0.704207i
\(51\) −0.0346198 −0.00484774
\(52\) 0 0
\(53\) 9.30982i 1.27880i 0.768873 + 0.639401i \(0.220818\pi\)
−0.768873 + 0.639401i \(0.779182\pi\)
\(54\) 0.401714i 0.0546663i
\(55\) 5.43164 + 4.96055i 0.732403 + 0.668880i
\(56\) 5.03568 0.672921
\(57\) 0.353090 0.0467679
\(58\) 6.36392 0.835624
\(59\) 12.8188i 1.66887i 0.551108 + 0.834434i \(0.314205\pi\)
−0.551108 + 0.834434i \(0.685795\pi\)
\(60\) −0.110629 0.101034i −0.0142821 0.0130434i
\(61\) −11.5310 −1.47639 −0.738196 0.674586i \(-0.764322\pi\)
−0.738196 + 0.674586i \(0.764322\pi\)
\(62\) 6.84648i 0.869503i
\(63\) −15.0844 −1.90046
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.220416 −0.0271314
\(67\) −3.38856 −0.413978 −0.206989 0.978343i \(-0.566366\pi\)
−0.206989 + 0.978343i \(0.566366\pi\)
\(68\) 0.516695i 0.0626584i
\(69\) 0.0351171 0.00422760
\(70\) 7.59337 8.31450i 0.907581 0.993773i
\(71\) 3.86643i 0.458861i −0.973325 0.229430i \(-0.926314\pi\)
0.973325 0.229430i \(-0.0736863\pi\)
\(72\) −2.99551 −0.353024
\(73\) 6.43004 0.752579 0.376290 0.926502i \(-0.377200\pi\)
0.376290 + 0.926502i \(0.377200\pi\)
\(74\) 5.49639 0.638942
\(75\) −0.333638 + 0.0303112i −0.0385252 + 0.00350004i
\(76\) 5.26981i 0.604489i
\(77\) 16.5657i 1.88784i
\(78\) 0 0
\(79\) 7.28413 0.819528 0.409764 0.912191i \(-0.365611\pi\)
0.409764 + 0.912191i \(0.365611\pi\)
\(80\) 1.50791 1.65112i 0.168590 0.184601i
\(81\) 8.95962 0.995513
\(82\) 5.54869i 0.612750i
\(83\) 2.57870 0.283050 0.141525 0.989935i \(-0.454800\pi\)
0.141525 + 0.989935i \(0.454800\pi\)
\(84\) 0.337403i 0.0368136i
\(85\) −0.853124 0.779131i −0.0925343 0.0845086i
\(86\) 9.35921i 1.00923i
\(87\) 0.426398i 0.0457147i
\(88\) 3.28967i 0.350680i
\(89\) 4.82497i 0.511446i 0.966750 + 0.255723i \(0.0823135\pi\)
−0.966750 + 0.255723i \(0.917687\pi\)
\(90\) −4.51697 + 4.94595i −0.476131 + 0.521348i
\(91\) 0 0
\(92\) 0.524116i 0.0546429i
\(93\) −0.458731 −0.0475681
\(94\) 1.65182 0.170372
\(95\) 8.70109 + 7.94642i 0.892713 + 0.815286i
\(96\) 0.0670024i 0.00683841i
\(97\) 1.88098 0.190985 0.0954925 0.995430i \(-0.469557\pi\)
0.0954925 + 0.995430i \(0.469557\pi\)
\(98\) −18.3580 −1.85444
\(99\) 9.85425i 0.990390i
\(100\) −0.452390 4.97949i −0.0452390 0.497949i
\(101\) −3.10344 −0.308804 −0.154402 0.988008i \(-0.549345\pi\)
−0.154402 + 0.988008i \(0.549345\pi\)
\(102\) 0.0346198 0.00342787
\(103\) 14.9509i 1.47316i 0.676351 + 0.736580i \(0.263560\pi\)
−0.676351 + 0.736580i \(0.736440\pi\)
\(104\) 0 0
\(105\) 0.557092 + 0.508774i 0.0543666 + 0.0496513i
\(106\) 9.30982i 0.904250i
\(107\) 15.3210i 1.48113i 0.671983 + 0.740567i \(0.265443\pi\)
−0.671983 + 0.740567i \(0.734557\pi\)
\(108\) 0.401714i 0.0386549i
\(109\) 4.19883i 0.402175i 0.979573 + 0.201087i \(0.0644475\pi\)
−0.979573 + 0.201087i \(0.935553\pi\)
\(110\) −5.43164 4.96055i −0.517887 0.472970i
\(111\) 0.368271i 0.0349548i
\(112\) −5.03568 −0.475827
\(113\) 11.7363i 1.10406i −0.833825 0.552029i \(-0.813854\pi\)
0.833825 0.552029i \(-0.186146\pi\)
\(114\) −0.353090 −0.0330699
\(115\) 0.865378 + 0.790322i 0.0806970 + 0.0736979i
\(116\) −6.36392 −0.590875
\(117\) 0 0
\(118\) 12.8188i 1.18007i
\(119\) 2.60191i 0.238516i
\(120\) 0.110629 + 0.101034i 0.0100990 + 0.00922309i
\(121\) 0.178043 0.0161857
\(122\) 11.5310 1.04397
\(123\) 0.371776 0.0335219
\(124\) 6.84648i 0.614832i
\(125\) −8.90390 6.76170i −0.796389 0.604785i
\(126\) 15.0844 1.34383
\(127\) 9.96441i 0.884198i 0.896966 + 0.442099i \(0.145766\pi\)
−0.896966 + 0.442099i \(0.854234\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.627090 0.0552122
\(130\) 0 0
\(131\) −3.43248 −0.299897 −0.149948 0.988694i \(-0.547911\pi\)
−0.149948 + 0.988694i \(0.547911\pi\)
\(132\) 0.220416 0.0191848
\(133\) 26.5371i 2.30106i
\(134\) 3.38856 0.292727
\(135\) −0.663277 0.605750i −0.0570858 0.0521347i
\(136\) 0.516695i 0.0443062i
\(137\) 17.1983 1.46935 0.734677 0.678417i \(-0.237334\pi\)
0.734677 + 0.678417i \(0.237334\pi\)
\(138\) −0.0351171 −0.00298936
\(139\) 6.56328 0.556690 0.278345 0.960481i \(-0.410214\pi\)
0.278345 + 0.960481i \(0.410214\pi\)
\(140\) −7.59337 + 8.31450i −0.641757 + 0.702704i
\(141\) 0.110676i 0.00932057i
\(142\) 3.86643i 0.324464i
\(143\) 0 0
\(144\) 2.99551 0.249626
\(145\) −9.59625 + 10.5076i −0.796925 + 0.872608i
\(146\) −6.43004 −0.532154
\(147\) 1.23003i 0.101451i
\(148\) −5.49639 −0.451800
\(149\) 12.7625i 1.04554i −0.852473 0.522772i \(-0.824898\pi\)
0.852473 0.522772i \(-0.175102\pi\)
\(150\) 0.333638 0.0303112i 0.0272414 0.00247490i
\(151\) 9.73737i 0.792416i 0.918161 + 0.396208i \(0.129674\pi\)
−0.918161 + 0.396208i \(0.870326\pi\)
\(152\) 5.26981i 0.427438i
\(153\) 1.54776i 0.125129i
\(154\) 16.5657i 1.33491i
\(155\) −11.3043 10.3239i −0.907987 0.829235i
\(156\) 0 0
\(157\) 21.3156i 1.70117i 0.525835 + 0.850587i \(0.323753\pi\)
−0.525835 + 0.850587i \(0.676247\pi\)
\(158\) −7.28413 −0.579494
\(159\) 0.623781 0.0494690
\(160\) −1.50791 + 1.65112i −0.119211 + 0.130532i
\(161\) 2.63928i 0.208004i
\(162\) −8.95962 −0.703934
\(163\) −1.27897 −0.100177 −0.0500883 0.998745i \(-0.515950\pi\)
−0.0500883 + 0.998745i \(0.515950\pi\)
\(164\) 5.54869i 0.433280i
\(165\) 0.332369 0.363933i 0.0258749 0.0283322i
\(166\) −2.57870 −0.200146
\(167\) 1.90682 0.147554 0.0737770 0.997275i \(-0.476495\pi\)
0.0737770 + 0.997275i \(0.476495\pi\)
\(168\) 0.337403i 0.0260312i
\(169\) 0 0
\(170\) 0.853124 + 0.779131i 0.0654317 + 0.0597566i
\(171\) 15.7858i 1.20717i
\(172\) 9.35921i 0.713633i
\(173\) 0.112802i 0.00857615i 0.999991 + 0.00428807i \(0.00136494\pi\)
−0.999991 + 0.00428807i \(0.998635\pi\)
\(174\) 0.426398i 0.0323252i
\(175\) 2.27809 + 25.0751i 0.172207 + 1.89550i
\(176\) 3.28967i 0.247969i
\(177\) 0.858892 0.0645583
\(178\) 4.82497i 0.361647i
\(179\) −9.78320 −0.731231 −0.365615 0.930766i \(-0.619141\pi\)
−0.365615 + 0.930766i \(0.619141\pi\)
\(180\) 4.51697 4.94595i 0.336675 0.368649i
\(181\) −8.36184 −0.621531 −0.310765 0.950487i \(-0.600585\pi\)
−0.310765 + 0.950487i \(0.600585\pi\)
\(182\) 0 0
\(183\) 0.772604i 0.0571126i
\(184\) 0.524116i 0.0386384i
\(185\) −8.28808 + 9.07519i −0.609352 + 0.667221i
\(186\) 0.458731 0.0336358
\(187\) 1.69976 0.124299
\(188\) −1.65182 −0.120471
\(189\) 2.02290i 0.147144i
\(190\) −8.70109 7.94642i −0.631243 0.576494i
\(191\) −9.25588 −0.669732 −0.334866 0.942266i \(-0.608691\pi\)
−0.334866 + 0.942266i \(0.608691\pi\)
\(192\) 0.0670024i 0.00483548i
\(193\) −17.5149 −1.26075 −0.630374 0.776292i \(-0.717098\pi\)
−0.630374 + 0.776292i \(0.717098\pi\)
\(194\) −1.88098 −0.135047
\(195\) 0 0
\(196\) 18.3580 1.31129
\(197\) 20.2809 1.44496 0.722479 0.691393i \(-0.243003\pi\)
0.722479 + 0.691393i \(0.243003\pi\)
\(198\) 9.85425i 0.700311i
\(199\) −27.0802 −1.91966 −0.959832 0.280577i \(-0.909474\pi\)
−0.959832 + 0.280577i \(0.909474\pi\)
\(200\) 0.452390 + 4.97949i 0.0319888 + 0.352103i
\(201\) 0.227042i 0.0160143i
\(202\) 3.10344 0.218357
\(203\) 32.0466 2.24923
\(204\) −0.0346198 −0.00242387
\(205\) 9.16155 + 8.36695i 0.639870 + 0.584373i
\(206\) 14.9509i 1.04168i
\(207\) 1.57000i 0.109122i
\(208\) 0 0
\(209\) −17.3360 −1.19915
\(210\) −0.557092 0.508774i −0.0384430 0.0351088i
\(211\) −11.9828 −0.824928 −0.412464 0.910974i \(-0.635332\pi\)
−0.412464 + 0.910974i \(0.635332\pi\)
\(212\) 9.30982i 0.639401i
\(213\) −0.259060 −0.0177505
\(214\) 15.3210i 1.04732i
\(215\) 15.4532 + 14.1129i 1.05390 + 0.962491i
\(216\) 0.401714i 0.0273332i
\(217\) 34.4766i 2.34043i
\(218\) 4.19883i 0.284380i
\(219\) 0.430828i 0.0291127i
\(220\) 5.43164 + 4.96055i 0.366201 + 0.334440i
\(221\) 0 0
\(222\) 0.368271i 0.0247167i
\(223\) 12.7910 0.856546 0.428273 0.903649i \(-0.359122\pi\)
0.428273 + 0.903649i \(0.359122\pi\)
\(224\) 5.03568 0.336460
\(225\) −1.35514 14.9161i −0.0903426 0.994408i
\(226\) 11.7363i 0.780687i
\(227\) −5.83533 −0.387305 −0.193652 0.981070i \(-0.562033\pi\)
−0.193652 + 0.981070i \(0.562033\pi\)
\(228\) 0.353090 0.0233840
\(229\) 15.2208i 1.00582i 0.864340 + 0.502909i \(0.167737\pi\)
−0.864340 + 0.502909i \(0.832263\pi\)
\(230\) −0.865378 0.790322i −0.0570614 0.0521123i
\(231\) −1.10994 −0.0730290
\(232\) 6.36392 0.417812
\(233\) 18.4629i 1.20955i 0.796398 + 0.604773i \(0.206736\pi\)
−0.796398 + 0.604773i \(0.793264\pi\)
\(234\) 0 0
\(235\) −2.49080 + 2.72734i −0.162482 + 0.177912i
\(236\) 12.8188i 0.834434i
\(237\) 0.488054i 0.0317025i
\(238\) 2.60191i 0.168657i
\(239\) 3.76483i 0.243526i −0.992559 0.121763i \(-0.961145\pi\)
0.992559 0.121763i \(-0.0388548\pi\)
\(240\) −0.110629 0.101034i −0.00714107 0.00652171i
\(241\) 15.4771i 0.996965i 0.866900 + 0.498482i \(0.166109\pi\)
−0.866900 + 0.498482i \(0.833891\pi\)
\(242\) −0.178043 −0.0114450
\(243\) 1.80546i 0.115820i
\(244\) −11.5310 −0.738196
\(245\) 27.6823 30.3113i 1.76856 1.93652i
\(246\) −0.371776 −0.0237035
\(247\) 0 0
\(248\) 6.84648i 0.434752i
\(249\) 0.172779i 0.0109495i
\(250\) 8.90390 + 6.76170i 0.563132 + 0.427647i
\(251\) −1.26747 −0.0800019 −0.0400010 0.999200i \(-0.512736\pi\)
−0.0400010 + 0.999200i \(0.512736\pi\)
\(252\) −15.0844 −0.950229
\(253\) −1.72417 −0.108398
\(254\) 9.96441i 0.625223i
\(255\) −0.0522037 + 0.0571614i −0.00326912 + 0.00357959i
\(256\) 1.00000 0.0625000
\(257\) 29.7338i 1.85474i −0.374143 0.927371i \(-0.622063\pi\)
0.374143 0.927371i \(-0.377937\pi\)
\(258\) −0.627090 −0.0390409
\(259\) 27.6780 1.71983
\(260\) 0 0
\(261\) −19.0632 −1.17998
\(262\) 3.43248 0.212059
\(263\) 20.2454i 1.24839i −0.781270 0.624193i \(-0.785428\pi\)
0.781270 0.624193i \(-0.214572\pi\)
\(264\) −0.220416 −0.0135657
\(265\) 15.3716 + 14.0384i 0.944271 + 0.862373i
\(266\) 26.5371i 1.62709i
\(267\) 0.323285 0.0197847
\(268\) −3.38856 −0.206989
\(269\) −12.2284 −0.745576 −0.372788 0.927917i \(-0.621598\pi\)
−0.372788 + 0.927917i \(0.621598\pi\)
\(270\) 0.663277 + 0.605750i 0.0403658 + 0.0368648i
\(271\) 13.3526i 0.811114i −0.914070 0.405557i \(-0.867078\pi\)
0.914070 0.405557i \(-0.132922\pi\)
\(272\) 0.516695i 0.0313292i
\(273\) 0 0
\(274\) −17.1983 −1.03899
\(275\) 16.3809 1.48822i 0.987806 0.0897428i
\(276\) 0.0351171 0.00211380
\(277\) 9.36534i 0.562709i 0.959604 + 0.281354i \(0.0907837\pi\)
−0.959604 + 0.281354i \(0.909216\pi\)
\(278\) −6.56328 −0.393640
\(279\) 20.5087i 1.22782i
\(280\) 7.59337 8.31450i 0.453791 0.496887i
\(281\) 20.5996i 1.22887i −0.788968 0.614434i \(-0.789384\pi\)
0.788968 0.614434i \(-0.210616\pi\)
\(282\) 0.110676i 0.00659064i
\(283\) 14.4039i 0.856225i −0.903726 0.428112i \(-0.859179\pi\)
0.903726 0.428112i \(-0.140821\pi\)
\(284\) 3.86643i 0.229430i
\(285\) 0.532430 0.582994i 0.0315384 0.0345336i
\(286\) 0 0
\(287\) 27.9414i 1.64933i
\(288\) −2.99551 −0.176512
\(289\) 16.7330 0.984296
\(290\) 9.59625 10.5076i 0.563511 0.617027i
\(291\) 0.126031i 0.00738804i
\(292\) 6.43004 0.376290
\(293\) −15.0823 −0.881117 −0.440559 0.897724i \(-0.645220\pi\)
−0.440559 + 0.897724i \(0.645220\pi\)
\(294\) 1.23003i 0.0717370i
\(295\) 21.1654 + 19.3297i 1.23230 + 1.12542i
\(296\) 5.49639 0.319471
\(297\) 1.32151 0.0766816
\(298\) 12.7625i 0.739311i
\(299\) 0 0
\(300\) −0.333638 + 0.0303112i −0.0192626 + 0.00175002i
\(301\) 47.1300i 2.71653i
\(302\) 9.73737i 0.560323i
\(303\) 0.207938i 0.0119457i
\(304\) 5.26981i 0.302244i
\(305\) −17.3877 + 19.0390i −0.995619 + 1.09017i
\(306\) 1.54776i 0.0884798i
\(307\) −1.59681 −0.0911346 −0.0455673 0.998961i \(-0.514510\pi\)
−0.0455673 + 0.998961i \(0.514510\pi\)
\(308\) 16.5657i 0.943920i
\(309\) 1.00175 0.0569875
\(310\) 11.3043 + 10.3239i 0.642044 + 0.586358i
\(311\) −3.52287 −0.199764 −0.0998819 0.994999i \(-0.531846\pi\)
−0.0998819 + 0.994999i \(0.531846\pi\)
\(312\) 0 0
\(313\) 20.7603i 1.17344i −0.809788 0.586722i \(-0.800418\pi\)
0.809788 0.586722i \(-0.199582\pi\)
\(314\) 21.3156i 1.20291i
\(315\) −22.7460 + 24.9062i −1.28159 + 1.40330i
\(316\) 7.28413 0.409764
\(317\) 4.92085 0.276382 0.138191 0.990406i \(-0.455871\pi\)
0.138191 + 0.990406i \(0.455871\pi\)
\(318\) −0.623781 −0.0349799
\(319\) 20.9352i 1.17215i
\(320\) 1.50791 1.65112i 0.0842950 0.0923004i
\(321\) 1.02654 0.0572960
\(322\) 2.63928i 0.147081i
\(323\) 2.72288 0.151505
\(324\) 8.95962 0.497756
\(325\) 0 0
\(326\) 1.27897 0.0708355
\(327\) 0.281332 0.0155577
\(328\) 5.54869i 0.306375i
\(329\) 8.31801 0.458587
\(330\) −0.332369 + 0.363933i −0.0182963 + 0.0200339i
\(331\) 14.1568i 0.778126i −0.921211 0.389063i \(-0.872799\pi\)
0.921211 0.389063i \(-0.127201\pi\)
\(332\) 2.57870 0.141525
\(333\) −16.4645 −0.902248
\(334\) −1.90682 −0.104336
\(335\) −5.10965 + 5.59491i −0.279170 + 0.305683i
\(336\) 0.337403i 0.0184068i
\(337\) 18.7663i 1.02227i 0.859502 + 0.511133i \(0.170774\pi\)
−0.859502 + 0.511133i \(0.829226\pi\)
\(338\) 0 0
\(339\) −0.786361 −0.0427093
\(340\) −0.853124 0.779131i −0.0462672 0.0422543i
\(341\) 22.5227 1.21967
\(342\) 15.7858i 0.853597i
\(343\) −57.1954 −3.08826
\(344\) 9.35921i 0.504615i
\(345\) 0.0529535 0.0579825i 0.00285092 0.00312167i
\(346\) 0.112802i 0.00606425i
\(347\) 32.2646i 1.73205i −0.499997 0.866027i \(-0.666665\pi\)
0.499997 0.866027i \(-0.333335\pi\)
\(348\) 0.426398i 0.0228573i
\(349\) 8.62949i 0.461926i 0.972963 + 0.230963i \(0.0741876\pi\)
−0.972963 + 0.230963i \(0.925812\pi\)
\(350\) −2.27809 25.0751i −0.121769 1.34032i
\(351\) 0 0
\(352\) 3.28967i 0.175340i
\(353\) −19.0692 −1.01495 −0.507474 0.861667i \(-0.669421\pi\)
−0.507474 + 0.861667i \(0.669421\pi\)
\(354\) −0.858892 −0.0456496
\(355\) −6.38394 5.83025i −0.338824 0.309437i
\(356\) 4.82497i 0.255723i
\(357\) 0.174334 0.00922674
\(358\) 9.78320 0.517058
\(359\) 2.70589i 0.142811i 0.997447 + 0.0714056i \(0.0227485\pi\)
−0.997447 + 0.0714056i \(0.977252\pi\)
\(360\) −4.51697 + 4.94595i −0.238065 + 0.260674i
\(361\) −8.77090 −0.461627
\(362\) 8.36184 0.439489
\(363\) 0.0119293i 0.000626126i
\(364\) 0 0
\(365\) 9.69595 10.6168i 0.507509 0.555707i
\(366\) 0.772604i 0.0403847i
\(367\) 7.80278i 0.407302i −0.979044 0.203651i \(-0.934719\pi\)
0.979044 0.203651i \(-0.0652807\pi\)
\(368\) 0.524116i 0.0273214i
\(369\) 16.6212i 0.865263i
\(370\) 8.28808 9.07519i 0.430877 0.471797i
\(371\) 46.8812i 2.43395i
\(372\) −0.458731 −0.0237841
\(373\) 14.0835i 0.729218i −0.931161 0.364609i \(-0.881203\pi\)
0.931161 0.364609i \(-0.118797\pi\)
\(374\) −1.69976 −0.0878923
\(375\) −0.453050 + 0.596583i −0.0233954 + 0.0308074i
\(376\) 1.65182 0.0851859
\(377\) 0 0
\(378\) 2.02290i 0.104047i
\(379\) 0.236252i 0.0121354i −0.999982 0.00606772i \(-0.998069\pi\)
0.999982 0.00606772i \(-0.00193143\pi\)
\(380\) 8.70109 + 7.94642i 0.446356 + 0.407643i
\(381\) 0.667640 0.0342042
\(382\) 9.25588 0.473572
\(383\) 11.7086 0.598281 0.299140 0.954209i \(-0.403300\pi\)
0.299140 + 0.954209i \(0.403300\pi\)
\(384\) 0.0670024i 0.00341920i
\(385\) −27.3520 24.9797i −1.39399 1.27308i
\(386\) 17.5149 0.891483
\(387\) 28.0356i 1.42513i
\(388\) 1.88098 0.0954925
\(389\) −2.05842 −0.104366 −0.0521830 0.998638i \(-0.516618\pi\)
−0.0521830 + 0.998638i \(0.516618\pi\)
\(390\) 0 0
\(391\) 0.270808 0.0136953
\(392\) −18.3580 −0.927221
\(393\) 0.229984i 0.0116012i
\(394\) −20.2809 −1.02174
\(395\) 10.9838 12.0270i 0.552657 0.605142i
\(396\) 9.85425i 0.495195i
\(397\) 10.6417 0.534091 0.267046 0.963684i \(-0.413953\pi\)
0.267046 + 0.963684i \(0.413953\pi\)
\(398\) 27.0802 1.35741
\(399\) −1.77805 −0.0890137
\(400\) −0.452390 4.97949i −0.0226195 0.248975i
\(401\) 7.49704i 0.374384i −0.982323 0.187192i \(-0.940061\pi\)
0.982323 0.187192i \(-0.0599387\pi\)
\(402\) 0.227042i 0.0113238i
\(403\) 0 0
\(404\) −3.10344 −0.154402
\(405\) 13.5103 14.7934i 0.671334 0.735090i
\(406\) −32.0466 −1.59045
\(407\) 18.0813i 0.896258i
\(408\) 0.0346198 0.00171394
\(409\) 21.5011i 1.06316i 0.847007 + 0.531582i \(0.178402\pi\)
−0.847007 + 0.531582i \(0.821598\pi\)
\(410\) −9.16155 8.36695i −0.452457 0.413214i
\(411\) 1.15233i 0.0568403i
\(412\) 14.9509i 0.736580i
\(413\) 64.5514i 3.17637i
\(414\) 1.57000i 0.0771611i
\(415\) 3.88847 4.25775i 0.190877 0.209005i
\(416\) 0 0
\(417\) 0.439756i 0.0215349i
\(418\) 17.3360 0.847930
\(419\) −12.8640 −0.628449 −0.314224 0.949349i \(-0.601744\pi\)
−0.314224 + 0.949349i \(0.601744\pi\)
\(420\) 0.557092 + 0.508774i 0.0271833 + 0.0248256i
\(421\) 4.00323i 0.195105i 0.995230 + 0.0975527i \(0.0311015\pi\)
−0.995230 + 0.0975527i \(0.968899\pi\)
\(422\) 11.9828 0.583312
\(423\) −4.94803 −0.240581
\(424\) 9.30982i 0.452125i
\(425\) −2.57288 + 0.233747i −0.124803 + 0.0113384i
\(426\) 0.259060 0.0125515
\(427\) 58.0663 2.81003
\(428\) 15.3210i 0.740567i
\(429\) 0 0
\(430\) −15.4532 14.1129i −0.745218 0.680584i
\(431\) 21.6439i 1.04255i 0.853389 + 0.521274i \(0.174543\pi\)
−0.853389 + 0.521274i \(0.825457\pi\)
\(432\) 0.401714i 0.0193275i
\(433\) 1.51015i 0.0725733i 0.999341 + 0.0362866i \(0.0115529\pi\)
−0.999341 + 0.0362866i \(0.988447\pi\)
\(434\) 34.4766i 1.65493i
\(435\) 0.704034 + 0.642972i 0.0337559 + 0.0308281i
\(436\) 4.19883i 0.201087i
\(437\) −2.76199 −0.132124
\(438\) 0.430828i 0.0205858i
\(439\) −16.1800 −0.772229 −0.386114 0.922451i \(-0.626183\pi\)
−0.386114 + 0.922451i \(0.626183\pi\)
\(440\) −5.43164 4.96055i −0.258944 0.236485i
\(441\) 54.9917 2.61865
\(442\) 0 0
\(443\) 3.49878i 0.166232i −0.996540 0.0831161i \(-0.973513\pi\)
0.996540 0.0831161i \(-0.0264872\pi\)
\(444\) 0.368271i 0.0174774i
\(445\) 7.96660 + 7.27564i 0.377653 + 0.344898i
\(446\) −12.7910 −0.605669
\(447\) −0.855118 −0.0404457
\(448\) −5.03568 −0.237913
\(449\) 7.98505i 0.376838i −0.982089 0.188419i \(-0.939664\pi\)
0.982089 0.188419i \(-0.0603363\pi\)
\(450\) 1.35514 + 14.9161i 0.0638818 + 0.703153i
\(451\) −18.2534 −0.859518
\(452\) 11.7363i 0.552029i
\(453\) 0.652428 0.0306537
\(454\) 5.83533 0.273866
\(455\) 0 0
\(456\) −0.353090 −0.0165350
\(457\) −17.4867 −0.817992 −0.408996 0.912536i \(-0.634121\pi\)
−0.408996 + 0.912536i \(0.634121\pi\)
\(458\) 15.2208i 0.711220i
\(459\) −0.207563 −0.00968823
\(460\) 0.865378 + 0.790322i 0.0403485 + 0.0368490i
\(461\) 15.0988i 0.703222i −0.936146 0.351611i \(-0.885634\pi\)
0.936146 0.351611i \(-0.114366\pi\)
\(462\) 1.10994 0.0516393
\(463\) 12.3107 0.572127 0.286064 0.958211i \(-0.407653\pi\)
0.286064 + 0.958211i \(0.407653\pi\)
\(464\) −6.36392 −0.295438
\(465\) −0.691726 + 0.757419i −0.0320780 + 0.0351245i
\(466\) 18.4629i 0.855278i
\(467\) 9.27853i 0.429359i −0.976685 0.214680i \(-0.931129\pi\)
0.976685 0.214680i \(-0.0688707\pi\)
\(468\) 0 0
\(469\) 17.0637 0.787928
\(470\) 2.49080 2.72734i 0.114892 0.125803i
\(471\) 1.42820 0.0658080
\(472\) 12.8188i 0.590034i
\(473\) −30.7888 −1.41567
\(474\) 0.488054i 0.0224171i
\(475\) 26.2410 2.38401i 1.20402 0.109386i
\(476\) 2.60191i 0.119258i
\(477\) 27.8877i 1.27689i
\(478\) 3.76483i 0.172199i
\(479\) 38.6780i 1.76724i −0.468201 0.883622i \(-0.655098\pi\)
0.468201 0.883622i \(-0.344902\pi\)
\(480\) 0.110629 + 0.101034i 0.00504950 + 0.00461155i
\(481\) 0 0
\(482\) 15.4771i 0.704961i
\(483\) −0.176838 −0.00804642
\(484\) 0.178043 0.00809286
\(485\) 2.83636 3.10573i 0.128793 0.141024i
\(486\) 1.80546i 0.0818972i
\(487\) 19.3496 0.876812 0.438406 0.898777i \(-0.355543\pi\)
0.438406 + 0.898777i \(0.355543\pi\)
\(488\) 11.5310 0.521983
\(489\) 0.0856940i 0.00387522i
\(490\) −27.6823 + 30.3113i −1.25056 + 1.36933i
\(491\) −27.7335 −1.25160 −0.625798 0.779986i \(-0.715226\pi\)
−0.625798 + 0.779986i \(0.715226\pi\)
\(492\) 0.371776 0.0167609
\(493\) 3.28820i 0.148093i
\(494\) 0 0
\(495\) 16.2705 + 14.8594i 0.731307 + 0.667879i
\(496\) 6.84648i 0.307416i
\(497\) 19.4701i 0.873353i
\(498\) 0.172779i 0.00774243i
\(499\) 22.2962i 0.998116i 0.866569 + 0.499058i \(0.166321\pi\)
−0.866569 + 0.499058i \(0.833679\pi\)
\(500\) −8.90390 6.76170i −0.398195 0.302392i
\(501\) 0.127761i 0.00570796i
\(502\) 1.26747 0.0565699
\(503\) 5.15651i 0.229918i −0.993370 0.114959i \(-0.963326\pi\)
0.993370 0.114959i \(-0.0366736\pi\)
\(504\) 15.0844 0.671914
\(505\) −4.67972 + 5.12415i −0.208245 + 0.228021i
\(506\) 1.72417 0.0766488
\(507\) 0 0
\(508\) 9.96441i 0.442099i
\(509\) 9.11596i 0.404058i −0.979380 0.202029i \(-0.935246\pi\)
0.979380 0.202029i \(-0.0647535\pi\)
\(510\) 0.0522037 0.0571614i 0.00231162 0.00253115i
\(511\) −32.3796 −1.43239
\(512\) −1.00000 −0.0441942
\(513\) 2.11696 0.0934659
\(514\) 29.7338i 1.31150i
\(515\) 24.6858 + 22.5447i 1.08779 + 0.993439i
\(516\) 0.627090 0.0276061
\(517\) 5.43393i 0.238984i
\(518\) −27.6780 −1.21610
\(519\) 0.00755798 0.000331759
\(520\) 0 0
\(521\) −28.0573 −1.22921 −0.614606 0.788834i \(-0.710685\pi\)
−0.614606 + 0.788834i \(0.710685\pi\)
\(522\) 19.0632 0.834373
\(523\) 20.2889i 0.887170i −0.896232 0.443585i \(-0.853706\pi\)
0.896232 0.443585i \(-0.146294\pi\)
\(524\) −3.43248 −0.149948
\(525\) 1.68009 0.152638i 0.0733253 0.00666165i
\(526\) 20.2454i 0.882743i
\(527\) −3.53754 −0.154098
\(528\) 0.220416 0.00959238
\(529\) 22.7253 0.988057
\(530\) −15.3716 14.0384i −0.667701 0.609790i
\(531\) 38.3989i 1.66637i
\(532\) 26.5371i 1.15053i
\(533\) 0 0
\(534\) −0.323285 −0.0139899
\(535\) 25.2967 + 23.1027i 1.09367 + 0.998816i
\(536\) 3.38856 0.146363
\(537\) 0.655498i 0.0282868i
\(538\) 12.2284 0.527202
\(539\) 60.3920i 2.60127i
\(540\) −0.663277 0.605750i −0.0285429 0.0260673i
\(541\) 34.8443i 1.49807i 0.662529 + 0.749036i \(0.269483\pi\)
−0.662529 + 0.749036i \(0.730517\pi\)
\(542\) 13.3526i 0.573544i
\(543\) 0.560264i 0.0240432i
\(544\) 0.516695i 0.0221531i
\(545\) 6.93276 + 6.33147i 0.296967 + 0.271210i
\(546\) 0 0
\(547\) 6.66151i 0.284825i −0.989807 0.142413i \(-0.954514\pi\)
0.989807 0.142413i \(-0.0454860\pi\)
\(548\) 17.1983 0.734677
\(549\) −34.5412 −1.47418
\(550\) −16.3809 + 1.48822i −0.698484 + 0.0634577i
\(551\) 33.5367i 1.42871i
\(552\) −0.0351171 −0.00149468
\(553\) −36.6805 −1.55981
\(554\) 9.36534i 0.397895i
\(555\) 0.608060 + 0.555321i 0.0258107 + 0.0235721i
\(556\) 6.56328 0.278345
\(557\) 1.12641 0.0477277 0.0238638 0.999715i \(-0.492403\pi\)
0.0238638 + 0.999715i \(0.492403\pi\)
\(558\) 20.5087i 0.868202i
\(559\) 0 0
\(560\) −7.59337 + 8.31450i −0.320878 + 0.351352i
\(561\) 0.113888i 0.00480835i
\(562\) 20.5996i 0.868941i
\(563\) 12.0651i 0.508484i 0.967141 + 0.254242i \(0.0818260\pi\)
−0.967141 + 0.254242i \(0.918174\pi\)
\(564\) 0.110676i 0.00466028i
\(565\) −19.3780 17.6973i −0.815240 0.744533i
\(566\) 14.4039i 0.605442i
\(567\) −45.1177 −1.89477
\(568\) 3.86643i 0.162232i
\(569\) 26.4132 1.10730 0.553650 0.832750i \(-0.313235\pi\)
0.553650 + 0.832750i \(0.313235\pi\)
\(570\) −0.532430 + 0.582994i −0.0223010 + 0.0244189i
\(571\) −29.7751 −1.24605 −0.623025 0.782202i \(-0.714096\pi\)
−0.623025 + 0.782202i \(0.714096\pi\)
\(572\) 0 0
\(573\) 0.620167i 0.0259078i
\(574\) 27.9414i 1.16625i
\(575\) 2.60983 0.237105i 0.108838 0.00988796i
\(576\) 2.99551 0.124813
\(577\) 28.5908 1.19025 0.595126 0.803633i \(-0.297102\pi\)
0.595126 + 0.803633i \(0.297102\pi\)
\(578\) −16.7330 −0.696002
\(579\) 1.17354i 0.0487706i
\(580\) −9.59625 + 10.5076i −0.398462 + 0.436304i
\(581\) −12.9855 −0.538730
\(582\) 0.126031i 0.00522413i
\(583\) −30.6263 −1.26841
\(584\) −6.43004 −0.266077
\(585\) 0 0
\(586\) 15.0823 0.623044
\(587\) −1.57376 −0.0649562 −0.0324781 0.999472i \(-0.510340\pi\)
−0.0324781 + 0.999472i \(0.510340\pi\)
\(588\) 1.23003i 0.0507257i
\(589\) 36.0796 1.48664
\(590\) −21.1654 19.3297i −0.871366 0.795790i
\(591\) 1.35887i 0.0558965i
\(592\) −5.49639 −0.225900
\(593\) 31.9506 1.31205 0.656027 0.754737i \(-0.272236\pi\)
0.656027 + 0.754737i \(0.272236\pi\)
\(594\) −1.32151 −0.0542221
\(595\) 4.29606 + 3.92345i 0.176121 + 0.160846i
\(596\) 12.7625i 0.522772i
\(597\) 1.81444i 0.0742600i
\(598\) 0 0
\(599\) 29.2165 1.19375 0.596877 0.802332i \(-0.296408\pi\)
0.596877 + 0.802332i \(0.296408\pi\)
\(600\) 0.333638 0.0303112i 0.0136207 0.00123745i
\(601\) 24.1056 0.983287 0.491643 0.870797i \(-0.336396\pi\)
0.491643 + 0.870797i \(0.336396\pi\)
\(602\) 47.1300i 1.92087i
\(603\) −10.1505 −0.413359
\(604\) 9.73737i 0.396208i
\(605\) 0.268473 0.293970i 0.0109150 0.0119516i
\(606\) 0.207938i 0.00844690i
\(607\) 22.1386i 0.898579i −0.893386 0.449290i \(-0.851677\pi\)
0.893386 0.449290i \(-0.148323\pi\)
\(608\) 5.26981i 0.213719i
\(609\) 2.14720i 0.0870091i
\(610\) 17.3877 19.0390i 0.704009 0.770868i
\(611\) 0 0
\(612\) 1.54776i 0.0625647i
\(613\) −37.1880 −1.50201 −0.751004 0.660297i \(-0.770430\pi\)
−0.751004 + 0.660297i \(0.770430\pi\)
\(614\) 1.59681 0.0644419
\(615\) 0.560606 0.613846i 0.0226058 0.0247527i
\(616\) 16.5657i 0.667453i
\(617\) −40.8840 −1.64593 −0.822963 0.568094i \(-0.807681\pi\)
−0.822963 + 0.568094i \(0.807681\pi\)
\(618\) −1.00175 −0.0402963
\(619\) 17.3785i 0.698501i −0.937029 0.349250i \(-0.886436\pi\)
0.937029 0.349250i \(-0.113564\pi\)
\(620\) −11.3043 10.3239i −0.453994 0.414618i
\(621\) 0.210545 0.00844887
\(622\) 3.52287 0.141254
\(623\) 24.2970i 0.973438i
\(624\) 0 0
\(625\) −24.5907 + 4.50534i −0.983627 + 0.180214i
\(626\) 20.7603i 0.829750i
\(627\) 1.16155i 0.0463879i
\(628\) 21.3156i 0.850587i
\(629\) 2.83995i 0.113236i
\(630\) 22.7460 24.9062i 0.906223 0.992286i
\(631\) 1.17310i 0.0467005i −0.999727 0.0233503i \(-0.992567\pi\)
0.999727 0.0233503i \(-0.00743330\pi\)
\(632\) −7.28413 −0.289747
\(633\) 0.802875i 0.0319114i
\(634\) −4.92085 −0.195432
\(635\) 16.4524 + 15.0255i 0.652895 + 0.596268i
\(636\) 0.623781 0.0247345
\(637\) 0 0
\(638\) 20.9352i 0.828834i
\(639\) 11.5819i 0.458174i
\(640\) −1.50791 + 1.65112i −0.0596055 + 0.0652662i
\(641\) 30.0814 1.18815 0.594073 0.804411i \(-0.297519\pi\)
0.594073 + 0.804411i \(0.297519\pi\)
\(642\) −1.02654 −0.0405144
\(643\) 39.2988 1.54979 0.774896 0.632089i \(-0.217802\pi\)
0.774896 + 0.632089i \(0.217802\pi\)
\(644\) 2.63928i 0.104002i
\(645\) 0.945598 1.03540i 0.0372329 0.0407689i
\(646\) −2.72288 −0.107130
\(647\) 47.8194i 1.87997i 0.341211 + 0.939987i \(0.389163\pi\)
−0.341211 + 0.939987i \(0.610837\pi\)
\(648\) −8.95962 −0.351967
\(649\) −42.1697 −1.65531
\(650\) 0 0
\(651\) 2.31002 0.0905368
\(652\) −1.27897 −0.0500883
\(653\) 32.7143i 1.28021i −0.768288 0.640104i \(-0.778891\pi\)
0.768288 0.640104i \(-0.221109\pi\)
\(654\) −0.281332 −0.0110009
\(655\) −5.17588 + 5.66743i −0.202238 + 0.221445i
\(656\) 5.54869i 0.216640i
\(657\) 19.2613 0.751453
\(658\) −8.31801 −0.324270
\(659\) 41.9069 1.63246 0.816231 0.577725i \(-0.196060\pi\)
0.816231 + 0.577725i \(0.196060\pi\)
\(660\) 0.332369 0.363933i 0.0129374 0.0141661i
\(661\) 21.6745i 0.843039i 0.906819 + 0.421520i \(0.138503\pi\)
−0.906819 + 0.421520i \(0.861497\pi\)
\(662\) 14.1568i 0.550218i
\(663\) 0 0
\(664\) −2.57870 −0.100073
\(665\) −43.8159 40.0156i −1.69911 1.55174i
\(666\) 16.4645 0.637986
\(667\) 3.33543i 0.129149i
\(668\) 1.90682 0.0737770
\(669\) 0.857025i 0.0331345i
\(670\) 5.10965 5.59491i 0.197403 0.216150i
\(671\) 37.9332i 1.46440i
\(672\) 0.337403i 0.0130156i
\(673\) 37.9352i 1.46230i 0.682219 + 0.731148i \(0.261015\pi\)
−0.682219 + 0.731148i \(0.738985\pi\)
\(674\) 18.7663i 0.722851i
\(675\) −2.00033 + 0.181731i −0.0769928 + 0.00699484i
\(676\) 0 0
\(677\) 10.4768i 0.402654i 0.979524 + 0.201327i \(0.0645254\pi\)
−0.979524 + 0.201327i \(0.935475\pi\)
\(678\) 0.786361 0.0302000
\(679\) −9.47203 −0.363503
\(680\) 0.853124 + 0.779131i 0.0327158 + 0.0298783i
\(681\) 0.390981i 0.0149824i
\(682\) −22.5227 −0.862438
\(683\) −24.4591 −0.935903 −0.467952 0.883754i \(-0.655008\pi\)
−0.467952 + 0.883754i \(0.655008\pi\)
\(684\) 15.7858i 0.603584i
\(685\) 25.9336 28.3965i 0.990873 1.08498i
\(686\) 57.1954 2.18373
\(687\) 1.01983 0.0389089
\(688\) 9.35921i 0.356817i
\(689\) 0 0
\(690\) −0.0529535 + 0.0579825i −0.00201591 + 0.00220735i
\(691\) 20.4414i 0.777626i −0.921317 0.388813i \(-0.872885\pi\)
0.921317 0.388813i \(-0.127115\pi\)
\(692\) 0.112802i 0.00428807i
\(693\) 49.6228i 1.88502i
\(694\) 32.2646i 1.22475i
\(695\) 9.89687 10.8368i 0.375410 0.411062i
\(696\) 0.426398i 0.0161626i
\(697\) 2.86698 0.108594
\(698\) 8.62949i 0.326631i
\(699\) 1.23706 0.0467899
\(700\) 2.27809 + 25.0751i 0.0861037 + 0.947750i
\(701\) −11.4168 −0.431208 −0.215604 0.976481i \(-0.569172\pi\)
−0.215604 + 0.976481i \(0.569172\pi\)
\(702\) 0 0
\(703\) 28.9649i 1.09243i
\(704\) 3.28967i 0.123984i
\(705\) 0.182739 + 0.166889i 0.00688234 + 0.00628542i
\(706\) 19.0692 0.717677
\(707\) 15.6279 0.587748
\(708\) 0.858892 0.0322791
\(709\) 39.7802i 1.49398i 0.664836 + 0.746989i \(0.268501\pi\)
−0.664836 + 0.746989i \(0.731499\pi\)
\(710\) 6.38394 + 5.83025i 0.239585 + 0.218805i
\(711\) 21.8197 0.818302
\(712\) 4.82497i 0.180823i
\(713\) 3.58835 0.134385
\(714\) −0.174334 −0.00652429
\(715\) 0 0
\(716\) −9.78320 −0.365615
\(717\) −0.252253 −0.00942054
\(718\) 2.70589i 0.100983i
\(719\) 21.4776 0.800980 0.400490 0.916301i \(-0.368840\pi\)
0.400490 + 0.916301i \(0.368840\pi\)
\(720\) 4.51697 4.94595i 0.168338 0.184325i
\(721\) 75.2881i 2.80387i
\(722\) 8.77090 0.326419
\(723\) 1.03700 0.0385665
\(724\) −8.36184 −0.310765
\(725\) 2.87897 + 31.6891i 0.106922 + 1.17690i
\(726\) 0.0119293i 0.000442738i
\(727\) 26.5625i 0.985148i 0.870271 + 0.492574i \(0.163944\pi\)
−0.870271 + 0.492574i \(0.836056\pi\)
\(728\) 0 0
\(729\) 26.7579 0.991033
\(730\) −9.69595 + 10.6168i −0.358863 + 0.392944i
\(731\) 4.83585 0.178861
\(732\) 0.772604i 0.0285563i
\(733\) 28.8341 1.06501 0.532505 0.846427i \(-0.321251\pi\)
0.532505 + 0.846427i \(0.321251\pi\)
\(734\) 7.80278i 0.288006i
\(735\) −2.03093 1.85478i −0.0749121 0.0684148i
\(736\) 0.524116i 0.0193192i
\(737\) 11.1473i 0.410614i
\(738\) 16.6212i 0.611833i
\(739\) 9.48392i 0.348872i −0.984669 0.174436i \(-0.944190\pi\)
0.984669 0.174436i \(-0.0558102\pi\)
\(740\) −8.28808 + 9.07519i −0.304676 + 0.333611i
\(741\) 0 0
\(742\) 46.8812i 1.72106i
\(743\) 10.2767 0.377017 0.188508 0.982072i \(-0.439635\pi\)
0.188508 + 0.982072i \(0.439635\pi\)
\(744\) 0.458731 0.0168179
\(745\) −21.0724 19.2447i −0.772033 0.705073i
\(746\) 14.0835i 0.515635i
\(747\) 7.72454 0.282626
\(748\) 1.69976 0.0621493
\(749\) 77.1514i 2.81905i
\(750\) 0.453050 0.596583i 0.0165431 0.0217841i
\(751\) −29.7407 −1.08525 −0.542627 0.839974i \(-0.682570\pi\)
−0.542627 + 0.839974i \(0.682570\pi\)
\(752\) −1.65182 −0.0602355
\(753\) 0.0849235i 0.00309478i
\(754\) 0 0
\(755\) 16.0776 + 14.6831i 0.585123 + 0.534374i
\(756\) 2.02290i 0.0735722i
\(757\) 2.50703i 0.0911197i −0.998962 0.0455599i \(-0.985493\pi\)
0.998962 0.0455599i \(-0.0145072\pi\)
\(758\) 0.236252i 0.00858106i
\(759\) 0.115524i 0.00419324i
\(760\) −8.70109 7.94642i −0.315622 0.288247i
\(761\) 36.3569i 1.31794i −0.752170 0.658969i \(-0.770993\pi\)
0.752170 0.658969i \(-0.229007\pi\)
\(762\) −0.667640 −0.0241860
\(763\) 21.1439i 0.765462i
\(764\) −9.25588 −0.334866
\(765\) −2.55554 2.33390i −0.0923959 0.0843822i
\(766\) −11.7086 −0.423048
\(767\) 0 0
\(768\) 0.0670024i 0.00241774i
\(769\) 9.73400i 0.351017i 0.984478 + 0.175509i \(0.0561570\pi\)
−0.984478 + 0.175509i \(0.943843\pi\)
\(770\) 27.3520 + 24.9797i 0.985698 + 0.900206i
\(771\) −1.99224 −0.0717486
\(772\) −17.5149 −0.630374
\(773\) −40.0014 −1.43875 −0.719375 0.694621i \(-0.755572\pi\)
−0.719375 + 0.694621i \(0.755572\pi\)
\(774\) 28.0356i 1.00772i
\(775\) −34.0920 + 3.09728i −1.22462 + 0.111257i
\(776\) −1.88098 −0.0675234
\(777\) 1.85449i 0.0665296i
\(778\) 2.05842 0.0737979
\(779\) −29.2405 −1.04765
\(780\) 0 0
\(781\) 12.7193 0.455132
\(782\) −0.270808 −0.00968407
\(783\) 2.55647i 0.0913610i
\(784\) 18.3580 0.655644
\(785\) 35.1947 + 32.1422i 1.25615 + 1.14720i
\(786\) 0.229984i 0.00820327i
\(787\) −46.0334 −1.64091 −0.820456 0.571710i \(-0.806280\pi\)
−0.820456 + 0.571710i \(0.806280\pi\)
\(788\) 20.2809 0.722479
\(789\) −1.35649 −0.0482924
\(790\) −10.9838 + 12.0270i −0.390787 + 0.427900i
\(791\) 59.1002i 2.10136i
\(792\) 9.85425i 0.350156i
\(793\) 0 0
\(794\) −10.6417 −0.377660
\(795\) 0.940608 1.02994i 0.0333599 0.0365281i
\(796\) −27.0802 −0.959832
\(797\) 5.63521i 0.199610i 0.995007 + 0.0998048i \(0.0318218\pi\)
−0.995007 + 0.0998048i \(0.968178\pi\)
\(798\) 1.77805 0.0629422
\(799\) 0.853484i 0.0301941i
\(800\) 0.452390 + 4.97949i 0.0159944 + 0.176052i
\(801\) 14.4533i 0.510680i
\(802\) 7.49704i 0.264730i
\(803\) 21.1527i 0.746464i
\(804\) 0.227042i 0.00800714i
\(805\) −4.35777 3.97981i −0.153591 0.140270i
\(806\) 0 0
\(807\) 0.819330i 0.0288418i
\(808\) 3.10344 0.109179
\(809\) 35.5797 1.25092 0.625459 0.780257i \(-0.284912\pi\)
0.625459 + 0.780257i \(0.284912\pi\)
\(810\) −13.5103 + 14.7934i −0.474705 + 0.519787i
\(811\) 23.1724i 0.813694i −0.913496 0.406847i \(-0.866628\pi\)
0.913496 0.406847i \(-0.133372\pi\)
\(812\) 32.0466 1.12462
\(813\) −0.894658 −0.0313770
\(814\) 18.0813i 0.633750i
\(815\) −1.92857 + 2.11173i −0.0675550 + 0.0739706i
\(816\) −0.0346198 −0.00121194
\(817\) −49.3213 −1.72553
\(818\) 21.5011i 0.751770i
\(819\) 0 0
\(820\) 9.16155 + 8.36695i 0.319935 + 0.292186i
\(821\) 22.8480i 0.797401i 0.917081 + 0.398701i \(0.130539\pi\)
−0.917081 + 0.398701i \(0.869461\pi\)
\(822\) 1.15233i 0.0401922i
\(823\) 23.7086i 0.826431i 0.910633 + 0.413216i \(0.135594\pi\)
−0.910633 + 0.413216i \(0.864406\pi\)
\(824\) 14.9509i 0.520840i
\(825\) −0.0997140 1.09756i −0.00347160 0.0382122i
\(826\) 64.5514i 2.24603i
\(827\) 47.3108 1.64516 0.822579 0.568650i \(-0.192534\pi\)
0.822579 + 0.568650i \(0.192534\pi\)
\(828\) 1.57000i 0.0545611i
\(829\) 43.6231 1.51509 0.757547 0.652781i \(-0.226398\pi\)
0.757547 + 0.652781i \(0.226398\pi\)
\(830\) −3.88847 + 4.25775i −0.134971 + 0.147789i
\(831\) 0.627501 0.0217678
\(832\) 0 0
\(833\) 9.48550i 0.328653i
\(834\) 0.439756i 0.0152275i
\(835\) 2.87532 3.14838i 0.0995045 0.108954i
\(836\) −17.3360 −0.599577
\(837\) −2.75032 −0.0950651
\(838\) 12.8640 0.444380
\(839\) 33.9488i 1.17204i 0.810296 + 0.586021i \(0.199306\pi\)
−0.810296 + 0.586021i \(0.800694\pi\)
\(840\) −0.557092 0.508774i −0.0192215 0.0175544i
\(841\) 11.4995 0.396534
\(842\) 4.00323i 0.137960i
\(843\) −1.38022 −0.0475374
\(844\) −11.9828 −0.412464
\(845\) 0 0
\(846\) 4.94803 0.170117
\(847\) −0.896566 −0.0308064
\(848\) 9.30982i 0.319701i
\(849\) −0.965098 −0.0331221
\(850\) 2.57288 0.233747i 0.0882489 0.00801747i
\(851\) 2.88075i 0.0987507i
\(852\) −0.259060 −0.00887526
\(853\) −30.4292 −1.04187 −0.520937 0.853595i \(-0.674417\pi\)
−0.520937 + 0.853595i \(0.674417\pi\)
\(854\) −58.0663 −1.98699
\(855\) 26.0642 + 23.8036i 0.891377 + 0.814066i
\(856\) 15.3210i 0.523660i
\(857\) 50.9646i 1.74092i −0.492240 0.870459i \(-0.663822\pi\)
0.492240 0.870459i \(-0.336178\pi\)
\(858\) 0 0
\(859\) −38.5183 −1.31423 −0.657114 0.753791i \(-0.728223\pi\)
−0.657114 + 0.753791i \(0.728223\pi\)
\(860\) 15.4532 + 14.1129i 0.526949 + 0.481246i
\(861\) −1.87214 −0.0638024
\(862\) 21.6439i 0.737193i
\(863\) 56.6567 1.92862 0.964308 0.264784i \(-0.0853008\pi\)
0.964308 + 0.264784i \(0.0853008\pi\)
\(864\) 0.401714i 0.0136666i
\(865\) 0.186249 + 0.170095i 0.00633265 + 0.00578341i
\(866\) 1.51015i 0.0513170i
\(867\) 1.12115i 0.0380764i
\(868\) 34.4766i 1.17021i
\(869\) 23.9624i 0.812869i
\(870\) −0.704034 0.642972i −0.0238690 0.0217988i
\(871\) 0 0
\(872\) 4.19883i 0.142190i
\(873\) 5.63451 0.190699
\(874\) 2.76199 0.0934258
\(875\) 44.8372 + 34.0497i 1.51577 + 1.15109i
\(876\) 0.430828i 0.0145563i
\(877\) 41.9193 1.41551 0.707757 0.706456i \(-0.249707\pi\)
0.707757 + 0.706456i \(0.249707\pi\)
\(878\) 16.1800 0.546048
\(879\) 1.01055i 0.0340850i
\(880\) 5.43164 + 4.96055i 0.183101 + 0.167220i
\(881\) −1.17194 −0.0394836 −0.0197418 0.999805i \(-0.506284\pi\)
−0.0197418 + 0.999805i \(0.506284\pi\)
\(882\) −54.9917 −1.85167
\(883\) 24.3462i 0.819314i 0.912240 + 0.409657i \(0.134352\pi\)
−0.912240 + 0.409657i \(0.865648\pi\)
\(884\) 0 0
\(885\) 1.29514 1.41813i 0.0435355 0.0476700i
\(886\) 3.49878i 0.117544i
\(887\) 8.57827i 0.288030i 0.989575 + 0.144015i \(0.0460014\pi\)
−0.989575 + 0.144015i \(0.953999\pi\)
\(888\) 0.368271i 0.0123584i
\(889\) 50.1775i 1.68290i
\(890\) −7.96660 7.27564i −0.267041 0.243880i
\(891\) 29.4742i 0.987424i
\(892\) 12.7910 0.428273
\(893\) 8.70475i 0.291293i
\(894\) 0.855118 0.0285994
\(895\) −14.7522 + 16.1532i −0.493112 + 0.539943i
\(896\) 5.03568 0.168230
\(897\) 0 0
\(898\) 7.98505i 0.266465i
\(899\) 43.5704i 1.45316i
\(900\) −1.35514 14.9161i −0.0451713 0.497204i
\(901\) 4.81033 0.160255
\(902\) 18.2534 0.607771
\(903\) −3.15782 −0.105086
\(904\) 11.7363i 0.390344i
\(905\) −12.6089 + 13.8064i −0.419135 + 0.458940i
\(906\) −0.652428 −0.0216755
\(907\) 25.2134i 0.837197i −0.908172 0.418598i \(-0.862522\pi\)
0.908172 0.418598i \(-0.137478\pi\)
\(908\) −5.83533 −0.193652
\(909\) −9.29638 −0.308341
\(910\) 0 0
\(911\) 27.1861 0.900715 0.450358 0.892848i \(-0.351296\pi\)
0.450358 + 0.892848i \(0.351296\pi\)
\(912\) 0.353090 0.0116920
\(913\) 8.48310i 0.280750i
\(914\) 17.4867 0.578408
\(915\) 1.27566 + 1.16502i 0.0421721 + 0.0385144i
\(916\) 15.2208i 0.502909i
\(917\) 17.2848 0.570796
\(918\) 0.207563 0.00685061
\(919\) −13.6082 −0.448893 −0.224446 0.974486i \(-0.572057\pi\)
−0.224446 + 0.974486i \(0.572057\pi\)
\(920\) −0.865378 0.790322i −0.0285307 0.0260562i
\(921\) 0.106990i 0.00352544i
\(922\) 15.0988i 0.497253i
\(923\) 0 0
\(924\) −1.10994 −0.0365145
\(925\) 2.48651 + 27.3692i 0.0817559 + 0.899894i
\(926\) −12.3107 −0.404555
\(927\) 44.7857i 1.47095i
\(928\) 6.36392 0.208906
\(929\) 14.8556i 0.487396i −0.969851 0.243698i \(-0.921639\pi\)
0.969851 0.243698i \(-0.0783606\pi\)
\(930\) 0.691726 0.757419i 0.0226826 0.0248367i
\(931\) 96.7434i 3.17064i
\(932\) 18.4629i 0.604773i
\(933\) 0.236041i 0.00772764i
\(934\) 9.27853i 0.303603i
\(935\) 2.56309 2.80650i 0.0838219 0.0917824i
\(936\) 0 0
\(937\) 47.7682i 1.56052i 0.625457 + 0.780259i \(0.284913\pi\)
−0.625457 + 0.780259i \(0.715087\pi\)
\(938\) −17.0637 −0.557149
\(939\) −1.39099 −0.0453934
\(940\) −2.49080 + 2.72734i −0.0812408 + 0.0889561i
\(941\) 11.2464i 0.366623i 0.983055 + 0.183311i \(0.0586816\pi\)
−0.983055 + 0.183311i \(0.941318\pi\)
\(942\) −1.42820 −0.0465333
\(943\) −2.90816 −0.0947026
\(944\) 12.8188i 0.417217i
\(945\) 3.34005 + 3.05036i 0.108652 + 0.0992282i
\(946\) 30.7888 1.00103
\(947\) −35.7394 −1.16137 −0.580687 0.814127i \(-0.697216\pi\)
−0.580687 + 0.814127i \(0.697216\pi\)
\(948\) 0.488054i 0.0158513i
\(949\) 0 0
\(950\) −26.2410 + 2.38401i −0.851370 + 0.0773475i
\(951\) 0.329709i 0.0106915i
\(952\) 2.60191i 0.0843283i
\(953\) 40.0847i 1.29847i 0.760587 + 0.649236i \(0.224911\pi\)
−0.760587 + 0.649236i \(0.775089\pi\)
\(954\) 27.8877i 0.902896i
\(955\) −13.9571 + 15.2826i −0.451640 + 0.494532i
\(956\) 3.76483i 0.121763i
\(957\) −1.40271 −0.0453432
\(958\) 38.6780i 1.24963i
\(959\) −86.6053 −2.79663
\(960\) −0.110629 0.101034i −0.00357054 0.00326086i
\(961\) −15.8742 −0.512072
\(962\) 0 0
\(963\) 45.8941i 1.47892i
\(964\) 15.4771i 0.498482i
\(965\) −26.4109 + 28.9191i −0.850198 + 0.930940i
\(966\) 0.176838 0.00568968
\(967\) −24.2441 −0.779639 −0.389820 0.920891i \(-0.627463\pi\)
−0.389820 + 0.920891i \(0.627463\pi\)
\(968\) −0.178043 −0.00572251
\(969\) 0.182440i 0.00586081i
\(970\) −2.83636 + 3.10573i −0.0910701 + 0.0997190i
\(971\) −33.3744 −1.07104 −0.535519 0.844523i \(-0.679884\pi\)
−0.535519 + 0.844523i \(0.679884\pi\)
\(972\) 1.80546i 0.0579101i
\(973\) −33.0506 −1.05955
\(974\) −19.3496 −0.620000
\(975\) 0 0
\(976\) −11.5310 −0.369098
\(977\) −6.21560 −0.198855 −0.0994273 0.995045i \(-0.531701\pi\)
−0.0994273 + 0.995045i \(0.531701\pi\)
\(978\) 0.0856940i 0.00274019i
\(979\) −15.8726 −0.507290
\(980\) 27.6823 30.3113i 0.884280 0.968259i
\(981\) 12.5776i 0.401573i
\(982\) 27.7335 0.885011
\(983\) −42.7293 −1.36285 −0.681427 0.731886i \(-0.738640\pi\)
−0.681427 + 0.731886i \(0.738640\pi\)
\(984\) −0.371776 −0.0118518
\(985\) 30.5819 33.4863i 0.974421 1.06696i
\(986\) 3.28820i 0.104718i
\(987\) 0.557327i 0.0177399i
\(988\) 0 0
\(989\) −4.90531 −0.155980
\(990\) −16.2705 14.8594i −0.517112 0.472262i
\(991\) 40.0026 1.27072 0.635362 0.772214i \(-0.280851\pi\)
0.635362 + 0.772214i \(0.280851\pi\)
\(992\) 6.84648i 0.217376i
\(993\) −0.948538 −0.0301009
\(994\) 19.4701i 0.617554i
\(995\) −40.8346 + 44.7126i −1.29454 + 1.41749i
\(996\) 0.172779i 0.00547473i
\(997\) 15.9741i 0.505904i −0.967479 0.252952i \(-0.918599\pi\)
0.967479 0.252952i \(-0.0814014\pi\)
\(998\) 22.2962i 0.705775i
\(999\) 2.20797i 0.0698572i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.g.1689.9 18
5.4 even 2 1690.2.c.h.1689.10 18
13.5 odd 4 1690.2.b.g.339.15 yes 18
13.8 odd 4 1690.2.b.f.339.6 18
13.12 even 2 1690.2.c.h.1689.9 18
65.8 even 4 8450.2.a.cw.1.4 9
65.18 even 4 8450.2.a.da.1.4 9
65.34 odd 4 1690.2.b.f.339.13 yes 18
65.44 odd 4 1690.2.b.g.339.4 yes 18
65.47 even 4 8450.2.a.cx.1.6 9
65.57 even 4 8450.2.a.ct.1.6 9
65.64 even 2 inner 1690.2.c.g.1689.10 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.6 18 13.8 odd 4
1690.2.b.f.339.13 yes 18 65.34 odd 4
1690.2.b.g.339.4 yes 18 65.44 odd 4
1690.2.b.g.339.15 yes 18 13.5 odd 4
1690.2.c.g.1689.9 18 1.1 even 1 trivial
1690.2.c.g.1689.10 18 65.64 even 2 inner
1690.2.c.h.1689.9 18 13.12 even 2
1690.2.c.h.1689.10 18 5.4 even 2
8450.2.a.ct.1.6 9 65.57 even 4
8450.2.a.cw.1.4 9 65.8 even 4
8450.2.a.cx.1.6 9 65.47 even 4
8450.2.a.da.1.4 9 65.18 even 4