Properties

Label 8450.2.a.bz.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,3,0,-1,5,3,-4,0,-4,-1,0,5,0,3,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.24698 q^{3} +1.00000 q^{4} +1.24698 q^{6} +0.198062 q^{7} +1.00000 q^{8} -1.44504 q^{9} -1.10992 q^{11} +1.24698 q^{12} +0.198062 q^{14} +1.00000 q^{16} -6.49396 q^{17} -1.44504 q^{18} +0.493959 q^{19} +0.246980 q^{21} -1.10992 q^{22} +6.76271 q^{23} +1.24698 q^{24} -5.54288 q^{27} +0.198062 q^{28} -0.356896 q^{29} -6.27413 q^{31} +1.00000 q^{32} -1.38404 q^{33} -6.49396 q^{34} -1.44504 q^{36} +2.21983 q^{37} +0.493959 q^{38} -8.96615 q^{41} +0.246980 q^{42} -5.65279 q^{43} -1.10992 q^{44} +6.76271 q^{46} -1.43296 q^{47} +1.24698 q^{48} -6.96077 q^{49} -8.09783 q^{51} -9.92154 q^{53} -5.54288 q^{54} +0.198062 q^{56} +0.615957 q^{57} -0.356896 q^{58} -4.61596 q^{59} +5.50365 q^{61} -6.27413 q^{62} -0.286208 q^{63} +1.00000 q^{64} -1.38404 q^{66} -3.87263 q^{67} -6.49396 q^{68} +8.43296 q^{69} -13.6039 q^{71} -1.44504 q^{72} +0.591794 q^{73} +2.21983 q^{74} +0.493959 q^{76} -0.219833 q^{77} +2.93362 q^{79} -2.57673 q^{81} -8.96615 q^{82} +15.6625 q^{83} +0.246980 q^{84} -5.65279 q^{86} -0.445042 q^{87} -1.10992 q^{88} +17.0804 q^{89} +6.76271 q^{92} -7.82371 q^{93} -1.43296 q^{94} +1.24698 q^{96} +13.5797 q^{97} -6.96077 q^{98} +1.60388 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{6} + 5 q^{7} + 3 q^{8} - 4 q^{9} - 4 q^{11} - q^{12} + 5 q^{14} + 3 q^{16} - 10 q^{17} - 4 q^{18} - 8 q^{19} - 4 q^{21} - 4 q^{22} + 3 q^{23} - q^{24} + 2 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.24698 0.719944 0.359972 0.932963i \(-0.382786\pi\)
0.359972 + 0.932963i \(0.382786\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.24698 0.509077
\(7\) 0.198062 0.0748605 0.0374302 0.999299i \(-0.488083\pi\)
0.0374302 + 0.999299i \(0.488083\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.44504 −0.481681
\(10\) 0 0
\(11\) −1.10992 −0.334652 −0.167326 0.985902i \(-0.553513\pi\)
−0.167326 + 0.985902i \(0.553513\pi\)
\(12\) 1.24698 0.359972
\(13\) 0 0
\(14\) 0.198062 0.0529344
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.49396 −1.57502 −0.787508 0.616304i \(-0.788629\pi\)
−0.787508 + 0.616304i \(0.788629\pi\)
\(18\) −1.44504 −0.340600
\(19\) 0.493959 0.113322 0.0566610 0.998393i \(-0.481955\pi\)
0.0566610 + 0.998393i \(0.481955\pi\)
\(20\) 0 0
\(21\) 0.246980 0.0538954
\(22\) −1.10992 −0.236635
\(23\) 6.76271 1.41012 0.705061 0.709147i \(-0.250920\pi\)
0.705061 + 0.709147i \(0.250920\pi\)
\(24\) 1.24698 0.254539
\(25\) 0 0
\(26\) 0 0
\(27\) −5.54288 −1.06673
\(28\) 0.198062 0.0374302
\(29\) −0.356896 −0.0662739 −0.0331369 0.999451i \(-0.510550\pi\)
−0.0331369 + 0.999451i \(0.510550\pi\)
\(30\) 0 0
\(31\) −6.27413 −1.12687 −0.563433 0.826162i \(-0.690520\pi\)
−0.563433 + 0.826162i \(0.690520\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.38404 −0.240931
\(34\) −6.49396 −1.11370
\(35\) 0 0
\(36\) −1.44504 −0.240840
\(37\) 2.21983 0.364938 0.182469 0.983212i \(-0.441591\pi\)
0.182469 + 0.983212i \(0.441591\pi\)
\(38\) 0.493959 0.0801308
\(39\) 0 0
\(40\) 0 0
\(41\) −8.96615 −1.40028 −0.700139 0.714007i \(-0.746878\pi\)
−0.700139 + 0.714007i \(0.746878\pi\)
\(42\) 0.246980 0.0381098
\(43\) −5.65279 −0.862043 −0.431021 0.902342i \(-0.641847\pi\)
−0.431021 + 0.902342i \(0.641847\pi\)
\(44\) −1.10992 −0.167326
\(45\) 0 0
\(46\) 6.76271 0.997107
\(47\) −1.43296 −0.209019 −0.104509 0.994524i \(-0.533327\pi\)
−0.104509 + 0.994524i \(0.533327\pi\)
\(48\) 1.24698 0.179986
\(49\) −6.96077 −0.994396
\(50\) 0 0
\(51\) −8.09783 −1.13392
\(52\) 0 0
\(53\) −9.92154 −1.36283 −0.681414 0.731898i \(-0.738635\pi\)
−0.681414 + 0.731898i \(0.738635\pi\)
\(54\) −5.54288 −0.754290
\(55\) 0 0
\(56\) 0.198062 0.0264672
\(57\) 0.615957 0.0815855
\(58\) −0.356896 −0.0468627
\(59\) −4.61596 −0.600946 −0.300473 0.953790i \(-0.597145\pi\)
−0.300473 + 0.953790i \(0.597145\pi\)
\(60\) 0 0
\(61\) 5.50365 0.704670 0.352335 0.935874i \(-0.385388\pi\)
0.352335 + 0.935874i \(0.385388\pi\)
\(62\) −6.27413 −0.796815
\(63\) −0.286208 −0.0360589
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.38404 −0.170364
\(67\) −3.87263 −0.473116 −0.236558 0.971617i \(-0.576019\pi\)
−0.236558 + 0.971617i \(0.576019\pi\)
\(68\) −6.49396 −0.787508
\(69\) 8.43296 1.01521
\(70\) 0 0
\(71\) −13.6039 −1.61448 −0.807241 0.590221i \(-0.799040\pi\)
−0.807241 + 0.590221i \(0.799040\pi\)
\(72\) −1.44504 −0.170300
\(73\) 0.591794 0.0692642 0.0346321 0.999400i \(-0.488974\pi\)
0.0346321 + 0.999400i \(0.488974\pi\)
\(74\) 2.21983 0.258050
\(75\) 0 0
\(76\) 0.493959 0.0566610
\(77\) −0.219833 −0.0250522
\(78\) 0 0
\(79\) 2.93362 0.330059 0.165029 0.986289i \(-0.447228\pi\)
0.165029 + 0.986289i \(0.447228\pi\)
\(80\) 0 0
\(81\) −2.57673 −0.286303
\(82\) −8.96615 −0.990145
\(83\) 15.6625 1.71918 0.859590 0.510984i \(-0.170719\pi\)
0.859590 + 0.510984i \(0.170719\pi\)
\(84\) 0.246980 0.0269477
\(85\) 0 0
\(86\) −5.65279 −0.609556
\(87\) −0.445042 −0.0477135
\(88\) −1.10992 −0.118317
\(89\) 17.0804 1.81052 0.905258 0.424862i \(-0.139677\pi\)
0.905258 + 0.424862i \(0.139677\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.76271 0.705061
\(93\) −7.82371 −0.811281
\(94\) −1.43296 −0.147799
\(95\) 0 0
\(96\) 1.24698 0.127269
\(97\) 13.5797 1.37881 0.689405 0.724376i \(-0.257872\pi\)
0.689405 + 0.724376i \(0.257872\pi\)
\(98\) −6.96077 −0.703144
\(99\) 1.60388 0.161196
\(100\) 0 0
\(101\) −5.55496 −0.552739 −0.276369 0.961051i \(-0.589131\pi\)
−0.276369 + 0.961051i \(0.589131\pi\)
\(102\) −8.09783 −0.801805
\(103\) 4.39373 0.432927 0.216464 0.976291i \(-0.430548\pi\)
0.216464 + 0.976291i \(0.430548\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.92154 −0.963665
\(107\) 17.9758 1.73779 0.868895 0.494997i \(-0.164831\pi\)
0.868895 + 0.494997i \(0.164831\pi\)
\(108\) −5.54288 −0.533364
\(109\) −6.73556 −0.645150 −0.322575 0.946544i \(-0.604548\pi\)
−0.322575 + 0.946544i \(0.604548\pi\)
\(110\) 0 0
\(111\) 2.76809 0.262735
\(112\) 0.198062 0.0187151
\(113\) −2.27413 −0.213932 −0.106966 0.994263i \(-0.534114\pi\)
−0.106966 + 0.994263i \(0.534114\pi\)
\(114\) 0.615957 0.0576897
\(115\) 0 0
\(116\) −0.356896 −0.0331369
\(117\) 0 0
\(118\) −4.61596 −0.424933
\(119\) −1.28621 −0.117907
\(120\) 0 0
\(121\) −9.76809 −0.888008
\(122\) 5.50365 0.498277
\(123\) −11.1806 −1.00812
\(124\) −6.27413 −0.563433
\(125\) 0 0
\(126\) −0.286208 −0.0254975
\(127\) −13.7778 −1.22258 −0.611290 0.791407i \(-0.709349\pi\)
−0.611290 + 0.791407i \(0.709349\pi\)
\(128\) 1.00000 0.0883883
\(129\) −7.04892 −0.620623
\(130\) 0 0
\(131\) −19.3056 −1.68674 −0.843368 0.537336i \(-0.819431\pi\)
−0.843368 + 0.537336i \(0.819431\pi\)
\(132\) −1.38404 −0.120465
\(133\) 0.0978347 0.00848334
\(134\) −3.87263 −0.334544
\(135\) 0 0
\(136\) −6.49396 −0.556852
\(137\) 19.5362 1.66909 0.834544 0.550941i \(-0.185731\pi\)
0.834544 + 0.550941i \(0.185731\pi\)
\(138\) 8.43296 0.717861
\(139\) −18.4155 −1.56198 −0.780991 0.624542i \(-0.785286\pi\)
−0.780991 + 0.624542i \(0.785286\pi\)
\(140\) 0 0
\(141\) −1.78687 −0.150482
\(142\) −13.6039 −1.14161
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) 0 0
\(146\) 0.591794 0.0489772
\(147\) −8.67994 −0.715909
\(148\) 2.21983 0.182469
\(149\) −17.2664 −1.41452 −0.707258 0.706956i \(-0.750068\pi\)
−0.707258 + 0.706956i \(0.750068\pi\)
\(150\) 0 0
\(151\) −3.97584 −0.323549 −0.161775 0.986828i \(-0.551722\pi\)
−0.161775 + 0.986828i \(0.551722\pi\)
\(152\) 0.493959 0.0400654
\(153\) 9.38404 0.758655
\(154\) −0.219833 −0.0177146
\(155\) 0 0
\(156\) 0 0
\(157\) −17.4034 −1.38894 −0.694472 0.719520i \(-0.744362\pi\)
−0.694472 + 0.719520i \(0.744362\pi\)
\(158\) 2.93362 0.233387
\(159\) −12.3720 −0.981160
\(160\) 0 0
\(161\) 1.33944 0.105562
\(162\) −2.57673 −0.202447
\(163\) −9.16852 −0.718134 −0.359067 0.933312i \(-0.616905\pi\)
−0.359067 + 0.933312i \(0.616905\pi\)
\(164\) −8.96615 −0.700139
\(165\) 0 0
\(166\) 15.6625 1.21564
\(167\) 7.36227 0.569710 0.284855 0.958571i \(-0.408055\pi\)
0.284855 + 0.958571i \(0.408055\pi\)
\(168\) 0.246980 0.0190549
\(169\) 0 0
\(170\) 0 0
\(171\) −0.713792 −0.0545850
\(172\) −5.65279 −0.431021
\(173\) 8.59179 0.653222 0.326611 0.945159i \(-0.394093\pi\)
0.326611 + 0.945159i \(0.394093\pi\)
\(174\) −0.445042 −0.0337385
\(175\) 0 0
\(176\) −1.10992 −0.0836631
\(177\) −5.75600 −0.432648
\(178\) 17.0804 1.28023
\(179\) −0.659498 −0.0492932 −0.0246466 0.999696i \(-0.507846\pi\)
−0.0246466 + 0.999696i \(0.507846\pi\)
\(180\) 0 0
\(181\) −20.4101 −1.51707 −0.758536 0.651631i \(-0.774085\pi\)
−0.758536 + 0.651631i \(0.774085\pi\)
\(182\) 0 0
\(183\) 6.86294 0.507323
\(184\) 6.76271 0.498554
\(185\) 0 0
\(186\) −7.82371 −0.573662
\(187\) 7.20775 0.527083
\(188\) −1.43296 −0.104509
\(189\) −1.09783 −0.0798557
\(190\) 0 0
\(191\) 12.7332 0.921340 0.460670 0.887572i \(-0.347609\pi\)
0.460670 + 0.887572i \(0.347609\pi\)
\(192\) 1.24698 0.0899930
\(193\) 8.68963 0.625493 0.312747 0.949837i \(-0.398751\pi\)
0.312747 + 0.949837i \(0.398751\pi\)
\(194\) 13.5797 0.974967
\(195\) 0 0
\(196\) −6.96077 −0.497198
\(197\) 5.28621 0.376627 0.188313 0.982109i \(-0.439698\pi\)
0.188313 + 0.982109i \(0.439698\pi\)
\(198\) 1.60388 0.113982
\(199\) −10.9444 −0.775826 −0.387913 0.921696i \(-0.626804\pi\)
−0.387913 + 0.921696i \(0.626804\pi\)
\(200\) 0 0
\(201\) −4.82908 −0.340617
\(202\) −5.55496 −0.390845
\(203\) −0.0706876 −0.00496130
\(204\) −8.09783 −0.566962
\(205\) 0 0
\(206\) 4.39373 0.306126
\(207\) −9.77240 −0.679229
\(208\) 0 0
\(209\) −0.548253 −0.0379235
\(210\) 0 0
\(211\) 3.30559 0.227566 0.113783 0.993506i \(-0.463703\pi\)
0.113783 + 0.993506i \(0.463703\pi\)
\(212\) −9.92154 −0.681414
\(213\) −16.9638 −1.16234
\(214\) 17.9758 1.22880
\(215\) 0 0
\(216\) −5.54288 −0.377145
\(217\) −1.24267 −0.0843578
\(218\) −6.73556 −0.456190
\(219\) 0.737955 0.0498664
\(220\) 0 0
\(221\) 0 0
\(222\) 2.76809 0.185782
\(223\) −16.6310 −1.11370 −0.556848 0.830615i \(-0.687989\pi\)
−0.556848 + 0.830615i \(0.687989\pi\)
\(224\) 0.198062 0.0132336
\(225\) 0 0
\(226\) −2.27413 −0.151273
\(227\) −10.8616 −0.720910 −0.360455 0.932777i \(-0.617379\pi\)
−0.360455 + 0.932777i \(0.617379\pi\)
\(228\) 0.615957 0.0407928
\(229\) 23.3991 1.54626 0.773128 0.634250i \(-0.218691\pi\)
0.773128 + 0.634250i \(0.218691\pi\)
\(230\) 0 0
\(231\) −0.274127 −0.0180362
\(232\) −0.356896 −0.0234314
\(233\) −14.3913 −0.942808 −0.471404 0.881917i \(-0.656253\pi\)
−0.471404 + 0.881917i \(0.656253\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.61596 −0.300473
\(237\) 3.65817 0.237624
\(238\) −1.28621 −0.0833725
\(239\) −3.56033 −0.230299 −0.115149 0.993348i \(-0.536735\pi\)
−0.115149 + 0.993348i \(0.536735\pi\)
\(240\) 0 0
\(241\) 29.1890 1.88023 0.940113 0.340862i \(-0.110719\pi\)
0.940113 + 0.340862i \(0.110719\pi\)
\(242\) −9.76809 −0.627916
\(243\) 13.4155 0.860605
\(244\) 5.50365 0.352335
\(245\) 0 0
\(246\) −11.1806 −0.712849
\(247\) 0 0
\(248\) −6.27413 −0.398407
\(249\) 19.5308 1.23771
\(250\) 0 0
\(251\) −29.3599 −1.85318 −0.926590 0.376074i \(-0.877274\pi\)
−0.926590 + 0.376074i \(0.877274\pi\)
\(252\) −0.286208 −0.0180294
\(253\) −7.50604 −0.471901
\(254\) −13.7778 −0.864494
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −21.5362 −1.34339 −0.671695 0.740828i \(-0.734433\pi\)
−0.671695 + 0.740828i \(0.734433\pi\)
\(258\) −7.04892 −0.438846
\(259\) 0.439665 0.0273195
\(260\) 0 0
\(261\) 0.515729 0.0319229
\(262\) −19.3056 −1.19270
\(263\) 6.57002 0.405125 0.202563 0.979269i \(-0.435073\pi\)
0.202563 + 0.979269i \(0.435073\pi\)
\(264\) −1.38404 −0.0851820
\(265\) 0 0
\(266\) 0.0978347 0.00599863
\(267\) 21.2989 1.30347
\(268\) −3.87263 −0.236558
\(269\) 7.36898 0.449294 0.224647 0.974440i \(-0.427877\pi\)
0.224647 + 0.974440i \(0.427877\pi\)
\(270\) 0 0
\(271\) −15.5797 −0.946400 −0.473200 0.880955i \(-0.656901\pi\)
−0.473200 + 0.880955i \(0.656901\pi\)
\(272\) −6.49396 −0.393754
\(273\) 0 0
\(274\) 19.5362 1.18022
\(275\) 0 0
\(276\) 8.43296 0.507605
\(277\) 13.9952 0.840891 0.420445 0.907318i \(-0.361874\pi\)
0.420445 + 0.907318i \(0.361874\pi\)
\(278\) −18.4155 −1.10449
\(279\) 9.06638 0.542790
\(280\) 0 0
\(281\) −13.3341 −0.795443 −0.397722 0.917506i \(-0.630199\pi\)
−0.397722 + 0.917506i \(0.630199\pi\)
\(282\) −1.78687 −0.106407
\(283\) 20.7289 1.23220 0.616101 0.787667i \(-0.288711\pi\)
0.616101 + 0.787667i \(0.288711\pi\)
\(284\) −13.6039 −0.807241
\(285\) 0 0
\(286\) 0 0
\(287\) −1.77586 −0.104825
\(288\) −1.44504 −0.0851499
\(289\) 25.1715 1.48068
\(290\) 0 0
\(291\) 16.9336 0.992667
\(292\) 0.591794 0.0346321
\(293\) 16.3913 0.957592 0.478796 0.877926i \(-0.341073\pi\)
0.478796 + 0.877926i \(0.341073\pi\)
\(294\) −8.67994 −0.506224
\(295\) 0 0
\(296\) 2.21983 0.129025
\(297\) 6.15213 0.356983
\(298\) −17.2664 −1.00021
\(299\) 0 0
\(300\) 0 0
\(301\) −1.11960 −0.0645330
\(302\) −3.97584 −0.228784
\(303\) −6.92692 −0.397941
\(304\) 0.493959 0.0283305
\(305\) 0 0
\(306\) 9.38404 0.536450
\(307\) −6.94869 −0.396583 −0.198291 0.980143i \(-0.563539\pi\)
−0.198291 + 0.980143i \(0.563539\pi\)
\(308\) −0.219833 −0.0125261
\(309\) 5.47889 0.311683
\(310\) 0 0
\(311\) −24.3612 −1.38140 −0.690699 0.723143i \(-0.742697\pi\)
−0.690699 + 0.723143i \(0.742697\pi\)
\(312\) 0 0
\(313\) −2.89008 −0.163357 −0.0816786 0.996659i \(-0.526028\pi\)
−0.0816786 + 0.996659i \(0.526028\pi\)
\(314\) −17.4034 −0.982132
\(315\) 0 0
\(316\) 2.93362 0.165029
\(317\) 5.01208 0.281507 0.140753 0.990045i \(-0.455048\pi\)
0.140753 + 0.990045i \(0.455048\pi\)
\(318\) −12.3720 −0.693785
\(319\) 0.396125 0.0221787
\(320\) 0 0
\(321\) 22.4155 1.25111
\(322\) 1.33944 0.0746439
\(323\) −3.20775 −0.178484
\(324\) −2.57673 −0.143152
\(325\) 0 0
\(326\) −9.16852 −0.507797
\(327\) −8.39911 −0.464472
\(328\) −8.96615 −0.495073
\(329\) −0.283815 −0.0156472
\(330\) 0 0
\(331\) 24.0194 1.32022 0.660112 0.751167i \(-0.270509\pi\)
0.660112 + 0.751167i \(0.270509\pi\)
\(332\) 15.6625 0.859590
\(333\) −3.20775 −0.175784
\(334\) 7.36227 0.402846
\(335\) 0 0
\(336\) 0.246980 0.0134738
\(337\) −28.5133 −1.55322 −0.776610 0.629981i \(-0.783062\pi\)
−0.776610 + 0.629981i \(0.783062\pi\)
\(338\) 0 0
\(339\) −2.83579 −0.154019
\(340\) 0 0
\(341\) 6.96376 0.377108
\(342\) −0.713792 −0.0385974
\(343\) −2.76510 −0.149301
\(344\) −5.65279 −0.304778
\(345\) 0 0
\(346\) 8.59179 0.461898
\(347\) 25.1987 1.35273 0.676367 0.736565i \(-0.263553\pi\)
0.676367 + 0.736565i \(0.263553\pi\)
\(348\) −0.445042 −0.0238567
\(349\) 16.4155 0.878702 0.439351 0.898316i \(-0.355209\pi\)
0.439351 + 0.898316i \(0.355209\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.10992 −0.0591587
\(353\) −1.10992 −0.0590749 −0.0295374 0.999564i \(-0.509403\pi\)
−0.0295374 + 0.999564i \(0.509403\pi\)
\(354\) −5.75600 −0.305928
\(355\) 0 0
\(356\) 17.0804 0.905258
\(357\) −1.60388 −0.0848861
\(358\) −0.659498 −0.0348555
\(359\) 36.7633 1.94029 0.970146 0.242520i \(-0.0779740\pi\)
0.970146 + 0.242520i \(0.0779740\pi\)
\(360\) 0 0
\(361\) −18.7560 −0.987158
\(362\) −20.4101 −1.07273
\(363\) −12.1806 −0.639316
\(364\) 0 0
\(365\) 0 0
\(366\) 6.86294 0.358731
\(367\) −7.09485 −0.370348 −0.185174 0.982706i \(-0.559285\pi\)
−0.185174 + 0.982706i \(0.559285\pi\)
\(368\) 6.76271 0.352531
\(369\) 12.9565 0.674486
\(370\) 0 0
\(371\) −1.96508 −0.102022
\(372\) −7.82371 −0.405640
\(373\) −26.8901 −1.39232 −0.696158 0.717889i \(-0.745109\pi\)
−0.696158 + 0.717889i \(0.745109\pi\)
\(374\) 7.20775 0.372704
\(375\) 0 0
\(376\) −1.43296 −0.0738993
\(377\) 0 0
\(378\) −1.09783 −0.0564665
\(379\) 8.46980 0.435064 0.217532 0.976053i \(-0.430199\pi\)
0.217532 + 0.976053i \(0.430199\pi\)
\(380\) 0 0
\(381\) −17.1806 −0.880189
\(382\) 12.7332 0.651486
\(383\) 4.79656 0.245093 0.122546 0.992463i \(-0.460894\pi\)
0.122546 + 0.992463i \(0.460894\pi\)
\(384\) 1.24698 0.0636347
\(385\) 0 0
\(386\) 8.68963 0.442290
\(387\) 8.16852 0.415229
\(388\) 13.5797 0.689405
\(389\) 29.2131 1.48116 0.740582 0.671966i \(-0.234550\pi\)
0.740582 + 0.671966i \(0.234550\pi\)
\(390\) 0 0
\(391\) −43.9168 −2.22097
\(392\) −6.96077 −0.351572
\(393\) −24.0737 −1.21436
\(394\) 5.28621 0.266315
\(395\) 0 0
\(396\) 1.60388 0.0805978
\(397\) 22.6112 1.13482 0.567411 0.823435i \(-0.307945\pi\)
0.567411 + 0.823435i \(0.307945\pi\)
\(398\) −10.9444 −0.548592
\(399\) 0.121998 0.00610753
\(400\) 0 0
\(401\) 10.5894 0.528809 0.264405 0.964412i \(-0.414825\pi\)
0.264405 + 0.964412i \(0.414825\pi\)
\(402\) −4.82908 −0.240853
\(403\) 0 0
\(404\) −5.55496 −0.276369
\(405\) 0 0
\(406\) −0.0706876 −0.00350817
\(407\) −2.46383 −0.122127
\(408\) −8.09783 −0.400903
\(409\) 11.7127 0.579157 0.289579 0.957154i \(-0.406485\pi\)
0.289579 + 0.957154i \(0.406485\pi\)
\(410\) 0 0
\(411\) 24.3612 1.20165
\(412\) 4.39373 0.216464
\(413\) −0.914247 −0.0449871
\(414\) −9.77240 −0.480287
\(415\) 0 0
\(416\) 0 0
\(417\) −22.9638 −1.12454
\(418\) −0.548253 −0.0268159
\(419\) 21.3250 1.04179 0.520896 0.853620i \(-0.325598\pi\)
0.520896 + 0.853620i \(0.325598\pi\)
\(420\) 0 0
\(421\) 22.1457 1.07931 0.539657 0.841885i \(-0.318554\pi\)
0.539657 + 0.841885i \(0.318554\pi\)
\(422\) 3.30559 0.160913
\(423\) 2.07069 0.100680
\(424\) −9.92154 −0.481833
\(425\) 0 0
\(426\) −16.9638 −0.821897
\(427\) 1.09006 0.0527519
\(428\) 17.9758 0.868895
\(429\) 0 0
\(430\) 0 0
\(431\) −36.8068 −1.77292 −0.886462 0.462802i \(-0.846844\pi\)
−0.886462 + 0.462802i \(0.846844\pi\)
\(432\) −5.54288 −0.266682
\(433\) −2.08708 −0.100299 −0.0501494 0.998742i \(-0.515970\pi\)
−0.0501494 + 0.998742i \(0.515970\pi\)
\(434\) −1.24267 −0.0596500
\(435\) 0 0
\(436\) −6.73556 −0.322575
\(437\) 3.34050 0.159798
\(438\) 0.737955 0.0352608
\(439\) 9.95646 0.475196 0.237598 0.971364i \(-0.423640\pi\)
0.237598 + 0.971364i \(0.423640\pi\)
\(440\) 0 0
\(441\) 10.0586 0.478981
\(442\) 0 0
\(443\) 15.3884 0.731123 0.365561 0.930787i \(-0.380877\pi\)
0.365561 + 0.930787i \(0.380877\pi\)
\(444\) 2.76809 0.131368
\(445\) 0 0
\(446\) −16.6310 −0.787502
\(447\) −21.5308 −1.01837
\(448\) 0.198062 0.00935756
\(449\) −8.18060 −0.386067 −0.193033 0.981192i \(-0.561833\pi\)
−0.193033 + 0.981192i \(0.561833\pi\)
\(450\) 0 0
\(451\) 9.95167 0.468606
\(452\) −2.27413 −0.106966
\(453\) −4.95779 −0.232937
\(454\) −10.8616 −0.509761
\(455\) 0 0
\(456\) 0.615957 0.0288448
\(457\) 16.0737 0.751895 0.375947 0.926641i \(-0.377317\pi\)
0.375947 + 0.926641i \(0.377317\pi\)
\(458\) 23.3991 1.09337
\(459\) 35.9952 1.68011
\(460\) 0 0
\(461\) −27.5308 −1.28224 −0.641118 0.767442i \(-0.721529\pi\)
−0.641118 + 0.767442i \(0.721529\pi\)
\(462\) −0.274127 −0.0127535
\(463\) −10.6595 −0.495389 −0.247694 0.968838i \(-0.579673\pi\)
−0.247694 + 0.968838i \(0.579673\pi\)
\(464\) −0.356896 −0.0165685
\(465\) 0 0
\(466\) −14.3913 −0.666666
\(467\) 10.7976 0.499655 0.249827 0.968290i \(-0.419626\pi\)
0.249827 + 0.968290i \(0.419626\pi\)
\(468\) 0 0
\(469\) −0.767021 −0.0354177
\(470\) 0 0
\(471\) −21.7017 −0.999962
\(472\) −4.61596 −0.212467
\(473\) 6.27413 0.288485
\(474\) 3.65817 0.168025
\(475\) 0 0
\(476\) −1.28621 −0.0589533
\(477\) 14.3370 0.656448
\(478\) −3.56033 −0.162846
\(479\) −9.08575 −0.415139 −0.207569 0.978220i \(-0.566555\pi\)
−0.207569 + 0.978220i \(0.566555\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 29.1890 1.32952
\(483\) 1.67025 0.0759991
\(484\) −9.76809 −0.444004
\(485\) 0 0
\(486\) 13.4155 0.608540
\(487\) −40.8471 −1.85096 −0.925480 0.378796i \(-0.876338\pi\)
−0.925480 + 0.378796i \(0.876338\pi\)
\(488\) 5.50365 0.249138
\(489\) −11.4330 −0.517016
\(490\) 0 0
\(491\) 29.0944 1.31301 0.656505 0.754321i \(-0.272034\pi\)
0.656505 + 0.754321i \(0.272034\pi\)
\(492\) −11.1806 −0.504061
\(493\) 2.31767 0.104382
\(494\) 0 0
\(495\) 0 0
\(496\) −6.27413 −0.281717
\(497\) −2.69441 −0.120861
\(498\) 19.5308 0.875196
\(499\) −16.2150 −0.725885 −0.362943 0.931812i \(-0.618228\pi\)
−0.362943 + 0.931812i \(0.618228\pi\)
\(500\) 0 0
\(501\) 9.18060 0.410159
\(502\) −29.3599 −1.31040
\(503\) 1.49502 0.0666598 0.0333299 0.999444i \(-0.489389\pi\)
0.0333299 + 0.999444i \(0.489389\pi\)
\(504\) −0.286208 −0.0127487
\(505\) 0 0
\(506\) −7.50604 −0.333684
\(507\) 0 0
\(508\) −13.7778 −0.611290
\(509\) 4.63102 0.205266 0.102633 0.994719i \(-0.467273\pi\)
0.102633 + 0.994719i \(0.467273\pi\)
\(510\) 0 0
\(511\) 0.117212 0.00518516
\(512\) 1.00000 0.0441942
\(513\) −2.73795 −0.120884
\(514\) −21.5362 −0.949920
\(515\) 0 0
\(516\) −7.04892 −0.310311
\(517\) 1.59047 0.0699486
\(518\) 0.439665 0.0193178
\(519\) 10.7138 0.470283
\(520\) 0 0
\(521\) −9.23729 −0.404693 −0.202347 0.979314i \(-0.564857\pi\)
−0.202347 + 0.979314i \(0.564857\pi\)
\(522\) 0.515729 0.0225729
\(523\) 2.88471 0.126139 0.0630697 0.998009i \(-0.479911\pi\)
0.0630697 + 0.998009i \(0.479911\pi\)
\(524\) −19.3056 −0.843368
\(525\) 0 0
\(526\) 6.57002 0.286467
\(527\) 40.7439 1.77483
\(528\) −1.38404 −0.0602327
\(529\) 22.7342 0.988445
\(530\) 0 0
\(531\) 6.67025 0.289464
\(532\) 0.0978347 0.00424167
\(533\) 0 0
\(534\) 21.2989 0.921693
\(535\) 0 0
\(536\) −3.87263 −0.167272
\(537\) −0.822380 −0.0354883
\(538\) 7.36898 0.317699
\(539\) 7.72587 0.332777
\(540\) 0 0
\(541\) −28.2301 −1.21371 −0.606854 0.794814i \(-0.707569\pi\)
−0.606854 + 0.794814i \(0.707569\pi\)
\(542\) −15.5797 −0.669206
\(543\) −25.4510 −1.09221
\(544\) −6.49396 −0.278426
\(545\) 0 0
\(546\) 0 0
\(547\) −37.8756 −1.61944 −0.809722 0.586814i \(-0.800382\pi\)
−0.809722 + 0.586814i \(0.800382\pi\)
\(548\) 19.5362 0.834544
\(549\) −7.95300 −0.339426
\(550\) 0 0
\(551\) −0.176292 −0.00751029
\(552\) 8.43296 0.358931
\(553\) 0.581040 0.0247083
\(554\) 13.9952 0.594600
\(555\) 0 0
\(556\) −18.4155 −0.780991
\(557\) −41.2030 −1.74583 −0.872913 0.487876i \(-0.837772\pi\)
−0.872913 + 0.487876i \(0.837772\pi\)
\(558\) 9.06638 0.383810
\(559\) 0 0
\(560\) 0 0
\(561\) 8.98792 0.379470
\(562\) −13.3341 −0.562463
\(563\) −8.00836 −0.337512 −0.168756 0.985658i \(-0.553975\pi\)
−0.168756 + 0.985658i \(0.553975\pi\)
\(564\) −1.78687 −0.0752409
\(565\) 0 0
\(566\) 20.7289 0.871299
\(567\) −0.510353 −0.0214328
\(568\) −13.6039 −0.570806
\(569\) 43.1377 1.80842 0.904212 0.427083i \(-0.140459\pi\)
0.904212 + 0.427083i \(0.140459\pi\)
\(570\) 0 0
\(571\) −8.98792 −0.376133 −0.188066 0.982156i \(-0.560222\pi\)
−0.188066 + 0.982156i \(0.560222\pi\)
\(572\) 0 0
\(573\) 15.8780 0.663313
\(574\) −1.77586 −0.0741228
\(575\) 0 0
\(576\) −1.44504 −0.0602101
\(577\) 1.03624 0.0431394 0.0215697 0.999767i \(-0.493134\pi\)
0.0215697 + 0.999767i \(0.493134\pi\)
\(578\) 25.1715 1.04700
\(579\) 10.8358 0.450320
\(580\) 0 0
\(581\) 3.10215 0.128699
\(582\) 16.9336 0.701921
\(583\) 11.0121 0.456074
\(584\) 0.591794 0.0244886
\(585\) 0 0
\(586\) 16.3913 0.677120
\(587\) 3.70410 0.152885 0.0764423 0.997074i \(-0.475644\pi\)
0.0764423 + 0.997074i \(0.475644\pi\)
\(588\) −8.67994 −0.357955
\(589\) −3.09916 −0.127699
\(590\) 0 0
\(591\) 6.59179 0.271150
\(592\) 2.21983 0.0912346
\(593\) −12.2064 −0.501258 −0.250629 0.968083i \(-0.580637\pi\)
−0.250629 + 0.968083i \(0.580637\pi\)
\(594\) 6.15213 0.252425
\(595\) 0 0
\(596\) −17.2664 −0.707258
\(597\) −13.6474 −0.558552
\(598\) 0 0
\(599\) −31.5013 −1.28711 −0.643553 0.765401i \(-0.722540\pi\)
−0.643553 + 0.765401i \(0.722540\pi\)
\(600\) 0 0
\(601\) 19.6907 0.803200 0.401600 0.915815i \(-0.368454\pi\)
0.401600 + 0.915815i \(0.368454\pi\)
\(602\) −1.11960 −0.0456317
\(603\) 5.59611 0.227891
\(604\) −3.97584 −0.161775
\(605\) 0 0
\(606\) −6.92692 −0.281387
\(607\) 31.0562 1.26053 0.630266 0.776379i \(-0.282946\pi\)
0.630266 + 0.776379i \(0.282946\pi\)
\(608\) 0.493959 0.0200327
\(609\) −0.0881460 −0.00357186
\(610\) 0 0
\(611\) 0 0
\(612\) 9.38404 0.379327
\(613\) −18.3720 −0.742037 −0.371018 0.928626i \(-0.620991\pi\)
−0.371018 + 0.928626i \(0.620991\pi\)
\(614\) −6.94869 −0.280426
\(615\) 0 0
\(616\) −0.219833 −0.00885730
\(617\) 9.27545 0.373416 0.186708 0.982415i \(-0.440218\pi\)
0.186708 + 0.982415i \(0.440218\pi\)
\(618\) 5.47889 0.220393
\(619\) −14.9095 −0.599262 −0.299631 0.954055i \(-0.596864\pi\)
−0.299631 + 0.954055i \(0.596864\pi\)
\(620\) 0 0
\(621\) −37.4849 −1.50422
\(622\) −24.3612 −0.976795
\(623\) 3.38298 0.135536
\(624\) 0 0
\(625\) 0 0
\(626\) −2.89008 −0.115511
\(627\) −0.683661 −0.0273028
\(628\) −17.4034 −0.694472
\(629\) −14.4155 −0.574784
\(630\) 0 0
\(631\) 30.0823 1.19756 0.598779 0.800915i \(-0.295653\pi\)
0.598779 + 0.800915i \(0.295653\pi\)
\(632\) 2.93362 0.116693
\(633\) 4.12200 0.163835
\(634\) 5.01208 0.199055
\(635\) 0 0
\(636\) −12.3720 −0.490580
\(637\) 0 0
\(638\) 0.396125 0.0156827
\(639\) 19.6582 0.777665
\(640\) 0 0
\(641\) 12.1787 0.481029 0.240515 0.970646i \(-0.422684\pi\)
0.240515 + 0.970646i \(0.422684\pi\)
\(642\) 22.4155 0.884669
\(643\) 3.36467 0.132689 0.0663447 0.997797i \(-0.478866\pi\)
0.0663447 + 0.997797i \(0.478866\pi\)
\(644\) 1.33944 0.0527812
\(645\) 0 0
\(646\) −3.20775 −0.126207
\(647\) −28.3913 −1.11618 −0.558089 0.829781i \(-0.688465\pi\)
−0.558089 + 0.829781i \(0.688465\pi\)
\(648\) −2.57673 −0.101223
\(649\) 5.12333 0.201108
\(650\) 0 0
\(651\) −1.54958 −0.0607329
\(652\) −9.16852 −0.359067
\(653\) 25.6823 1.00503 0.502514 0.864569i \(-0.332409\pi\)
0.502514 + 0.864569i \(0.332409\pi\)
\(654\) −8.39911 −0.328431
\(655\) 0 0
\(656\) −8.96615 −0.350069
\(657\) −0.855167 −0.0333632
\(658\) −0.283815 −0.0110643
\(659\) −5.26205 −0.204980 −0.102490 0.994734i \(-0.532681\pi\)
−0.102490 + 0.994734i \(0.532681\pi\)
\(660\) 0 0
\(661\) −32.9476 −1.28151 −0.640757 0.767744i \(-0.721379\pi\)
−0.640757 + 0.767744i \(0.721379\pi\)
\(662\) 24.0194 0.933540
\(663\) 0 0
\(664\) 15.6625 0.607822
\(665\) 0 0
\(666\) −3.20775 −0.124298
\(667\) −2.41358 −0.0934543
\(668\) 7.36227 0.284855
\(669\) −20.7385 −0.801799
\(670\) 0 0
\(671\) −6.10859 −0.235819
\(672\) 0.246980 0.00952745
\(673\) −20.1655 −0.777324 −0.388662 0.921380i \(-0.627063\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(674\) −28.5133 −1.09829
\(675\) 0 0
\(676\) 0 0
\(677\) −46.4590 −1.78557 −0.892783 0.450487i \(-0.851250\pi\)
−0.892783 + 0.450487i \(0.851250\pi\)
\(678\) −2.83579 −0.108908
\(679\) 2.68963 0.103218
\(680\) 0 0
\(681\) −13.5442 −0.519015
\(682\) 6.96376 0.266656
\(683\) 27.0911 1.03661 0.518307 0.855195i \(-0.326563\pi\)
0.518307 + 0.855195i \(0.326563\pi\)
\(684\) −0.713792 −0.0272925
\(685\) 0 0
\(686\) −2.76510 −0.105572
\(687\) 29.1782 1.11322
\(688\) −5.65279 −0.215511
\(689\) 0 0
\(690\) 0 0
\(691\) −3.47112 −0.132048 −0.0660239 0.997818i \(-0.521031\pi\)
−0.0660239 + 0.997818i \(0.521031\pi\)
\(692\) 8.59179 0.326611
\(693\) 0.317667 0.0120672
\(694\) 25.1987 0.956528
\(695\) 0 0
\(696\) −0.445042 −0.0168693
\(697\) 58.2258 2.20546
\(698\) 16.4155 0.621336
\(699\) −17.9457 −0.678769
\(700\) 0 0
\(701\) 8.07606 0.305029 0.152514 0.988301i \(-0.451263\pi\)
0.152514 + 0.988301i \(0.451263\pi\)
\(702\) 0 0
\(703\) 1.09651 0.0413555
\(704\) −1.10992 −0.0418315
\(705\) 0 0
\(706\) −1.10992 −0.0417722
\(707\) −1.10023 −0.0413783
\(708\) −5.75600 −0.216324
\(709\) 20.5157 0.770484 0.385242 0.922816i \(-0.374118\pi\)
0.385242 + 0.922816i \(0.374118\pi\)
\(710\) 0 0
\(711\) −4.23921 −0.158983
\(712\) 17.0804 0.640114
\(713\) −42.4301 −1.58902
\(714\) −1.60388 −0.0600235
\(715\) 0 0
\(716\) −0.659498 −0.0246466
\(717\) −4.43967 −0.165802
\(718\) 36.7633 1.37199
\(719\) 52.4650 1.95661 0.978307 0.207159i \(-0.0664216\pi\)
0.978307 + 0.207159i \(0.0664216\pi\)
\(720\) 0 0
\(721\) 0.870232 0.0324091
\(722\) −18.7560 −0.698026
\(723\) 36.3980 1.35366
\(724\) −20.4101 −0.758536
\(725\) 0 0
\(726\) −12.1806 −0.452065
\(727\) −4.11397 −0.152579 −0.0762893 0.997086i \(-0.524307\pi\)
−0.0762893 + 0.997086i \(0.524307\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) 0 0
\(731\) 36.7090 1.35773
\(732\) 6.86294 0.253661
\(733\) −20.9336 −0.773201 −0.386601 0.922247i \(-0.626351\pi\)
−0.386601 + 0.922247i \(0.626351\pi\)
\(734\) −7.09485 −0.261876
\(735\) 0 0
\(736\) 6.76271 0.249277
\(737\) 4.29829 0.158330
\(738\) 12.9565 0.476934
\(739\) 25.8297 0.950160 0.475080 0.879943i \(-0.342419\pi\)
0.475080 + 0.879943i \(0.342419\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.96508 −0.0721405
\(743\) 52.0411 1.90920 0.954602 0.297883i \(-0.0962807\pi\)
0.954602 + 0.297883i \(0.0962807\pi\)
\(744\) −7.82371 −0.286831
\(745\) 0 0
\(746\) −26.8901 −0.984516
\(747\) −22.6329 −0.828096
\(748\) 7.20775 0.263541
\(749\) 3.56033 0.130092
\(750\) 0 0
\(751\) 7.89738 0.288179 0.144090 0.989565i \(-0.453975\pi\)
0.144090 + 0.989565i \(0.453975\pi\)
\(752\) −1.43296 −0.0522547
\(753\) −36.6112 −1.33419
\(754\) 0 0
\(755\) 0 0
\(756\) −1.09783 −0.0399279
\(757\) 16.1366 0.586494 0.293247 0.956037i \(-0.405264\pi\)
0.293247 + 0.956037i \(0.405264\pi\)
\(758\) 8.46980 0.307637
\(759\) −9.35988 −0.339742
\(760\) 0 0
\(761\) 32.4064 1.17473 0.587366 0.809322i \(-0.300165\pi\)
0.587366 + 0.809322i \(0.300165\pi\)
\(762\) −17.1806 −0.622388
\(763\) −1.33406 −0.0482962
\(764\) 12.7332 0.460670
\(765\) 0 0
\(766\) 4.79656 0.173307
\(767\) 0 0
\(768\) 1.24698 0.0449965
\(769\) 5.44935 0.196509 0.0982544 0.995161i \(-0.468674\pi\)
0.0982544 + 0.995161i \(0.468674\pi\)
\(770\) 0 0
\(771\) −26.8552 −0.967165
\(772\) 8.68963 0.312747
\(773\) 35.0616 1.26108 0.630539 0.776158i \(-0.282834\pi\)
0.630539 + 0.776158i \(0.282834\pi\)
\(774\) 8.16852 0.293611
\(775\) 0 0
\(776\) 13.5797 0.487483
\(777\) 0.548253 0.0196685
\(778\) 29.2131 1.04734
\(779\) −4.42891 −0.158682
\(780\) 0 0
\(781\) 15.0992 0.540291
\(782\) −43.9168 −1.57046
\(783\) 1.97823 0.0706962
\(784\) −6.96077 −0.248599
\(785\) 0 0
\(786\) −24.0737 −0.858679
\(787\) −40.2344 −1.43420 −0.717101 0.696969i \(-0.754531\pi\)
−0.717101 + 0.696969i \(0.754531\pi\)
\(788\) 5.28621 0.188313
\(789\) 8.19269 0.291667
\(790\) 0 0
\(791\) −0.450419 −0.0160150
\(792\) 1.60388 0.0569912
\(793\) 0 0
\(794\) 22.6112 0.802440
\(795\) 0 0
\(796\) −10.9444 −0.387913
\(797\) 2.73317 0.0968138 0.0484069 0.998828i \(-0.484586\pi\)
0.0484069 + 0.998828i \(0.484586\pi\)
\(798\) 0.121998 0.00431868
\(799\) 9.30559 0.329208
\(800\) 0 0
\(801\) −24.6819 −0.872091
\(802\) 10.5894 0.373925
\(803\) −0.656842 −0.0231794
\(804\) −4.82908 −0.170309
\(805\) 0 0
\(806\) 0 0
\(807\) 9.18896 0.323467
\(808\) −5.55496 −0.195423
\(809\) −36.4782 −1.28250 −0.641252 0.767330i \(-0.721585\pi\)
−0.641252 + 0.767330i \(0.721585\pi\)
\(810\) 0 0
\(811\) 3.51679 0.123491 0.0617457 0.998092i \(-0.480333\pi\)
0.0617457 + 0.998092i \(0.480333\pi\)
\(812\) −0.0706876 −0.00248065
\(813\) −19.4276 −0.681355
\(814\) −2.46383 −0.0863571
\(815\) 0 0
\(816\) −8.09783 −0.283481
\(817\) −2.79225 −0.0976884
\(818\) 11.7127 0.409526
\(819\) 0 0
\(820\) 0 0
\(821\) 29.3980 1.02600 0.512999 0.858389i \(-0.328534\pi\)
0.512999 + 0.858389i \(0.328534\pi\)
\(822\) 24.3612 0.849695
\(823\) −53.7318 −1.87297 −0.936487 0.350702i \(-0.885943\pi\)
−0.936487 + 0.350702i \(0.885943\pi\)
\(824\) 4.39373 0.153063
\(825\) 0 0
\(826\) −0.914247 −0.0318107
\(827\) 47.3099 1.64513 0.822563 0.568674i \(-0.192543\pi\)
0.822563 + 0.568674i \(0.192543\pi\)
\(828\) −9.77240 −0.339614
\(829\) −49.3749 −1.71486 −0.857431 0.514598i \(-0.827941\pi\)
−0.857431 + 0.514598i \(0.827941\pi\)
\(830\) 0 0
\(831\) 17.4517 0.605394
\(832\) 0 0
\(833\) 45.2030 1.56619
\(834\) −22.9638 −0.795170
\(835\) 0 0
\(836\) −0.548253 −0.0189617
\(837\) 34.7767 1.20206
\(838\) 21.3250 0.736659
\(839\) 10.6219 0.366710 0.183355 0.983047i \(-0.441304\pi\)
0.183355 + 0.983047i \(0.441304\pi\)
\(840\) 0 0
\(841\) −28.8726 −0.995608
\(842\) 22.1457 0.763191
\(843\) −16.6273 −0.572675
\(844\) 3.30559 0.113783
\(845\) 0 0
\(846\) 2.07069 0.0711917
\(847\) −1.93469 −0.0664767
\(848\) −9.92154 −0.340707
\(849\) 25.8485 0.887117
\(850\) 0 0
\(851\) 15.0121 0.514608
\(852\) −16.9638 −0.581169
\(853\) −11.4625 −0.392469 −0.196234 0.980557i \(-0.562871\pi\)
−0.196234 + 0.980557i \(0.562871\pi\)
\(854\) 1.09006 0.0373013
\(855\) 0 0
\(856\) 17.9758 0.614401
\(857\) 19.4819 0.665488 0.332744 0.943017i \(-0.392025\pi\)
0.332744 + 0.943017i \(0.392025\pi\)
\(858\) 0 0
\(859\) −23.1448 −0.789692 −0.394846 0.918747i \(-0.629202\pi\)
−0.394846 + 0.918747i \(0.629202\pi\)
\(860\) 0 0
\(861\) −2.21446 −0.0754684
\(862\) −36.8068 −1.25365
\(863\) 38.9681 1.32649 0.663244 0.748403i \(-0.269179\pi\)
0.663244 + 0.748403i \(0.269179\pi\)
\(864\) −5.54288 −0.188572
\(865\) 0 0
\(866\) −2.08708 −0.0709219
\(867\) 31.3884 1.06600
\(868\) −1.24267 −0.0421789
\(869\) −3.25608 −0.110455
\(870\) 0 0
\(871\) 0 0
\(872\) −6.73556 −0.228095
\(873\) −19.6233 −0.664146
\(874\) 3.34050 0.112994
\(875\) 0 0
\(876\) 0.737955 0.0249332
\(877\) 28.2064 0.952463 0.476232 0.879320i \(-0.342002\pi\)
0.476232 + 0.879320i \(0.342002\pi\)
\(878\) 9.95646 0.336014
\(879\) 20.4397 0.689413
\(880\) 0 0
\(881\) −21.2948 −0.717441 −0.358721 0.933445i \(-0.616787\pi\)
−0.358721 + 0.933445i \(0.616787\pi\)
\(882\) 10.0586 0.338691
\(883\) 46.8068 1.57518 0.787588 0.616202i \(-0.211330\pi\)
0.787588 + 0.616202i \(0.211330\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 15.3884 0.516982
\(887\) −1.62565 −0.0545838 −0.0272919 0.999628i \(-0.508688\pi\)
−0.0272919 + 0.999628i \(0.508688\pi\)
\(888\) 2.76809 0.0928909
\(889\) −2.72886 −0.0915229
\(890\) 0 0
\(891\) 2.85995 0.0958120
\(892\) −16.6310 −0.556848
\(893\) −0.707824 −0.0236864
\(894\) −21.5308 −0.720098
\(895\) 0 0
\(896\) 0.198062 0.00661680
\(897\) 0 0
\(898\) −8.18060 −0.272990
\(899\) 2.23921 0.0746818
\(900\) 0 0
\(901\) 64.4301 2.14648
\(902\) 9.95167 0.331354
\(903\) −1.39612 −0.0464601
\(904\) −2.27413 −0.0756363
\(905\) 0 0
\(906\) −4.95779 −0.164711
\(907\) 28.8442 0.957754 0.478877 0.877882i \(-0.341044\pi\)
0.478877 + 0.877882i \(0.341044\pi\)
\(908\) −10.8616 −0.360455
\(909\) 8.02715 0.266244
\(910\) 0 0
\(911\) 11.5254 0.381854 0.190927 0.981604i \(-0.438851\pi\)
0.190927 + 0.981604i \(0.438851\pi\)
\(912\) 0.615957 0.0203964
\(913\) −17.3840 −0.575328
\(914\) 16.0737 0.531670
\(915\) 0 0
\(916\) 23.3991 0.773128
\(917\) −3.82371 −0.126270
\(918\) 35.9952 1.18802
\(919\) 8.28275 0.273223 0.136611 0.990625i \(-0.456379\pi\)
0.136611 + 0.990625i \(0.456379\pi\)
\(920\) 0 0
\(921\) −8.66487 −0.285517
\(922\) −27.5308 −0.906678
\(923\) 0 0
\(924\) −0.274127 −0.00901811
\(925\) 0 0
\(926\) −10.6595 −0.350293
\(927\) −6.34913 −0.208533
\(928\) −0.356896 −0.0117157
\(929\) −25.3846 −0.832843 −0.416421 0.909172i \(-0.636716\pi\)
−0.416421 + 0.909172i \(0.636716\pi\)
\(930\) 0 0
\(931\) −3.43834 −0.112687
\(932\) −14.3913 −0.471404
\(933\) −30.3779 −0.994529
\(934\) 10.7976 0.353309
\(935\) 0 0
\(936\) 0 0
\(937\) 21.4819 0.701782 0.350891 0.936416i \(-0.385879\pi\)
0.350891 + 0.936416i \(0.385879\pi\)
\(938\) −0.767021 −0.0250441
\(939\) −3.60388 −0.117608
\(940\) 0 0
\(941\) −12.1148 −0.394932 −0.197466 0.980310i \(-0.563271\pi\)
−0.197466 + 0.980310i \(0.563271\pi\)
\(942\) −21.7017 −0.707080
\(943\) −60.6355 −1.97456
\(944\) −4.61596 −0.150237
\(945\) 0 0
\(946\) 6.27413 0.203989
\(947\) −23.4553 −0.762196 −0.381098 0.924535i \(-0.624454\pi\)
−0.381098 + 0.924535i \(0.624454\pi\)
\(948\) 3.65817 0.118812
\(949\) 0 0
\(950\) 0 0
\(951\) 6.24996 0.202669
\(952\) −1.28621 −0.0416862
\(953\) 42.5086 1.37699 0.688494 0.725242i \(-0.258272\pi\)
0.688494 + 0.725242i \(0.258272\pi\)
\(954\) 14.3370 0.464179
\(955\) 0 0
\(956\) −3.56033 −0.115149
\(957\) 0.493959 0.0159674
\(958\) −9.08575 −0.293547
\(959\) 3.86938 0.124949
\(960\) 0 0
\(961\) 8.36467 0.269828
\(962\) 0 0
\(963\) −25.9758 −0.837060
\(964\) 29.1890 0.940113
\(965\) 0 0
\(966\) 1.67025 0.0537395
\(967\) −24.7827 −0.796957 −0.398479 0.917178i \(-0.630462\pi\)
−0.398479 + 0.917178i \(0.630462\pi\)
\(968\) −9.76809 −0.313958
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) −46.1124 −1.47982 −0.739909 0.672707i \(-0.765132\pi\)
−0.739909 + 0.672707i \(0.765132\pi\)
\(972\) 13.4155 0.430302
\(973\) −3.64742 −0.116931
\(974\) −40.8471 −1.30883
\(975\) 0 0
\(976\) 5.50365 0.176167
\(977\) 14.3827 0.460144 0.230072 0.973174i \(-0.426104\pi\)
0.230072 + 0.973174i \(0.426104\pi\)
\(978\) −11.4330 −0.365586
\(979\) −18.9578 −0.605894
\(980\) 0 0
\(981\) 9.73317 0.310756
\(982\) 29.0944 0.928439
\(983\) −9.73615 −0.310535 −0.155268 0.987872i \(-0.549624\pi\)
−0.155268 + 0.987872i \(0.549624\pi\)
\(984\) −11.1806 −0.356425
\(985\) 0 0
\(986\) 2.31767 0.0738096
\(987\) −0.353912 −0.0112651
\(988\) 0 0
\(989\) −38.2282 −1.21559
\(990\) 0 0
\(991\) −25.7948 −0.819398 −0.409699 0.912221i \(-0.634366\pi\)
−0.409699 + 0.912221i \(0.634366\pi\)
\(992\) −6.27413 −0.199204
\(993\) 29.9517 0.950488
\(994\) −2.69441 −0.0854616
\(995\) 0 0
\(996\) 19.5308 0.618857
\(997\) −29.8974 −0.946860 −0.473430 0.880832i \(-0.656984\pi\)
−0.473430 + 0.880832i \(0.656984\pi\)
\(998\) −16.2150 −0.513278
\(999\) −12.3043 −0.389289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bz.1.3 3
5.4 even 2 1690.2.a.q.1.1 3
13.12 even 2 8450.2.a.bo.1.3 3
65.4 even 6 1690.2.e.o.991.3 6
65.9 even 6 1690.2.e.q.991.3 6
65.19 odd 12 1690.2.l.l.361.6 12
65.24 odd 12 1690.2.l.l.1161.6 12
65.29 even 6 1690.2.e.q.191.3 6
65.34 odd 4 1690.2.d.j.1351.1 6
65.44 odd 4 1690.2.d.j.1351.4 6
65.49 even 6 1690.2.e.o.191.3 6
65.54 odd 12 1690.2.l.l.1161.3 12
65.59 odd 12 1690.2.l.l.361.3 12
65.64 even 2 1690.2.a.s.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.q.1.1 3 5.4 even 2
1690.2.a.s.1.1 yes 3 65.64 even 2
1690.2.d.j.1351.1 6 65.34 odd 4
1690.2.d.j.1351.4 6 65.44 odd 4
1690.2.e.o.191.3 6 65.49 even 6
1690.2.e.o.991.3 6 65.4 even 6
1690.2.e.q.191.3 6 65.29 even 6
1690.2.e.q.991.3 6 65.9 even 6
1690.2.l.l.361.3 12 65.59 odd 12
1690.2.l.l.361.6 12 65.19 odd 12
1690.2.l.l.1161.3 12 65.54 odd 12
1690.2.l.l.1161.6 12 65.24 odd 12
8450.2.a.bo.1.3 3 13.12 even 2
8450.2.a.bz.1.3 3 1.1 even 1 trivial