Properties

Label 1690.2.e.o.191.3
Level $1690$
Weight $2$
Character 1690.191
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-1,-3,-6,-1,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.3
Root \(-0.623490 + 1.07992i\) of defining polynomial
Character \(\chi\) \(=\) 1690.191
Dual form 1690.2.e.o.991.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.623490 - 1.07992i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(0.623490 + 1.07992i) q^{6} +(-0.0990311 - 0.171527i) q^{7} +1.00000 q^{8} +(0.722521 + 1.25144i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-0.554958 + 0.961216i) q^{11} -1.24698 q^{12} +0.198062 q^{14} +(-0.623490 + 1.07992i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.24698 - 5.62393i) q^{17} -1.44504 q^{18} +(0.246980 + 0.427781i) q^{19} +(0.500000 + 0.866025i) q^{20} -0.246980 q^{21} +(-0.554958 - 0.961216i) q^{22} +(3.38135 - 5.85668i) q^{23} +(0.623490 - 1.07992i) q^{24} +1.00000 q^{25} +5.54288 q^{27} +(-0.0990311 + 0.171527i) q^{28} +(0.178448 - 0.309081i) q^{29} +(-0.623490 - 1.07992i) q^{30} +6.27413 q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.692021 + 1.19862i) q^{33} +6.49396 q^{34} +(0.0990311 + 0.171527i) q^{35} +(0.722521 - 1.25144i) q^{36} +(-1.10992 + 1.92243i) q^{37} -0.493959 q^{38} -1.00000 q^{40} +(-4.48307 + 7.76491i) q^{41} +(0.123490 - 0.213891i) q^{42} +(-2.82640 - 4.89546i) q^{43} +1.10992 q^{44} +(-0.722521 - 1.25144i) q^{45} +(3.38135 + 5.85668i) q^{46} -1.43296 q^{47} +(0.623490 + 1.07992i) q^{48} +(3.48039 - 6.02820i) q^{49} +(-0.500000 + 0.866025i) q^{50} -8.09783 q^{51} +9.92154 q^{53} +(-2.77144 + 4.80027i) q^{54} +(0.554958 - 0.961216i) q^{55} +(-0.0990311 - 0.171527i) q^{56} +0.615957 q^{57} +(0.178448 + 0.309081i) q^{58} +(-2.30798 - 3.99754i) q^{59} +1.24698 q^{60} +(-2.75182 - 4.76630i) q^{61} +(-3.13706 + 5.43355i) q^{62} +(0.143104 - 0.247864i) q^{63} +1.00000 q^{64} -1.38404 q^{66} +(1.93631 - 3.35379i) q^{67} +(-3.24698 + 5.62393i) q^{68} +(-4.21648 - 7.30316i) q^{69} -0.198062 q^{70} +(-6.80194 - 11.7813i) q^{71} +(0.722521 + 1.25144i) q^{72} +0.591794 q^{73} +(-1.10992 - 1.92243i) q^{74} +(0.623490 - 1.07992i) q^{75} +(0.246980 - 0.427781i) q^{76} +0.219833 q^{77} +2.93362 q^{79} +(0.500000 - 0.866025i) q^{80} +(1.28836 - 2.23151i) q^{81} +(-4.48307 - 7.76491i) q^{82} +15.6625 q^{83} +(0.123490 + 0.213891i) q^{84} +(3.24698 + 5.62393i) q^{85} +5.65279 q^{86} +(-0.222521 - 0.385418i) q^{87} +(-0.554958 + 0.961216i) q^{88} +(8.54019 - 14.7920i) q^{89} +1.44504 q^{90} -6.76271 q^{92} +(3.91185 - 6.77553i) q^{93} +(0.716480 - 1.24098i) q^{94} +(-0.246980 - 0.427781i) q^{95} -1.24698 q^{96} +(-6.78986 - 11.7604i) q^{97} +(3.48039 + 6.02820i) q^{98} -1.60388 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - q^{3} - 3 q^{4} - 6 q^{5} - q^{6} - 5 q^{7} + 6 q^{8} + 4 q^{9} + 3 q^{10} - 4 q^{11} + 2 q^{12} + 10 q^{14} + q^{15} - 3 q^{16} - 10 q^{17} - 8 q^{18} - 8 q^{19} + 3 q^{20} + 8 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.623490 1.07992i 0.359972 0.623490i −0.627984 0.778226i \(-0.716120\pi\)
0.987956 + 0.154737i \(0.0494529\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 −0.447214
\(6\) 0.623490 + 1.07992i 0.254539 + 0.440874i
\(7\) −0.0990311 0.171527i −0.0374302 0.0648311i 0.846703 0.532065i \(-0.178584\pi\)
−0.884134 + 0.467234i \(0.845251\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.722521 + 1.25144i 0.240840 + 0.417148i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −0.554958 + 0.961216i −0.167326 + 0.289817i −0.937479 0.348042i \(-0.886847\pi\)
0.770153 + 0.637860i \(0.220180\pi\)
\(12\) −1.24698 −0.359972
\(13\) 0 0
\(14\) 0.198062 0.0529344
\(15\) −0.623490 + 1.07992i −0.160984 + 0.278833i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.24698 5.62393i −0.787508 1.36400i −0.927489 0.373850i \(-0.878037\pi\)
0.139981 0.990154i \(-0.455296\pi\)
\(18\) −1.44504 −0.340600
\(19\) 0.246980 + 0.427781i 0.0566610 + 0.0981397i 0.892965 0.450127i \(-0.148621\pi\)
−0.836304 + 0.548267i \(0.815288\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) −0.246980 −0.0538954
\(22\) −0.554958 0.961216i −0.118317 0.204932i
\(23\) 3.38135 5.85668i 0.705061 1.22120i −0.261608 0.965174i \(-0.584253\pi\)
0.966669 0.256028i \(-0.0824138\pi\)
\(24\) 0.623490 1.07992i 0.127269 0.220437i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.54288 1.06673
\(28\) −0.0990311 + 0.171527i −0.0187151 + 0.0324155i
\(29\) 0.178448 0.309081i 0.0331369 0.0573949i −0.848981 0.528423i \(-0.822784\pi\)
0.882118 + 0.471028i \(0.156117\pi\)
\(30\) −0.623490 1.07992i −0.113833 0.197165i
\(31\) 6.27413 1.12687 0.563433 0.826162i \(-0.309480\pi\)
0.563433 + 0.826162i \(0.309480\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.692021 + 1.19862i 0.120465 + 0.208652i
\(34\) 6.49396 1.11370
\(35\) 0.0990311 + 0.171527i 0.0167393 + 0.0289933i
\(36\) 0.722521 1.25144i 0.120420 0.208574i
\(37\) −1.10992 + 1.92243i −0.182469 + 0.316046i −0.942721 0.333583i \(-0.891742\pi\)
0.760252 + 0.649629i \(0.225076\pi\)
\(38\) −0.493959 −0.0801308
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −4.48307 + 7.76491i −0.700139 + 1.21268i 0.268279 + 0.963341i \(0.413545\pi\)
−0.968417 + 0.249334i \(0.919788\pi\)
\(42\) 0.123490 0.213891i 0.0190549 0.0330040i
\(43\) −2.82640 4.89546i −0.431021 0.746551i 0.565940 0.824446i \(-0.308513\pi\)
−0.996962 + 0.0778954i \(0.975180\pi\)
\(44\) 1.10992 0.167326
\(45\) −0.722521 1.25144i −0.107707 0.186554i
\(46\) 3.38135 + 5.85668i 0.498554 + 0.863520i
\(47\) −1.43296 −0.209019 −0.104509 0.994524i \(-0.533327\pi\)
−0.104509 + 0.994524i \(0.533327\pi\)
\(48\) 0.623490 + 1.07992i 0.0899930 + 0.155872i
\(49\) 3.48039 6.02820i 0.497198 0.861172i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) −8.09783 −1.13392
\(52\) 0 0
\(53\) 9.92154 1.36283 0.681414 0.731898i \(-0.261365\pi\)
0.681414 + 0.731898i \(0.261365\pi\)
\(54\) −2.77144 + 4.80027i −0.377145 + 0.653234i
\(55\) 0.554958 0.961216i 0.0748305 0.129610i
\(56\) −0.0990311 0.171527i −0.0132336 0.0229213i
\(57\) 0.615957 0.0815855
\(58\) 0.178448 + 0.309081i 0.0234314 + 0.0405843i
\(59\) −2.30798 3.99754i −0.300473 0.520435i 0.675770 0.737113i \(-0.263811\pi\)
−0.976243 + 0.216678i \(0.930478\pi\)
\(60\) 1.24698 0.160984
\(61\) −2.75182 4.76630i −0.352335 0.610262i 0.634323 0.773068i \(-0.281279\pi\)
−0.986658 + 0.162806i \(0.947946\pi\)
\(62\) −3.13706 + 5.43355i −0.398407 + 0.690062i
\(63\) 0.143104 0.247864i 0.0180294 0.0312279i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.38404 −0.170364
\(67\) 1.93631 3.35379i 0.236558 0.409731i −0.723166 0.690674i \(-0.757314\pi\)
0.959724 + 0.280943i \(0.0906473\pi\)
\(68\) −3.24698 + 5.62393i −0.393754 + 0.682002i
\(69\) −4.21648 7.30316i −0.507605 0.879197i
\(70\) −0.198062 −0.0236730
\(71\) −6.80194 11.7813i −0.807241 1.39818i −0.914767 0.403981i \(-0.867626\pi\)
0.107526 0.994202i \(-0.465707\pi\)
\(72\) 0.722521 + 1.25144i 0.0851499 + 0.147484i
\(73\) 0.591794 0.0692642 0.0346321 0.999400i \(-0.488974\pi\)
0.0346321 + 0.999400i \(0.488974\pi\)
\(74\) −1.10992 1.92243i −0.129025 0.223478i
\(75\) 0.623490 1.07992i 0.0719944 0.124698i
\(76\) 0.246980 0.427781i 0.0283305 0.0490699i
\(77\) 0.219833 0.0250522
\(78\) 0 0
\(79\) 2.93362 0.330059 0.165029 0.986289i \(-0.447228\pi\)
0.165029 + 0.986289i \(0.447228\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 1.28836 2.23151i 0.143152 0.247946i
\(82\) −4.48307 7.76491i −0.495073 0.857491i
\(83\) 15.6625 1.71918 0.859590 0.510984i \(-0.170719\pi\)
0.859590 + 0.510984i \(0.170719\pi\)
\(84\) 0.123490 + 0.213891i 0.0134738 + 0.0233374i
\(85\) 3.24698 + 5.62393i 0.352184 + 0.610001i
\(86\) 5.65279 0.609556
\(87\) −0.222521 0.385418i −0.0238567 0.0413211i
\(88\) −0.554958 + 0.961216i −0.0591587 + 0.102466i
\(89\) 8.54019 14.7920i 0.905258 1.56795i 0.0846878 0.996408i \(-0.473011\pi\)
0.820570 0.571546i \(-0.193656\pi\)
\(90\) 1.44504 0.152321
\(91\) 0 0
\(92\) −6.76271 −0.705061
\(93\) 3.91185 6.77553i 0.405640 0.702590i
\(94\) 0.716480 1.24098i 0.0738993 0.127997i
\(95\) −0.246980 0.427781i −0.0253396 0.0438894i
\(96\) −1.24698 −0.127269
\(97\) −6.78986 11.7604i −0.689405 1.19409i −0.972030 0.234855i \(-0.924539\pi\)
0.282625 0.959230i \(-0.408795\pi\)
\(98\) 3.48039 + 6.02820i 0.351572 + 0.608941i
\(99\) −1.60388 −0.161196
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 2.77748 4.81073i 0.276369 0.478686i −0.694110 0.719869i \(-0.744202\pi\)
0.970480 + 0.241183i \(0.0775353\pi\)
\(102\) 4.04892 7.01293i 0.400903 0.694384i
\(103\) −4.39373 −0.432927 −0.216464 0.976291i \(-0.569452\pi\)
−0.216464 + 0.976291i \(0.569452\pi\)
\(104\) 0 0
\(105\) 0.246980 0.0241027
\(106\) −4.96077 + 8.59231i −0.481833 + 0.834559i
\(107\) 8.98792 15.5675i 0.868895 1.50497i 0.00576774 0.999983i \(-0.498164\pi\)
0.863127 0.504987i \(-0.168503\pi\)
\(108\) −2.77144 4.80027i −0.266682 0.461906i
\(109\) 6.73556 0.645150 0.322575 0.946544i \(-0.395452\pi\)
0.322575 + 0.946544i \(0.395452\pi\)
\(110\) 0.554958 + 0.961216i 0.0529132 + 0.0916483i
\(111\) 1.38404 + 2.39723i 0.131368 + 0.227535i
\(112\) 0.198062 0.0187151
\(113\) −1.13706 1.96945i −0.106966 0.185270i 0.807574 0.589767i \(-0.200780\pi\)
−0.914540 + 0.404496i \(0.867447\pi\)
\(114\) −0.307979 + 0.533434i −0.0288448 + 0.0499607i
\(115\) −3.38135 + 5.85668i −0.315313 + 0.546138i
\(116\) −0.356896 −0.0331369
\(117\) 0 0
\(118\) 4.61596 0.424933
\(119\) −0.643104 + 1.11389i −0.0589533 + 0.102110i
\(120\) −0.623490 + 1.07992i −0.0569166 + 0.0985824i
\(121\) 4.88404 + 8.45941i 0.444004 + 0.769037i
\(122\) 5.50365 0.498277
\(123\) 5.59030 + 9.68269i 0.504061 + 0.873058i
\(124\) −3.13706 5.43355i −0.281717 0.487947i
\(125\) −1.00000 −0.0894427
\(126\) 0.143104 + 0.247864i 0.0127487 + 0.0220814i
\(127\) −6.88889 + 11.9319i −0.611290 + 1.05879i 0.379733 + 0.925096i \(0.376016\pi\)
−0.991023 + 0.133689i \(0.957318\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −7.04892 −0.620623
\(130\) 0 0
\(131\) −19.3056 −1.68674 −0.843368 0.537336i \(-0.819431\pi\)
−0.843368 + 0.537336i \(0.819431\pi\)
\(132\) 0.692021 1.19862i 0.0602327 0.104326i
\(133\) 0.0489173 0.0847273i 0.00424167 0.00734679i
\(134\) 1.93631 + 3.35379i 0.167272 + 0.289723i
\(135\) −5.54288 −0.477055
\(136\) −3.24698 5.62393i −0.278426 0.482248i
\(137\) −9.76809 16.9188i −0.834544 1.44547i −0.894401 0.447265i \(-0.852398\pi\)
0.0598573 0.998207i \(-0.480935\pi\)
\(138\) 8.43296 0.717861
\(139\) 9.20775 + 15.9483i 0.780991 + 1.35272i 0.931365 + 0.364087i \(0.118619\pi\)
−0.150374 + 0.988629i \(0.548048\pi\)
\(140\) 0.0990311 0.171527i 0.00836966 0.0144967i
\(141\) −0.893436 + 1.54748i −0.0752409 + 0.130321i
\(142\) 13.6039 1.14161
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) −0.178448 + 0.309081i −0.0148193 + 0.0256678i
\(146\) −0.295897 + 0.512509i −0.0244886 + 0.0424155i
\(147\) −4.33997 7.51705i −0.357955 0.619996i
\(148\) 2.21983 0.182469
\(149\) −8.63318 14.9531i −0.707258 1.22501i −0.965871 0.259025i \(-0.916599\pi\)
0.258613 0.965981i \(-0.416735\pi\)
\(150\) 0.623490 + 1.07992i 0.0509077 + 0.0881748i
\(151\) 3.97584 0.323549 0.161775 0.986828i \(-0.448278\pi\)
0.161775 + 0.986828i \(0.448278\pi\)
\(152\) 0.246980 + 0.427781i 0.0200327 + 0.0346976i
\(153\) 4.69202 8.12682i 0.379327 0.657014i
\(154\) −0.109916 + 0.190381i −0.00885730 + 0.0153413i
\(155\) −6.27413 −0.503950
\(156\) 0 0
\(157\) 17.4034 1.38894 0.694472 0.719520i \(-0.255638\pi\)
0.694472 + 0.719520i \(0.255638\pi\)
\(158\) −1.46681 + 2.54059i −0.116693 + 0.202119i
\(159\) 6.18598 10.7144i 0.490580 0.849710i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −1.33944 −0.105562
\(162\) 1.28836 + 2.23151i 0.101223 + 0.175324i
\(163\) 4.58426 + 7.94017i 0.359067 + 0.621922i 0.987805 0.155695i \(-0.0497616\pi\)
−0.628738 + 0.777617i \(0.716428\pi\)
\(164\) 8.96615 0.700139
\(165\) −0.692021 1.19862i −0.0538738 0.0933122i
\(166\) −7.83124 + 13.5641i −0.607822 + 1.05278i
\(167\) −3.68114 + 6.37592i −0.284855 + 0.493383i −0.972574 0.232594i \(-0.925279\pi\)
0.687719 + 0.725977i \(0.258612\pi\)
\(168\) −0.246980 −0.0190549
\(169\) 0 0
\(170\) −6.49396 −0.498064
\(171\) −0.356896 + 0.618162i −0.0272925 + 0.0472720i
\(172\) −2.82640 + 4.89546i −0.215511 + 0.373275i
\(173\) 4.29590 + 7.44071i 0.326611 + 0.565707i 0.981837 0.189726i \(-0.0607600\pi\)
−0.655226 + 0.755433i \(0.727427\pi\)
\(174\) 0.445042 0.0337385
\(175\) −0.0990311 0.171527i −0.00748605 0.0129662i
\(176\) −0.554958 0.961216i −0.0418315 0.0724544i
\(177\) −5.75600 −0.432648
\(178\) 8.54019 + 14.7920i 0.640114 + 1.10871i
\(179\) 0.329749 0.571142i 0.0246466 0.0426891i −0.853439 0.521193i \(-0.825487\pi\)
0.878086 + 0.478504i \(0.158821\pi\)
\(180\) −0.722521 + 1.25144i −0.0538535 + 0.0932771i
\(181\) −20.4101 −1.51707 −0.758536 0.651631i \(-0.774085\pi\)
−0.758536 + 0.651631i \(0.774085\pi\)
\(182\) 0 0
\(183\) −6.86294 −0.507323
\(184\) 3.38135 5.85668i 0.249277 0.431760i
\(185\) 1.10992 1.92243i 0.0816027 0.141340i
\(186\) 3.91185 + 6.77553i 0.286831 + 0.496806i
\(187\) 7.20775 0.527083
\(188\) 0.716480 + 1.24098i 0.0522547 + 0.0905078i
\(189\) −0.548917 0.950753i −0.0399279 0.0691571i
\(190\) 0.493959 0.0358356
\(191\) −6.36658 11.0272i −0.460670 0.797904i 0.538325 0.842738i \(-0.319057\pi\)
−0.998994 + 0.0448339i \(0.985724\pi\)
\(192\) 0.623490 1.07992i 0.0449965 0.0779362i
\(193\) −4.34481 + 7.52544i −0.312747 + 0.541693i −0.978956 0.204072i \(-0.934582\pi\)
0.666209 + 0.745765i \(0.267916\pi\)
\(194\) 13.5797 0.974967
\(195\) 0 0
\(196\) −6.96077 −0.497198
\(197\) −2.64310 + 4.57799i −0.188313 + 0.326168i −0.944688 0.327970i \(-0.893635\pi\)
0.756375 + 0.654139i \(0.226969\pi\)
\(198\) 0.801938 1.38900i 0.0569912 0.0987117i
\(199\) 5.47219 + 9.47811i 0.387913 + 0.671885i 0.992169 0.124905i \(-0.0398627\pi\)
−0.604255 + 0.796791i \(0.706529\pi\)
\(200\) 1.00000 0.0707107
\(201\) −2.41454 4.18211i −0.170309 0.294983i
\(202\) 2.77748 + 4.81073i 0.195423 + 0.338482i
\(203\) −0.0706876 −0.00496130
\(204\) 4.04892 + 7.01293i 0.283481 + 0.491003i
\(205\) 4.48307 7.76491i 0.313111 0.542325i
\(206\) 2.19687 3.80508i 0.153063 0.265113i
\(207\) 9.77240 0.679229
\(208\) 0 0
\(209\) −0.548253 −0.0379235
\(210\) −0.123490 + 0.213891i −0.00852161 + 0.0147599i
\(211\) −1.65279 + 2.86272i −0.113783 + 0.197078i −0.917293 0.398214i \(-0.869630\pi\)
0.803510 + 0.595292i \(0.202964\pi\)
\(212\) −4.96077 8.59231i −0.340707 0.590122i
\(213\) −16.9638 −1.16234
\(214\) 8.98792 + 15.5675i 0.614401 + 1.06417i
\(215\) 2.82640 + 4.89546i 0.192759 + 0.333868i
\(216\) 5.54288 0.377145
\(217\) −0.621334 1.07618i −0.0421789 0.0730560i
\(218\) −3.36778 + 5.83317i −0.228095 + 0.395072i
\(219\) 0.368977 0.639088i 0.0249332 0.0431855i
\(220\) −1.10992 −0.0748305
\(221\) 0 0
\(222\) −2.76809 −0.185782
\(223\) 8.31551 14.4029i 0.556848 0.964489i −0.440909 0.897552i \(-0.645344\pi\)
0.997757 0.0669371i \(-0.0213227\pi\)
\(224\) −0.0990311 + 0.171527i −0.00661680 + 0.0114606i
\(225\) 0.722521 + 1.25144i 0.0481681 + 0.0834295i
\(226\) 2.27413 0.151273
\(227\) 5.43080 + 9.40643i 0.360455 + 0.624327i 0.988036 0.154225i \(-0.0492881\pi\)
−0.627581 + 0.778552i \(0.715955\pi\)
\(228\) −0.307979 0.533434i −0.0203964 0.0353276i
\(229\) −23.3991 −1.54626 −0.773128 0.634250i \(-0.781309\pi\)
−0.773128 + 0.634250i \(0.781309\pi\)
\(230\) −3.38135 5.85668i −0.222960 0.386178i
\(231\) 0.137063 0.237401i 0.00901811 0.0156198i
\(232\) 0.178448 0.309081i 0.0117157 0.0202922i
\(233\) 14.3913 0.942808 0.471404 0.881917i \(-0.343747\pi\)
0.471404 + 0.881917i \(0.343747\pi\)
\(234\) 0 0
\(235\) 1.43296 0.0934760
\(236\) −2.30798 + 3.99754i −0.150237 + 0.260217i
\(237\) 1.82908 3.16807i 0.118812 0.205788i
\(238\) −0.643104 1.11389i −0.0416862 0.0722027i
\(239\) 3.56033 0.230299 0.115149 0.993348i \(-0.463265\pi\)
0.115149 + 0.993348i \(0.463265\pi\)
\(240\) −0.623490 1.07992i −0.0402461 0.0697083i
\(241\) 14.5945 + 25.2784i 0.940113 + 1.62832i 0.765252 + 0.643731i \(0.222614\pi\)
0.174861 + 0.984593i \(0.444052\pi\)
\(242\) −9.76809 −0.627916
\(243\) 6.70775 + 11.6182i 0.430302 + 0.745306i
\(244\) −2.75182 + 4.76630i −0.176167 + 0.305131i
\(245\) −3.48039 + 6.02820i −0.222354 + 0.385128i
\(246\) −11.1806 −0.712849
\(247\) 0 0
\(248\) 6.27413 0.398407
\(249\) 9.76540 16.9142i 0.618857 1.07189i
\(250\) 0.500000 0.866025i 0.0316228 0.0547723i
\(251\) 14.6799 + 25.4264i 0.926590 + 1.60490i 0.788985 + 0.614413i \(0.210607\pi\)
0.137605 + 0.990487i \(0.456060\pi\)
\(252\) −0.286208 −0.0180294
\(253\) 3.75302 + 6.50042i 0.235950 + 0.408678i
\(254\) −6.88889 11.9319i −0.432247 0.748674i
\(255\) 8.09783 0.507106
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.7681 + 18.6509i −0.671695 + 1.16341i 0.305729 + 0.952119i \(0.401100\pi\)
−0.977423 + 0.211291i \(0.932233\pi\)
\(258\) 3.52446 6.10454i 0.219423 0.380052i
\(259\) 0.439665 0.0273195
\(260\) 0 0
\(261\) 0.515729 0.0319229
\(262\) 9.65279 16.7191i 0.596352 1.03291i
\(263\) 3.28501 5.68981i 0.202563 0.350849i −0.746791 0.665059i \(-0.768406\pi\)
0.949353 + 0.314210i \(0.101740\pi\)
\(264\) 0.692021 + 1.19862i 0.0425910 + 0.0737697i
\(265\) −9.92154 −0.609476
\(266\) 0.0489173 + 0.0847273i 0.00299931 + 0.00519497i
\(267\) −10.6494 18.4454i −0.651735 1.12884i
\(268\) −3.87263 −0.236558
\(269\) −3.68449 6.38172i −0.224647 0.389100i 0.731566 0.681770i \(-0.238790\pi\)
−0.956214 + 0.292670i \(0.905456\pi\)
\(270\) 2.77144 4.80027i 0.168664 0.292135i
\(271\) −7.78986 + 13.4924i −0.473200 + 0.819607i −0.999529 0.0306742i \(-0.990235\pi\)
0.526329 + 0.850281i \(0.323568\pi\)
\(272\) 6.49396 0.393754
\(273\) 0 0
\(274\) 19.5362 1.18022
\(275\) −0.554958 + 0.961216i −0.0334652 + 0.0579635i
\(276\) −4.21648 + 7.30316i −0.253802 + 0.439598i
\(277\) 6.99761 + 12.1202i 0.420445 + 0.728233i 0.995983 0.0895425i \(-0.0285405\pi\)
−0.575538 + 0.817775i \(0.695207\pi\)
\(278\) −18.4155 −1.10449
\(279\) 4.53319 + 7.85171i 0.271395 + 0.470070i
\(280\) 0.0990311 + 0.171527i 0.00591824 + 0.0102507i
\(281\) 13.3341 0.795443 0.397722 0.917506i \(-0.369801\pi\)
0.397722 + 0.917506i \(0.369801\pi\)
\(282\) −0.893436 1.54748i −0.0532033 0.0921509i
\(283\) 10.3644 17.9517i 0.616101 1.06712i −0.374089 0.927393i \(-0.622045\pi\)
0.990190 0.139726i \(-0.0446222\pi\)
\(284\) −6.80194 + 11.7813i −0.403621 + 0.699092i
\(285\) −0.615957 −0.0364861
\(286\) 0 0
\(287\) 1.77586 0.104825
\(288\) 0.722521 1.25144i 0.0425750 0.0737420i
\(289\) −12.5858 + 21.7992i −0.740338 + 1.28230i
\(290\) −0.178448 0.309081i −0.0104788 0.0181499i
\(291\) −16.9336 −0.992667
\(292\) −0.295897 0.512509i −0.0173161 0.0299923i
\(293\) −8.19567 14.1953i −0.478796 0.829299i 0.520908 0.853613i \(-0.325593\pi\)
−0.999704 + 0.0243135i \(0.992260\pi\)
\(294\) 8.67994 0.506224
\(295\) 2.30798 + 3.99754i 0.134376 + 0.232746i
\(296\) −1.10992 + 1.92243i −0.0645126 + 0.111739i
\(297\) −3.07606 + 5.32790i −0.178491 + 0.309156i
\(298\) 17.2664 1.00021
\(299\) 0 0
\(300\) −1.24698 −0.0719944
\(301\) −0.559802 + 0.969606i −0.0322665 + 0.0558872i
\(302\) −1.98792 + 3.44318i −0.114392 + 0.198132i
\(303\) −3.46346 5.99889i −0.198971 0.344627i
\(304\) −0.493959 −0.0283305
\(305\) 2.75182 + 4.76630i 0.157569 + 0.272917i
\(306\) 4.69202 + 8.12682i 0.268225 + 0.464579i
\(307\) −6.94869 −0.396583 −0.198291 0.980143i \(-0.563539\pi\)
−0.198291 + 0.980143i \(0.563539\pi\)
\(308\) −0.109916 0.190381i −0.00626306 0.0108479i
\(309\) −2.73945 + 4.74486i −0.155842 + 0.269926i
\(310\) 3.13706 5.43355i 0.178173 0.308605i
\(311\) −24.3612 −1.38140 −0.690699 0.723143i \(-0.742697\pi\)
−0.690699 + 0.723143i \(0.742697\pi\)
\(312\) 0 0
\(313\) 2.89008 0.163357 0.0816786 0.996659i \(-0.473972\pi\)
0.0816786 + 0.996659i \(0.473972\pi\)
\(314\) −8.70171 + 15.0718i −0.491066 + 0.850551i
\(315\) −0.143104 + 0.247864i −0.00806300 + 0.0139655i
\(316\) −1.46681 2.54059i −0.0825146 0.142920i
\(317\) 5.01208 0.281507 0.140753 0.990045i \(-0.455048\pi\)
0.140753 + 0.990045i \(0.455048\pi\)
\(318\) 6.18598 + 10.7144i 0.346893 + 0.600836i
\(319\) 0.198062 + 0.343054i 0.0110894 + 0.0192073i
\(320\) −1.00000 −0.0559017
\(321\) −11.2078 19.4124i −0.625556 1.08349i
\(322\) 0.669719 1.15999i 0.0373220 0.0646435i
\(323\) 1.60388 2.77799i 0.0892420 0.154572i
\(324\) −2.57673 −0.143152
\(325\) 0 0
\(326\) −9.16852 −0.507797
\(327\) 4.19955 7.27384i 0.232236 0.402244i
\(328\) −4.48307 + 7.76491i −0.247536 + 0.428746i
\(329\) 0.141908 + 0.245791i 0.00782362 + 0.0135509i
\(330\) 1.38404 0.0761891
\(331\) 12.0097 + 20.8014i 0.660112 + 1.14335i 0.980586 + 0.196090i \(0.0628246\pi\)
−0.320474 + 0.947257i \(0.603842\pi\)
\(332\) −7.83124 13.5641i −0.429795 0.744427i
\(333\) −3.20775 −0.175784
\(334\) −3.68114 6.37592i −0.201423 0.348875i
\(335\) −1.93631 + 3.35379i −0.105792 + 0.183237i
\(336\) 0.123490 0.213891i 0.00673692 0.0116687i
\(337\) 28.5133 1.55322 0.776610 0.629981i \(-0.216938\pi\)
0.776610 + 0.629981i \(0.216938\pi\)
\(338\) 0 0
\(339\) −2.83579 −0.154019
\(340\) 3.24698 5.62393i 0.176092 0.305001i
\(341\) −3.48188 + 6.03079i −0.188554 + 0.326586i
\(342\) −0.356896 0.618162i −0.0192987 0.0334264i
\(343\) −2.76510 −0.149301
\(344\) −2.82640 4.89546i −0.152389 0.263946i
\(345\) 4.21648 + 7.30316i 0.227008 + 0.393189i
\(346\) −8.59179 −0.461898
\(347\) 12.5993 + 21.8227i 0.676367 + 1.17150i 0.976067 + 0.217469i \(0.0697801\pi\)
−0.299700 + 0.954034i \(0.596887\pi\)
\(348\) −0.222521 + 0.385418i −0.0119284 + 0.0206606i
\(349\) 8.20775 14.2162i 0.439351 0.760978i −0.558289 0.829647i \(-0.688542\pi\)
0.997640 + 0.0686688i \(0.0218752\pi\)
\(350\) 0.198062 0.0105869
\(351\) 0 0
\(352\) 1.10992 0.0591587
\(353\) 0.554958 0.961216i 0.0295374 0.0511603i −0.850879 0.525362i \(-0.823930\pi\)
0.880416 + 0.474202i \(0.157263\pi\)
\(354\) 2.87800 4.98485i 0.152964 0.264942i
\(355\) 6.80194 + 11.7813i 0.361009 + 0.625287i
\(356\) −17.0804 −0.905258
\(357\) 0.801938 + 1.38900i 0.0424430 + 0.0735135i
\(358\) 0.329749 + 0.571142i 0.0174278 + 0.0301858i
\(359\) −36.7633 −1.94029 −0.970146 0.242520i \(-0.922026\pi\)
−0.970146 + 0.242520i \(0.922026\pi\)
\(360\) −0.722521 1.25144i −0.0380802 0.0659568i
\(361\) 9.37800 16.2432i 0.493579 0.854904i
\(362\) 10.2051 17.6757i 0.536366 0.929013i
\(363\) 12.1806 0.639316
\(364\) 0 0
\(365\) −0.591794 −0.0309759
\(366\) 3.43147 5.94348i 0.179366 0.310671i
\(367\) −3.54743 + 6.14432i −0.185174 + 0.320731i −0.943635 0.330987i \(-0.892618\pi\)
0.758461 + 0.651718i \(0.225952\pi\)
\(368\) 3.38135 + 5.85668i 0.176265 + 0.305300i
\(369\) −12.9565 −0.674486
\(370\) 1.10992 + 1.92243i 0.0577018 + 0.0999424i
\(371\) −0.982542 1.70181i −0.0510110 0.0883537i
\(372\) −7.82371 −0.405640
\(373\) −13.4450 23.2875i −0.696158 1.20578i −0.969789 0.243946i \(-0.921558\pi\)
0.273631 0.961835i \(-0.411775\pi\)
\(374\) −3.60388 + 6.24210i −0.186352 + 0.322771i
\(375\) −0.623490 + 1.07992i −0.0321969 + 0.0557666i
\(376\) −1.43296 −0.0738993
\(377\) 0 0
\(378\) 1.09783 0.0564665
\(379\) 4.23490 7.33506i 0.217532 0.376777i −0.736521 0.676415i \(-0.763533\pi\)
0.954053 + 0.299638i \(0.0968660\pi\)
\(380\) −0.246980 + 0.427781i −0.0126698 + 0.0219447i
\(381\) 8.59030 + 14.8788i 0.440094 + 0.762266i
\(382\) 12.7332 0.651486
\(383\) −2.39828 4.15394i −0.122546 0.212257i 0.798225 0.602360i \(-0.205773\pi\)
−0.920771 + 0.390103i \(0.872439\pi\)
\(384\) 0.623490 + 1.07992i 0.0318173 + 0.0551092i
\(385\) −0.219833 −0.0112037
\(386\) −4.34481 7.52544i −0.221145 0.383035i
\(387\) 4.08426 7.07415i 0.207615 0.359599i
\(388\) −6.78986 + 11.7604i −0.344703 + 0.597043i
\(389\) 29.2131 1.48116 0.740582 0.671966i \(-0.234550\pi\)
0.740582 + 0.671966i \(0.234550\pi\)
\(390\) 0 0
\(391\) −43.9168 −2.22097
\(392\) 3.48039 6.02820i 0.175786 0.304470i
\(393\) −12.0368 + 20.8484i −0.607178 + 1.05166i
\(394\) −2.64310 4.57799i −0.133158 0.230636i
\(395\) −2.93362 −0.147607
\(396\) 0.801938 + 1.38900i 0.0402989 + 0.0697997i
\(397\) −11.3056 19.5818i −0.567411 0.982785i −0.996821 0.0796751i \(-0.974612\pi\)
0.429410 0.903110i \(-0.358722\pi\)
\(398\) −10.9444 −0.548592
\(399\) −0.0609989 0.105653i −0.00305377 0.00528928i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 5.29470 9.17069i 0.264405 0.457962i −0.703003 0.711187i \(-0.748158\pi\)
0.967407 + 0.253225i \(0.0814912\pi\)
\(402\) 4.82908 0.240853
\(403\) 0 0
\(404\) −5.55496 −0.276369
\(405\) −1.28836 + 2.23151i −0.0640193 + 0.110885i
\(406\) 0.0353438 0.0612173i 0.00175408 0.00303816i
\(407\) −1.23191 2.13374i −0.0610637 0.105765i
\(408\) −8.09783 −0.400903
\(409\) 5.85636 + 10.1435i 0.289579 + 0.501565i 0.973709 0.227795i \(-0.0731515\pi\)
−0.684131 + 0.729359i \(0.739818\pi\)
\(410\) 4.48307 + 7.76491i 0.221403 + 0.383482i
\(411\) −24.3612 −1.20165
\(412\) 2.19687 + 3.80508i 0.108232 + 0.187463i
\(413\) −0.457123 + 0.791761i −0.0224936 + 0.0389600i
\(414\) −4.88620 + 8.46314i −0.240144 + 0.415941i
\(415\) −15.6625 −0.768841
\(416\) 0 0
\(417\) 22.9638 1.12454
\(418\) 0.274127 0.474801i 0.0134080 0.0232233i
\(419\) −10.6625 + 18.4680i −0.520896 + 0.902219i 0.478808 + 0.877919i \(0.341069\pi\)
−0.999705 + 0.0242995i \(0.992264\pi\)
\(420\) −0.123490 0.213891i −0.00602569 0.0104368i
\(421\) −22.1457 −1.07931 −0.539657 0.841885i \(-0.681446\pi\)
−0.539657 + 0.841885i \(0.681446\pi\)
\(422\) −1.65279 2.86272i −0.0804567 0.139355i
\(423\) −1.03534 1.79327i −0.0503401 0.0871917i
\(424\) 9.92154 0.481833
\(425\) −3.24698 5.62393i −0.157502 0.272801i
\(426\) 8.48188 14.6910i 0.410948 0.711783i
\(427\) −0.545032 + 0.944024i −0.0263760 + 0.0456845i
\(428\) −17.9758 −0.868895
\(429\) 0 0
\(430\) −5.65279 −0.272602
\(431\) −18.4034 + 31.8757i −0.886462 + 1.53540i −0.0424323 + 0.999099i \(0.513511\pi\)
−0.844029 + 0.536297i \(0.819823\pi\)
\(432\) −2.77144 + 4.80027i −0.133341 + 0.230953i
\(433\) −1.04354 1.80747i −0.0501494 0.0868612i 0.839861 0.542801i \(-0.182636\pi\)
−0.890010 + 0.455940i \(0.849303\pi\)
\(434\) 1.24267 0.0596500
\(435\) 0.222521 + 0.385418i 0.0106691 + 0.0184794i
\(436\) −3.36778 5.83317i −0.161287 0.279358i
\(437\) 3.34050 0.159798
\(438\) 0.368977 + 0.639088i 0.0176304 + 0.0305368i
\(439\) −4.97823 + 8.62255i −0.237598 + 0.411532i −0.960025 0.279916i \(-0.909693\pi\)
0.722427 + 0.691448i \(0.243027\pi\)
\(440\) 0.554958 0.961216i 0.0264566 0.0458242i
\(441\) 10.0586 0.478981
\(442\) 0 0
\(443\) −15.3884 −0.731123 −0.365561 0.930787i \(-0.619123\pi\)
−0.365561 + 0.930787i \(0.619123\pi\)
\(444\) 1.38404 2.39723i 0.0656838 0.113768i
\(445\) −8.54019 + 14.7920i −0.404844 + 0.701210i
\(446\) 8.31551 + 14.4029i 0.393751 + 0.681997i
\(447\) −21.5308 −1.01837
\(448\) −0.0990311 0.171527i −0.00467878 0.00810389i
\(449\) −4.09030 7.08461i −0.193033 0.334343i 0.753221 0.657768i \(-0.228499\pi\)
−0.946254 + 0.323424i \(0.895166\pi\)
\(450\) −1.44504 −0.0681199
\(451\) −4.97584 8.61840i −0.234303 0.405825i
\(452\) −1.13706 + 1.96945i −0.0534830 + 0.0926352i
\(453\) 2.47889 4.29357i 0.116469 0.201730i
\(454\) −10.8616 −0.509761
\(455\) 0 0
\(456\) 0.615957 0.0288448
\(457\) −8.03684 + 13.9202i −0.375947 + 0.651160i −0.990468 0.137741i \(-0.956016\pi\)
0.614521 + 0.788900i \(0.289349\pi\)
\(458\) 11.6996 20.2642i 0.546684 0.946885i
\(459\) −17.9976 31.1728i −0.840056 1.45502i
\(460\) 6.76271 0.315313
\(461\) −13.7654 23.8424i −0.641118 1.11045i −0.985183 0.171504i \(-0.945137\pi\)
0.344065 0.938946i \(-0.388196\pi\)
\(462\) 0.137063 + 0.237401i 0.00637676 + 0.0110449i
\(463\) −10.6595 −0.495389 −0.247694 0.968838i \(-0.579673\pi\)
−0.247694 + 0.968838i \(0.579673\pi\)
\(464\) 0.178448 + 0.309081i 0.00828424 + 0.0143487i
\(465\) −3.91185 + 6.77553i −0.181408 + 0.314208i
\(466\) −7.19567 + 12.4633i −0.333333 + 0.577350i
\(467\) −10.7976 −0.499655 −0.249827 0.968290i \(-0.580374\pi\)
−0.249827 + 0.968290i \(0.580374\pi\)
\(468\) 0 0
\(469\) −0.767021 −0.0354177
\(470\) −0.716480 + 1.24098i −0.0330488 + 0.0572421i
\(471\) 10.8509 18.7942i 0.499981 0.865993i
\(472\) −2.30798 3.99754i −0.106233 0.184002i
\(473\) 6.27413 0.288485
\(474\) 1.82908 + 3.16807i 0.0840126 + 0.145514i
\(475\) 0.246980 + 0.427781i 0.0113322 + 0.0196279i
\(476\) 1.28621 0.0589533
\(477\) 7.16852 + 12.4162i 0.328224 + 0.568501i
\(478\) −1.78017 + 3.08334i −0.0814230 + 0.141029i
\(479\) −4.54288 + 7.86849i −0.207569 + 0.359521i −0.950948 0.309350i \(-0.899889\pi\)
0.743379 + 0.668870i \(0.233222\pi\)
\(480\) 1.24698 0.0569166
\(481\) 0 0
\(482\) −29.1890 −1.32952
\(483\) −0.835126 + 1.44648i −0.0379995 + 0.0658171i
\(484\) 4.88404 8.45941i 0.222002 0.384519i
\(485\) 6.78986 + 11.7604i 0.308311 + 0.534011i
\(486\) −13.4155 −0.608540
\(487\) 20.4236 + 35.3747i 0.925480 + 1.60298i 0.790787 + 0.612091i \(0.209672\pi\)
0.134693 + 0.990887i \(0.456995\pi\)
\(488\) −2.75182 4.76630i −0.124569 0.215760i
\(489\) 11.4330 0.517016
\(490\) −3.48039 6.02820i −0.157228 0.272327i
\(491\) −14.5472 + 25.1965i −0.656505 + 1.13710i 0.325009 + 0.945711i \(0.394633\pi\)
−0.981514 + 0.191390i \(0.938701\pi\)
\(492\) 5.59030 9.68269i 0.252030 0.436529i
\(493\) −2.31767 −0.104382
\(494\) 0 0
\(495\) 1.60388 0.0720888
\(496\) −3.13706 + 5.43355i −0.140858 + 0.243974i
\(497\) −1.34721 + 2.33343i −0.0604305 + 0.104669i
\(498\) 9.76540 + 16.9142i 0.437598 + 0.757942i
\(499\) 16.2150 0.725885 0.362943 0.931812i \(-0.381772\pi\)
0.362943 + 0.931812i \(0.381772\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) 4.59030 + 7.95064i 0.205080 + 0.355208i
\(502\) −29.3599 −1.31040
\(503\) 0.747512 + 1.29473i 0.0333299 + 0.0577291i 0.882209 0.470858i \(-0.156055\pi\)
−0.848879 + 0.528587i \(0.822722\pi\)
\(504\) 0.143104 0.247864i 0.00637436 0.0110407i
\(505\) −2.77748 + 4.81073i −0.123596 + 0.214075i
\(506\) −7.50604 −0.333684
\(507\) 0 0
\(508\) 13.7778 0.611290
\(509\) 2.31551 4.01058i 0.102633 0.177766i −0.810136 0.586243i \(-0.800607\pi\)
0.912769 + 0.408477i \(0.133940\pi\)
\(510\) −4.04892 + 7.01293i −0.179289 + 0.310538i
\(511\) −0.0586060 0.101509i −0.00259258 0.00449048i
\(512\) 1.00000 0.0441942
\(513\) 1.36898 + 2.37114i 0.0604418 + 0.104688i
\(514\) −10.7681 18.6509i −0.474960 0.822655i
\(515\) 4.39373 0.193611
\(516\) 3.52446 + 6.10454i 0.155156 + 0.268737i
\(517\) 0.795233 1.37738i 0.0349743 0.0605773i
\(518\) −0.219833 + 0.380761i −0.00965889 + 0.0167297i
\(519\) 10.7138 0.470283
\(520\) 0 0
\(521\) −9.23729 −0.404693 −0.202347 0.979314i \(-0.564857\pi\)
−0.202347 + 0.979314i \(0.564857\pi\)
\(522\) −0.257865 + 0.446635i −0.0112864 + 0.0195487i
\(523\) 1.44235 2.49823i 0.0630697 0.109240i −0.832766 0.553625i \(-0.813244\pi\)
0.895836 + 0.444385i \(0.146578\pi\)
\(524\) 9.65279 + 16.7191i 0.421684 + 0.730378i
\(525\) −0.246980 −0.0107791
\(526\) 3.28501 + 5.68981i 0.143233 + 0.248087i
\(527\) −20.3720 35.2853i −0.887417 1.53705i
\(528\) −1.38404 −0.0602327
\(529\) −11.3671 19.6884i −0.494222 0.856018i
\(530\) 4.96077 8.59231i 0.215482 0.373226i
\(531\) 3.33513 5.77661i 0.144732 0.250683i
\(532\) −0.0978347 −0.00424167
\(533\) 0 0
\(534\) 21.2989 0.921693
\(535\) −8.98792 + 15.5675i −0.388582 + 0.673043i
\(536\) 1.93631 3.35379i 0.0836360 0.144862i
\(537\) −0.411190 0.712202i −0.0177442 0.0307338i
\(538\) 7.36898 0.317699
\(539\) 3.86294 + 6.69080i 0.166388 + 0.288193i
\(540\) 2.77144 + 4.80027i 0.119264 + 0.206571i
\(541\) 28.2301 1.21371 0.606854 0.794814i \(-0.292431\pi\)
0.606854 + 0.794814i \(0.292431\pi\)
\(542\) −7.78986 13.4924i −0.334603 0.579549i
\(543\) −12.7255 + 22.0412i −0.546104 + 0.945879i
\(544\) −3.24698 + 5.62393i −0.139213 + 0.241124i
\(545\) −6.73556 −0.288520
\(546\) 0 0
\(547\) 37.8756 1.61944 0.809722 0.586814i \(-0.199618\pi\)
0.809722 + 0.586814i \(0.199618\pi\)
\(548\) −9.76809 + 16.9188i −0.417272 + 0.722736i
\(549\) 3.97650 6.88750i 0.169713 0.293951i
\(550\) −0.554958 0.961216i −0.0236635 0.0409864i
\(551\) 0.176292 0.00751029
\(552\) −4.21648 7.30316i −0.179465 0.310843i
\(553\) −0.290520 0.503196i −0.0123542 0.0213981i
\(554\) −13.9952 −0.594600
\(555\) −1.38404 2.39723i −0.0587494 0.101757i
\(556\) 9.20775 15.9483i 0.390496 0.676358i
\(557\) 20.6015 35.6828i 0.872913 1.51193i 0.0139432 0.999903i \(-0.495562\pi\)
0.858970 0.512027i \(-0.171105\pi\)
\(558\) −9.06638 −0.383810
\(559\) 0 0
\(560\) −0.198062 −0.00836966
\(561\) 4.49396 7.78377i 0.189735 0.328631i
\(562\) −6.66703 + 11.5476i −0.281232 + 0.487108i
\(563\) −4.00418 6.93544i −0.168756 0.292294i 0.769227 0.638976i \(-0.220642\pi\)
−0.937983 + 0.346682i \(0.887308\pi\)
\(564\) 1.78687 0.0752409
\(565\) 1.13706 + 1.96945i 0.0478366 + 0.0828554i
\(566\) 10.3644 + 17.9517i 0.435649 + 0.754567i
\(567\) −0.510353 −0.0214328
\(568\) −6.80194 11.7813i −0.285403 0.494332i
\(569\) −21.5688 + 37.3583i −0.904212 + 1.56614i −0.0822411 + 0.996612i \(0.526208\pi\)
−0.821971 + 0.569529i \(0.807126\pi\)
\(570\) 0.307979 0.533434i 0.0128998 0.0223431i
\(571\) −8.98792 −0.376133 −0.188066 0.982156i \(-0.560222\pi\)
−0.188066 + 0.982156i \(0.560222\pi\)
\(572\) 0 0
\(573\) −15.8780 −0.663313
\(574\) −0.887928 + 1.53794i −0.0370614 + 0.0641922i
\(575\) 3.38135 5.85668i 0.141012 0.244240i
\(576\) 0.722521 + 1.25144i 0.0301050 + 0.0521435i
\(577\) 1.03624 0.0431394 0.0215697 0.999767i \(-0.493134\pi\)
0.0215697 + 0.999767i \(0.493134\pi\)
\(578\) −12.5858 21.7992i −0.523498 0.906726i
\(579\) 5.41789 + 9.38407i 0.225160 + 0.389989i
\(580\) 0.356896 0.0148193
\(581\) −1.55107 2.68654i −0.0643494 0.111456i
\(582\) 8.46681 14.6649i 0.350961 0.607882i
\(583\) −5.50604 + 9.53674i −0.228037 + 0.394972i
\(584\) 0.591794 0.0244886
\(585\) 0 0
\(586\) 16.3913 0.677120
\(587\) −1.85205 + 3.20785i −0.0764423 + 0.132402i −0.901713 0.432336i \(-0.857689\pi\)
0.825270 + 0.564738i \(0.191023\pi\)
\(588\) −4.33997 + 7.51705i −0.178977 + 0.309998i
\(589\) 1.54958 + 2.68395i 0.0638494 + 0.110590i
\(590\) −4.61596 −0.190036
\(591\) 3.29590 + 5.70866i 0.135575 + 0.234823i
\(592\) −1.10992 1.92243i −0.0456173 0.0790114i
\(593\) −12.2064 −0.501258 −0.250629 0.968083i \(-0.580637\pi\)
−0.250629 + 0.968083i \(0.580637\pi\)
\(594\) −3.07606 5.32790i −0.126212 0.218606i
\(595\) 0.643104 1.11389i 0.0263647 0.0456650i
\(596\) −8.63318 + 14.9531i −0.353629 + 0.612503i
\(597\) 13.6474 0.558552
\(598\) 0 0
\(599\) −31.5013 −1.28711 −0.643553 0.765401i \(-0.722540\pi\)
−0.643553 + 0.765401i \(0.722540\pi\)
\(600\) 0.623490 1.07992i 0.0254539 0.0440874i
\(601\) −9.84535 + 17.0526i −0.401600 + 0.695592i −0.993919 0.110112i \(-0.964879\pi\)
0.592319 + 0.805703i \(0.298212\pi\)
\(602\) −0.559802 0.969606i −0.0228158 0.0395182i
\(603\) 5.59611 0.227891
\(604\) −1.98792 3.44318i −0.0808873 0.140101i
\(605\) −4.88404 8.45941i −0.198565 0.343924i
\(606\) 6.92692 0.281387
\(607\) 15.5281 + 26.8955i 0.630266 + 1.09165i 0.987497 + 0.157637i \(0.0503877\pi\)
−0.357231 + 0.934016i \(0.616279\pi\)
\(608\) 0.246980 0.427781i 0.0100163 0.0173488i
\(609\) −0.0440730 + 0.0763367i −0.00178593 + 0.00309332i
\(610\) −5.50365 −0.222836
\(611\) 0 0
\(612\) −9.38404 −0.379327
\(613\) 9.18598 15.9106i 0.371018 0.642622i −0.618704 0.785624i \(-0.712342\pi\)
0.989722 + 0.143002i \(0.0456754\pi\)
\(614\) 3.47434 6.01774i 0.140213 0.242856i
\(615\) −5.59030 9.68269i −0.225423 0.390444i
\(616\) 0.219833 0.00885730
\(617\) −4.63773 8.03278i −0.186708 0.323388i 0.757443 0.652901i \(-0.226448\pi\)
−0.944151 + 0.329514i \(0.893115\pi\)
\(618\) −2.73945 4.74486i −0.110197 0.190866i
\(619\) 14.9095 0.599262 0.299631 0.954055i \(-0.403136\pi\)
0.299631 + 0.954055i \(0.403136\pi\)
\(620\) 3.13706 + 5.43355i 0.125987 + 0.218217i
\(621\) 18.7424 32.4628i 0.752108 1.30269i
\(622\) 12.1806 21.0974i 0.488398 0.845930i
\(623\) −3.38298 −0.135536
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −1.44504 + 2.50289i −0.0577555 + 0.100035i
\(627\) −0.341830 + 0.592068i −0.0136514 + 0.0236449i
\(628\) −8.70171 15.0718i −0.347236 0.601430i
\(629\) 14.4155 0.574784
\(630\) −0.143104 0.247864i −0.00570141 0.00987512i
\(631\) 15.0411 + 26.0520i 0.598779 + 1.03712i 0.993002 + 0.118100i \(0.0376804\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(632\) 2.93362 0.116693
\(633\) 2.06100 + 3.56975i 0.0819174 + 0.141885i
\(634\) −2.50604 + 4.34059i −0.0995276 + 0.172387i
\(635\) 6.88889 11.9319i 0.273377 0.473503i
\(636\) −12.3720 −0.490580
\(637\) 0 0
\(638\) −0.396125 −0.0156827
\(639\) 9.82908 17.0245i 0.388833 0.673478i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) −6.08934 10.5471i −0.240515 0.416583i 0.720346 0.693614i \(-0.243983\pi\)
−0.960861 + 0.277031i \(0.910650\pi\)
\(642\) 22.4155 0.884669
\(643\) −1.68233 2.91389i −0.0663447 0.114912i 0.830945 0.556355i \(-0.187800\pi\)
−0.897290 + 0.441442i \(0.854467\pi\)
\(644\) 0.669719 + 1.15999i 0.0263906 + 0.0457099i
\(645\) 7.04892 0.277551
\(646\) 1.60388 + 2.77799i 0.0631036 + 0.109299i
\(647\) −14.1957 + 24.5876i −0.558089 + 0.966639i 0.439567 + 0.898210i \(0.355132\pi\)
−0.997656 + 0.0684291i \(0.978201\pi\)
\(648\) 1.28836 2.23151i 0.0506117 0.0876621i
\(649\) 5.12333 0.201108
\(650\) 0 0
\(651\) −1.54958 −0.0607329
\(652\) 4.58426 7.94017i 0.179534 0.310961i
\(653\) 12.8412 22.2416i 0.502514 0.870379i −0.497482 0.867474i \(-0.665742\pi\)
0.999996 0.00290498i \(-0.000924684\pi\)
\(654\) 4.19955 + 7.27384i 0.164216 + 0.284430i
\(655\) 19.3056 0.754332
\(656\) −4.48307 7.76491i −0.175035 0.303169i
\(657\) 0.427583 + 0.740596i 0.0166816 + 0.0288934i
\(658\) −0.283815 −0.0110643
\(659\) 2.63102 + 4.55706i 0.102490 + 0.177518i 0.912710 0.408608i \(-0.133986\pi\)
−0.810220 + 0.586126i \(0.800652\pi\)
\(660\) −0.692021 + 1.19862i −0.0269369 + 0.0466561i
\(661\) −16.4738 + 28.5335i −0.640757 + 1.10982i 0.344507 + 0.938784i \(0.388046\pi\)
−0.985264 + 0.171040i \(0.945287\pi\)
\(662\) −24.0194 −0.933540
\(663\) 0 0
\(664\) 15.6625 0.607822
\(665\) −0.0489173 + 0.0847273i −0.00189693 + 0.00328558i
\(666\) 1.60388 2.77799i 0.0621489 0.107645i
\(667\) −1.20679 2.09022i −0.0467272 0.0809338i
\(668\) 7.36227 0.284855
\(669\) −10.3693 17.9601i −0.400899 0.694378i
\(670\) −1.93631 3.35379i −0.0748063 0.129568i
\(671\) 6.10859 0.235819
\(672\) 0.123490 + 0.213891i 0.00476372 + 0.00825101i
\(673\) −10.0828 + 17.4639i −0.388662 + 0.673183i −0.992270 0.124099i \(-0.960396\pi\)
0.603608 + 0.797281i \(0.293729\pi\)
\(674\) −14.2567 + 24.6933i −0.549146 + 0.951149i
\(675\) 5.54288 0.213345
\(676\) 0 0
\(677\) 46.4590 1.78557 0.892783 0.450487i \(-0.148750\pi\)
0.892783 + 0.450487i \(0.148750\pi\)
\(678\) 1.41789 2.45587i 0.0544539 0.0943170i
\(679\) −1.34481 + 2.32929i −0.0516092 + 0.0893898i
\(680\) 3.24698 + 5.62393i 0.124516 + 0.215668i
\(681\) 13.5442 0.519015
\(682\) −3.48188 6.03079i −0.133328 0.230931i
\(683\) −13.5456 23.4616i −0.518307 0.897733i −0.999774 0.0212693i \(-0.993229\pi\)
0.481467 0.876464i \(-0.340104\pi\)
\(684\) 0.713792 0.0272925
\(685\) 9.76809 + 16.9188i 0.373219 + 0.646435i
\(686\) 1.38255 2.39465i 0.0527860 0.0914281i
\(687\) −14.5891 + 25.2691i −0.556609 + 0.964075i
\(688\) 5.65279 0.215511
\(689\) 0 0
\(690\) −8.43296 −0.321037
\(691\) −1.73556 + 3.00608i −0.0660239 + 0.114357i −0.897148 0.441731i \(-0.854365\pi\)
0.831124 + 0.556087i \(0.187698\pi\)
\(692\) 4.29590 7.44071i 0.163305 0.282853i
\(693\) 0.158834 + 0.275108i 0.00603359 + 0.0104505i
\(694\) −25.1987 −0.956528
\(695\) −9.20775 15.9483i −0.349270 0.604953i
\(696\) −0.222521 0.385418i −0.00843463 0.0146092i
\(697\) 58.2258 2.20546
\(698\) 8.20775 + 14.2162i 0.310668 + 0.538093i
\(699\) 8.97285 15.5414i 0.339384 0.587831i
\(700\) −0.0990311 + 0.171527i −0.00374302 + 0.00648311i
\(701\) 8.07606 0.305029 0.152514 0.988301i \(-0.451263\pi\)
0.152514 + 0.988301i \(0.451263\pi\)
\(702\) 0 0
\(703\) −1.09651 −0.0413555
\(704\) −0.554958 + 0.961216i −0.0209158 + 0.0362272i
\(705\) 0.893436 1.54748i 0.0336488 0.0582813i
\(706\) 0.554958 + 0.961216i 0.0208861 + 0.0361758i
\(707\) −1.10023 −0.0413783
\(708\) 2.87800 + 4.98485i 0.108162 + 0.187342i
\(709\) 10.2579 + 17.7671i 0.385242 + 0.667259i 0.991803 0.127778i \(-0.0407846\pi\)
−0.606561 + 0.795037i \(0.707451\pi\)
\(710\) −13.6039 −0.510544
\(711\) 2.11960 + 3.67126i 0.0794914 + 0.137683i
\(712\) 8.54019 14.7920i 0.320057 0.554355i
\(713\) 21.2150 36.7455i 0.794510 1.37613i
\(714\) −1.60388 −0.0600235
\(715\) 0 0
\(716\) −0.659498 −0.0246466
\(717\) 2.21983 3.84486i 0.0829012 0.143589i
\(718\) 18.3817 31.8380i 0.685997 1.18818i
\(719\) −26.2325 45.4360i −0.978307 1.69448i −0.668558 0.743660i \(-0.733088\pi\)
−0.309749 0.950818i \(-0.600245\pi\)
\(720\) 1.44504 0.0538535
\(721\) 0.435116 + 0.753643i 0.0162046 + 0.0280671i
\(722\) 9.37800 + 16.2432i 0.349013 + 0.604508i
\(723\) 36.3980 1.35366
\(724\) 10.2051 + 17.6757i 0.379268 + 0.656912i
\(725\) 0.178448 0.309081i 0.00662739 0.0114790i
\(726\) −6.09030 + 10.5487i −0.226032 + 0.391499i
\(727\) 4.11397 0.152579 0.0762893 0.997086i \(-0.475693\pi\)
0.0762893 + 0.997086i \(0.475693\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) 0.295897 0.512509i 0.0109516 0.0189688i
\(731\) −18.3545 + 31.7909i −0.678866 + 1.17583i
\(732\) 3.43147 + 5.94348i 0.126831 + 0.219677i
\(733\) −20.9336 −0.773201 −0.386601 0.922247i \(-0.626351\pi\)
−0.386601 + 0.922247i \(0.626351\pi\)
\(734\) −3.54743 6.14432i −0.130938 0.226791i
\(735\) 4.33997 + 7.51705i 0.160082 + 0.277271i
\(736\) −6.76271 −0.249277
\(737\) 2.14914 + 3.72243i 0.0791648 + 0.137117i
\(738\) 6.47823 11.2206i 0.238467 0.413037i
\(739\) 12.9148 22.3692i 0.475080 0.822863i −0.524513 0.851403i \(-0.675752\pi\)
0.999593 + 0.0285400i \(0.00908579\pi\)
\(740\) −2.21983 −0.0816027
\(741\) 0 0
\(742\) 1.96508 0.0721405
\(743\) −26.0206 + 45.0690i −0.954602 + 1.65342i −0.219327 + 0.975652i \(0.570386\pi\)
−0.735276 + 0.677768i \(0.762947\pi\)
\(744\) 3.91185 6.77553i 0.143416 0.248403i
\(745\) 8.63318 + 14.9531i 0.316295 + 0.547839i
\(746\) 26.8901 0.984516
\(747\) 11.3165 + 19.6007i 0.414048 + 0.717152i
\(748\) −3.60388 6.24210i −0.131771 0.228234i
\(749\) −3.56033 −0.130092
\(750\) −0.623490 1.07992i −0.0227666 0.0394330i
\(751\) −3.94869 + 6.83933i −0.144090 + 0.249571i −0.929033 0.369997i \(-0.879359\pi\)
0.784943 + 0.619568i \(0.212692\pi\)
\(752\) 0.716480 1.24098i 0.0261273 0.0452539i
\(753\) 36.6112 1.33419
\(754\) 0 0
\(755\) −3.97584 −0.144696
\(756\) −0.548917 + 0.950753i −0.0199639 + 0.0345785i
\(757\) 8.06829 13.9747i 0.293247 0.507919i −0.681328 0.731978i \(-0.738597\pi\)
0.974576 + 0.224059i \(0.0719308\pi\)
\(758\) 4.23490 + 7.33506i 0.153818 + 0.266421i
\(759\) 9.35988 0.339742
\(760\) −0.246980 0.427781i −0.00895889 0.0155173i
\(761\) 16.2032 + 28.0648i 0.587366 + 1.01735i 0.994576 + 0.104013i \(0.0331683\pi\)
−0.407210 + 0.913334i \(0.633498\pi\)
\(762\) −17.1806 −0.622388
\(763\) −0.667030 1.15533i −0.0241481 0.0418258i
\(764\) −6.36658 + 11.0272i −0.230335 + 0.398952i
\(765\) −4.69202 + 8.12682i −0.169640 + 0.293826i
\(766\) 4.79656 0.173307
\(767\) 0 0
\(768\) −1.24698 −0.0449965
\(769\) 2.72468 4.71928i 0.0982544 0.170182i −0.812708 0.582671i \(-0.802007\pi\)
0.910962 + 0.412490i \(0.135341\pi\)
\(770\) 0.109916 0.190381i 0.00396111 0.00686084i
\(771\) 13.4276 + 23.2573i 0.483583 + 0.837590i
\(772\) 8.68963 0.312747
\(773\) −17.5308 30.3642i −0.630539 1.09213i −0.987442 0.157984i \(-0.949501\pi\)
0.356903 0.934142i \(-0.383833\pi\)
\(774\) 4.08426 + 7.07415i 0.146806 + 0.254275i
\(775\) 6.27413 0.225373
\(776\) −6.78986 11.7604i −0.243742 0.422173i
\(777\) 0.274127 0.474801i 0.00983424 0.0170334i
\(778\) −14.6066 + 25.2993i −0.523671 + 0.907024i
\(779\) −4.42891 −0.158682
\(780\) 0 0
\(781\) 15.0992 0.540291
\(782\) 21.9584 38.0330i 0.785230 1.36006i
\(783\) 0.989115 1.71320i 0.0353481 0.0612247i
\(784\) 3.48039 + 6.02820i 0.124299 + 0.215293i
\(785\) −17.4034 −0.621155
\(786\) −12.0368 20.8484i −0.429340 0.743638i
\(787\) 20.1172 + 34.8440i 0.717101 + 1.24206i 0.962144 + 0.272543i \(0.0878648\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(788\) 5.28621 0.188313
\(789\) −4.09634 7.09507i −0.145834 0.252591i
\(790\) 1.46681 2.54059i 0.0521868 0.0903902i
\(791\) −0.225209 + 0.390074i −0.00800752 + 0.0138694i
\(792\) −1.60388 −0.0569912
\(793\) 0 0
\(794\) 22.6112 0.802440
\(795\) −6.18598 + 10.7144i −0.219394 + 0.380002i
\(796\) 5.47219 9.47811i 0.193957 0.335943i
\(797\) 1.36658 + 2.36699i 0.0484069 + 0.0838432i 0.889214 0.457492i \(-0.151252\pi\)
−0.840807 + 0.541335i \(0.817919\pi\)
\(798\) 0.121998 0.00431868
\(799\) 4.65279 + 8.05887i 0.164604 + 0.285102i
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 24.6819 0.872091
\(802\) 5.29470 + 9.17069i 0.186962 + 0.323828i
\(803\) −0.328421 + 0.568842i −0.0115897 + 0.0200740i
\(804\) −2.41454 + 4.18211i −0.0851543 + 0.147492i
\(805\) 1.33944 0.0472090
\(806\) 0 0
\(807\) −9.18896 −0.323467
\(808\) 2.77748 4.81073i 0.0977114 0.169241i
\(809\) 18.2391 31.5910i 0.641252 1.11068i −0.343902 0.939006i \(-0.611749\pi\)
0.985154 0.171675i \(-0.0549179\pi\)
\(810\) −1.28836 2.23151i −0.0452685 0.0784073i
\(811\) −3.51679 −0.123491 −0.0617457 0.998092i \(-0.519667\pi\)
−0.0617457 + 0.998092i \(0.519667\pi\)
\(812\) 0.0353438 + 0.0612173i 0.00124032 + 0.00214830i
\(813\) 9.71379 + 16.8248i 0.340678 + 0.590071i
\(814\) 2.46383 0.0863571
\(815\) −4.58426 7.94017i −0.160580 0.278132i
\(816\) 4.04892 7.01293i 0.141740 0.245502i
\(817\) 1.39612 2.41816i 0.0488442 0.0846007i
\(818\) −11.7127 −0.409526
\(819\) 0 0
\(820\) −8.96615 −0.313111
\(821\) 14.6990 25.4595i 0.512999 0.888541i −0.486887 0.873465i \(-0.661868\pi\)
0.999886 0.0150760i \(-0.00479903\pi\)
\(822\) 12.1806 21.0974i 0.424847 0.735857i
\(823\) −26.8659 46.5331i −0.936487 1.62204i −0.771960 0.635671i \(-0.780724\pi\)
−0.164527 0.986373i \(-0.552610\pi\)
\(824\) −4.39373 −0.153063
\(825\) 0.692021 + 1.19862i 0.0240931 + 0.0417305i
\(826\) −0.457123 0.791761i −0.0159054 0.0275489i
\(827\) 47.3099 1.64513 0.822563 0.568674i \(-0.192543\pi\)
0.822563 + 0.568674i \(0.192543\pi\)
\(828\) −4.88620 8.46314i −0.169807 0.294115i
\(829\) 24.6875 42.7600i 0.857431 1.48511i −0.0169396 0.999857i \(-0.505392\pi\)
0.874371 0.485258i \(-0.161274\pi\)
\(830\) 7.83124 13.5641i 0.271826 0.470817i
\(831\) 17.4517 0.605394
\(832\) 0 0
\(833\) −45.2030 −1.56619
\(834\) −11.4819 + 19.8872i −0.397585 + 0.688637i
\(835\) 3.68114 6.37592i 0.127391 0.220648i
\(836\) 0.274127 + 0.474801i 0.00948087 + 0.0164213i
\(837\) 34.7767 1.20206
\(838\) −10.6625 18.4680i −0.368329 0.637965i
\(839\) 5.31096 + 9.19886i 0.183355 + 0.317580i 0.943021 0.332734i \(-0.107971\pi\)
−0.759666 + 0.650313i \(0.774638\pi\)
\(840\) 0.246980 0.00852161
\(841\) 14.4363 + 25.0044i 0.497804 + 0.862222i
\(842\) 11.0728 19.1787i 0.381595 0.660943i
\(843\) 8.31365 14.3997i 0.286337 0.495951i
\(844\) 3.30559 0.113783
\(845\) 0 0
\(846\) 2.07069 0.0711917
\(847\) 0.967345 1.67549i 0.0332384 0.0575705i
\(848\) −4.96077 + 8.59231i −0.170354 + 0.295061i
\(849\) −12.9242 22.3854i −0.443558 0.768266i
\(850\) 6.49396 0.222741
\(851\) 7.50604 + 13.0008i 0.257304 + 0.445663i
\(852\) 8.48188 + 14.6910i 0.290584 + 0.503307i
\(853\) −11.4625 −0.392469 −0.196234 0.980557i \(-0.562871\pi\)
−0.196234 + 0.980557i \(0.562871\pi\)
\(854\) −0.545032 0.944024i −0.0186506 0.0323038i
\(855\) 0.356896 0.618162i 0.0122056 0.0211407i
\(856\) 8.98792 15.5675i 0.307201 0.532087i
\(857\) −19.4819 −0.665488 −0.332744 0.943017i \(-0.607975\pi\)
−0.332744 + 0.943017i \(0.607975\pi\)
\(858\) 0 0
\(859\) −23.1448 −0.789692 −0.394846 0.918747i \(-0.629202\pi\)
−0.394846 + 0.918747i \(0.629202\pi\)
\(860\) 2.82640 4.89546i 0.0963793 0.166934i
\(861\) 1.10723 1.91777i 0.0377342 0.0653576i
\(862\) −18.4034 31.8757i −0.626823 1.08569i
\(863\) 38.9681 1.32649 0.663244 0.748403i \(-0.269179\pi\)
0.663244 + 0.748403i \(0.269179\pi\)
\(864\) −2.77144 4.80027i −0.0942862 0.163309i
\(865\) −4.29590 7.44071i −0.146065 0.252992i
\(866\) 2.08708 0.0709219
\(867\) 15.6942 + 27.1831i 0.533002 + 0.923187i
\(868\) −0.621334 + 1.07618i −0.0210894 + 0.0365280i
\(869\) −1.62804 + 2.81985i −0.0552274 + 0.0956567i
\(870\) −0.445042 −0.0150883
\(871\) 0 0
\(872\) 6.73556 0.228095
\(873\) 9.81163 16.9942i 0.332073 0.575168i
\(874\) −1.67025 + 2.89296i −0.0564971 + 0.0978558i
\(875\) 0.0990311 + 0.171527i 0.00334786 + 0.00579867i
\(876\) −0.737955 −0.0249332
\(877\) −14.1032 24.4275i −0.476232 0.824857i 0.523398 0.852089i \(-0.324664\pi\)
−0.999629 + 0.0272313i \(0.991331\pi\)
\(878\) −4.97823 8.62255i −0.168007 0.290997i
\(879\) −20.4397 −0.689413
\(880\) 0.554958 + 0.961216i 0.0187076 + 0.0324026i
\(881\) 10.6474 18.4419i 0.358721 0.621322i −0.629027 0.777384i \(-0.716546\pi\)
0.987747 + 0.156061i \(0.0498798\pi\)
\(882\) −5.02930 + 8.71101i −0.169345 + 0.293315i
\(883\) −46.8068 −1.57518 −0.787588 0.616202i \(-0.788670\pi\)
−0.787588 + 0.616202i \(0.788670\pi\)
\(884\) 0 0
\(885\) 5.75600 0.193486
\(886\) 7.69418 13.3267i 0.258491 0.447719i
\(887\) −0.812823 + 1.40785i −0.0272919 + 0.0472710i −0.879349 0.476178i \(-0.842022\pi\)
0.852057 + 0.523449i \(0.175355\pi\)
\(888\) 1.38404 + 2.39723i 0.0464454 + 0.0804459i
\(889\) 2.72886 0.0915229
\(890\) −8.54019 14.7920i −0.286268 0.495830i
\(891\) 1.42998 + 2.47679i 0.0479060 + 0.0829756i
\(892\) −16.6310 −0.556848
\(893\) −0.353912 0.612994i −0.0118432 0.0205130i
\(894\) 10.7654 18.6462i 0.360049 0.623623i
\(895\) −0.329749 + 0.571142i −0.0110223 + 0.0190912i
\(896\) 0.198062 0.00661680
\(897\) 0 0
\(898\) 8.18060 0.272990
\(899\) 1.11960 1.93921i 0.0373409 0.0646764i
\(900\) 0.722521 1.25144i 0.0240840 0.0417148i
\(901\) −32.2150 55.7981i −1.07324 1.85890i
\(902\) 9.95167 0.331354
\(903\) 0.698062 + 1.20908i 0.0232301 + 0.0402356i
\(904\) −1.13706 1.96945i −0.0378182 0.0655030i
\(905\) 20.4101 0.678456
\(906\) 2.47889 + 4.29357i 0.0823557 + 0.142644i
\(907\) 14.4221 24.9798i 0.478877 0.829440i −0.520829 0.853661i \(-0.674377\pi\)
0.999707 + 0.0242212i \(0.00771060\pi\)
\(908\) 5.43080 9.40643i 0.180228 0.312163i
\(909\) 8.02715 0.266244
\(910\) 0 0
\(911\) 11.5254 0.381854 0.190927 0.981604i \(-0.438851\pi\)
0.190927 + 0.981604i \(0.438851\pi\)
\(912\) −0.307979 + 0.533434i −0.0101982 + 0.0176638i
\(913\) −8.69202 + 15.0550i −0.287664 + 0.498249i
\(914\) −8.03684 13.9202i −0.265835 0.460440i
\(915\) 6.86294 0.226882
\(916\) 11.6996 + 20.2642i 0.386564 + 0.669549i
\(917\) 1.91185 + 3.31143i 0.0631350 + 0.109353i
\(918\) 35.9952 1.18802
\(919\) −4.14138 7.17307i −0.136611 0.236618i 0.789600 0.613621i \(-0.210288\pi\)
−0.926212 + 0.377003i \(0.876954\pi\)
\(920\) −3.38135 + 5.85668i −0.111480 + 0.193089i
\(921\) −4.33244 + 7.50400i −0.142759 + 0.247265i
\(922\) 27.5308 0.906678
\(923\) 0 0
\(924\) −0.274127 −0.00901811
\(925\) −1.10992 + 1.92243i −0.0364938 + 0.0632092i
\(926\) 5.32975 9.23140i 0.175146 0.303362i
\(927\) −3.17456 5.49850i −0.104266 0.180595i
\(928\) −0.356896 −0.0117157
\(929\) −12.6923 21.9837i −0.416421 0.721263i 0.579155 0.815217i \(-0.303383\pi\)
−0.995577 + 0.0939543i \(0.970049\pi\)
\(930\) −3.91185 6.77553i −0.128275 0.222178i
\(931\) 3.43834 0.112687
\(932\) −7.19567 12.4633i −0.235702 0.408248i
\(933\) −15.1890 + 26.3081i −0.497264 + 0.861287i
\(934\) 5.39881 9.35102i 0.176655 0.305975i
\(935\) −7.20775 −0.235719
\(936\) 0 0
\(937\) −21.4819 −0.701782 −0.350891 0.936416i \(-0.614121\pi\)
−0.350891 + 0.936416i \(0.614121\pi\)
\(938\) 0.383510 0.664260i 0.0125221 0.0216888i
\(939\) 1.80194 3.12105i 0.0588040 0.101852i
\(940\) −0.716480 1.24098i −0.0233690 0.0404763i
\(941\) 12.1148 0.394932 0.197466 0.980310i \(-0.436729\pi\)
0.197466 + 0.980310i \(0.436729\pi\)
\(942\) 10.8509 + 18.7942i 0.353540 + 0.612349i
\(943\) 30.3177 + 52.5118i 0.987281 + 1.71002i
\(944\) 4.61596 0.150237
\(945\) 0.548917 + 0.950753i 0.0178563 + 0.0309280i
\(946\) −3.13706 + 5.43355i −0.101995 + 0.176660i
\(947\) 11.7277 20.3129i 0.381098 0.660081i −0.610122 0.792308i \(-0.708879\pi\)
0.991219 + 0.132227i \(0.0422128\pi\)
\(948\) −3.65817 −0.118812
\(949\) 0 0
\(950\) −0.493959 −0.0160262
\(951\) 3.12498 5.41263i 0.101334 0.175516i
\(952\) −0.643104 + 1.11389i −0.0208431 + 0.0361014i
\(953\) 21.2543 + 36.8135i 0.688494 + 1.19251i 0.972325 + 0.233632i \(0.0750610\pi\)
−0.283832 + 0.958874i \(0.591606\pi\)
\(954\) −14.3370 −0.464179
\(955\) 6.36658 + 11.0272i 0.206018 + 0.356833i
\(956\) −1.78017 3.08334i −0.0575747 0.0997224i
\(957\) 0.493959 0.0159674
\(958\) −4.54288 7.86849i −0.146774 0.254219i
\(959\) −1.93469 + 3.35098i −0.0624744 + 0.108209i
\(960\) −0.623490 + 1.07992i −0.0201230 + 0.0348541i
\(961\) 8.36467 0.269828
\(962\) 0 0
\(963\) 25.9758 0.837060
\(964\) 14.5945 25.2784i 0.470057 0.814162i
\(965\) 4.34481 7.52544i 0.139865 0.242252i
\(966\) −0.835126 1.44648i −0.0268697 0.0465397i
\(967\) −24.7827 −0.796957 −0.398479 0.917178i \(-0.630462\pi\)
−0.398479 + 0.917178i \(0.630462\pi\)
\(968\) 4.88404 + 8.45941i 0.156979 + 0.271896i
\(969\) −2.00000 3.46410i −0.0642493 0.111283i
\(970\) −13.5797 −0.436018
\(971\) 23.0562 + 39.9345i 0.739909 + 1.28156i 0.952536 + 0.304427i \(0.0984648\pi\)
−0.212627 + 0.977134i \(0.568202\pi\)
\(972\) 6.70775 11.6182i 0.215151 0.372653i
\(973\) 1.82371 3.15875i 0.0584654 0.101265i
\(974\) −40.8471 −1.30883
\(975\) 0 0
\(976\) 5.50365 0.176167
\(977\) −7.19136 + 12.4558i −0.230072 + 0.398496i −0.957829 0.287339i \(-0.907229\pi\)
0.727757 + 0.685835i \(0.240563\pi\)
\(978\) −5.71648 + 9.90123i −0.182793 + 0.316607i
\(979\) 9.47889 + 16.4179i 0.302947 + 0.524719i
\(980\) 6.96077 0.222354
\(981\) 4.86658 + 8.42917i 0.155378 + 0.269123i
\(982\) −14.5472 25.1965i −0.464219 0.804052i
\(983\) −9.73615 −0.310535 −0.155268 0.987872i \(-0.549624\pi\)
−0.155268 + 0.987872i \(0.549624\pi\)
\(984\) 5.59030 + 9.68269i 0.178212 + 0.308673i
\(985\) 2.64310 4.57799i 0.0842163 0.145867i
\(986\) 1.15883 2.00716i 0.0369048 0.0639210i
\(987\) 0.353912 0.0112651
\(988\) 0 0
\(989\) −38.2282 −1.21559
\(990\) −0.801938 + 1.38900i −0.0254873 + 0.0441452i
\(991\) 12.8974 22.3389i 0.409699 0.709619i −0.585157 0.810920i \(-0.698967\pi\)
0.994856 + 0.101301i \(0.0323005\pi\)
\(992\) −3.13706 5.43355i −0.0996019 0.172515i
\(993\) 29.9517 0.950488
\(994\) −1.34721 2.33343i −0.0427308 0.0740119i
\(995\) −5.47219 9.47811i −0.173480 0.300476i
\(996\) −19.5308 −0.618857
\(997\) −14.9487 25.8919i −0.473430 0.820004i 0.526108 0.850418i \(-0.323651\pi\)
−0.999537 + 0.0304136i \(0.990318\pi\)
\(998\) −8.10752 + 14.0426i −0.256639 + 0.444512i
\(999\) −6.15213 + 10.6558i −0.194645 + 0.337135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.o.191.3 6
13.2 odd 12 1690.2.l.l.361.3 12
13.3 even 3 inner 1690.2.e.o.991.3 6
13.4 even 6 1690.2.a.q.1.1 3
13.5 odd 4 1690.2.l.l.1161.6 12
13.6 odd 12 1690.2.d.j.1351.1 6
13.7 odd 12 1690.2.d.j.1351.4 6
13.8 odd 4 1690.2.l.l.1161.3 12
13.9 even 3 1690.2.a.s.1.1 yes 3
13.10 even 6 1690.2.e.q.991.3 6
13.11 odd 12 1690.2.l.l.361.6 12
13.12 even 2 1690.2.e.q.191.3 6
65.4 even 6 8450.2.a.bz.1.3 3
65.9 even 6 8450.2.a.bo.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.q.1.1 3 13.4 even 6
1690.2.a.s.1.1 yes 3 13.9 even 3
1690.2.d.j.1351.1 6 13.6 odd 12
1690.2.d.j.1351.4 6 13.7 odd 12
1690.2.e.o.191.3 6 1.1 even 1 trivial
1690.2.e.o.991.3 6 13.3 even 3 inner
1690.2.e.q.191.3 6 13.12 even 2
1690.2.e.q.991.3 6 13.10 even 6
1690.2.l.l.361.3 12 13.2 odd 12
1690.2.l.l.361.6 12 13.11 odd 12
1690.2.l.l.1161.3 12 13.8 odd 4
1690.2.l.l.1161.6 12 13.5 odd 4
8450.2.a.bo.1.3 3 65.9 even 6
8450.2.a.bz.1.3 3 65.4 even 6