Properties

Label 8450.2.a.bz.1.2
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,3,0,-1,5,3,-4,0,-4,-1,0,5,0,3,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.445042 q^{3} +1.00000 q^{4} -0.445042 q^{6} +3.24698 q^{7} +1.00000 q^{8} -2.80194 q^{9} +1.60388 q^{11} -0.445042 q^{12} +3.24698 q^{14} +1.00000 q^{16} -3.10992 q^{17} -2.80194 q^{18} -2.89008 q^{19} -1.44504 q^{21} +1.60388 q^{22} -6.78986 q^{23} -0.445042 q^{24} +2.58211 q^{27} +3.24698 q^{28} +4.04892 q^{29} -8.31767 q^{31} +1.00000 q^{32} -0.713792 q^{33} -3.10992 q^{34} -2.80194 q^{36} -3.20775 q^{37} -2.89008 q^{38} -10.6746 q^{41} -1.44504 q^{42} +5.18598 q^{43} +1.60388 q^{44} -6.78986 q^{46} +3.97823 q^{47} -0.445042 q^{48} +3.54288 q^{49} +1.38404 q^{51} +11.0858 q^{53} +2.58211 q^{54} +3.24698 q^{56} +1.28621 q^{57} +4.04892 q^{58} -5.28621 q^{59} -13.1250 q^{61} -8.31767 q^{62} -9.09783 q^{63} +1.00000 q^{64} -0.713792 q^{66} +12.3937 q^{67} -3.10992 q^{68} +3.02177 q^{69} -7.50604 q^{71} -2.80194 q^{72} -12.2741 q^{73} -3.20775 q^{74} -2.89008 q^{76} +5.20775 q^{77} -11.3056 q^{79} +7.25667 q^{81} -10.6746 q^{82} -10.4209 q^{83} -1.44504 q^{84} +5.18598 q^{86} -1.80194 q^{87} +1.60388 q^{88} -11.3817 q^{89} -6.78986 q^{92} +3.70171 q^{93} +3.97823 q^{94} -0.445042 q^{96} -6.05429 q^{97} +3.54288 q^{98} -4.49396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{6} + 5 q^{7} + 3 q^{8} - 4 q^{9} - 4 q^{11} - q^{12} + 5 q^{14} + 3 q^{16} - 10 q^{17} - 4 q^{18} - 8 q^{19} - 4 q^{21} - 4 q^{22} + 3 q^{23} - q^{24} + 2 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.445042 −0.256945 −0.128473 0.991713i \(-0.541007\pi\)
−0.128473 + 0.991713i \(0.541007\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.445042 −0.181688
\(7\) 3.24698 1.22724 0.613621 0.789600i \(-0.289712\pi\)
0.613621 + 0.789600i \(0.289712\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.80194 −0.933979
\(10\) 0 0
\(11\) 1.60388 0.483587 0.241793 0.970328i \(-0.422264\pi\)
0.241793 + 0.970328i \(0.422264\pi\)
\(12\) −0.445042 −0.128473
\(13\) 0 0
\(14\) 3.24698 0.867792
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.10992 −0.754265 −0.377133 0.926159i \(-0.623090\pi\)
−0.377133 + 0.926159i \(0.623090\pi\)
\(18\) −2.80194 −0.660423
\(19\) −2.89008 −0.663031 −0.331515 0.943450i \(-0.607560\pi\)
−0.331515 + 0.943450i \(0.607560\pi\)
\(20\) 0 0
\(21\) −1.44504 −0.315334
\(22\) 1.60388 0.341947
\(23\) −6.78986 −1.41578 −0.707891 0.706321i \(-0.750353\pi\)
−0.707891 + 0.706321i \(0.750353\pi\)
\(24\) −0.445042 −0.0908438
\(25\) 0 0
\(26\) 0 0
\(27\) 2.58211 0.496926
\(28\) 3.24698 0.613621
\(29\) 4.04892 0.751865 0.375933 0.926647i \(-0.377322\pi\)
0.375933 + 0.926647i \(0.377322\pi\)
\(30\) 0 0
\(31\) −8.31767 −1.49390 −0.746949 0.664882i \(-0.768482\pi\)
−0.746949 + 0.664882i \(0.768482\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.713792 −0.124255
\(34\) −3.10992 −0.533346
\(35\) 0 0
\(36\) −2.80194 −0.466990
\(37\) −3.20775 −0.527351 −0.263676 0.964611i \(-0.584935\pi\)
−0.263676 + 0.964611i \(0.584935\pi\)
\(38\) −2.89008 −0.468833
\(39\) 0 0
\(40\) 0 0
\(41\) −10.6746 −1.66709 −0.833543 0.552454i \(-0.813691\pi\)
−0.833543 + 0.552454i \(0.813691\pi\)
\(42\) −1.44504 −0.222975
\(43\) 5.18598 0.790855 0.395427 0.918497i \(-0.370597\pi\)
0.395427 + 0.918497i \(0.370597\pi\)
\(44\) 1.60388 0.241793
\(45\) 0 0
\(46\) −6.78986 −1.00111
\(47\) 3.97823 0.580284 0.290142 0.956984i \(-0.406297\pi\)
0.290142 + 0.956984i \(0.406297\pi\)
\(48\) −0.445042 −0.0642363
\(49\) 3.54288 0.506125
\(50\) 0 0
\(51\) 1.38404 0.193805
\(52\) 0 0
\(53\) 11.0858 1.52275 0.761373 0.648314i \(-0.224526\pi\)
0.761373 + 0.648314i \(0.224526\pi\)
\(54\) 2.58211 0.351380
\(55\) 0 0
\(56\) 3.24698 0.433896
\(57\) 1.28621 0.170362
\(58\) 4.04892 0.531649
\(59\) −5.28621 −0.688206 −0.344103 0.938932i \(-0.611817\pi\)
−0.344103 + 0.938932i \(0.611817\pi\)
\(60\) 0 0
\(61\) −13.1250 −1.68048 −0.840241 0.542213i \(-0.817586\pi\)
−0.840241 + 0.542213i \(0.817586\pi\)
\(62\) −8.31767 −1.05634
\(63\) −9.09783 −1.14622
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.713792 −0.0878617
\(67\) 12.3937 1.51414 0.757068 0.653336i \(-0.226631\pi\)
0.757068 + 0.653336i \(0.226631\pi\)
\(68\) −3.10992 −0.377133
\(69\) 3.02177 0.363778
\(70\) 0 0
\(71\) −7.50604 −0.890803 −0.445402 0.895331i \(-0.646939\pi\)
−0.445402 + 0.895331i \(0.646939\pi\)
\(72\) −2.80194 −0.330212
\(73\) −12.2741 −1.43658 −0.718289 0.695745i \(-0.755074\pi\)
−0.718289 + 0.695745i \(0.755074\pi\)
\(74\) −3.20775 −0.372893
\(75\) 0 0
\(76\) −2.89008 −0.331515
\(77\) 5.20775 0.593478
\(78\) 0 0
\(79\) −11.3056 −1.27198 −0.635989 0.771698i \(-0.719408\pi\)
−0.635989 + 0.771698i \(0.719408\pi\)
\(80\) 0 0
\(81\) 7.25667 0.806296
\(82\) −10.6746 −1.17881
\(83\) −10.4209 −1.14384 −0.571920 0.820309i \(-0.693801\pi\)
−0.571920 + 0.820309i \(0.693801\pi\)
\(84\) −1.44504 −0.157667
\(85\) 0 0
\(86\) 5.18598 0.559219
\(87\) −1.80194 −0.193188
\(88\) 1.60388 0.170974
\(89\) −11.3817 −1.20645 −0.603226 0.797570i \(-0.706118\pi\)
−0.603226 + 0.797570i \(0.706118\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.78986 −0.707891
\(93\) 3.70171 0.383849
\(94\) 3.97823 0.410323
\(95\) 0 0
\(96\) −0.445042 −0.0454219
\(97\) −6.05429 −0.614720 −0.307360 0.951593i \(-0.599446\pi\)
−0.307360 + 0.951593i \(0.599446\pi\)
\(98\) 3.54288 0.357885
\(99\) −4.49396 −0.451660
\(100\) 0 0
\(101\) −4.19806 −0.417723 −0.208861 0.977945i \(-0.566976\pi\)
−0.208861 + 0.977945i \(0.566976\pi\)
\(102\) 1.38404 0.137041
\(103\) −11.5211 −1.13521 −0.567604 0.823302i \(-0.692130\pi\)
−0.567604 + 0.823302i \(0.692130\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 11.0858 1.07674
\(107\) 4.43967 0.429199 0.214599 0.976702i \(-0.431155\pi\)
0.214599 + 0.976702i \(0.431155\pi\)
\(108\) 2.58211 0.248463
\(109\) 10.5526 1.01075 0.505376 0.862899i \(-0.331354\pi\)
0.505376 + 0.862899i \(0.331354\pi\)
\(110\) 0 0
\(111\) 1.42758 0.135500
\(112\) 3.24698 0.306811
\(113\) −4.31767 −0.406172 −0.203086 0.979161i \(-0.565097\pi\)
−0.203086 + 0.979161i \(0.565097\pi\)
\(114\) 1.28621 0.120464
\(115\) 0 0
\(116\) 4.04892 0.375933
\(117\) 0 0
\(118\) −5.28621 −0.486635
\(119\) −10.0978 −0.925667
\(120\) 0 0
\(121\) −8.42758 −0.766144
\(122\) −13.1250 −1.18828
\(123\) 4.75063 0.428350
\(124\) −8.31767 −0.746949
\(125\) 0 0
\(126\) −9.09783 −0.810500
\(127\) 2.80731 0.249109 0.124554 0.992213i \(-0.460250\pi\)
0.124554 + 0.992213i \(0.460250\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.30798 −0.203206
\(130\) 0 0
\(131\) 2.37196 0.207239 0.103620 0.994617i \(-0.466958\pi\)
0.103620 + 0.994617i \(0.466958\pi\)
\(132\) −0.713792 −0.0621276
\(133\) −9.38404 −0.813700
\(134\) 12.3937 1.07066
\(135\) 0 0
\(136\) −3.10992 −0.266673
\(137\) 16.8552 1.44003 0.720017 0.693956i \(-0.244134\pi\)
0.720017 + 0.693956i \(0.244134\pi\)
\(138\) 3.02177 0.257230
\(139\) 5.97584 0.506864 0.253432 0.967353i \(-0.418441\pi\)
0.253432 + 0.967353i \(0.418441\pi\)
\(140\) 0 0
\(141\) −1.77048 −0.149101
\(142\) −7.50604 −0.629893
\(143\) 0 0
\(144\) −2.80194 −0.233495
\(145\) 0 0
\(146\) −12.2741 −1.01581
\(147\) −1.57673 −0.130046
\(148\) −3.20775 −0.263676
\(149\) 14.9148 1.22187 0.610936 0.791680i \(-0.290793\pi\)
0.610936 + 0.791680i \(0.290793\pi\)
\(150\) 0 0
\(151\) 9.56033 0.778009 0.389005 0.921236i \(-0.372819\pi\)
0.389005 + 0.921236i \(0.372819\pi\)
\(152\) −2.89008 −0.234417
\(153\) 8.71379 0.704468
\(154\) 5.20775 0.419653
\(155\) 0 0
\(156\) 0 0
\(157\) 13.7560 1.09785 0.548924 0.835872i \(-0.315038\pi\)
0.548924 + 0.835872i \(0.315038\pi\)
\(158\) −11.3056 −0.899424
\(159\) −4.93362 −0.391262
\(160\) 0 0
\(161\) −22.0465 −1.73751
\(162\) 7.25667 0.570138
\(163\) 13.5308 1.05981 0.529907 0.848056i \(-0.322227\pi\)
0.529907 + 0.848056i \(0.322227\pi\)
\(164\) −10.6746 −0.833543
\(165\) 0 0
\(166\) −10.4209 −0.808817
\(167\) 15.1685 1.17378 0.586888 0.809668i \(-0.300353\pi\)
0.586888 + 0.809668i \(0.300353\pi\)
\(168\) −1.44504 −0.111487
\(169\) 0 0
\(170\) 0 0
\(171\) 8.09783 0.619257
\(172\) 5.18598 0.395427
\(173\) −4.27413 −0.324956 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(174\) −1.80194 −0.136605
\(175\) 0 0
\(176\) 1.60388 0.120897
\(177\) 2.35258 0.176831
\(178\) −11.3817 −0.853091
\(179\) 15.6233 1.16774 0.583868 0.811848i \(-0.301538\pi\)
0.583868 + 0.811848i \(0.301538\pi\)
\(180\) 0 0
\(181\) 16.1933 1.20364 0.601818 0.798633i \(-0.294443\pi\)
0.601818 + 0.798633i \(0.294443\pi\)
\(182\) 0 0
\(183\) 5.84117 0.431791
\(184\) −6.78986 −0.500555
\(185\) 0 0
\(186\) 3.70171 0.271423
\(187\) −4.98792 −0.364753
\(188\) 3.97823 0.290142
\(189\) 8.38404 0.609849
\(190\) 0 0
\(191\) −26.5676 −1.92237 −0.961183 0.275911i \(-0.911020\pi\)
−0.961183 + 0.275911i \(0.911020\pi\)
\(192\) −0.445042 −0.0321181
\(193\) −13.6582 −0.983137 −0.491568 0.870839i \(-0.663576\pi\)
−0.491568 + 0.870839i \(0.663576\pi\)
\(194\) −6.05429 −0.434673
\(195\) 0 0
\(196\) 3.54288 0.253063
\(197\) 14.0978 1.00443 0.502215 0.864743i \(-0.332519\pi\)
0.502215 + 0.864743i \(0.332519\pi\)
\(198\) −4.49396 −0.319372
\(199\) −21.1293 −1.49782 −0.748908 0.662674i \(-0.769422\pi\)
−0.748908 + 0.662674i \(0.769422\pi\)
\(200\) 0 0
\(201\) −5.51573 −0.389050
\(202\) −4.19806 −0.295375
\(203\) 13.1468 0.922721
\(204\) 1.38404 0.0969024
\(205\) 0 0
\(206\) −11.5211 −0.802714
\(207\) 19.0248 1.32231
\(208\) 0 0
\(209\) −4.63533 −0.320633
\(210\) 0 0
\(211\) −18.3720 −1.26478 −0.632389 0.774651i \(-0.717926\pi\)
−0.632389 + 0.774651i \(0.717926\pi\)
\(212\) 11.0858 0.761373
\(213\) 3.34050 0.228887
\(214\) 4.43967 0.303489
\(215\) 0 0
\(216\) 2.58211 0.175690
\(217\) −27.0073 −1.83337
\(218\) 10.5526 0.714710
\(219\) 5.46250 0.369122
\(220\) 0 0
\(221\) 0 0
\(222\) 1.42758 0.0958131
\(223\) −14.2687 −0.955506 −0.477753 0.878494i \(-0.658549\pi\)
−0.477753 + 0.878494i \(0.658549\pi\)
\(224\) 3.24698 0.216948
\(225\) 0 0
\(226\) −4.31767 −0.287207
\(227\) −27.4959 −1.82497 −0.912483 0.409115i \(-0.865837\pi\)
−0.912483 + 0.409115i \(0.865837\pi\)
\(228\) 1.28621 0.0851812
\(229\) 19.6963 1.30157 0.650785 0.759262i \(-0.274440\pi\)
0.650785 + 0.759262i \(0.274440\pi\)
\(230\) 0 0
\(231\) −2.31767 −0.152491
\(232\) 4.04892 0.265824
\(233\) 23.5362 1.54191 0.770953 0.636892i \(-0.219780\pi\)
0.770953 + 0.636892i \(0.219780\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.28621 −0.344103
\(237\) 5.03146 0.326828
\(238\) −10.0978 −0.654545
\(239\) −14.4155 −0.932461 −0.466231 0.884663i \(-0.654388\pi\)
−0.466231 + 0.884663i \(0.654388\pi\)
\(240\) 0 0
\(241\) 15.6692 1.00934 0.504671 0.863312i \(-0.331614\pi\)
0.504671 + 0.863312i \(0.331614\pi\)
\(242\) −8.42758 −0.541746
\(243\) −10.9758 −0.704100
\(244\) −13.1250 −0.840241
\(245\) 0 0
\(246\) 4.75063 0.302889
\(247\) 0 0
\(248\) −8.31767 −0.528172
\(249\) 4.63773 0.293904
\(250\) 0 0
\(251\) −15.1535 −0.956478 −0.478239 0.878230i \(-0.658725\pi\)
−0.478239 + 0.878230i \(0.658725\pi\)
\(252\) −9.09783 −0.573110
\(253\) −10.8901 −0.684654
\(254\) 2.80731 0.176147
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.8552 −1.17615 −0.588076 0.808805i \(-0.700115\pi\)
−0.588076 + 0.808805i \(0.700115\pi\)
\(258\) −2.30798 −0.143688
\(259\) −10.4155 −0.647188
\(260\) 0 0
\(261\) −11.3448 −0.702226
\(262\) 2.37196 0.146540
\(263\) 2.18060 0.134462 0.0672309 0.997737i \(-0.478584\pi\)
0.0672309 + 0.997737i \(0.478584\pi\)
\(264\) −0.713792 −0.0439308
\(265\) 0 0
\(266\) −9.38404 −0.575373
\(267\) 5.06531 0.309992
\(268\) 12.3937 0.757068
\(269\) 9.73125 0.593325 0.296662 0.954982i \(-0.404126\pi\)
0.296662 + 0.954982i \(0.404126\pi\)
\(270\) 0 0
\(271\) 4.05429 0.246281 0.123140 0.992389i \(-0.460703\pi\)
0.123140 + 0.992389i \(0.460703\pi\)
\(272\) −3.10992 −0.188566
\(273\) 0 0
\(274\) 16.8552 1.01826
\(275\) 0 0
\(276\) 3.02177 0.181889
\(277\) −30.0301 −1.80434 −0.902168 0.431385i \(-0.858025\pi\)
−0.902168 + 0.431385i \(0.858025\pi\)
\(278\) 5.97584 0.358407
\(279\) 23.3056 1.39527
\(280\) 0 0
\(281\) 22.2640 1.32816 0.664078 0.747663i \(-0.268824\pi\)
0.664078 + 0.747663i \(0.268824\pi\)
\(282\) −1.77048 −0.105430
\(283\) 8.88471 0.528141 0.264071 0.964503i \(-0.414935\pi\)
0.264071 + 0.964503i \(0.414935\pi\)
\(284\) −7.50604 −0.445402
\(285\) 0 0
\(286\) 0 0
\(287\) −34.6601 −2.04592
\(288\) −2.80194 −0.165106
\(289\) −7.32842 −0.431084
\(290\) 0 0
\(291\) 2.69441 0.157949
\(292\) −12.2741 −0.718289
\(293\) −21.5362 −1.25816 −0.629078 0.777342i \(-0.716568\pi\)
−0.629078 + 0.777342i \(0.716568\pi\)
\(294\) −1.57673 −0.0919567
\(295\) 0 0
\(296\) −3.20775 −0.186447
\(297\) 4.14138 0.240307
\(298\) 14.9148 0.863993
\(299\) 0 0
\(300\) 0 0
\(301\) 16.8388 0.970571
\(302\) 9.56033 0.550135
\(303\) 1.86831 0.107332
\(304\) −2.89008 −0.165758
\(305\) 0 0
\(306\) 8.71379 0.498134
\(307\) 10.3230 0.589167 0.294584 0.955626i \(-0.404819\pi\)
0.294584 + 0.955626i \(0.404819\pi\)
\(308\) 5.20775 0.296739
\(309\) 5.12737 0.291686
\(310\) 0 0
\(311\) 7.50125 0.425357 0.212679 0.977122i \(-0.431781\pi\)
0.212679 + 0.977122i \(0.431781\pi\)
\(312\) 0 0
\(313\) −5.60388 −0.316750 −0.158375 0.987379i \(-0.550625\pi\)
−0.158375 + 0.987379i \(0.550625\pi\)
\(314\) 13.7560 0.776296
\(315\) 0 0
\(316\) −11.3056 −0.635989
\(317\) 11.7802 0.661640 0.330820 0.943694i \(-0.392675\pi\)
0.330820 + 0.943694i \(0.392675\pi\)
\(318\) −4.93362 −0.276664
\(319\) 6.49396 0.363592
\(320\) 0 0
\(321\) −1.97584 −0.110280
\(322\) −22.0465 −1.22860
\(323\) 8.98792 0.500101
\(324\) 7.25667 0.403148
\(325\) 0 0
\(326\) 13.5308 0.749401
\(327\) −4.69633 −0.259708
\(328\) −10.6746 −0.589404
\(329\) 12.9172 0.712150
\(330\) 0 0
\(331\) −6.46980 −0.355612 −0.177806 0.984066i \(-0.556900\pi\)
−0.177806 + 0.984066i \(0.556900\pi\)
\(332\) −10.4209 −0.571920
\(333\) 8.98792 0.492535
\(334\) 15.1685 0.829985
\(335\) 0 0
\(336\) −1.44504 −0.0788335
\(337\) 5.35988 0.291971 0.145986 0.989287i \(-0.453365\pi\)
0.145986 + 0.989287i \(0.453365\pi\)
\(338\) 0 0
\(339\) 1.92154 0.104364
\(340\) 0 0
\(341\) −13.3405 −0.722429
\(342\) 8.09783 0.437881
\(343\) −11.2252 −0.606104
\(344\) 5.18598 0.279609
\(345\) 0 0
\(346\) −4.27413 −0.229778
\(347\) −3.56571 −0.191417 −0.0957087 0.995409i \(-0.530512\pi\)
−0.0957087 + 0.995409i \(0.530512\pi\)
\(348\) −1.80194 −0.0965940
\(349\) −7.97584 −0.426937 −0.213468 0.976950i \(-0.568476\pi\)
−0.213468 + 0.976950i \(0.568476\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.60388 0.0854868
\(353\) 1.60388 0.0853657 0.0426828 0.999089i \(-0.486410\pi\)
0.0426828 + 0.999089i \(0.486410\pi\)
\(354\) 2.35258 0.125038
\(355\) 0 0
\(356\) −11.3817 −0.603226
\(357\) 4.49396 0.237846
\(358\) 15.6233 0.825715
\(359\) −8.60255 −0.454025 −0.227013 0.973892i \(-0.572896\pi\)
−0.227013 + 0.973892i \(0.572896\pi\)
\(360\) 0 0
\(361\) −10.6474 −0.560390
\(362\) 16.1933 0.851100
\(363\) 3.75063 0.196857
\(364\) 0 0
\(365\) 0 0
\(366\) 5.84117 0.305323
\(367\) −7.41358 −0.386986 −0.193493 0.981102i \(-0.561982\pi\)
−0.193493 + 0.981102i \(0.561982\pi\)
\(368\) −6.78986 −0.353946
\(369\) 29.9095 1.55702
\(370\) 0 0
\(371\) 35.9952 1.86878
\(372\) 3.70171 0.191925
\(373\) −29.6039 −1.53283 −0.766415 0.642345i \(-0.777961\pi\)
−0.766415 + 0.642345i \(0.777961\pi\)
\(374\) −4.98792 −0.257919
\(375\) 0 0
\(376\) 3.97823 0.205162
\(377\) 0 0
\(378\) 8.38404 0.431229
\(379\) −8.45042 −0.434069 −0.217034 0.976164i \(-0.569638\pi\)
−0.217034 + 0.976164i \(0.569638\pi\)
\(380\) 0 0
\(381\) −1.24937 −0.0640073
\(382\) −26.5676 −1.35932
\(383\) −10.4644 −0.534707 −0.267353 0.963599i \(-0.586149\pi\)
−0.267353 + 0.963599i \(0.586149\pi\)
\(384\) −0.445042 −0.0227109
\(385\) 0 0
\(386\) −13.6582 −0.695183
\(387\) −14.5308 −0.738642
\(388\) −6.05429 −0.307360
\(389\) 29.2295 1.48200 0.740998 0.671507i \(-0.234353\pi\)
0.740998 + 0.671507i \(0.234353\pi\)
\(390\) 0 0
\(391\) 21.1159 1.06788
\(392\) 3.54288 0.178942
\(393\) −1.05562 −0.0532491
\(394\) 14.0978 0.710239
\(395\) 0 0
\(396\) −4.49396 −0.225830
\(397\) −20.7439 −1.04111 −0.520554 0.853829i \(-0.674274\pi\)
−0.520554 + 0.853829i \(0.674274\pi\)
\(398\) −21.1293 −1.05912
\(399\) 4.17629 0.209076
\(400\) 0 0
\(401\) −24.2892 −1.21294 −0.606472 0.795105i \(-0.707416\pi\)
−0.606472 + 0.795105i \(0.707416\pi\)
\(402\) −5.51573 −0.275100
\(403\) 0 0
\(404\) −4.19806 −0.208861
\(405\) 0 0
\(406\) 13.1468 0.652462
\(407\) −5.14483 −0.255020
\(408\) 1.38404 0.0685203
\(409\) −36.7676 −1.81804 −0.909021 0.416751i \(-0.863169\pi\)
−0.909021 + 0.416751i \(0.863169\pi\)
\(410\) 0 0
\(411\) −7.50125 −0.370010
\(412\) −11.5211 −0.567604
\(413\) −17.1642 −0.844596
\(414\) 19.0248 0.935016
\(415\) 0 0
\(416\) 0 0
\(417\) −2.65950 −0.130236
\(418\) −4.63533 −0.226722
\(419\) −30.8418 −1.50672 −0.753359 0.657609i \(-0.771568\pi\)
−0.753359 + 0.657609i \(0.771568\pi\)
\(420\) 0 0
\(421\) −31.7458 −1.54720 −0.773599 0.633676i \(-0.781545\pi\)
−0.773599 + 0.633676i \(0.781545\pi\)
\(422\) −18.3720 −0.894333
\(423\) −11.1468 −0.541974
\(424\) 11.0858 0.538372
\(425\) 0 0
\(426\) 3.34050 0.161848
\(427\) −42.6165 −2.06236
\(428\) 4.43967 0.214599
\(429\) 0 0
\(430\) 0 0
\(431\) 25.5120 1.22887 0.614435 0.788967i \(-0.289384\pi\)
0.614435 + 0.788967i \(0.289384\pi\)
\(432\) 2.58211 0.124232
\(433\) 31.8189 1.52912 0.764560 0.644553i \(-0.222956\pi\)
0.764560 + 0.644553i \(0.222956\pi\)
\(434\) −27.0073 −1.29639
\(435\) 0 0
\(436\) 10.5526 0.505376
\(437\) 19.6233 0.938707
\(438\) 5.46250 0.261008
\(439\) 26.9095 1.28432 0.642159 0.766571i \(-0.278039\pi\)
0.642159 + 0.766571i \(0.278039\pi\)
\(440\) 0 0
\(441\) −9.92692 −0.472710
\(442\) 0 0
\(443\) −12.7385 −0.605227 −0.302613 0.953113i \(-0.597859\pi\)
−0.302613 + 0.953113i \(0.597859\pi\)
\(444\) 1.42758 0.0677501
\(445\) 0 0
\(446\) −14.2687 −0.675645
\(447\) −6.63773 −0.313954
\(448\) 3.24698 0.153405
\(449\) 7.75063 0.365775 0.182887 0.983134i \(-0.441456\pi\)
0.182887 + 0.983134i \(0.441456\pi\)
\(450\) 0 0
\(451\) −17.1207 −0.806181
\(452\) −4.31767 −0.203086
\(453\) −4.25475 −0.199906
\(454\) −27.4959 −1.29045
\(455\) 0 0
\(456\) 1.28621 0.0602322
\(457\) −6.94438 −0.324844 −0.162422 0.986721i \(-0.551931\pi\)
−0.162422 + 0.986721i \(0.551931\pi\)
\(458\) 19.6963 0.920349
\(459\) −8.03013 −0.374814
\(460\) 0 0
\(461\) −12.6377 −0.588598 −0.294299 0.955713i \(-0.595086\pi\)
−0.294299 + 0.955713i \(0.595086\pi\)
\(462\) −2.31767 −0.107828
\(463\) 5.62325 0.261335 0.130667 0.991426i \(-0.458288\pi\)
0.130667 + 0.991426i \(0.458288\pi\)
\(464\) 4.04892 0.187966
\(465\) 0 0
\(466\) 23.5362 1.09029
\(467\) 35.2054 1.62911 0.814555 0.580087i \(-0.196981\pi\)
0.814555 + 0.580087i \(0.196981\pi\)
\(468\) 0 0
\(469\) 40.2422 1.85821
\(470\) 0 0
\(471\) −6.12200 −0.282087
\(472\) −5.28621 −0.243317
\(473\) 8.31767 0.382447
\(474\) 5.03146 0.231103
\(475\) 0 0
\(476\) −10.0978 −0.462833
\(477\) −31.0616 −1.42221
\(478\) −14.4155 −0.659350
\(479\) 7.16421 0.327341 0.163671 0.986515i \(-0.447667\pi\)
0.163671 + 0.986515i \(0.447667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 15.6692 0.713712
\(483\) 9.81163 0.446444
\(484\) −8.42758 −0.383072
\(485\) 0 0
\(486\) −10.9758 −0.497874
\(487\) −28.7006 −1.30055 −0.650275 0.759699i \(-0.725346\pi\)
−0.650275 + 0.759699i \(0.725346\pi\)
\(488\) −13.1250 −0.594140
\(489\) −6.02177 −0.272314
\(490\) 0 0
\(491\) −42.0689 −1.89854 −0.949271 0.314459i \(-0.898177\pi\)
−0.949271 + 0.314459i \(0.898177\pi\)
\(492\) 4.75063 0.214175
\(493\) −12.5918 −0.567106
\(494\) 0 0
\(495\) 0 0
\(496\) −8.31767 −0.373474
\(497\) −24.3720 −1.09323
\(498\) 4.63773 0.207822
\(499\) 33.2379 1.48793 0.743966 0.668218i \(-0.232942\pi\)
0.743966 + 0.668218i \(0.232942\pi\)
\(500\) 0 0
\(501\) −6.75063 −0.301596
\(502\) −15.1535 −0.676332
\(503\) 37.7797 1.68451 0.842257 0.539077i \(-0.181227\pi\)
0.842257 + 0.539077i \(0.181227\pi\)
\(504\) −9.09783 −0.405250
\(505\) 0 0
\(506\) −10.8901 −0.484123
\(507\) 0 0
\(508\) 2.80731 0.124554
\(509\) 2.26875 0.100561 0.0502803 0.998735i \(-0.483989\pi\)
0.0502803 + 0.998735i \(0.483989\pi\)
\(510\) 0 0
\(511\) −39.8538 −1.76303
\(512\) 1.00000 0.0441942
\(513\) −7.46250 −0.329477
\(514\) −18.8552 −0.831666
\(515\) 0 0
\(516\) −2.30798 −0.101603
\(517\) 6.38059 0.280618
\(518\) −10.4155 −0.457631
\(519\) 1.90217 0.0834958
\(520\) 0 0
\(521\) −22.7899 −0.998442 −0.499221 0.866475i \(-0.666380\pi\)
−0.499221 + 0.866475i \(0.666380\pi\)
\(522\) −11.3448 −0.496549
\(523\) −6.61356 −0.289191 −0.144595 0.989491i \(-0.546188\pi\)
−0.144595 + 0.989491i \(0.546188\pi\)
\(524\) 2.37196 0.103620
\(525\) 0 0
\(526\) 2.18060 0.0950788
\(527\) 25.8672 1.12680
\(528\) −0.713792 −0.0310638
\(529\) 23.1021 1.00444
\(530\) 0 0
\(531\) 14.8116 0.642770
\(532\) −9.38404 −0.406850
\(533\) 0 0
\(534\) 5.06531 0.219197
\(535\) 0 0
\(536\) 12.3937 0.535328
\(537\) −6.95300 −0.300044
\(538\) 9.73125 0.419544
\(539\) 5.68233 0.244755
\(540\) 0 0
\(541\) 24.2553 1.04282 0.521409 0.853307i \(-0.325407\pi\)
0.521409 + 0.853307i \(0.325407\pi\)
\(542\) 4.05429 0.174147
\(543\) −7.20669 −0.309268
\(544\) −3.10992 −0.133337
\(545\) 0 0
\(546\) 0 0
\(547\) −11.8086 −0.504901 −0.252451 0.967610i \(-0.581237\pi\)
−0.252451 + 0.967610i \(0.581237\pi\)
\(548\) 16.8552 0.720017
\(549\) 36.7754 1.56954
\(550\) 0 0
\(551\) −11.7017 −0.498510
\(552\) 3.02177 0.128615
\(553\) −36.7090 −1.56103
\(554\) −30.0301 −1.27586
\(555\) 0 0
\(556\) 5.97584 0.253432
\(557\) 15.0180 0.636335 0.318168 0.948034i \(-0.396933\pi\)
0.318168 + 0.948034i \(0.396933\pi\)
\(558\) 23.3056 0.986604
\(559\) 0 0
\(560\) 0 0
\(561\) 2.21983 0.0937214
\(562\) 22.2640 0.939149
\(563\) −10.4198 −0.439143 −0.219571 0.975596i \(-0.570466\pi\)
−0.219571 + 0.975596i \(0.570466\pi\)
\(564\) −1.77048 −0.0745506
\(565\) 0 0
\(566\) 8.88471 0.373452
\(567\) 23.5623 0.989522
\(568\) −7.50604 −0.314946
\(569\) 12.3461 0.517577 0.258789 0.965934i \(-0.416677\pi\)
0.258789 + 0.965934i \(0.416677\pi\)
\(570\) 0 0
\(571\) −2.21983 −0.0928971 −0.0464486 0.998921i \(-0.514790\pi\)
−0.0464486 + 0.998921i \(0.514790\pi\)
\(572\) 0 0
\(573\) 11.8237 0.493942
\(574\) −34.6601 −1.44668
\(575\) 0 0
\(576\) −2.80194 −0.116747
\(577\) 21.3405 0.888417 0.444208 0.895924i \(-0.353485\pi\)
0.444208 + 0.895924i \(0.353485\pi\)
\(578\) −7.32842 −0.304822
\(579\) 6.07846 0.252612
\(580\) 0 0
\(581\) −33.8364 −1.40377
\(582\) 2.69441 0.111687
\(583\) 17.7802 0.736379
\(584\) −12.2741 −0.507907
\(585\) 0 0
\(586\) −21.5362 −0.889651
\(587\) 10.1371 0.418401 0.209201 0.977873i \(-0.432914\pi\)
0.209201 + 0.977873i \(0.432914\pi\)
\(588\) −1.57673 −0.0650232
\(589\) 24.0388 0.990500
\(590\) 0 0
\(591\) −6.27413 −0.258083
\(592\) −3.20775 −0.131838
\(593\) −17.6668 −0.725488 −0.362744 0.931889i \(-0.618160\pi\)
−0.362744 + 0.931889i \(0.618160\pi\)
\(594\) 4.14138 0.169923
\(595\) 0 0
\(596\) 14.9148 0.610936
\(597\) 9.40342 0.384856
\(598\) 0 0
\(599\) 9.14005 0.373452 0.186726 0.982412i \(-0.440212\pi\)
0.186726 + 0.982412i \(0.440212\pi\)
\(600\) 0 0
\(601\) 37.0116 1.50973 0.754867 0.655877i \(-0.227701\pi\)
0.754867 + 0.655877i \(0.227701\pi\)
\(602\) 16.8388 0.686297
\(603\) −34.7265 −1.41417
\(604\) 9.56033 0.389005
\(605\) 0 0
\(606\) 1.86831 0.0758950
\(607\) −10.9420 −0.444121 −0.222061 0.975033i \(-0.571278\pi\)
−0.222061 + 0.975033i \(0.571278\pi\)
\(608\) −2.89008 −0.117208
\(609\) −5.85086 −0.237089
\(610\) 0 0
\(611\) 0 0
\(612\) 8.71379 0.352234
\(613\) −10.9336 −0.441605 −0.220802 0.975319i \(-0.570868\pi\)
−0.220802 + 0.975319i \(0.570868\pi\)
\(614\) 10.3230 0.416604
\(615\) 0 0
\(616\) 5.20775 0.209826
\(617\) −6.33704 −0.255120 −0.127560 0.991831i \(-0.540715\pi\)
−0.127560 + 0.991831i \(0.540715\pi\)
\(618\) 5.12737 0.206253
\(619\) 12.8659 0.517125 0.258563 0.965995i \(-0.416751\pi\)
0.258563 + 0.965995i \(0.416751\pi\)
\(620\) 0 0
\(621\) −17.5321 −0.703540
\(622\) 7.50125 0.300773
\(623\) −36.9560 −1.48061
\(624\) 0 0
\(625\) 0 0
\(626\) −5.60388 −0.223976
\(627\) 2.06292 0.0823850
\(628\) 13.7560 0.548924
\(629\) 9.97584 0.397763
\(630\) 0 0
\(631\) −47.8491 −1.90484 −0.952420 0.304788i \(-0.901415\pi\)
−0.952420 + 0.304788i \(0.901415\pi\)
\(632\) −11.3056 −0.449712
\(633\) 8.17629 0.324978
\(634\) 11.7802 0.467850
\(635\) 0 0
\(636\) −4.93362 −0.195631
\(637\) 0 0
\(638\) 6.49396 0.257098
\(639\) 21.0315 0.831992
\(640\) 0 0
\(641\) 45.7168 1.80570 0.902852 0.429951i \(-0.141469\pi\)
0.902852 + 0.429951i \(0.141469\pi\)
\(642\) −1.97584 −0.0779801
\(643\) 33.1836 1.30863 0.654316 0.756221i \(-0.272956\pi\)
0.654316 + 0.756221i \(0.272956\pi\)
\(644\) −22.0465 −0.868755
\(645\) 0 0
\(646\) 8.98792 0.353625
\(647\) 9.53617 0.374906 0.187453 0.982274i \(-0.439977\pi\)
0.187453 + 0.982274i \(0.439977\pi\)
\(648\) 7.25667 0.285069
\(649\) −8.47842 −0.332807
\(650\) 0 0
\(651\) 12.0194 0.471077
\(652\) 13.5308 0.529907
\(653\) 40.5918 1.58848 0.794240 0.607604i \(-0.207869\pi\)
0.794240 + 0.607604i \(0.207869\pi\)
\(654\) −4.69633 −0.183641
\(655\) 0 0
\(656\) −10.6746 −0.416772
\(657\) 34.3913 1.34173
\(658\) 12.9172 0.503566
\(659\) −0.537500 −0.0209380 −0.0104690 0.999945i \(-0.503332\pi\)
−0.0104690 + 0.999945i \(0.503332\pi\)
\(660\) 0 0
\(661\) 23.9928 0.933213 0.466606 0.884465i \(-0.345477\pi\)
0.466606 + 0.884465i \(0.345477\pi\)
\(662\) −6.46980 −0.251456
\(663\) 0 0
\(664\) −10.4209 −0.404409
\(665\) 0 0
\(666\) 8.98792 0.348275
\(667\) −27.4916 −1.06448
\(668\) 15.1685 0.586888
\(669\) 6.35019 0.245513
\(670\) 0 0
\(671\) −21.0508 −0.812659
\(672\) −1.44504 −0.0557437
\(673\) −7.26683 −0.280116 −0.140058 0.990143i \(-0.544729\pi\)
−0.140058 + 0.990143i \(0.544729\pi\)
\(674\) 5.35988 0.206455
\(675\) 0 0
\(676\) 0 0
\(677\) −5.11470 −0.196574 −0.0982870 0.995158i \(-0.531336\pi\)
−0.0982870 + 0.995158i \(0.531336\pi\)
\(678\) 1.92154 0.0737964
\(679\) −19.6582 −0.754411
\(680\) 0 0
\(681\) 12.2368 0.468916
\(682\) −13.3405 −0.510834
\(683\) 23.0532 0.882107 0.441054 0.897481i \(-0.354605\pi\)
0.441054 + 0.897481i \(0.354605\pi\)
\(684\) 8.09783 0.309628
\(685\) 0 0
\(686\) −11.2252 −0.428580
\(687\) −8.76569 −0.334432
\(688\) 5.18598 0.197714
\(689\) 0 0
\(690\) 0 0
\(691\) 31.1051 1.18329 0.591647 0.806197i \(-0.298478\pi\)
0.591647 + 0.806197i \(0.298478\pi\)
\(692\) −4.27413 −0.162478
\(693\) −14.5918 −0.554296
\(694\) −3.56571 −0.135353
\(695\) 0 0
\(696\) −1.80194 −0.0683023
\(697\) 33.1970 1.25743
\(698\) −7.97584 −0.301890
\(699\) −10.4746 −0.396185
\(700\) 0 0
\(701\) 7.07069 0.267056 0.133528 0.991045i \(-0.457369\pi\)
0.133528 + 0.991045i \(0.457369\pi\)
\(702\) 0 0
\(703\) 9.27067 0.349650
\(704\) 1.60388 0.0604483
\(705\) 0 0
\(706\) 1.60388 0.0603626
\(707\) −13.6310 −0.512647
\(708\) 2.35258 0.0884155
\(709\) 8.65519 0.325052 0.162526 0.986704i \(-0.448036\pi\)
0.162526 + 0.986704i \(0.448036\pi\)
\(710\) 0 0
\(711\) 31.6775 1.18800
\(712\) −11.3817 −0.426545
\(713\) 56.4758 2.11503
\(714\) 4.49396 0.168182
\(715\) 0 0
\(716\) 15.6233 0.583868
\(717\) 6.41550 0.239591
\(718\) −8.60255 −0.321044
\(719\) −8.48055 −0.316271 −0.158136 0.987417i \(-0.550548\pi\)
−0.158136 + 0.987417i \(0.550548\pi\)
\(720\) 0 0
\(721\) −37.4088 −1.39318
\(722\) −10.6474 −0.396256
\(723\) −6.97344 −0.259345
\(724\) 16.1933 0.601818
\(725\) 0 0
\(726\) 3.75063 0.139199
\(727\) −31.2683 −1.15968 −0.579838 0.814732i \(-0.696884\pi\)
−0.579838 + 0.814732i \(0.696884\pi\)
\(728\) 0 0
\(729\) −16.8853 −0.625381
\(730\) 0 0
\(731\) −16.1280 −0.596514
\(732\) 5.84117 0.215896
\(733\) −6.69441 −0.247264 −0.123632 0.992328i \(-0.539454\pi\)
−0.123632 + 0.992328i \(0.539454\pi\)
\(734\) −7.41358 −0.273640
\(735\) 0 0
\(736\) −6.78986 −0.250277
\(737\) 19.8780 0.732216
\(738\) 29.9095 1.10098
\(739\) −5.29696 −0.194852 −0.0974259 0.995243i \(-0.531061\pi\)
−0.0974259 + 0.995243i \(0.531061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 35.9952 1.32143
\(743\) 13.0755 0.479693 0.239846 0.970811i \(-0.422903\pi\)
0.239846 + 0.970811i \(0.422903\pi\)
\(744\) 3.70171 0.135711
\(745\) 0 0
\(746\) −29.6039 −1.08387
\(747\) 29.1987 1.06832
\(748\) −4.98792 −0.182376
\(749\) 14.4155 0.526731
\(750\) 0 0
\(751\) −26.6461 −0.972330 −0.486165 0.873867i \(-0.661605\pi\)
−0.486165 + 0.873867i \(0.661605\pi\)
\(752\) 3.97823 0.145071
\(753\) 6.74392 0.245762
\(754\) 0 0
\(755\) 0 0
\(756\) 8.38404 0.304925
\(757\) −54.3236 −1.97443 −0.987213 0.159406i \(-0.949042\pi\)
−0.987213 + 0.159406i \(0.949042\pi\)
\(758\) −8.45042 −0.306933
\(759\) 4.84654 0.175918
\(760\) 0 0
\(761\) −8.55363 −0.310069 −0.155034 0.987909i \(-0.549549\pi\)
−0.155034 + 0.987909i \(0.549549\pi\)
\(762\) −1.24937 −0.0452600
\(763\) 34.2640 1.24044
\(764\) −26.5676 −0.961183
\(765\) 0 0
\(766\) −10.4644 −0.378095
\(767\) 0 0
\(768\) −0.445042 −0.0160591
\(769\) −20.6504 −0.744672 −0.372336 0.928098i \(-0.621443\pi\)
−0.372336 + 0.928098i \(0.621443\pi\)
\(770\) 0 0
\(771\) 8.39134 0.302207
\(772\) −13.6582 −0.491568
\(773\) 5.27545 0.189745 0.0948725 0.995489i \(-0.469756\pi\)
0.0948725 + 0.995489i \(0.469756\pi\)
\(774\) −14.5308 −0.522299
\(775\) 0 0
\(776\) −6.05429 −0.217336
\(777\) 4.63533 0.166292
\(778\) 29.2295 1.04793
\(779\) 30.8504 1.10533
\(780\) 0 0
\(781\) −12.0388 −0.430781
\(782\) 21.1159 0.755102
\(783\) 10.4547 0.373622
\(784\) 3.54288 0.126531
\(785\) 0 0
\(786\) −1.05562 −0.0376528
\(787\) 39.7077 1.41543 0.707713 0.706500i \(-0.249727\pi\)
0.707713 + 0.706500i \(0.249727\pi\)
\(788\) 14.0978 0.502215
\(789\) −0.970460 −0.0345493
\(790\) 0 0
\(791\) −14.0194 −0.498472
\(792\) −4.49396 −0.159686
\(793\) 0 0
\(794\) −20.7439 −0.736174
\(795\) 0 0
\(796\) −21.1293 −0.748908
\(797\) −36.5676 −1.29529 −0.647646 0.761941i \(-0.724246\pi\)
−0.647646 + 0.761941i \(0.724246\pi\)
\(798\) 4.17629 0.147839
\(799\) −12.3720 −0.437689
\(800\) 0 0
\(801\) 31.8907 1.12680
\(802\) −24.2892 −0.857681
\(803\) −19.6862 −0.694710
\(804\) −5.51573 −0.194525
\(805\) 0 0
\(806\) 0 0
\(807\) −4.33081 −0.152452
\(808\) −4.19806 −0.147687
\(809\) −21.9694 −0.772403 −0.386201 0.922414i \(-0.626213\pi\)
−0.386201 + 0.922414i \(0.626213\pi\)
\(810\) 0 0
\(811\) 31.3250 1.09997 0.549984 0.835175i \(-0.314634\pi\)
0.549984 + 0.835175i \(0.314634\pi\)
\(812\) 13.1468 0.461361
\(813\) −1.80433 −0.0632806
\(814\) −5.14483 −0.180326
\(815\) 0 0
\(816\) 1.38404 0.0484512
\(817\) −14.9879 −0.524361
\(818\) −36.7676 −1.28555
\(819\) 0 0
\(820\) 0 0
\(821\) −13.9734 −0.487677 −0.243838 0.969816i \(-0.578407\pi\)
−0.243838 + 0.969816i \(0.578407\pi\)
\(822\) −7.50125 −0.261636
\(823\) −32.0871 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(824\) −11.5211 −0.401357
\(825\) 0 0
\(826\) −17.1642 −0.597219
\(827\) −1.82430 −0.0634371 −0.0317185 0.999497i \(-0.510098\pi\)
−0.0317185 + 0.999497i \(0.510098\pi\)
\(828\) 19.0248 0.661156
\(829\) −32.1360 −1.11613 −0.558065 0.829797i \(-0.688456\pi\)
−0.558065 + 0.829797i \(0.688456\pi\)
\(830\) 0 0
\(831\) 13.3647 0.463615
\(832\) 0 0
\(833\) −11.0180 −0.381753
\(834\) −2.65950 −0.0920909
\(835\) 0 0
\(836\) −4.63533 −0.160316
\(837\) −21.4771 −0.742357
\(838\) −30.8418 −1.06541
\(839\) −8.30904 −0.286860 −0.143430 0.989660i \(-0.545813\pi\)
−0.143430 + 0.989660i \(0.545813\pi\)
\(840\) 0 0
\(841\) −12.6063 −0.434699
\(842\) −31.7458 −1.09403
\(843\) −9.90840 −0.341263
\(844\) −18.3720 −0.632389
\(845\) 0 0
\(846\) −11.1468 −0.383233
\(847\) −27.3642 −0.940245
\(848\) 11.0858 0.380686
\(849\) −3.95407 −0.135703
\(850\) 0 0
\(851\) 21.7802 0.746615
\(852\) 3.34050 0.114444
\(853\) −31.7995 −1.08880 −0.544398 0.838827i \(-0.683242\pi\)
−0.544398 + 0.838827i \(0.683242\pi\)
\(854\) −42.6165 −1.45831
\(855\) 0 0
\(856\) 4.43967 0.151745
\(857\) 9.32975 0.318698 0.159349 0.987222i \(-0.449060\pi\)
0.159349 + 0.987222i \(0.449060\pi\)
\(858\) 0 0
\(859\) −58.3913 −1.99229 −0.996143 0.0877403i \(-0.972035\pi\)
−0.996143 + 0.0877403i \(0.972035\pi\)
\(860\) 0 0
\(861\) 15.4252 0.525689
\(862\) 25.5120 0.868942
\(863\) −8.79284 −0.299312 −0.149656 0.988738i \(-0.547817\pi\)
−0.149656 + 0.988738i \(0.547817\pi\)
\(864\) 2.58211 0.0878450
\(865\) 0 0
\(866\) 31.8189 1.08125
\(867\) 3.26145 0.110765
\(868\) −27.0073 −0.916687
\(869\) −18.1328 −0.615111
\(870\) 0 0
\(871\) 0 0
\(872\) 10.5526 0.357355
\(873\) 16.9638 0.574136
\(874\) 19.6233 0.663766
\(875\) 0 0
\(876\) 5.46250 0.184561
\(877\) 33.6668 1.13685 0.568423 0.822736i \(-0.307554\pi\)
0.568423 + 0.822736i \(0.307554\pi\)
\(878\) 26.9095 0.908150
\(879\) 9.58450 0.323277
\(880\) 0 0
\(881\) 24.8068 0.835764 0.417882 0.908501i \(-0.362773\pi\)
0.417882 + 0.908501i \(0.362773\pi\)
\(882\) −9.92692 −0.334257
\(883\) −15.5120 −0.522021 −0.261010 0.965336i \(-0.584056\pi\)
−0.261010 + 0.965336i \(0.584056\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.7385 −0.427960
\(887\) 12.9487 0.434774 0.217387 0.976085i \(-0.430247\pi\)
0.217387 + 0.976085i \(0.430247\pi\)
\(888\) 1.42758 0.0479066
\(889\) 9.11529 0.305717
\(890\) 0 0
\(891\) 11.6388 0.389914
\(892\) −14.2687 −0.477753
\(893\) −11.4974 −0.384746
\(894\) −6.63773 −0.221999
\(895\) 0 0
\(896\) 3.24698 0.108474
\(897\) 0 0
\(898\) 7.75063 0.258642
\(899\) −33.6775 −1.12321
\(900\) 0 0
\(901\) −34.4758 −1.14855
\(902\) −17.1207 −0.570056
\(903\) −7.49396 −0.249383
\(904\) −4.31767 −0.143603
\(905\) 0 0
\(906\) −4.25475 −0.141355
\(907\) 26.4983 0.879861 0.439930 0.898032i \(-0.355003\pi\)
0.439930 + 0.898032i \(0.355003\pi\)
\(908\) −27.4959 −0.912483
\(909\) 11.7627 0.390144
\(910\) 0 0
\(911\) −15.5797 −0.516179 −0.258089 0.966121i \(-0.583093\pi\)
−0.258089 + 0.966121i \(0.583093\pi\)
\(912\) 1.28621 0.0425906
\(913\) −16.7138 −0.553146
\(914\) −6.94438 −0.229700
\(915\) 0 0
\(916\) 19.6963 0.650785
\(917\) 7.70171 0.254333
\(918\) −8.03013 −0.265034
\(919\) −44.5870 −1.47079 −0.735395 0.677639i \(-0.763003\pi\)
−0.735395 + 0.677639i \(0.763003\pi\)
\(920\) 0 0
\(921\) −4.59419 −0.151384
\(922\) −12.6377 −0.416201
\(923\) 0 0
\(924\) −2.31767 −0.0762457
\(925\) 0 0
\(926\) 5.62325 0.184792
\(927\) 32.2814 1.06026
\(928\) 4.04892 0.132912
\(929\) 7.09890 0.232907 0.116454 0.993196i \(-0.462847\pi\)
0.116454 + 0.993196i \(0.462847\pi\)
\(930\) 0 0
\(931\) −10.2392 −0.335577
\(932\) 23.5362 0.770953
\(933\) −3.33837 −0.109293
\(934\) 35.2054 1.15195
\(935\) 0 0
\(936\) 0 0
\(937\) 11.3297 0.370127 0.185063 0.982727i \(-0.440751\pi\)
0.185063 + 0.982727i \(0.440751\pi\)
\(938\) 40.2422 1.31395
\(939\) 2.49396 0.0813873
\(940\) 0 0
\(941\) 49.8689 1.62568 0.812840 0.582487i \(-0.197920\pi\)
0.812840 + 0.582487i \(0.197920\pi\)
\(942\) −6.12200 −0.199465
\(943\) 72.4787 2.36023
\(944\) −5.28621 −0.172051
\(945\) 0 0
\(946\) 8.31767 0.270431
\(947\) 22.2457 0.722887 0.361443 0.932394i \(-0.382284\pi\)
0.361443 + 0.932394i \(0.382284\pi\)
\(948\) 5.03146 0.163414
\(949\) 0 0
\(950\) 0 0
\(951\) −5.24267 −0.170005
\(952\) −10.0978 −0.327273
\(953\) −35.3900 −1.14639 −0.573197 0.819417i \(-0.694297\pi\)
−0.573197 + 0.819417i \(0.694297\pi\)
\(954\) −31.0616 −1.00566
\(955\) 0 0
\(956\) −14.4155 −0.466231
\(957\) −2.89008 −0.0934231
\(958\) 7.16421 0.231465
\(959\) 54.7284 1.76727
\(960\) 0 0
\(961\) 38.1836 1.23173
\(962\) 0 0
\(963\) −12.4397 −0.400863
\(964\) 15.6692 0.504671
\(965\) 0 0
\(966\) 9.81163 0.315684
\(967\) 51.0723 1.64238 0.821188 0.570658i \(-0.193312\pi\)
0.821188 + 0.570658i \(0.193312\pi\)
\(968\) −8.42758 −0.270873
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) 37.8840 1.21575 0.607877 0.794031i \(-0.292021\pi\)
0.607877 + 0.794031i \(0.292021\pi\)
\(972\) −10.9758 −0.352050
\(973\) 19.4034 0.622045
\(974\) −28.7006 −0.919628
\(975\) 0 0
\(976\) −13.1250 −0.420120
\(977\) 31.3685 1.00357 0.501784 0.864993i \(-0.332677\pi\)
0.501784 + 0.864993i \(0.332677\pi\)
\(978\) −6.02177 −0.192555
\(979\) −18.2547 −0.583424
\(980\) 0 0
\(981\) −29.5676 −0.944022
\(982\) −42.0689 −1.34247
\(983\) 39.3653 1.25556 0.627778 0.778392i \(-0.283964\pi\)
0.627778 + 0.778392i \(0.283964\pi\)
\(984\) 4.75063 0.151444
\(985\) 0 0
\(986\) −12.5918 −0.401004
\(987\) −5.74871 −0.182983
\(988\) 0 0
\(989\) −35.2121 −1.11968
\(990\) 0 0
\(991\) 43.2922 1.37522 0.687611 0.726080i \(-0.258660\pi\)
0.687611 + 0.726080i \(0.258660\pi\)
\(992\) −8.31767 −0.264086
\(993\) 2.87933 0.0913728
\(994\) −24.3720 −0.773032
\(995\) 0 0
\(996\) 4.63773 0.146952
\(997\) 4.64609 0.147143 0.0735715 0.997290i \(-0.476560\pi\)
0.0735715 + 0.997290i \(0.476560\pi\)
\(998\) 33.2379 1.05213
\(999\) −8.28275 −0.262055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bz.1.2 3
5.4 even 2 1690.2.a.q.1.2 3
13.12 even 2 8450.2.a.bo.1.2 3
65.4 even 6 1690.2.e.o.991.2 6
65.9 even 6 1690.2.e.q.991.2 6
65.19 odd 12 1690.2.l.l.361.5 12
65.24 odd 12 1690.2.l.l.1161.5 12
65.29 even 6 1690.2.e.q.191.2 6
65.34 odd 4 1690.2.d.j.1351.2 6
65.44 odd 4 1690.2.d.j.1351.5 6
65.49 even 6 1690.2.e.o.191.2 6
65.54 odd 12 1690.2.l.l.1161.2 12
65.59 odd 12 1690.2.l.l.361.2 12
65.64 even 2 1690.2.a.s.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.q.1.2 3 5.4 even 2
1690.2.a.s.1.2 yes 3 65.64 even 2
1690.2.d.j.1351.2 6 65.34 odd 4
1690.2.d.j.1351.5 6 65.44 odd 4
1690.2.e.o.191.2 6 65.49 even 6
1690.2.e.o.991.2 6 65.4 even 6
1690.2.e.q.191.2 6 65.29 even 6
1690.2.e.q.991.2 6 65.9 even 6
1690.2.l.l.361.2 12 65.59 odd 12
1690.2.l.l.361.5 12 65.19 odd 12
1690.2.l.l.1161.2 12 65.54 odd 12
1690.2.l.l.1161.5 12 65.24 odd 12
8450.2.a.bo.1.2 3 13.12 even 2
8450.2.a.bz.1.2 3 1.1 even 1 trivial