Properties

Label 1690.2.d.j.1351.5
Level $1690$
Weight $2$
Character 1690.1351
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,-6,0,0,0,0,-8,6,0,-2,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.5
Root \(-0.445042i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1351
Dual form 1690.2.d.j.1351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +0.445042 q^{3} -1.00000 q^{4} -1.00000i q^{5} +0.445042i q^{6} -3.24698i q^{7} -1.00000i q^{8} -2.80194 q^{9} +1.00000 q^{10} +1.60388i q^{11} -0.445042 q^{12} +3.24698 q^{14} -0.445042i q^{15} +1.00000 q^{16} -3.10992 q^{17} -2.80194i q^{18} +2.89008i q^{19} +1.00000i q^{20} -1.44504i q^{21} -1.60388 q^{22} -6.78986 q^{23} -0.445042i q^{24} -1.00000 q^{25} -2.58211 q^{27} +3.24698i q^{28} +4.04892 q^{29} +0.445042 q^{30} +8.31767i q^{31} +1.00000i q^{32} +0.713792i q^{33} -3.10992i q^{34} -3.24698 q^{35} +2.80194 q^{36} +3.20775i q^{37} -2.89008 q^{38} -1.00000 q^{40} +10.6746i q^{41} +1.44504 q^{42} +5.18598 q^{43} -1.60388i q^{44} +2.80194i q^{45} -6.78986i q^{46} -3.97823i q^{47} +0.445042 q^{48} -3.54288 q^{49} -1.00000i q^{50} -1.38404 q^{51} -11.0858 q^{53} -2.58211i q^{54} +1.60388 q^{55} -3.24698 q^{56} +1.28621i q^{57} +4.04892i q^{58} -5.28621i q^{59} +0.445042i q^{60} -13.1250 q^{61} -8.31767 q^{62} +9.09783i q^{63} -1.00000 q^{64} -0.713792 q^{66} +12.3937i q^{67} +3.10992 q^{68} -3.02177 q^{69} -3.24698i q^{70} +7.50604i q^{71} +2.80194i q^{72} +12.2741i q^{73} -3.20775 q^{74} -0.445042 q^{75} -2.89008i q^{76} +5.20775 q^{77} -11.3056 q^{79} -1.00000i q^{80} +7.25667 q^{81} -10.6746 q^{82} -10.4209i q^{83} +1.44504i q^{84} +3.10992i q^{85} +5.18598i q^{86} +1.80194 q^{87} +1.60388 q^{88} -11.3817i q^{89} -2.80194 q^{90} +6.78986 q^{92} +3.70171i q^{93} +3.97823 q^{94} +2.89008 q^{95} +0.445042i q^{96} -6.05429i q^{97} -3.54288i q^{98} -4.49396i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 6 q^{4} - 8 q^{9} + 6 q^{10} - 2 q^{12} + 10 q^{14} + 6 q^{16} - 20 q^{17} + 8 q^{22} + 6 q^{23} - 6 q^{25} - 4 q^{27} + 6 q^{29} + 2 q^{30} - 10 q^{35} + 8 q^{36} - 16 q^{38} - 6 q^{40}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.445042 0.256945 0.128473 0.991713i \(-0.458993\pi\)
0.128473 + 0.991713i \(0.458993\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 1.00000i − 0.447214i
\(6\) 0.445042i 0.181688i
\(7\) − 3.24698i − 1.22724i −0.789600 0.613621i \(-0.789712\pi\)
0.789600 0.613621i \(-0.210288\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −2.80194 −0.933979
\(10\) 1.00000 0.316228
\(11\) 1.60388i 0.483587i 0.970328 + 0.241793i \(0.0777356\pi\)
−0.970328 + 0.241793i \(0.922264\pi\)
\(12\) −0.445042 −0.128473
\(13\) 0 0
\(14\) 3.24698 0.867792
\(15\) − 0.445042i − 0.114909i
\(16\) 1.00000 0.250000
\(17\) −3.10992 −0.754265 −0.377133 0.926159i \(-0.623090\pi\)
−0.377133 + 0.926159i \(0.623090\pi\)
\(18\) − 2.80194i − 0.660423i
\(19\) 2.89008i 0.663031i 0.943450 + 0.331515i \(0.107560\pi\)
−0.943450 + 0.331515i \(0.892440\pi\)
\(20\) 1.00000i 0.223607i
\(21\) − 1.44504i − 0.315334i
\(22\) −1.60388 −0.341947
\(23\) −6.78986 −1.41578 −0.707891 0.706321i \(-0.750353\pi\)
−0.707891 + 0.706321i \(0.750353\pi\)
\(24\) − 0.445042i − 0.0908438i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −2.58211 −0.496926
\(28\) 3.24698i 0.613621i
\(29\) 4.04892 0.751865 0.375933 0.926647i \(-0.377322\pi\)
0.375933 + 0.926647i \(0.377322\pi\)
\(30\) 0.445042 0.0812532
\(31\) 8.31767i 1.49390i 0.664882 + 0.746949i \(0.268482\pi\)
−0.664882 + 0.746949i \(0.731518\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.713792i 0.124255i
\(34\) − 3.10992i − 0.533346i
\(35\) −3.24698 −0.548840
\(36\) 2.80194 0.466990
\(37\) 3.20775i 0.527351i 0.964611 + 0.263676i \(0.0849348\pi\)
−0.964611 + 0.263676i \(0.915065\pi\)
\(38\) −2.89008 −0.468833
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 10.6746i 1.66709i 0.552454 + 0.833543i \(0.313691\pi\)
−0.552454 + 0.833543i \(0.686309\pi\)
\(42\) 1.44504 0.222975
\(43\) 5.18598 0.790855 0.395427 0.918497i \(-0.370597\pi\)
0.395427 + 0.918497i \(0.370597\pi\)
\(44\) − 1.60388i − 0.241793i
\(45\) 2.80194i 0.417688i
\(46\) − 6.78986i − 1.00111i
\(47\) − 3.97823i − 0.580284i −0.956984 0.290142i \(-0.906297\pi\)
0.956984 0.290142i \(-0.0937026\pi\)
\(48\) 0.445042 0.0642363
\(49\) −3.54288 −0.506125
\(50\) − 1.00000i − 0.141421i
\(51\) −1.38404 −0.193805
\(52\) 0 0
\(53\) −11.0858 −1.52275 −0.761373 0.648314i \(-0.775474\pi\)
−0.761373 + 0.648314i \(0.775474\pi\)
\(54\) − 2.58211i − 0.351380i
\(55\) 1.60388 0.216267
\(56\) −3.24698 −0.433896
\(57\) 1.28621i 0.170362i
\(58\) 4.04892i 0.531649i
\(59\) − 5.28621i − 0.688206i −0.938932 0.344103i \(-0.888183\pi\)
0.938932 0.344103i \(-0.111817\pi\)
\(60\) 0.445042i 0.0574547i
\(61\) −13.1250 −1.68048 −0.840241 0.542213i \(-0.817586\pi\)
−0.840241 + 0.542213i \(0.817586\pi\)
\(62\) −8.31767 −1.05634
\(63\) 9.09783i 1.14622i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −0.713792 −0.0878617
\(67\) 12.3937i 1.51414i 0.653336 + 0.757068i \(0.273369\pi\)
−0.653336 + 0.757068i \(0.726631\pi\)
\(68\) 3.10992 0.377133
\(69\) −3.02177 −0.363778
\(70\) − 3.24698i − 0.388088i
\(71\) 7.50604i 0.890803i 0.895331 + 0.445402i \(0.146939\pi\)
−0.895331 + 0.445402i \(0.853061\pi\)
\(72\) 2.80194i 0.330212i
\(73\) 12.2741i 1.43658i 0.695745 + 0.718289i \(0.255074\pi\)
−0.695745 + 0.718289i \(0.744926\pi\)
\(74\) −3.20775 −0.372893
\(75\) −0.445042 −0.0513890
\(76\) − 2.89008i − 0.331515i
\(77\) 5.20775 0.593478
\(78\) 0 0
\(79\) −11.3056 −1.27198 −0.635989 0.771698i \(-0.719408\pi\)
−0.635989 + 0.771698i \(0.719408\pi\)
\(80\) − 1.00000i − 0.111803i
\(81\) 7.25667 0.806296
\(82\) −10.6746 −1.17881
\(83\) − 10.4209i − 1.14384i −0.820309 0.571920i \(-0.806199\pi\)
0.820309 0.571920i \(-0.193801\pi\)
\(84\) 1.44504i 0.157667i
\(85\) 3.10992i 0.337318i
\(86\) 5.18598i 0.559219i
\(87\) 1.80194 0.193188
\(88\) 1.60388 0.170974
\(89\) − 11.3817i − 1.20645i −0.797570 0.603226i \(-0.793882\pi\)
0.797570 0.603226i \(-0.206118\pi\)
\(90\) −2.80194 −0.295350
\(91\) 0 0
\(92\) 6.78986 0.707891
\(93\) 3.70171i 0.383849i
\(94\) 3.97823 0.410323
\(95\) 2.89008 0.296516
\(96\) 0.445042i 0.0454219i
\(97\) − 6.05429i − 0.614720i −0.951593 0.307360i \(-0.900554\pi\)
0.951593 0.307360i \(-0.0994456\pi\)
\(98\) − 3.54288i − 0.357885i
\(99\) − 4.49396i − 0.451660i
\(100\) 1.00000 0.100000
\(101\) 4.19806 0.417723 0.208861 0.977945i \(-0.433024\pi\)
0.208861 + 0.977945i \(0.433024\pi\)
\(102\) − 1.38404i − 0.137041i
\(103\) −11.5211 −1.13521 −0.567604 0.823302i \(-0.692130\pi\)
−0.567604 + 0.823302i \(0.692130\pi\)
\(104\) 0 0
\(105\) −1.44504 −0.141022
\(106\) − 11.0858i − 1.07674i
\(107\) −4.43967 −0.429199 −0.214599 0.976702i \(-0.568845\pi\)
−0.214599 + 0.976702i \(0.568845\pi\)
\(108\) 2.58211 0.248463
\(109\) − 10.5526i − 1.01075i −0.862899 0.505376i \(-0.831354\pi\)
0.862899 0.505376i \(-0.168646\pi\)
\(110\) 1.60388i 0.152924i
\(111\) 1.42758i 0.135500i
\(112\) − 3.24698i − 0.306811i
\(113\) 4.31767 0.406172 0.203086 0.979161i \(-0.434903\pi\)
0.203086 + 0.979161i \(0.434903\pi\)
\(114\) −1.28621 −0.120464
\(115\) 6.78986i 0.633157i
\(116\) −4.04892 −0.375933
\(117\) 0 0
\(118\) 5.28621 0.486635
\(119\) 10.0978i 0.925667i
\(120\) −0.445042 −0.0406266
\(121\) 8.42758 0.766144
\(122\) − 13.1250i − 1.18828i
\(123\) 4.75063i 0.428350i
\(124\) − 8.31767i − 0.746949i
\(125\) 1.00000i 0.0894427i
\(126\) −9.09783 −0.810500
\(127\) 2.80731 0.249109 0.124554 0.992213i \(-0.460250\pi\)
0.124554 + 0.992213i \(0.460250\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 2.30798 0.203206
\(130\) 0 0
\(131\) 2.37196 0.207239 0.103620 0.994617i \(-0.466958\pi\)
0.103620 + 0.994617i \(0.466958\pi\)
\(132\) − 0.713792i − 0.0621276i
\(133\) 9.38404 0.813700
\(134\) −12.3937 −1.07066
\(135\) 2.58211i 0.222232i
\(136\) 3.10992i 0.266673i
\(137\) − 16.8552i − 1.44003i −0.693956 0.720017i \(-0.744134\pi\)
0.693956 0.720017i \(-0.255866\pi\)
\(138\) − 3.02177i − 0.257230i
\(139\) 5.97584 0.506864 0.253432 0.967353i \(-0.418441\pi\)
0.253432 + 0.967353i \(0.418441\pi\)
\(140\) 3.24698 0.274420
\(141\) − 1.77048i − 0.149101i
\(142\) −7.50604 −0.629893
\(143\) 0 0
\(144\) −2.80194 −0.233495
\(145\) − 4.04892i − 0.336244i
\(146\) −12.2741 −1.01581
\(147\) −1.57673 −0.130046
\(148\) − 3.20775i − 0.263676i
\(149\) − 14.9148i − 1.22187i −0.791680 0.610936i \(-0.790793\pi\)
0.791680 0.610936i \(-0.209207\pi\)
\(150\) − 0.445042i − 0.0363375i
\(151\) 9.56033i 0.778009i 0.921236 + 0.389005i \(0.127181\pi\)
−0.921236 + 0.389005i \(0.872819\pi\)
\(152\) 2.89008 0.234417
\(153\) 8.71379 0.704468
\(154\) 5.20775i 0.419653i
\(155\) 8.31767 0.668091
\(156\) 0 0
\(157\) −13.7560 −1.09785 −0.548924 0.835872i \(-0.684962\pi\)
−0.548924 + 0.835872i \(0.684962\pi\)
\(158\) − 11.3056i − 0.899424i
\(159\) −4.93362 −0.391262
\(160\) 1.00000 0.0790569
\(161\) 22.0465i 1.73751i
\(162\) 7.25667i 0.570138i
\(163\) − 13.5308i − 1.05981i −0.848056 0.529907i \(-0.822227\pi\)
0.848056 0.529907i \(-0.177773\pi\)
\(164\) − 10.6746i − 0.833543i
\(165\) 0.713792 0.0555686
\(166\) 10.4209 0.808817
\(167\) − 15.1685i − 1.17378i −0.809668 0.586888i \(-0.800353\pi\)
0.809668 0.586888i \(-0.199647\pi\)
\(168\) −1.44504 −0.111487
\(169\) 0 0
\(170\) −3.10992 −0.238520
\(171\) − 8.09783i − 0.619257i
\(172\) −5.18598 −0.395427
\(173\) −4.27413 −0.324956 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(174\) 1.80194i 0.136605i
\(175\) 3.24698i 0.245449i
\(176\) 1.60388i 0.120897i
\(177\) − 2.35258i − 0.176831i
\(178\) 11.3817 0.853091
\(179\) −15.6233 −1.16774 −0.583868 0.811848i \(-0.698462\pi\)
−0.583868 + 0.811848i \(0.698462\pi\)
\(180\) − 2.80194i − 0.208844i
\(181\) −16.1933 −1.20364 −0.601818 0.798633i \(-0.705557\pi\)
−0.601818 + 0.798633i \(0.705557\pi\)
\(182\) 0 0
\(183\) −5.84117 −0.431791
\(184\) 6.78986i 0.500555i
\(185\) 3.20775 0.235839
\(186\) −3.70171 −0.271423
\(187\) − 4.98792i − 0.364753i
\(188\) 3.97823i 0.290142i
\(189\) 8.38404i 0.609849i
\(190\) 2.89008i 0.209669i
\(191\) −26.5676 −1.92237 −0.961183 0.275911i \(-0.911020\pi\)
−0.961183 + 0.275911i \(0.911020\pi\)
\(192\) −0.445042 −0.0321181
\(193\) 13.6582i 0.983137i 0.870839 + 0.491568i \(0.163576\pi\)
−0.870839 + 0.491568i \(0.836424\pi\)
\(194\) 6.05429 0.434673
\(195\) 0 0
\(196\) 3.54288 0.253063
\(197\) 14.0978i 1.00443i 0.864743 + 0.502215i \(0.167481\pi\)
−0.864743 + 0.502215i \(0.832519\pi\)
\(198\) 4.49396 0.319372
\(199\) 21.1293 1.49782 0.748908 0.662674i \(-0.230578\pi\)
0.748908 + 0.662674i \(0.230578\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 5.51573i 0.389050i
\(202\) 4.19806i 0.295375i
\(203\) − 13.1468i − 0.922721i
\(204\) 1.38404 0.0969024
\(205\) 10.6746 0.745544
\(206\) − 11.5211i − 0.802714i
\(207\) 19.0248 1.32231
\(208\) 0 0
\(209\) −4.63533 −0.320633
\(210\) − 1.44504i − 0.0997174i
\(211\) −18.3720 −1.26478 −0.632389 0.774651i \(-0.717926\pi\)
−0.632389 + 0.774651i \(0.717926\pi\)
\(212\) 11.0858 0.761373
\(213\) 3.34050i 0.228887i
\(214\) − 4.43967i − 0.303489i
\(215\) − 5.18598i − 0.353681i
\(216\) 2.58211i 0.175690i
\(217\) 27.0073 1.83337
\(218\) 10.5526 0.714710
\(219\) 5.46250i 0.369122i
\(220\) −1.60388 −0.108133
\(221\) 0 0
\(222\) −1.42758 −0.0958131
\(223\) − 14.2687i − 0.955506i −0.878494 0.477753i \(-0.841451\pi\)
0.878494 0.477753i \(-0.158549\pi\)
\(224\) 3.24698 0.216948
\(225\) 2.80194 0.186796
\(226\) 4.31767i 0.287207i
\(227\) − 27.4959i − 1.82497i −0.409115 0.912483i \(-0.634163\pi\)
0.409115 0.912483i \(-0.365837\pi\)
\(228\) − 1.28621i − 0.0851812i
\(229\) 19.6963i 1.30157i 0.759262 + 0.650785i \(0.225560\pi\)
−0.759262 + 0.650785i \(0.774440\pi\)
\(230\) −6.78986 −0.447710
\(231\) 2.31767 0.152491
\(232\) − 4.04892i − 0.265824i
\(233\) 23.5362 1.54191 0.770953 0.636892i \(-0.219780\pi\)
0.770953 + 0.636892i \(0.219780\pi\)
\(234\) 0 0
\(235\) −3.97823 −0.259511
\(236\) 5.28621i 0.344103i
\(237\) −5.03146 −0.326828
\(238\) −10.0978 −0.654545
\(239\) 14.4155i 0.932461i 0.884663 + 0.466231i \(0.154388\pi\)
−0.884663 + 0.466231i \(0.845612\pi\)
\(240\) − 0.445042i − 0.0287273i
\(241\) 15.6692i 1.00934i 0.863312 + 0.504671i \(0.168386\pi\)
−0.863312 + 0.504671i \(0.831614\pi\)
\(242\) 8.42758i 0.541746i
\(243\) 10.9758 0.704100
\(244\) 13.1250 0.840241
\(245\) 3.54288i 0.226346i
\(246\) −4.75063 −0.302889
\(247\) 0 0
\(248\) 8.31767 0.528172
\(249\) − 4.63773i − 0.293904i
\(250\) −1.00000 −0.0632456
\(251\) 15.1535 0.956478 0.478239 0.878230i \(-0.341275\pi\)
0.478239 + 0.878230i \(0.341275\pi\)
\(252\) − 9.09783i − 0.573110i
\(253\) − 10.8901i − 0.684654i
\(254\) 2.80731i 0.176147i
\(255\) 1.38404i 0.0866721i
\(256\) 1.00000 0.0625000
\(257\) −18.8552 −1.17615 −0.588076 0.808805i \(-0.700115\pi\)
−0.588076 + 0.808805i \(0.700115\pi\)
\(258\) 2.30798i 0.143688i
\(259\) 10.4155 0.647188
\(260\) 0 0
\(261\) −11.3448 −0.702226
\(262\) 2.37196i 0.146540i
\(263\) −2.18060 −0.134462 −0.0672309 0.997737i \(-0.521416\pi\)
−0.0672309 + 0.997737i \(0.521416\pi\)
\(264\) 0.713792 0.0439308
\(265\) 11.0858i 0.680992i
\(266\) 9.38404i 0.575373i
\(267\) − 5.06531i − 0.309992i
\(268\) − 12.3937i − 0.757068i
\(269\) 9.73125 0.593325 0.296662 0.954982i \(-0.404126\pi\)
0.296662 + 0.954982i \(0.404126\pi\)
\(270\) −2.58211 −0.157142
\(271\) 4.05429i 0.246281i 0.992389 + 0.123140i \(0.0392966\pi\)
−0.992389 + 0.123140i \(0.960703\pi\)
\(272\) −3.10992 −0.188566
\(273\) 0 0
\(274\) 16.8552 1.01826
\(275\) − 1.60388i − 0.0967173i
\(276\) 3.02177 0.181889
\(277\) −30.0301 −1.80434 −0.902168 0.431385i \(-0.858025\pi\)
−0.902168 + 0.431385i \(0.858025\pi\)
\(278\) 5.97584i 0.358407i
\(279\) − 23.3056i − 1.39527i
\(280\) 3.24698i 0.194044i
\(281\) 22.2640i 1.32816i 0.747663 + 0.664078i \(0.231176\pi\)
−0.747663 + 0.664078i \(0.768824\pi\)
\(282\) 1.77048 0.105430
\(283\) 8.88471 0.528141 0.264071 0.964503i \(-0.414935\pi\)
0.264071 + 0.964503i \(0.414935\pi\)
\(284\) − 7.50604i − 0.445402i
\(285\) 1.28621 0.0761884
\(286\) 0 0
\(287\) 34.6601 2.04592
\(288\) − 2.80194i − 0.165106i
\(289\) −7.32842 −0.431084
\(290\) 4.04892 0.237761
\(291\) − 2.69441i − 0.157949i
\(292\) − 12.2741i − 0.718289i
\(293\) 21.5362i 1.25816i 0.777342 + 0.629078i \(0.216568\pi\)
−0.777342 + 0.629078i \(0.783432\pi\)
\(294\) − 1.57673i − 0.0919567i
\(295\) −5.28621 −0.307775
\(296\) 3.20775 0.186447
\(297\) − 4.14138i − 0.240307i
\(298\) 14.9148 0.863993
\(299\) 0 0
\(300\) 0.445042 0.0256945
\(301\) − 16.8388i − 0.970571i
\(302\) −9.56033 −0.550135
\(303\) 1.86831 0.107332
\(304\) 2.89008i 0.165758i
\(305\) 13.1250i 0.751534i
\(306\) 8.71379i 0.498134i
\(307\) − 10.3230i − 0.589167i −0.955626 0.294584i \(-0.904819\pi\)
0.955626 0.294584i \(-0.0951810\pi\)
\(308\) −5.20775 −0.296739
\(309\) −5.12737 −0.291686
\(310\) 8.31767i 0.472412i
\(311\) −7.50125 −0.425357 −0.212679 0.977122i \(-0.568219\pi\)
−0.212679 + 0.977122i \(0.568219\pi\)
\(312\) 0 0
\(313\) 5.60388 0.316750 0.158375 0.987379i \(-0.449375\pi\)
0.158375 + 0.987379i \(0.449375\pi\)
\(314\) − 13.7560i − 0.776296i
\(315\) 9.09783 0.512605
\(316\) 11.3056 0.635989
\(317\) 11.7802i 0.661640i 0.943694 + 0.330820i \(0.107325\pi\)
−0.943694 + 0.330820i \(0.892675\pi\)
\(318\) − 4.93362i − 0.276664i
\(319\) 6.49396i 0.363592i
\(320\) 1.00000i 0.0559017i
\(321\) −1.97584 −0.110280
\(322\) −22.0465 −1.22860
\(323\) − 8.98792i − 0.500101i
\(324\) −7.25667 −0.403148
\(325\) 0 0
\(326\) 13.5308 0.749401
\(327\) − 4.69633i − 0.259708i
\(328\) 10.6746 0.589404
\(329\) −12.9172 −0.712150
\(330\) 0.713792i 0.0392929i
\(331\) 6.46980i 0.355612i 0.984066 + 0.177806i \(0.0569000\pi\)
−0.984066 + 0.177806i \(0.943100\pi\)
\(332\) 10.4209i 0.571920i
\(333\) − 8.98792i − 0.492535i
\(334\) 15.1685 0.829985
\(335\) 12.3937 0.677142
\(336\) − 1.44504i − 0.0788335i
\(337\) 5.35988 0.291971 0.145986 0.989287i \(-0.453365\pi\)
0.145986 + 0.989287i \(0.453365\pi\)
\(338\) 0 0
\(339\) 1.92154 0.104364
\(340\) − 3.10992i − 0.168659i
\(341\) −13.3405 −0.722429
\(342\) 8.09783 0.437881
\(343\) − 11.2252i − 0.606104i
\(344\) − 5.18598i − 0.279609i
\(345\) 3.02177i 0.162687i
\(346\) − 4.27413i − 0.229778i
\(347\) 3.56571 0.191417 0.0957087 0.995409i \(-0.469488\pi\)
0.0957087 + 0.995409i \(0.469488\pi\)
\(348\) −1.80194 −0.0965940
\(349\) − 7.97584i − 0.426937i −0.976950 0.213468i \(-0.931524\pi\)
0.976950 0.213468i \(-0.0684760\pi\)
\(350\) −3.24698 −0.173558
\(351\) 0 0
\(352\) −1.60388 −0.0854868
\(353\) 1.60388i 0.0853657i 0.999089 + 0.0426828i \(0.0135905\pi\)
−0.999089 + 0.0426828i \(0.986410\pi\)
\(354\) 2.35258 0.125038
\(355\) 7.50604 0.398379
\(356\) 11.3817i 0.603226i
\(357\) 4.49396i 0.237846i
\(358\) − 15.6233i − 0.825715i
\(359\) − 8.60255i − 0.454025i −0.973892 0.227013i \(-0.927104\pi\)
0.973892 0.227013i \(-0.0728958\pi\)
\(360\) 2.80194 0.147675
\(361\) 10.6474 0.560390
\(362\) − 16.1933i − 0.851100i
\(363\) 3.75063 0.196857
\(364\) 0 0
\(365\) 12.2741 0.642457
\(366\) − 5.84117i − 0.305323i
\(367\) 7.41358 0.386986 0.193493 0.981102i \(-0.438018\pi\)
0.193493 + 0.981102i \(0.438018\pi\)
\(368\) −6.78986 −0.353946
\(369\) − 29.9095i − 1.55702i
\(370\) 3.20775i 0.166763i
\(371\) 35.9952i 1.86878i
\(372\) − 3.70171i − 0.191925i
\(373\) 29.6039 1.53283 0.766415 0.642345i \(-0.222039\pi\)
0.766415 + 0.642345i \(0.222039\pi\)
\(374\) 4.98792 0.257919
\(375\) 0.445042i 0.0229819i
\(376\) −3.97823 −0.205162
\(377\) 0 0
\(378\) −8.38404 −0.431229
\(379\) 8.45042i 0.434069i 0.976164 + 0.217034i \(0.0696384\pi\)
−0.976164 + 0.217034i \(0.930362\pi\)
\(380\) −2.89008 −0.148258
\(381\) 1.24937 0.0640073
\(382\) − 26.5676i − 1.35932i
\(383\) − 10.4644i − 0.534707i −0.963599 0.267353i \(-0.913851\pi\)
0.963599 0.267353i \(-0.0861491\pi\)
\(384\) − 0.445042i − 0.0227109i
\(385\) − 5.20775i − 0.265412i
\(386\) −13.6582 −0.695183
\(387\) −14.5308 −0.738642
\(388\) 6.05429i 0.307360i
\(389\) −29.2295 −1.48200 −0.740998 0.671507i \(-0.765647\pi\)
−0.740998 + 0.671507i \(0.765647\pi\)
\(390\) 0 0
\(391\) 21.1159 1.06788
\(392\) 3.54288i 0.178942i
\(393\) 1.05562 0.0532491
\(394\) −14.0978 −0.710239
\(395\) 11.3056i 0.568846i
\(396\) 4.49396i 0.225830i
\(397\) 20.7439i 1.04111i 0.853829 + 0.520554i \(0.174274\pi\)
−0.853829 + 0.520554i \(0.825726\pi\)
\(398\) 21.1293i 1.05912i
\(399\) 4.17629 0.209076
\(400\) −1.00000 −0.0500000
\(401\) − 24.2892i − 1.21294i −0.795105 0.606472i \(-0.792584\pi\)
0.795105 0.606472i \(-0.207416\pi\)
\(402\) −5.51573 −0.275100
\(403\) 0 0
\(404\) −4.19806 −0.208861
\(405\) − 7.25667i − 0.360587i
\(406\) 13.1468 0.652462
\(407\) −5.14483 −0.255020
\(408\) 1.38404i 0.0685203i
\(409\) 36.7676i 1.81804i 0.416751 + 0.909021i \(0.363169\pi\)
−0.416751 + 0.909021i \(0.636831\pi\)
\(410\) 10.6746i 0.527179i
\(411\) − 7.50125i − 0.370010i
\(412\) 11.5211 0.567604
\(413\) −17.1642 −0.844596
\(414\) 19.0248i 0.935016i
\(415\) −10.4209 −0.511541
\(416\) 0 0
\(417\) 2.65950 0.130236
\(418\) − 4.63533i − 0.226722i
\(419\) −30.8418 −1.50672 −0.753359 0.657609i \(-0.771568\pi\)
−0.753359 + 0.657609i \(0.771568\pi\)
\(420\) 1.44504 0.0705108
\(421\) 31.7458i 1.54720i 0.633676 + 0.773599i \(0.281545\pi\)
−0.633676 + 0.773599i \(0.718455\pi\)
\(422\) − 18.3720i − 0.894333i
\(423\) 11.1468i 0.541974i
\(424\) 11.0858i 0.538372i
\(425\) 3.10992 0.150853
\(426\) −3.34050 −0.161848
\(427\) 42.6165i 2.06236i
\(428\) 4.43967 0.214599
\(429\) 0 0
\(430\) 5.18598 0.250090
\(431\) − 25.5120i − 1.22887i −0.788967 0.614435i \(-0.789384\pi\)
0.788967 0.614435i \(-0.210616\pi\)
\(432\) −2.58211 −0.124232
\(433\) 31.8189 1.52912 0.764560 0.644553i \(-0.222956\pi\)
0.764560 + 0.644553i \(0.222956\pi\)
\(434\) 27.0073i 1.29639i
\(435\) − 1.80194i − 0.0863963i
\(436\) 10.5526i 0.505376i
\(437\) − 19.6233i − 0.938707i
\(438\) −5.46250 −0.261008
\(439\) −26.9095 −1.28432 −0.642159 0.766571i \(-0.721961\pi\)
−0.642159 + 0.766571i \(0.721961\pi\)
\(440\) − 1.60388i − 0.0764618i
\(441\) 9.92692 0.472710
\(442\) 0 0
\(443\) 12.7385 0.605227 0.302613 0.953113i \(-0.402141\pi\)
0.302613 + 0.953113i \(0.402141\pi\)
\(444\) − 1.42758i − 0.0677501i
\(445\) −11.3817 −0.539542
\(446\) 14.2687 0.675645
\(447\) − 6.63773i − 0.313954i
\(448\) 3.24698i 0.153405i
\(449\) 7.75063i 0.365775i 0.983134 + 0.182887i \(0.0585444\pi\)
−0.983134 + 0.182887i \(0.941456\pi\)
\(450\) 2.80194i 0.132085i
\(451\) −17.1207 −0.806181
\(452\) −4.31767 −0.203086
\(453\) 4.25475i 0.199906i
\(454\) 27.4959 1.29045
\(455\) 0 0
\(456\) 1.28621 0.0602322
\(457\) − 6.94438i − 0.324844i −0.986721 0.162422i \(-0.948069\pi\)
0.986721 0.162422i \(-0.0519306\pi\)
\(458\) −19.6963 −0.920349
\(459\) 8.03013 0.374814
\(460\) − 6.78986i − 0.316579i
\(461\) 12.6377i 0.588598i 0.955713 + 0.294299i \(0.0950861\pi\)
−0.955713 + 0.294299i \(0.904914\pi\)
\(462\) 2.31767i 0.107828i
\(463\) − 5.62325i − 0.261335i −0.991426 0.130667i \(-0.958288\pi\)
0.991426 0.130667i \(-0.0417120\pi\)
\(464\) 4.04892 0.187966
\(465\) 3.70171 0.171663
\(466\) 23.5362i 1.09029i
\(467\) 35.2054 1.62911 0.814555 0.580087i \(-0.196981\pi\)
0.814555 + 0.580087i \(0.196981\pi\)
\(468\) 0 0
\(469\) 40.2422 1.85821
\(470\) − 3.97823i − 0.183502i
\(471\) −6.12200 −0.282087
\(472\) −5.28621 −0.243317
\(473\) 8.31767i 0.382447i
\(474\) − 5.03146i − 0.231103i
\(475\) − 2.89008i − 0.132606i
\(476\) − 10.0978i − 0.462833i
\(477\) 31.0616 1.42221
\(478\) −14.4155 −0.659350
\(479\) 7.16421i 0.327341i 0.986515 + 0.163671i \(0.0523334\pi\)
−0.986515 + 0.163671i \(0.947667\pi\)
\(480\) 0.445042 0.0203133
\(481\) 0 0
\(482\) −15.6692 −0.713712
\(483\) 9.81163i 0.446444i
\(484\) −8.42758 −0.383072
\(485\) −6.05429 −0.274911
\(486\) 10.9758i 0.497874i
\(487\) − 28.7006i − 1.30055i −0.759699 0.650275i \(-0.774654\pi\)
0.759699 0.650275i \(-0.225346\pi\)
\(488\) 13.1250i 0.594140i
\(489\) − 6.02177i − 0.272314i
\(490\) −3.54288 −0.160051
\(491\) 42.0689 1.89854 0.949271 0.314459i \(-0.101823\pi\)
0.949271 + 0.314459i \(0.101823\pi\)
\(492\) − 4.75063i − 0.214175i
\(493\) −12.5918 −0.567106
\(494\) 0 0
\(495\) −4.49396 −0.201988
\(496\) 8.31767i 0.373474i
\(497\) 24.3720 1.09323
\(498\) 4.63773 0.207822
\(499\) − 33.2379i − 1.48793i −0.668218 0.743966i \(-0.732942\pi\)
0.668218 0.743966i \(-0.267058\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) − 6.75063i − 0.301596i
\(502\) 15.1535i 0.676332i
\(503\) −37.7797 −1.68451 −0.842257 0.539077i \(-0.818773\pi\)
−0.842257 + 0.539077i \(0.818773\pi\)
\(504\) 9.09783 0.405250
\(505\) − 4.19806i − 0.186811i
\(506\) 10.8901 0.484123
\(507\) 0 0
\(508\) −2.80731 −0.124554
\(509\) − 2.26875i − 0.100561i −0.998735 0.0502803i \(-0.983989\pi\)
0.998735 0.0502803i \(-0.0160115\pi\)
\(510\) −1.38404 −0.0612865
\(511\) 39.8538 1.76303
\(512\) 1.00000i 0.0441942i
\(513\) − 7.46250i − 0.329477i
\(514\) − 18.8552i − 0.831666i
\(515\) 11.5211i 0.507681i
\(516\) −2.30798 −0.101603
\(517\) 6.38059 0.280618
\(518\) 10.4155i 0.457631i
\(519\) −1.90217 −0.0834958
\(520\) 0 0
\(521\) −22.7899 −0.998442 −0.499221 0.866475i \(-0.666380\pi\)
−0.499221 + 0.866475i \(0.666380\pi\)
\(522\) − 11.3448i − 0.496549i
\(523\) 6.61356 0.289191 0.144595 0.989491i \(-0.453812\pi\)
0.144595 + 0.989491i \(0.453812\pi\)
\(524\) −2.37196 −0.103620
\(525\) 1.44504i 0.0630668i
\(526\) − 2.18060i − 0.0950788i
\(527\) − 25.8672i − 1.12680i
\(528\) 0.713792i 0.0310638i
\(529\) 23.1021 1.00444
\(530\) −11.0858 −0.481534
\(531\) 14.8116i 0.642770i
\(532\) −9.38404 −0.406850
\(533\) 0 0
\(534\) 5.06531 0.219197
\(535\) 4.43967i 0.191943i
\(536\) 12.3937 0.535328
\(537\) −6.95300 −0.300044
\(538\) 9.73125i 0.419544i
\(539\) − 5.68233i − 0.244755i
\(540\) − 2.58211i − 0.111116i
\(541\) 24.2553i 1.04282i 0.853307 + 0.521409i \(0.174593\pi\)
−0.853307 + 0.521409i \(0.825407\pi\)
\(542\) −4.05429 −0.174147
\(543\) −7.20669 −0.309268
\(544\) − 3.10992i − 0.133337i
\(545\) −10.5526 −0.452022
\(546\) 0 0
\(547\) 11.8086 0.504901 0.252451 0.967610i \(-0.418763\pi\)
0.252451 + 0.967610i \(0.418763\pi\)
\(548\) 16.8552i 0.720017i
\(549\) 36.7754 1.56954
\(550\) 1.60388 0.0683895
\(551\) 11.7017i 0.498510i
\(552\) 3.02177i 0.128615i
\(553\) 36.7090i 1.56103i
\(554\) − 30.0301i − 1.27586i
\(555\) 1.42758 0.0605975
\(556\) −5.97584 −0.253432
\(557\) − 15.0180i − 0.636335i −0.948034 0.318168i \(-0.896933\pi\)
0.948034 0.318168i \(-0.103067\pi\)
\(558\) 23.3056 0.986604
\(559\) 0 0
\(560\) −3.24698 −0.137210
\(561\) − 2.21983i − 0.0937214i
\(562\) −22.2640 −0.939149
\(563\) −10.4198 −0.439143 −0.219571 0.975596i \(-0.570466\pi\)
−0.219571 + 0.975596i \(0.570466\pi\)
\(564\) 1.77048i 0.0745506i
\(565\) − 4.31767i − 0.181646i
\(566\) 8.88471i 0.373452i
\(567\) − 23.5623i − 0.989522i
\(568\) 7.50604 0.314946
\(569\) −12.3461 −0.517577 −0.258789 0.965934i \(-0.583323\pi\)
−0.258789 + 0.965934i \(0.583323\pi\)
\(570\) 1.28621i 0.0538733i
\(571\) 2.21983 0.0928971 0.0464486 0.998921i \(-0.485210\pi\)
0.0464486 + 0.998921i \(0.485210\pi\)
\(572\) 0 0
\(573\) −11.8237 −0.493942
\(574\) 34.6601i 1.44668i
\(575\) 6.78986 0.283157
\(576\) 2.80194 0.116747
\(577\) 21.3405i 0.888417i 0.895924 + 0.444208i \(0.146515\pi\)
−0.895924 + 0.444208i \(0.853485\pi\)
\(578\) − 7.32842i − 0.304822i
\(579\) 6.07846i 0.252612i
\(580\) 4.04892i 0.168122i
\(581\) −33.8364 −1.40377
\(582\) 2.69441 0.111687
\(583\) − 17.7802i − 0.736379i
\(584\) 12.2741 0.507907
\(585\) 0 0
\(586\) −21.5362 −0.889651
\(587\) 10.1371i 0.418401i 0.977873 + 0.209201i \(0.0670862\pi\)
−0.977873 + 0.209201i \(0.932914\pi\)
\(588\) 1.57673 0.0650232
\(589\) −24.0388 −0.990500
\(590\) − 5.28621i − 0.217630i
\(591\) 6.27413i 0.258083i
\(592\) 3.20775i 0.131838i
\(593\) 17.6668i 0.725488i 0.931889 + 0.362744i \(0.118160\pi\)
−0.931889 + 0.362744i \(0.881840\pi\)
\(594\) 4.14138 0.169923
\(595\) 10.0978 0.413971
\(596\) 14.9148i 0.610936i
\(597\) 9.40342 0.384856
\(598\) 0 0
\(599\) 9.14005 0.373452 0.186726 0.982412i \(-0.440212\pi\)
0.186726 + 0.982412i \(0.440212\pi\)
\(600\) 0.445042i 0.0181688i
\(601\) 37.0116 1.50973 0.754867 0.655877i \(-0.227701\pi\)
0.754867 + 0.655877i \(0.227701\pi\)
\(602\) 16.8388 0.686297
\(603\) − 34.7265i − 1.41417i
\(604\) − 9.56033i − 0.389005i
\(605\) − 8.42758i − 0.342630i
\(606\) 1.86831i 0.0758950i
\(607\) 10.9420 0.444121 0.222061 0.975033i \(-0.428722\pi\)
0.222061 + 0.975033i \(0.428722\pi\)
\(608\) −2.89008 −0.117208
\(609\) − 5.85086i − 0.237089i
\(610\) −13.1250 −0.531415
\(611\) 0 0
\(612\) −8.71379 −0.352234
\(613\) − 10.9336i − 0.441605i −0.975319 0.220802i \(-0.929132\pi\)
0.975319 0.220802i \(-0.0708676\pi\)
\(614\) 10.3230 0.416604
\(615\) 4.75063 0.191564
\(616\) − 5.20775i − 0.209826i
\(617\) − 6.33704i − 0.255120i −0.991831 0.127560i \(-0.959285\pi\)
0.991831 0.127560i \(-0.0407145\pi\)
\(618\) − 5.12737i − 0.206253i
\(619\) 12.8659i 0.517125i 0.965995 + 0.258563i \(0.0832488\pi\)
−0.965995 + 0.258563i \(0.916751\pi\)
\(620\) −8.31767 −0.334046
\(621\) 17.5321 0.703540
\(622\) − 7.50125i − 0.300773i
\(623\) −36.9560 −1.48061
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 5.60388i 0.223976i
\(627\) −2.06292 −0.0823850
\(628\) 13.7560 0.548924
\(629\) − 9.97584i − 0.397763i
\(630\) 9.09783i 0.362466i
\(631\) − 47.8491i − 1.90484i −0.304788 0.952420i \(-0.598585\pi\)
0.304788 0.952420i \(-0.401415\pi\)
\(632\) 11.3056i 0.449712i
\(633\) −8.17629 −0.324978
\(634\) −11.7802 −0.467850
\(635\) − 2.80731i − 0.111405i
\(636\) 4.93362 0.195631
\(637\) 0 0
\(638\) −6.49396 −0.257098
\(639\) − 21.0315i − 0.831992i
\(640\) −1.00000 −0.0395285
\(641\) −45.7168 −1.80570 −0.902852 0.429951i \(-0.858531\pi\)
−0.902852 + 0.429951i \(0.858531\pi\)
\(642\) − 1.97584i − 0.0779801i
\(643\) 33.1836i 1.30863i 0.756221 + 0.654316i \(0.227044\pi\)
−0.756221 + 0.654316i \(0.772956\pi\)
\(644\) − 22.0465i − 0.868755i
\(645\) − 2.30798i − 0.0908766i
\(646\) 8.98792 0.353625
\(647\) 9.53617 0.374906 0.187453 0.982274i \(-0.439977\pi\)
0.187453 + 0.982274i \(0.439977\pi\)
\(648\) − 7.25667i − 0.285069i
\(649\) 8.47842 0.332807
\(650\) 0 0
\(651\) 12.0194 0.471077
\(652\) 13.5308i 0.529907i
\(653\) −40.5918 −1.58848 −0.794240 0.607604i \(-0.792131\pi\)
−0.794240 + 0.607604i \(0.792131\pi\)
\(654\) 4.69633 0.183641
\(655\) − 2.37196i − 0.0926802i
\(656\) 10.6746i 0.416772i
\(657\) − 34.3913i − 1.34173i
\(658\) − 12.9172i − 0.503566i
\(659\) −0.537500 −0.0209380 −0.0104690 0.999945i \(-0.503332\pi\)
−0.0104690 + 0.999945i \(0.503332\pi\)
\(660\) −0.713792 −0.0277843
\(661\) 23.9928i 0.933213i 0.884465 + 0.466606i \(0.154523\pi\)
−0.884465 + 0.466606i \(0.845477\pi\)
\(662\) −6.46980 −0.251456
\(663\) 0 0
\(664\) −10.4209 −0.404409
\(665\) − 9.38404i − 0.363898i
\(666\) 8.98792 0.348275
\(667\) −27.4916 −1.06448
\(668\) 15.1685i 0.586888i
\(669\) − 6.35019i − 0.245513i
\(670\) 12.3937i 0.478812i
\(671\) − 21.0508i − 0.812659i
\(672\) 1.44504 0.0557437
\(673\) −7.26683 −0.280116 −0.140058 0.990143i \(-0.544729\pi\)
−0.140058 + 0.990143i \(0.544729\pi\)
\(674\) 5.35988i 0.206455i
\(675\) 2.58211 0.0993853
\(676\) 0 0
\(677\) 5.11470 0.196574 0.0982870 0.995158i \(-0.468664\pi\)
0.0982870 + 0.995158i \(0.468664\pi\)
\(678\) 1.92154i 0.0737964i
\(679\) −19.6582 −0.754411
\(680\) 3.10992 0.119260
\(681\) − 12.2368i − 0.468916i
\(682\) − 13.3405i − 0.510834i
\(683\) − 23.0532i − 0.882107i −0.897481 0.441054i \(-0.854605\pi\)
0.897481 0.441054i \(-0.145395\pi\)
\(684\) 8.09783i 0.309628i
\(685\) −16.8552 −0.644003
\(686\) 11.2252 0.428580
\(687\) 8.76569i 0.334432i
\(688\) 5.18598 0.197714
\(689\) 0 0
\(690\) −3.02177 −0.115037
\(691\) − 31.1051i − 1.18329i −0.806197 0.591647i \(-0.798478\pi\)
0.806197 0.591647i \(-0.201522\pi\)
\(692\) 4.27413 0.162478
\(693\) −14.5918 −0.554296
\(694\) 3.56571i 0.135353i
\(695\) − 5.97584i − 0.226676i
\(696\) − 1.80194i − 0.0683023i
\(697\) − 33.1970i − 1.25743i
\(698\) 7.97584 0.301890
\(699\) 10.4746 0.396185
\(700\) − 3.24698i − 0.122724i
\(701\) −7.07069 −0.267056 −0.133528 0.991045i \(-0.542631\pi\)
−0.133528 + 0.991045i \(0.542631\pi\)
\(702\) 0 0
\(703\) −9.27067 −0.349650
\(704\) − 1.60388i − 0.0604483i
\(705\) −1.77048 −0.0666801
\(706\) −1.60388 −0.0603626
\(707\) − 13.6310i − 0.512647i
\(708\) 2.35258i 0.0884155i
\(709\) 8.65519i 0.325052i 0.986704 + 0.162526i \(0.0519642\pi\)
−0.986704 + 0.162526i \(0.948036\pi\)
\(710\) 7.50604i 0.281697i
\(711\) 31.6775 1.18800
\(712\) −11.3817 −0.426545
\(713\) − 56.4758i − 2.11503i
\(714\) −4.49396 −0.168182
\(715\) 0 0
\(716\) 15.6233 0.583868
\(717\) 6.41550i 0.239591i
\(718\) 8.60255 0.321044
\(719\) 8.48055 0.316271 0.158136 0.987417i \(-0.449452\pi\)
0.158136 + 0.987417i \(0.449452\pi\)
\(720\) 2.80194i 0.104422i
\(721\) 37.4088i 1.39318i
\(722\) 10.6474i 0.396256i
\(723\) 6.97344i 0.259345i
\(724\) 16.1933 0.601818
\(725\) −4.04892 −0.150373
\(726\) 3.75063i 0.139199i
\(727\) −31.2683 −1.15968 −0.579838 0.814732i \(-0.696884\pi\)
−0.579838 + 0.814732i \(0.696884\pi\)
\(728\) 0 0
\(729\) −16.8853 −0.625381
\(730\) 12.2741i 0.454286i
\(731\) −16.1280 −0.596514
\(732\) 5.84117 0.215896
\(733\) − 6.69441i − 0.247264i −0.992328 0.123632i \(-0.960546\pi\)
0.992328 0.123632i \(-0.0394542\pi\)
\(734\) 7.41358i 0.273640i
\(735\) 1.57673i 0.0581585i
\(736\) − 6.78986i − 0.250277i
\(737\) −19.8780 −0.732216
\(738\) 29.9095 1.10098
\(739\) − 5.29696i − 0.194852i −0.995243 0.0974259i \(-0.968939\pi\)
0.995243 0.0974259i \(-0.0310609\pi\)
\(740\) −3.20775 −0.117919
\(741\) 0 0
\(742\) −35.9952 −1.32143
\(743\) 13.0755i 0.479693i 0.970811 + 0.239846i \(0.0770970\pi\)
−0.970811 + 0.239846i \(0.922903\pi\)
\(744\) 3.70171 0.135711
\(745\) −14.9148 −0.546437
\(746\) 29.6039i 1.08387i
\(747\) 29.1987i 1.06832i
\(748\) 4.98792i 0.182376i
\(749\) 14.4155i 0.526731i
\(750\) −0.445042 −0.0162506
\(751\) 26.6461 0.972330 0.486165 0.873867i \(-0.338395\pi\)
0.486165 + 0.873867i \(0.338395\pi\)
\(752\) − 3.97823i − 0.145071i
\(753\) 6.74392 0.245762
\(754\) 0 0
\(755\) 9.56033 0.347936
\(756\) − 8.38404i − 0.304925i
\(757\) 54.3236 1.97443 0.987213 0.159406i \(-0.0509580\pi\)
0.987213 + 0.159406i \(0.0509580\pi\)
\(758\) −8.45042 −0.306933
\(759\) − 4.84654i − 0.175918i
\(760\) − 2.89008i − 0.104834i
\(761\) − 8.55363i − 0.310069i −0.987909 0.155034i \(-0.950451\pi\)
0.987909 0.155034i \(-0.0495488\pi\)
\(762\) 1.24937i 0.0452600i
\(763\) −34.2640 −1.24044
\(764\) 26.5676 0.961183
\(765\) − 8.71379i − 0.315048i
\(766\) 10.4644 0.378095
\(767\) 0 0
\(768\) 0.445042 0.0160591
\(769\) 20.6504i 0.744672i 0.928098 + 0.372336i \(0.121443\pi\)
−0.928098 + 0.372336i \(0.878557\pi\)
\(770\) 5.20775 0.187674
\(771\) −8.39134 −0.302207
\(772\) − 13.6582i − 0.491568i
\(773\) 5.27545i 0.189745i 0.995489 + 0.0948725i \(0.0302443\pi\)
−0.995489 + 0.0948725i \(0.969756\pi\)
\(774\) − 14.5308i − 0.522299i
\(775\) − 8.31767i − 0.298779i
\(776\) −6.05429 −0.217336
\(777\) 4.63533 0.166292
\(778\) − 29.2295i − 1.04793i
\(779\) −30.8504 −1.10533
\(780\) 0 0
\(781\) −12.0388 −0.430781
\(782\) 21.1159i 0.755102i
\(783\) −10.4547 −0.373622
\(784\) −3.54288 −0.126531
\(785\) 13.7560i 0.490973i
\(786\) 1.05562i 0.0376528i
\(787\) − 39.7077i − 1.41543i −0.706500 0.707713i \(-0.749727\pi\)
0.706500 0.707713i \(-0.250273\pi\)
\(788\) − 14.0978i − 0.502215i
\(789\) −0.970460 −0.0345493
\(790\) −11.3056 −0.402235
\(791\) − 14.0194i − 0.498472i
\(792\) −4.49396 −0.159686
\(793\) 0 0
\(794\) −20.7439 −0.736174
\(795\) 4.93362i 0.174978i
\(796\) −21.1293 −0.748908
\(797\) −36.5676 −1.29529 −0.647646 0.761941i \(-0.724246\pi\)
−0.647646 + 0.761941i \(0.724246\pi\)
\(798\) 4.17629i 0.147839i
\(799\) 12.3720i 0.437689i
\(800\) − 1.00000i − 0.0353553i
\(801\) 31.8907i 1.12680i
\(802\) 24.2892 0.857681
\(803\) −19.6862 −0.694710
\(804\) − 5.51573i − 0.194525i
\(805\) 22.0465 0.777038
\(806\) 0 0
\(807\) 4.33081 0.152452
\(808\) − 4.19806i − 0.147687i
\(809\) −21.9694 −0.772403 −0.386201 0.922414i \(-0.626213\pi\)
−0.386201 + 0.922414i \(0.626213\pi\)
\(810\) 7.25667 0.254973
\(811\) − 31.3250i − 1.09997i −0.835175 0.549984i \(-0.814634\pi\)
0.835175 0.549984i \(-0.185366\pi\)
\(812\) 13.1468i 0.461361i
\(813\) 1.80433i 0.0632806i
\(814\) − 5.14483i − 0.180326i
\(815\) −13.5308 −0.473963
\(816\) −1.38404 −0.0484512
\(817\) 14.9879i 0.524361i
\(818\) −36.7676 −1.28555
\(819\) 0 0
\(820\) −10.6746 −0.372772
\(821\) 13.9734i 0.487677i 0.969816 + 0.243838i \(0.0784066\pi\)
−0.969816 + 0.243838i \(0.921593\pi\)
\(822\) 7.50125 0.261636
\(823\) −32.0871 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(824\) 11.5211i 0.401357i
\(825\) − 0.713792i − 0.0248510i
\(826\) − 17.1642i − 0.597219i
\(827\) 1.82430i 0.0634371i 0.999497 + 0.0317185i \(0.0100980\pi\)
−0.999497 + 0.0317185i \(0.989902\pi\)
\(828\) −19.0248 −0.661156
\(829\) 32.1360 1.11613 0.558065 0.829797i \(-0.311544\pi\)
0.558065 + 0.829797i \(0.311544\pi\)
\(830\) − 10.4209i − 0.361714i
\(831\) −13.3647 −0.463615
\(832\) 0 0
\(833\) 11.0180 0.381753
\(834\) 2.65950i 0.0920909i
\(835\) −15.1685 −0.524928
\(836\) 4.63533 0.160316
\(837\) − 21.4771i − 0.742357i
\(838\) − 30.8418i − 1.06541i
\(839\) − 8.30904i − 0.286860i −0.989660 0.143430i \(-0.954187\pi\)
0.989660 0.143430i \(-0.0458132\pi\)
\(840\) 1.44504i 0.0498587i
\(841\) −12.6063 −0.434699
\(842\) −31.7458 −1.09403
\(843\) 9.90840i 0.341263i
\(844\) 18.3720 0.632389
\(845\) 0 0
\(846\) −11.1468 −0.383233
\(847\) − 27.3642i − 0.940245i
\(848\) −11.0858 −0.380686
\(849\) 3.95407 0.135703
\(850\) 3.10992i 0.106669i
\(851\) − 21.7802i − 0.746615i
\(852\) − 3.34050i − 0.114444i
\(853\) 31.7995i 1.08880i 0.838827 + 0.544398i \(0.183242\pi\)
−0.838827 + 0.544398i \(0.816758\pi\)
\(854\) −42.6165 −1.45831
\(855\) −8.09783 −0.276940
\(856\) 4.43967i 0.151745i
\(857\) 9.32975 0.318698 0.159349 0.987222i \(-0.449060\pi\)
0.159349 + 0.987222i \(0.449060\pi\)
\(858\) 0 0
\(859\) −58.3913 −1.99229 −0.996143 0.0877403i \(-0.972035\pi\)
−0.996143 + 0.0877403i \(0.972035\pi\)
\(860\) 5.18598i 0.176840i
\(861\) 15.4252 0.525689
\(862\) 25.5120 0.868942
\(863\) − 8.79284i − 0.299312i −0.988738 0.149656i \(-0.952183\pi\)
0.988738 0.149656i \(-0.0478166\pi\)
\(864\) − 2.58211i − 0.0878450i
\(865\) 4.27413i 0.145325i
\(866\) 31.8189i 1.08125i
\(867\) −3.26145 −0.110765
\(868\) −27.0073 −0.916687
\(869\) − 18.1328i − 0.615111i
\(870\) 1.80194 0.0610914
\(871\) 0 0
\(872\) −10.5526 −0.357355
\(873\) 16.9638i 0.574136i
\(874\) 19.6233 0.663766
\(875\) 3.24698 0.109768
\(876\) − 5.46250i − 0.184561i
\(877\) 33.6668i 1.13685i 0.822736 + 0.568423i \(0.192446\pi\)
−0.822736 + 0.568423i \(0.807554\pi\)
\(878\) − 26.9095i − 0.908150i
\(879\) 9.58450i 0.323277i
\(880\) 1.60388 0.0540666
\(881\) −24.8068 −0.835764 −0.417882 0.908501i \(-0.637227\pi\)
−0.417882 + 0.908501i \(0.637227\pi\)
\(882\) 9.92692i 0.334257i
\(883\) −15.5120 −0.522021 −0.261010 0.965336i \(-0.584056\pi\)
−0.261010 + 0.965336i \(0.584056\pi\)
\(884\) 0 0
\(885\) −2.35258 −0.0790812
\(886\) 12.7385i 0.427960i
\(887\) −12.9487 −0.434774 −0.217387 0.976085i \(-0.569753\pi\)
−0.217387 + 0.976085i \(0.569753\pi\)
\(888\) 1.42758 0.0479066
\(889\) − 9.11529i − 0.305717i
\(890\) − 11.3817i − 0.381514i
\(891\) 11.6388i 0.389914i
\(892\) 14.2687i 0.477753i
\(893\) 11.4974 0.384746
\(894\) 6.63773 0.221999
\(895\) 15.6233i 0.522228i
\(896\) −3.24698 −0.108474
\(897\) 0 0
\(898\) −7.75063 −0.258642
\(899\) 33.6775i 1.12321i
\(900\) −2.80194 −0.0933979
\(901\) 34.4758 1.14855
\(902\) − 17.1207i − 0.570056i
\(903\) − 7.49396i − 0.249383i
\(904\) − 4.31767i − 0.143603i
\(905\) 16.1933i 0.538283i
\(906\) −4.25475 −0.141355
\(907\) 26.4983 0.879861 0.439930 0.898032i \(-0.355003\pi\)
0.439930 + 0.898032i \(0.355003\pi\)
\(908\) 27.4959i 0.912483i
\(909\) −11.7627 −0.390144
\(910\) 0 0
\(911\) −15.5797 −0.516179 −0.258089 0.966121i \(-0.583093\pi\)
−0.258089 + 0.966121i \(0.583093\pi\)
\(912\) 1.28621i 0.0425906i
\(913\) 16.7138 0.553146
\(914\) 6.94438 0.229700
\(915\) 5.84117i 0.193103i
\(916\) − 19.6963i − 0.650785i
\(917\) − 7.70171i − 0.254333i
\(918\) 8.03013i 0.265034i
\(919\) −44.5870 −1.47079 −0.735395 0.677639i \(-0.763003\pi\)
−0.735395 + 0.677639i \(0.763003\pi\)
\(920\) 6.78986 0.223855
\(921\) − 4.59419i − 0.151384i
\(922\) −12.6377 −0.416201
\(923\) 0 0
\(924\) −2.31767 −0.0762457
\(925\) − 3.20775i − 0.105470i
\(926\) 5.62325 0.184792
\(927\) 32.2814 1.06026
\(928\) 4.04892i 0.132912i
\(929\) − 7.09890i − 0.232907i −0.993196 0.116454i \(-0.962847\pi\)
0.993196 0.116454i \(-0.0371527\pi\)
\(930\) 3.70171i 0.121384i
\(931\) − 10.2392i − 0.335577i
\(932\) −23.5362 −0.770953
\(933\) −3.33837 −0.109293
\(934\) 35.2054i 1.15195i
\(935\) −4.98792 −0.163122
\(936\) 0 0
\(937\) −11.3297 −0.370127 −0.185063 0.982727i \(-0.559249\pi\)
−0.185063 + 0.982727i \(0.559249\pi\)
\(938\) 40.2422i 1.31395i
\(939\) 2.49396 0.0813873
\(940\) 3.97823 0.129756
\(941\) − 49.8689i − 1.62568i −0.582487 0.812840i \(-0.697920\pi\)
0.582487 0.812840i \(-0.302080\pi\)
\(942\) − 6.12200i − 0.199465i
\(943\) − 72.4787i − 2.36023i
\(944\) − 5.28621i − 0.172051i
\(945\) 8.38404 0.272733
\(946\) −8.31767 −0.270431
\(947\) − 22.2457i − 0.722887i −0.932394 0.361443i \(-0.882284\pi\)
0.932394 0.361443i \(-0.117716\pi\)
\(948\) 5.03146 0.163414
\(949\) 0 0
\(950\) 2.89008 0.0937667
\(951\) 5.24267i 0.170005i
\(952\) 10.0978 0.327273
\(953\) −35.3900 −1.14639 −0.573197 0.819417i \(-0.694297\pi\)
−0.573197 + 0.819417i \(0.694297\pi\)
\(954\) 31.0616i 1.00566i
\(955\) 26.5676i 0.859708i
\(956\) − 14.4155i − 0.466231i
\(957\) 2.89008i 0.0934231i
\(958\) −7.16421 −0.231465
\(959\) −54.7284 −1.76727
\(960\) 0.445042i 0.0143637i
\(961\) −38.1836 −1.23173
\(962\) 0 0
\(963\) 12.4397 0.400863
\(964\) − 15.6692i − 0.504671i
\(965\) 13.6582 0.439672
\(966\) −9.81163 −0.315684
\(967\) 51.0723i 1.64238i 0.570658 + 0.821188i \(0.306688\pi\)
−0.570658 + 0.821188i \(0.693312\pi\)
\(968\) − 8.42758i − 0.270873i
\(969\) − 4.00000i − 0.128499i
\(970\) − 6.05429i − 0.194392i
\(971\) 37.8840 1.21575 0.607877 0.794031i \(-0.292021\pi\)
0.607877 + 0.794031i \(0.292021\pi\)
\(972\) −10.9758 −0.352050
\(973\) − 19.4034i − 0.622045i
\(974\) 28.7006 0.919628
\(975\) 0 0
\(976\) −13.1250 −0.420120
\(977\) 31.3685i 1.00357i 0.864993 + 0.501784i \(0.167323\pi\)
−0.864993 + 0.501784i \(0.832677\pi\)
\(978\) 6.02177 0.192555
\(979\) 18.2547 0.583424
\(980\) − 3.54288i − 0.113173i
\(981\) 29.5676i 0.944022i
\(982\) 42.0689i 1.34247i
\(983\) − 39.3653i − 1.25556i −0.778392 0.627778i \(-0.783964\pi\)
0.778392 0.627778i \(-0.216036\pi\)
\(984\) 4.75063 0.151444
\(985\) 14.0978 0.449194
\(986\) − 12.5918i − 0.401004i
\(987\) −5.74871 −0.182983
\(988\) 0 0
\(989\) −35.2121 −1.11968
\(990\) − 4.49396i − 0.142827i
\(991\) 43.2922 1.37522 0.687611 0.726080i \(-0.258660\pi\)
0.687611 + 0.726080i \(0.258660\pi\)
\(992\) −8.31767 −0.264086
\(993\) 2.87933i 0.0913728i
\(994\) 24.3720i 0.773032i
\(995\) − 21.1293i − 0.669844i
\(996\) 4.63773i 0.146952i
\(997\) −4.64609 −0.147143 −0.0735715 0.997290i \(-0.523440\pi\)
−0.0735715 + 0.997290i \(0.523440\pi\)
\(998\) 33.2379 1.05213
\(999\) − 8.28275i − 0.262055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.d.j.1351.5 6
13.2 odd 12 1690.2.e.o.191.2 6
13.3 even 3 1690.2.l.l.1161.2 12
13.4 even 6 1690.2.l.l.361.2 12
13.5 odd 4 1690.2.a.s.1.2 yes 3
13.6 odd 12 1690.2.e.o.991.2 6
13.7 odd 12 1690.2.e.q.991.2 6
13.8 odd 4 1690.2.a.q.1.2 3
13.9 even 3 1690.2.l.l.361.5 12
13.10 even 6 1690.2.l.l.1161.5 12
13.11 odd 12 1690.2.e.q.191.2 6
13.12 even 2 inner 1690.2.d.j.1351.2 6
65.34 odd 4 8450.2.a.bz.1.2 3
65.44 odd 4 8450.2.a.bo.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.q.1.2 3 13.8 odd 4
1690.2.a.s.1.2 yes 3 13.5 odd 4
1690.2.d.j.1351.2 6 13.12 even 2 inner
1690.2.d.j.1351.5 6 1.1 even 1 trivial
1690.2.e.o.191.2 6 13.2 odd 12
1690.2.e.o.991.2 6 13.6 odd 12
1690.2.e.q.191.2 6 13.11 odd 12
1690.2.e.q.991.2 6 13.7 odd 12
1690.2.l.l.361.2 12 13.4 even 6
1690.2.l.l.361.5 12 13.9 even 3
1690.2.l.l.1161.2 12 13.3 even 3
1690.2.l.l.1161.5 12 13.10 even 6
8450.2.a.bo.1.2 3 65.44 odd 4
8450.2.a.bz.1.2 3 65.34 odd 4