Properties

Label 8450.2.a.by.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,3,0,-1,-4,3,-4,0,2,-1,0,-4,0,3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.24698 q^{3} +1.00000 q^{4} +1.24698 q^{6} -2.80194 q^{7} +1.00000 q^{8} -1.44504 q^{9} +0.554958 q^{11} +1.24698 q^{12} -2.80194 q^{14} +1.00000 q^{16} +3.24698 q^{17} -1.44504 q^{18} -3.24698 q^{19} -3.49396 q^{21} +0.554958 q^{22} -4.04892 q^{23} +1.24698 q^{24} -5.54288 q^{27} -2.80194 q^{28} +0.384043 q^{29} +3.13706 q^{31} +1.00000 q^{32} +0.692021 q^{33} +3.24698 q^{34} -1.44504 q^{36} +11.3666 q^{37} -3.24698 q^{38} -1.96077 q^{41} -3.49396 q^{42} -8.32304 q^{43} +0.554958 q^{44} -4.04892 q^{46} +3.78986 q^{47} +1.24698 q^{48} +0.850855 q^{49} +4.04892 q^{51} -7.92692 q^{53} -5.54288 q^{54} -2.80194 q^{56} -4.04892 q^{57} +0.384043 q^{58} +9.04892 q^{59} -9.04892 q^{61} +3.13706 q^{62} +4.04892 q^{63} +1.00000 q^{64} +0.692021 q^{66} -0.396125 q^{67} +3.24698 q^{68} -5.04892 q^{69} +1.54288 q^{71} -1.44504 q^{72} -4.03684 q^{73} +11.3666 q^{74} -3.24698 q^{76} -1.55496 q^{77} -16.6136 q^{79} -2.57673 q^{81} -1.96077 q^{82} -15.3720 q^{83} -3.49396 q^{84} -8.32304 q^{86} +0.478894 q^{87} +0.554958 q^{88} -11.4668 q^{89} -4.04892 q^{92} +3.91185 q^{93} +3.78986 q^{94} +1.24698 q^{96} -10.1196 q^{97} +0.850855 q^{98} -0.801938 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{6} - 4 q^{7} + 3 q^{8} - 4 q^{9} + 2 q^{11} - q^{12} - 4 q^{14} + 3 q^{16} + 5 q^{17} - 4 q^{18} - 5 q^{19} - q^{21} + 2 q^{22} - 3 q^{23} - q^{24} + 2 q^{27} - 4 q^{28}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.24698 0.719944 0.359972 0.932963i \(-0.382786\pi\)
0.359972 + 0.932963i \(0.382786\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.24698 0.509077
\(7\) −2.80194 −1.05903 −0.529516 0.848300i \(-0.677627\pi\)
−0.529516 + 0.848300i \(0.677627\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.44504 −0.481681
\(10\) 0 0
\(11\) 0.554958 0.167326 0.0836631 0.996494i \(-0.473338\pi\)
0.0836631 + 0.996494i \(0.473338\pi\)
\(12\) 1.24698 0.359972
\(13\) 0 0
\(14\) −2.80194 −0.748849
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.24698 0.787508 0.393754 0.919216i \(-0.371176\pi\)
0.393754 + 0.919216i \(0.371176\pi\)
\(18\) −1.44504 −0.340600
\(19\) −3.24698 −0.744908 −0.372454 0.928051i \(-0.621484\pi\)
−0.372454 + 0.928051i \(0.621484\pi\)
\(20\) 0 0
\(21\) −3.49396 −0.762444
\(22\) 0.554958 0.118317
\(23\) −4.04892 −0.844258 −0.422129 0.906536i \(-0.638717\pi\)
−0.422129 + 0.906536i \(0.638717\pi\)
\(24\) 1.24698 0.254539
\(25\) 0 0
\(26\) 0 0
\(27\) −5.54288 −1.06673
\(28\) −2.80194 −0.529516
\(29\) 0.384043 0.0713150 0.0356575 0.999364i \(-0.488647\pi\)
0.0356575 + 0.999364i \(0.488647\pi\)
\(30\) 0 0
\(31\) 3.13706 0.563433 0.281717 0.959498i \(-0.409096\pi\)
0.281717 + 0.959498i \(0.409096\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.692021 0.120465
\(34\) 3.24698 0.556852
\(35\) 0 0
\(36\) −1.44504 −0.240840
\(37\) 11.3666 1.86865 0.934327 0.356416i \(-0.116001\pi\)
0.934327 + 0.356416i \(0.116001\pi\)
\(38\) −3.24698 −0.526730
\(39\) 0 0
\(40\) 0 0
\(41\) −1.96077 −0.306221 −0.153111 0.988209i \(-0.548929\pi\)
−0.153111 + 0.988209i \(0.548929\pi\)
\(42\) −3.49396 −0.539130
\(43\) −8.32304 −1.26925 −0.634626 0.772819i \(-0.718846\pi\)
−0.634626 + 0.772819i \(0.718846\pi\)
\(44\) 0.554958 0.0836631
\(45\) 0 0
\(46\) −4.04892 −0.596980
\(47\) 3.78986 0.552807 0.276404 0.961042i \(-0.410857\pi\)
0.276404 + 0.961042i \(0.410857\pi\)
\(48\) 1.24698 0.179986
\(49\) 0.850855 0.121551
\(50\) 0 0
\(51\) 4.04892 0.566962
\(52\) 0 0
\(53\) −7.92692 −1.08885 −0.544423 0.838811i \(-0.683251\pi\)
−0.544423 + 0.838811i \(0.683251\pi\)
\(54\) −5.54288 −0.754290
\(55\) 0 0
\(56\) −2.80194 −0.374425
\(57\) −4.04892 −0.536292
\(58\) 0.384043 0.0504273
\(59\) 9.04892 1.17807 0.589034 0.808108i \(-0.299508\pi\)
0.589034 + 0.808108i \(0.299508\pi\)
\(60\) 0 0
\(61\) −9.04892 −1.15860 −0.579298 0.815116i \(-0.696673\pi\)
−0.579298 + 0.815116i \(0.696673\pi\)
\(62\) 3.13706 0.398407
\(63\) 4.04892 0.510116
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.692021 0.0851820
\(67\) −0.396125 −0.0483943 −0.0241972 0.999707i \(-0.507703\pi\)
−0.0241972 + 0.999707i \(0.507703\pi\)
\(68\) 3.24698 0.393754
\(69\) −5.04892 −0.607818
\(70\) 0 0
\(71\) 1.54288 0.183106 0.0915529 0.995800i \(-0.470817\pi\)
0.0915529 + 0.995800i \(0.470817\pi\)
\(72\) −1.44504 −0.170300
\(73\) −4.03684 −0.472476 −0.236238 0.971695i \(-0.575914\pi\)
−0.236238 + 0.971695i \(0.575914\pi\)
\(74\) 11.3666 1.32134
\(75\) 0 0
\(76\) −3.24698 −0.372454
\(77\) −1.55496 −0.177204
\(78\) 0 0
\(79\) −16.6136 −1.86917 −0.934586 0.355737i \(-0.884230\pi\)
−0.934586 + 0.355737i \(0.884230\pi\)
\(80\) 0 0
\(81\) −2.57673 −0.286303
\(82\) −1.96077 −0.216531
\(83\) −15.3720 −1.68729 −0.843646 0.536900i \(-0.819595\pi\)
−0.843646 + 0.536900i \(0.819595\pi\)
\(84\) −3.49396 −0.381222
\(85\) 0 0
\(86\) −8.32304 −0.897497
\(87\) 0.478894 0.0513428
\(88\) 0.554958 0.0591587
\(89\) −11.4668 −1.21548 −0.607740 0.794136i \(-0.707924\pi\)
−0.607740 + 0.794136i \(0.707924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.04892 −0.422129
\(93\) 3.91185 0.405640
\(94\) 3.78986 0.390894
\(95\) 0 0
\(96\) 1.24698 0.127269
\(97\) −10.1196 −1.02749 −0.513745 0.857943i \(-0.671742\pi\)
−0.513745 + 0.857943i \(0.671742\pi\)
\(98\) 0.850855 0.0859493
\(99\) −0.801938 −0.0805978
\(100\) 0 0
\(101\) −16.7778 −1.66945 −0.834725 0.550666i \(-0.814374\pi\)
−0.834725 + 0.550666i \(0.814374\pi\)
\(102\) 4.04892 0.400903
\(103\) −9.89440 −0.974924 −0.487462 0.873144i \(-0.662077\pi\)
−0.487462 + 0.873144i \(0.662077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.92692 −0.769930
\(107\) 8.56465 0.827976 0.413988 0.910282i \(-0.364136\pi\)
0.413988 + 0.910282i \(0.364136\pi\)
\(108\) −5.54288 −0.533364
\(109\) 3.40044 0.325703 0.162851 0.986651i \(-0.447931\pi\)
0.162851 + 0.986651i \(0.447931\pi\)
\(110\) 0 0
\(111\) 14.1739 1.34533
\(112\) −2.80194 −0.264758
\(113\) 3.87263 0.364306 0.182153 0.983270i \(-0.441693\pi\)
0.182153 + 0.983270i \(0.441693\pi\)
\(114\) −4.04892 −0.379216
\(115\) 0 0
\(116\) 0.384043 0.0356575
\(117\) 0 0
\(118\) 9.04892 0.833020
\(119\) −9.09783 −0.833997
\(120\) 0 0
\(121\) −10.6920 −0.972002
\(122\) −9.04892 −0.819250
\(123\) −2.44504 −0.220462
\(124\) 3.13706 0.281717
\(125\) 0 0
\(126\) 4.04892 0.360706
\(127\) 9.85623 0.874599 0.437300 0.899316i \(-0.355935\pi\)
0.437300 + 0.899316i \(0.355935\pi\)
\(128\) 1.00000 0.0883883
\(129\) −10.3787 −0.913791
\(130\) 0 0
\(131\) −10.2403 −0.894697 −0.447348 0.894360i \(-0.647632\pi\)
−0.447348 + 0.894360i \(0.647632\pi\)
\(132\) 0.692021 0.0602327
\(133\) 9.09783 0.788882
\(134\) −0.396125 −0.0342199
\(135\) 0 0
\(136\) 3.24698 0.278426
\(137\) −21.5036 −1.83718 −0.918590 0.395211i \(-0.870671\pi\)
−0.918590 + 0.395211i \(0.870671\pi\)
\(138\) −5.04892 −0.429792
\(139\) 10.0954 0.856284 0.428142 0.903711i \(-0.359168\pi\)
0.428142 + 0.903711i \(0.359168\pi\)
\(140\) 0 0
\(141\) 4.72587 0.397990
\(142\) 1.54288 0.129475
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) 0 0
\(146\) −4.03684 −0.334091
\(147\) 1.06100 0.0875097
\(148\) 11.3666 0.934327
\(149\) −19.0489 −1.56055 −0.780274 0.625438i \(-0.784920\pi\)
−0.780274 + 0.625438i \(0.784920\pi\)
\(150\) 0 0
\(151\) 5.17092 0.420803 0.210402 0.977615i \(-0.432523\pi\)
0.210402 + 0.977615i \(0.432523\pi\)
\(152\) −3.24698 −0.263365
\(153\) −4.69202 −0.379327
\(154\) −1.55496 −0.125302
\(155\) 0 0
\(156\) 0 0
\(157\) 10.9608 0.874765 0.437382 0.899276i \(-0.355906\pi\)
0.437382 + 0.899276i \(0.355906\pi\)
\(158\) −16.6136 −1.32170
\(159\) −9.88471 −0.783908
\(160\) 0 0
\(161\) 11.3448 0.894097
\(162\) −2.57673 −0.202447
\(163\) 10.4601 0.819299 0.409649 0.912243i \(-0.365651\pi\)
0.409649 + 0.912243i \(0.365651\pi\)
\(164\) −1.96077 −0.153111
\(165\) 0 0
\(166\) −15.3720 −1.19310
\(167\) 9.83340 0.760931 0.380466 0.924795i \(-0.375764\pi\)
0.380466 + 0.924795i \(0.375764\pi\)
\(168\) −3.49396 −0.269565
\(169\) 0 0
\(170\) 0 0
\(171\) 4.69202 0.358808
\(172\) −8.32304 −0.634626
\(173\) −8.63102 −0.656204 −0.328102 0.944642i \(-0.606409\pi\)
−0.328102 + 0.944642i \(0.606409\pi\)
\(174\) 0.478894 0.0363048
\(175\) 0 0
\(176\) 0.554958 0.0418315
\(177\) 11.2838 0.848143
\(178\) −11.4668 −0.859474
\(179\) 16.5472 1.23679 0.618397 0.785865i \(-0.287782\pi\)
0.618397 + 0.785865i \(0.287782\pi\)
\(180\) 0 0
\(181\) −21.0858 −1.56729 −0.783646 0.621208i \(-0.786642\pi\)
−0.783646 + 0.621208i \(0.786642\pi\)
\(182\) 0 0
\(183\) −11.2838 −0.834124
\(184\) −4.04892 −0.298490
\(185\) 0 0
\(186\) 3.91185 0.286831
\(187\) 1.80194 0.131771
\(188\) 3.78986 0.276404
\(189\) 15.5308 1.12970
\(190\) 0 0
\(191\) −4.55496 −0.329585 −0.164793 0.986328i \(-0.552695\pi\)
−0.164793 + 0.986328i \(0.552695\pi\)
\(192\) 1.24698 0.0899930
\(193\) 14.6896 1.05738 0.528691 0.848814i \(-0.322683\pi\)
0.528691 + 0.848814i \(0.322683\pi\)
\(194\) −10.1196 −0.726545
\(195\) 0 0
\(196\) 0.850855 0.0607754
\(197\) −9.97823 −0.710919 −0.355460 0.934692i \(-0.615676\pi\)
−0.355460 + 0.934692i \(0.615676\pi\)
\(198\) −0.801938 −0.0569912
\(199\) −27.3448 −1.93842 −0.969211 0.246231i \(-0.920808\pi\)
−0.969211 + 0.246231i \(0.920808\pi\)
\(200\) 0 0
\(201\) −0.493959 −0.0348412
\(202\) −16.7778 −1.18048
\(203\) −1.07606 −0.0755249
\(204\) 4.04892 0.283481
\(205\) 0 0
\(206\) −9.89440 −0.689375
\(207\) 5.85086 0.406663
\(208\) 0 0
\(209\) −1.80194 −0.124643
\(210\) 0 0
\(211\) 18.7168 1.28852 0.644258 0.764808i \(-0.277166\pi\)
0.644258 + 0.764808i \(0.277166\pi\)
\(212\) −7.92692 −0.544423
\(213\) 1.92394 0.131826
\(214\) 8.56465 0.585467
\(215\) 0 0
\(216\) −5.54288 −0.377145
\(217\) −8.78986 −0.596694
\(218\) 3.40044 0.230307
\(219\) −5.03385 −0.340156
\(220\) 0 0
\(221\) 0 0
\(222\) 14.1739 0.951290
\(223\) −11.8485 −0.793432 −0.396716 0.917941i \(-0.629850\pi\)
−0.396716 + 0.917941i \(0.629850\pi\)
\(224\) −2.80194 −0.187212
\(225\) 0 0
\(226\) 3.87263 0.257603
\(227\) −0.510353 −0.0338733 −0.0169366 0.999857i \(-0.505391\pi\)
−0.0169366 + 0.999857i \(0.505391\pi\)
\(228\) −4.04892 −0.268146
\(229\) −17.2295 −1.13856 −0.569279 0.822144i \(-0.692778\pi\)
−0.569279 + 0.822144i \(0.692778\pi\)
\(230\) 0 0
\(231\) −1.93900 −0.127577
\(232\) 0.384043 0.0252137
\(233\) −10.4222 −0.682781 −0.341391 0.939921i \(-0.610898\pi\)
−0.341391 + 0.939921i \(0.610898\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 9.04892 0.589034
\(237\) −20.7168 −1.34570
\(238\) −9.09783 −0.589725
\(239\) 28.5448 1.84641 0.923205 0.384309i \(-0.125560\pi\)
0.923205 + 0.384309i \(0.125560\pi\)
\(240\) 0 0
\(241\) 15.7071 1.01178 0.505891 0.862597i \(-0.331164\pi\)
0.505891 + 0.862597i \(0.331164\pi\)
\(242\) −10.6920 −0.687309
\(243\) 13.4155 0.860605
\(244\) −9.04892 −0.579298
\(245\) 0 0
\(246\) −2.44504 −0.155890
\(247\) 0 0
\(248\) 3.13706 0.199204
\(249\) −19.1685 −1.21476
\(250\) 0 0
\(251\) 7.49157 0.472863 0.236432 0.971648i \(-0.424022\pi\)
0.236432 + 0.971648i \(0.424022\pi\)
\(252\) 4.04892 0.255058
\(253\) −2.24698 −0.141266
\(254\) 9.85623 0.618435
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.1793 1.25875 0.629374 0.777102i \(-0.283311\pi\)
0.629374 + 0.777102i \(0.283311\pi\)
\(258\) −10.3787 −0.646148
\(259\) −31.8485 −1.97897
\(260\) 0 0
\(261\) −0.554958 −0.0343510
\(262\) −10.2403 −0.632646
\(263\) 3.30559 0.203831 0.101916 0.994793i \(-0.467503\pi\)
0.101916 + 0.994793i \(0.467503\pi\)
\(264\) 0.692021 0.0425910
\(265\) 0 0
\(266\) 9.09783 0.557824
\(267\) −14.2989 −0.875077
\(268\) −0.396125 −0.0241972
\(269\) 10.8092 0.659051 0.329525 0.944147i \(-0.393111\pi\)
0.329525 + 0.944147i \(0.393111\pi\)
\(270\) 0 0
\(271\) 21.8659 1.32826 0.664130 0.747617i \(-0.268802\pi\)
0.664130 + 0.747617i \(0.268802\pi\)
\(272\) 3.24698 0.196877
\(273\) 0 0
\(274\) −21.5036 −1.29908
\(275\) 0 0
\(276\) −5.04892 −0.303909
\(277\) 8.14914 0.489635 0.244817 0.969569i \(-0.421272\pi\)
0.244817 + 0.969569i \(0.421272\pi\)
\(278\) 10.0954 0.605484
\(279\) −4.53319 −0.271395
\(280\) 0 0
\(281\) 23.6189 1.40899 0.704494 0.709710i \(-0.251174\pi\)
0.704494 + 0.709710i \(0.251174\pi\)
\(282\) 4.72587 0.281422
\(283\) 1.24698 0.0741252 0.0370626 0.999313i \(-0.488200\pi\)
0.0370626 + 0.999313i \(0.488200\pi\)
\(284\) 1.54288 0.0915529
\(285\) 0 0
\(286\) 0 0
\(287\) 5.49396 0.324298
\(288\) −1.44504 −0.0851499
\(289\) −6.45712 −0.379831
\(290\) 0 0
\(291\) −12.6189 −0.739735
\(292\) −4.03684 −0.236238
\(293\) 17.5144 1.02320 0.511601 0.859223i \(-0.329053\pi\)
0.511601 + 0.859223i \(0.329053\pi\)
\(294\) 1.06100 0.0618787
\(295\) 0 0
\(296\) 11.3666 0.660669
\(297\) −3.07606 −0.178491
\(298\) −19.0489 −1.10347
\(299\) 0 0
\(300\) 0 0
\(301\) 23.3207 1.34418
\(302\) 5.17092 0.297553
\(303\) −20.9215 −1.20191
\(304\) −3.24698 −0.186227
\(305\) 0 0
\(306\) −4.69202 −0.268225
\(307\) 8.42626 0.480912 0.240456 0.970660i \(-0.422703\pi\)
0.240456 + 0.970660i \(0.422703\pi\)
\(308\) −1.55496 −0.0886020
\(309\) −12.3381 −0.701891
\(310\) 0 0
\(311\) 4.63342 0.262737 0.131368 0.991334i \(-0.458063\pi\)
0.131368 + 0.991334i \(0.458063\pi\)
\(312\) 0 0
\(313\) −31.8485 −1.80018 −0.900091 0.435702i \(-0.856500\pi\)
−0.900091 + 0.435702i \(0.856500\pi\)
\(314\) 10.9608 0.618552
\(315\) 0 0
\(316\) −16.6136 −0.934586
\(317\) −16.0532 −0.901639 −0.450820 0.892615i \(-0.648868\pi\)
−0.450820 + 0.892615i \(0.648868\pi\)
\(318\) −9.88471 −0.554307
\(319\) 0.213128 0.0119329
\(320\) 0 0
\(321\) 10.6799 0.596096
\(322\) 11.3448 0.632222
\(323\) −10.5429 −0.586621
\(324\) −2.57673 −0.143152
\(325\) 0 0
\(326\) 10.4601 0.579332
\(327\) 4.24027 0.234488
\(328\) −1.96077 −0.108265
\(329\) −10.6189 −0.585441
\(330\) 0 0
\(331\) −1.87369 −0.102987 −0.0514937 0.998673i \(-0.516398\pi\)
−0.0514937 + 0.998673i \(0.516398\pi\)
\(332\) −15.3720 −0.843646
\(333\) −16.4252 −0.900095
\(334\) 9.83340 0.538060
\(335\) 0 0
\(336\) −3.49396 −0.190611
\(337\) 7.10454 0.387009 0.193504 0.981099i \(-0.438015\pi\)
0.193504 + 0.981099i \(0.438015\pi\)
\(338\) 0 0
\(339\) 4.82908 0.262280
\(340\) 0 0
\(341\) 1.74094 0.0942771
\(342\) 4.69202 0.253715
\(343\) 17.2295 0.930307
\(344\) −8.32304 −0.448748
\(345\) 0 0
\(346\) −8.63102 −0.464007
\(347\) −22.6112 −1.21383 −0.606916 0.794766i \(-0.707593\pi\)
−0.606916 + 0.794766i \(0.707593\pi\)
\(348\) 0.478894 0.0256714
\(349\) −21.6082 −1.15666 −0.578330 0.815803i \(-0.696295\pi\)
−0.578330 + 0.815803i \(0.696295\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.554958 0.0295794
\(353\) −1.10992 −0.0590749 −0.0295374 0.999564i \(-0.509403\pi\)
−0.0295374 + 0.999564i \(0.509403\pi\)
\(354\) 11.2838 0.599728
\(355\) 0 0
\(356\) −11.4668 −0.607740
\(357\) −11.3448 −0.600431
\(358\) 16.5472 0.874546
\(359\) −23.9342 −1.26320 −0.631600 0.775295i \(-0.717601\pi\)
−0.631600 + 0.775295i \(0.717601\pi\)
\(360\) 0 0
\(361\) −8.45712 −0.445112
\(362\) −21.0858 −1.10824
\(363\) −13.3327 −0.699787
\(364\) 0 0
\(365\) 0 0
\(366\) −11.2838 −0.589814
\(367\) 14.7114 0.767929 0.383964 0.923348i \(-0.374559\pi\)
0.383964 + 0.923348i \(0.374559\pi\)
\(368\) −4.04892 −0.211064
\(369\) 2.83340 0.147501
\(370\) 0 0
\(371\) 22.2107 1.15312
\(372\) 3.91185 0.202820
\(373\) 14.7278 0.762576 0.381288 0.924456i \(-0.375481\pi\)
0.381288 + 0.924456i \(0.375481\pi\)
\(374\) 1.80194 0.0931760
\(375\) 0 0
\(376\) 3.78986 0.195447
\(377\) 0 0
\(378\) 15.5308 0.798818
\(379\) −34.5937 −1.77696 −0.888480 0.458916i \(-0.848238\pi\)
−0.888480 + 0.458916i \(0.848238\pi\)
\(380\) 0 0
\(381\) 12.2905 0.629662
\(382\) −4.55496 −0.233052
\(383\) −9.69069 −0.495171 −0.247586 0.968866i \(-0.579637\pi\)
−0.247586 + 0.968866i \(0.579637\pi\)
\(384\) 1.24698 0.0636347
\(385\) 0 0
\(386\) 14.6896 0.747682
\(387\) 12.0271 0.611374
\(388\) −10.1196 −0.513745
\(389\) −29.1511 −1.47802 −0.739009 0.673696i \(-0.764706\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(390\) 0 0
\(391\) −13.1468 −0.664860
\(392\) 0.850855 0.0429747
\(393\) −12.7694 −0.644132
\(394\) −9.97823 −0.502696
\(395\) 0 0
\(396\) −0.801938 −0.0402989
\(397\) 1.31767 0.0661318 0.0330659 0.999453i \(-0.489473\pi\)
0.0330659 + 0.999453i \(0.489473\pi\)
\(398\) −27.3448 −1.37067
\(399\) 11.3448 0.567951
\(400\) 0 0
\(401\) −27.3327 −1.36493 −0.682466 0.730918i \(-0.739092\pi\)
−0.682466 + 0.730918i \(0.739092\pi\)
\(402\) −0.493959 −0.0246364
\(403\) 0 0
\(404\) −16.7778 −0.834725
\(405\) 0 0
\(406\) −1.07606 −0.0534042
\(407\) 6.30798 0.312675
\(408\) 4.04892 0.200451
\(409\) 28.8340 1.42575 0.712874 0.701292i \(-0.247393\pi\)
0.712874 + 0.701292i \(0.247393\pi\)
\(410\) 0 0
\(411\) −26.8146 −1.32267
\(412\) −9.89440 −0.487462
\(413\) −25.3545 −1.24761
\(414\) 5.85086 0.287554
\(415\) 0 0
\(416\) 0 0
\(417\) 12.5888 0.616477
\(418\) −1.80194 −0.0881357
\(419\) 25.4480 1.24322 0.621609 0.783328i \(-0.286479\pi\)
0.621609 + 0.783328i \(0.286479\pi\)
\(420\) 0 0
\(421\) 11.1220 0.542053 0.271027 0.962572i \(-0.412637\pi\)
0.271027 + 0.962572i \(0.412637\pi\)
\(422\) 18.7168 0.911118
\(423\) −5.47650 −0.266277
\(424\) −7.92692 −0.384965
\(425\) 0 0
\(426\) 1.92394 0.0932150
\(427\) 25.3545 1.22699
\(428\) 8.56465 0.413988
\(429\) 0 0
\(430\) 0 0
\(431\) −22.4373 −1.08077 −0.540383 0.841419i \(-0.681721\pi\)
−0.540383 + 0.841419i \(0.681721\pi\)
\(432\) −5.54288 −0.266682
\(433\) 40.3008 1.93673 0.968366 0.249533i \(-0.0802769\pi\)
0.968366 + 0.249533i \(0.0802769\pi\)
\(434\) −8.78986 −0.421927
\(435\) 0 0
\(436\) 3.40044 0.162851
\(437\) 13.1468 0.628894
\(438\) −5.03385 −0.240527
\(439\) 0.346142 0.0165205 0.00826023 0.999966i \(-0.497371\pi\)
0.00826023 + 0.999966i \(0.497371\pi\)
\(440\) 0 0
\(441\) −1.22952 −0.0585486
\(442\) 0 0
\(443\) −30.0881 −1.42953 −0.714765 0.699364i \(-0.753467\pi\)
−0.714765 + 0.699364i \(0.753467\pi\)
\(444\) 14.1739 0.672663
\(445\) 0 0
\(446\) −11.8485 −0.561041
\(447\) −23.7536 −1.12351
\(448\) −2.80194 −0.132379
\(449\) 36.4825 1.72171 0.860857 0.508847i \(-0.169928\pi\)
0.860857 + 0.508847i \(0.169928\pi\)
\(450\) 0 0
\(451\) −1.08815 −0.0512388
\(452\) 3.87263 0.182153
\(453\) 6.44803 0.302955
\(454\) −0.510353 −0.0239520
\(455\) 0 0
\(456\) −4.04892 −0.189608
\(457\) 17.6571 0.825965 0.412982 0.910739i \(-0.364487\pi\)
0.412982 + 0.910739i \(0.364487\pi\)
\(458\) −17.2295 −0.805083
\(459\) −17.9976 −0.840056
\(460\) 0 0
\(461\) −6.97823 −0.325009 −0.162504 0.986708i \(-0.551957\pi\)
−0.162504 + 0.986708i \(0.551957\pi\)
\(462\) −1.93900 −0.0902105
\(463\) 40.5526 1.88464 0.942319 0.334717i \(-0.108641\pi\)
0.942319 + 0.334717i \(0.108641\pi\)
\(464\) 0.384043 0.0178287
\(465\) 0 0
\(466\) −10.4222 −0.482799
\(467\) 38.5676 1.78470 0.892349 0.451347i \(-0.149056\pi\)
0.892349 + 0.451347i \(0.149056\pi\)
\(468\) 0 0
\(469\) 1.10992 0.0512512
\(470\) 0 0
\(471\) 13.6679 0.629782
\(472\) 9.04892 0.416510
\(473\) −4.61894 −0.212379
\(474\) −20.7168 −0.951553
\(475\) 0 0
\(476\) −9.09783 −0.416999
\(477\) 11.4547 0.524476
\(478\) 28.5448 1.30561
\(479\) 5.73125 0.261868 0.130934 0.991391i \(-0.458202\pi\)
0.130934 + 0.991391i \(0.458202\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 15.7071 0.715438
\(483\) 14.1468 0.643700
\(484\) −10.6920 −0.486001
\(485\) 0 0
\(486\) 13.4155 0.608540
\(487\) 27.6692 1.25381 0.626905 0.779096i \(-0.284321\pi\)
0.626905 + 0.779096i \(0.284321\pi\)
\(488\) −9.04892 −0.409625
\(489\) 13.0435 0.589849
\(490\) 0 0
\(491\) 7.25906 0.327597 0.163798 0.986494i \(-0.447625\pi\)
0.163798 + 0.986494i \(0.447625\pi\)
\(492\) −2.44504 −0.110231
\(493\) 1.24698 0.0561611
\(494\) 0 0
\(495\) 0 0
\(496\) 3.13706 0.140858
\(497\) −4.32304 −0.193915
\(498\) −19.1685 −0.858962
\(499\) −8.19136 −0.366696 −0.183348 0.983048i \(-0.558693\pi\)
−0.183348 + 0.983048i \(0.558693\pi\)
\(500\) 0 0
\(501\) 12.2620 0.547828
\(502\) 7.49157 0.334365
\(503\) 36.6655 1.63483 0.817416 0.576048i \(-0.195406\pi\)
0.817416 + 0.576048i \(0.195406\pi\)
\(504\) 4.04892 0.180353
\(505\) 0 0
\(506\) −2.24698 −0.0998904
\(507\) 0 0
\(508\) 9.85623 0.437300
\(509\) −1.74392 −0.0772980 −0.0386490 0.999253i \(-0.512305\pi\)
−0.0386490 + 0.999253i \(0.512305\pi\)
\(510\) 0 0
\(511\) 11.3110 0.500368
\(512\) 1.00000 0.0441942
\(513\) 17.9976 0.794614
\(514\) 20.1793 0.890070
\(515\) 0 0
\(516\) −10.3787 −0.456895
\(517\) 2.10321 0.0924991
\(518\) −31.8485 −1.39934
\(519\) −10.7627 −0.472430
\(520\) 0 0
\(521\) −15.2664 −0.668831 −0.334416 0.942426i \(-0.608539\pi\)
−0.334416 + 0.942426i \(0.608539\pi\)
\(522\) −0.554958 −0.0242899
\(523\) −2.29291 −0.100262 −0.0501310 0.998743i \(-0.515964\pi\)
−0.0501310 + 0.998743i \(0.515964\pi\)
\(524\) −10.2403 −0.447348
\(525\) 0 0
\(526\) 3.30559 0.144130
\(527\) 10.1860 0.443708
\(528\) 0.692021 0.0301164
\(529\) −6.60627 −0.287229
\(530\) 0 0
\(531\) −13.0761 −0.567453
\(532\) 9.09783 0.394441
\(533\) 0 0
\(534\) −14.2989 −0.618773
\(535\) 0 0
\(536\) −0.396125 −0.0171100
\(537\) 20.6340 0.890423
\(538\) 10.8092 0.466019
\(539\) 0.472189 0.0203386
\(540\) 0 0
\(541\) 28.6612 1.23224 0.616120 0.787653i \(-0.288704\pi\)
0.616120 + 0.787653i \(0.288704\pi\)
\(542\) 21.8659 0.939222
\(543\) −26.2935 −1.12836
\(544\) 3.24698 0.139213
\(545\) 0 0
\(546\) 0 0
\(547\) −6.16554 −0.263619 −0.131810 0.991275i \(-0.542079\pi\)
−0.131810 + 0.991275i \(0.542079\pi\)
\(548\) −21.5036 −0.918590
\(549\) 13.0761 0.558073
\(550\) 0 0
\(551\) −1.24698 −0.0531231
\(552\) −5.04892 −0.214896
\(553\) 46.5502 1.97951
\(554\) 8.14914 0.346224
\(555\) 0 0
\(556\) 10.0954 0.428142
\(557\) 7.97823 0.338048 0.169024 0.985612i \(-0.445938\pi\)
0.169024 + 0.985612i \(0.445938\pi\)
\(558\) −4.53319 −0.191905
\(559\) 0 0
\(560\) 0 0
\(561\) 2.24698 0.0948676
\(562\) 23.6189 0.996305
\(563\) 7.92453 0.333979 0.166989 0.985959i \(-0.446595\pi\)
0.166989 + 0.985959i \(0.446595\pi\)
\(564\) 4.72587 0.198995
\(565\) 0 0
\(566\) 1.24698 0.0524145
\(567\) 7.21983 0.303204
\(568\) 1.54288 0.0647377
\(569\) −36.1250 −1.51444 −0.757219 0.653161i \(-0.773442\pi\)
−0.757219 + 0.653161i \(0.773442\pi\)
\(570\) 0 0
\(571\) −31.4336 −1.31545 −0.657727 0.753257i \(-0.728482\pi\)
−0.657727 + 0.753257i \(0.728482\pi\)
\(572\) 0 0
\(573\) −5.67994 −0.237283
\(574\) 5.49396 0.229313
\(575\) 0 0
\(576\) −1.44504 −0.0602101
\(577\) −17.6886 −0.736385 −0.368192 0.929750i \(-0.620023\pi\)
−0.368192 + 0.929750i \(0.620023\pi\)
\(578\) −6.45712 −0.268581
\(579\) 18.3177 0.761256
\(580\) 0 0
\(581\) 43.0713 1.78690
\(582\) −12.6189 −0.523072
\(583\) −4.39911 −0.182192
\(584\) −4.03684 −0.167045
\(585\) 0 0
\(586\) 17.5144 0.723513
\(587\) 35.1497 1.45078 0.725392 0.688336i \(-0.241658\pi\)
0.725392 + 0.688336i \(0.241658\pi\)
\(588\) 1.06100 0.0437549
\(589\) −10.1860 −0.419706
\(590\) 0 0
\(591\) −12.4426 −0.511822
\(592\) 11.3666 0.467164
\(593\) 10.2553 0.421136 0.210568 0.977579i \(-0.432469\pi\)
0.210568 + 0.977579i \(0.432469\pi\)
\(594\) −3.07606 −0.126212
\(595\) 0 0
\(596\) −19.0489 −0.780274
\(597\) −34.0984 −1.39556
\(598\) 0 0
\(599\) −16.6843 −0.681700 −0.340850 0.940118i \(-0.610715\pi\)
−0.340850 + 0.940118i \(0.610715\pi\)
\(600\) 0 0
\(601\) 12.7144 0.518630 0.259315 0.965793i \(-0.416503\pi\)
0.259315 + 0.965793i \(0.416503\pi\)
\(602\) 23.3207 0.950479
\(603\) 0.572417 0.0233106
\(604\) 5.17092 0.210402
\(605\) 0 0
\(606\) −20.9215 −0.849880
\(607\) 14.2155 0.576990 0.288495 0.957481i \(-0.406845\pi\)
0.288495 + 0.957481i \(0.406845\pi\)
\(608\) −3.24698 −0.131682
\(609\) −1.34183 −0.0543737
\(610\) 0 0
\(611\) 0 0
\(612\) −4.69202 −0.189664
\(613\) 7.10992 0.287167 0.143583 0.989638i \(-0.454137\pi\)
0.143583 + 0.989638i \(0.454137\pi\)
\(614\) 8.42626 0.340056
\(615\) 0 0
\(616\) −1.55496 −0.0626510
\(617\) −21.7590 −0.875984 −0.437992 0.898979i \(-0.644310\pi\)
−0.437992 + 0.898979i \(0.644310\pi\)
\(618\) −12.3381 −0.496312
\(619\) −7.92021 −0.318340 −0.159170 0.987251i \(-0.550882\pi\)
−0.159170 + 0.987251i \(0.550882\pi\)
\(620\) 0 0
\(621\) 22.4426 0.900592
\(622\) 4.63342 0.185783
\(623\) 32.1293 1.28723
\(624\) 0 0
\(625\) 0 0
\(626\) −31.8485 −1.27292
\(627\) −2.24698 −0.0897357
\(628\) 10.9608 0.437382
\(629\) 36.9071 1.47158
\(630\) 0 0
\(631\) 8.75973 0.348719 0.174360 0.984682i \(-0.444214\pi\)
0.174360 + 0.984682i \(0.444214\pi\)
\(632\) −16.6136 −0.660852
\(633\) 23.3394 0.927659
\(634\) −16.0532 −0.637555
\(635\) 0 0
\(636\) −9.88471 −0.391954
\(637\) 0 0
\(638\) 0.213128 0.00843781
\(639\) −2.22952 −0.0881985
\(640\) 0 0
\(641\) −32.4916 −1.28334 −0.641670 0.766981i \(-0.721758\pi\)
−0.641670 + 0.766981i \(0.721758\pi\)
\(642\) 10.6799 0.421504
\(643\) −36.6045 −1.44354 −0.721770 0.692133i \(-0.756671\pi\)
−0.721770 + 0.692133i \(0.756671\pi\)
\(644\) 11.3448 0.447048
\(645\) 0 0
\(646\) −10.5429 −0.414804
\(647\) −9.09246 −0.357461 −0.178731 0.983898i \(-0.557199\pi\)
−0.178731 + 0.983898i \(0.557199\pi\)
\(648\) −2.57673 −0.101223
\(649\) 5.02177 0.197122
\(650\) 0 0
\(651\) −10.9608 −0.429586
\(652\) 10.4601 0.409649
\(653\) 35.4161 1.38594 0.692969 0.720967i \(-0.256302\pi\)
0.692969 + 0.720967i \(0.256302\pi\)
\(654\) 4.24027 0.165808
\(655\) 0 0
\(656\) −1.96077 −0.0765553
\(657\) 5.83340 0.227582
\(658\) −10.6189 −0.413969
\(659\) 0.783151 0.0305072 0.0152536 0.999884i \(-0.495144\pi\)
0.0152536 + 0.999884i \(0.495144\pi\)
\(660\) 0 0
\(661\) 19.1159 0.743522 0.371761 0.928329i \(-0.378754\pi\)
0.371761 + 0.928329i \(0.378754\pi\)
\(662\) −1.87369 −0.0728230
\(663\) 0 0
\(664\) −15.3720 −0.596548
\(665\) 0 0
\(666\) −16.4252 −0.636463
\(667\) −1.55496 −0.0602082
\(668\) 9.83340 0.380466
\(669\) −14.7748 −0.571226
\(670\) 0 0
\(671\) −5.02177 −0.193863
\(672\) −3.49396 −0.134782
\(673\) 6.98121 0.269106 0.134553 0.990906i \(-0.457040\pi\)
0.134553 + 0.990906i \(0.457040\pi\)
\(674\) 7.10454 0.273657
\(675\) 0 0
\(676\) 0 0
\(677\) −43.0640 −1.65508 −0.827542 0.561404i \(-0.810261\pi\)
−0.827542 + 0.561404i \(0.810261\pi\)
\(678\) 4.82908 0.185460
\(679\) 28.3545 1.08815
\(680\) 0 0
\(681\) −0.636399 −0.0243869
\(682\) 1.74094 0.0666640
\(683\) 10.1328 0.387719 0.193859 0.981029i \(-0.437899\pi\)
0.193859 + 0.981029i \(0.437899\pi\)
\(684\) 4.69202 0.179404
\(685\) 0 0
\(686\) 17.2295 0.657826
\(687\) −21.4849 −0.819699
\(688\) −8.32304 −0.317313
\(689\) 0 0
\(690\) 0 0
\(691\) −17.4166 −0.662557 −0.331279 0.943533i \(-0.607480\pi\)
−0.331279 + 0.943533i \(0.607480\pi\)
\(692\) −8.63102 −0.328102
\(693\) 2.24698 0.0853557
\(694\) −22.6112 −0.858308
\(695\) 0 0
\(696\) 0.478894 0.0181524
\(697\) −6.36658 −0.241152
\(698\) −21.6082 −0.817882
\(699\) −12.9963 −0.491564
\(700\) 0 0
\(701\) 27.3749 1.03394 0.516969 0.856004i \(-0.327060\pi\)
0.516969 + 0.856004i \(0.327060\pi\)
\(702\) 0 0
\(703\) −36.9071 −1.39198
\(704\) 0.554958 0.0209158
\(705\) 0 0
\(706\) −1.10992 −0.0417722
\(707\) 47.0103 1.76800
\(708\) 11.2838 0.424072
\(709\) 18.1390 0.681224 0.340612 0.940204i \(-0.389366\pi\)
0.340612 + 0.940204i \(0.389366\pi\)
\(710\) 0 0
\(711\) 24.0073 0.900344
\(712\) −11.4668 −0.429737
\(713\) −12.7017 −0.475683
\(714\) −11.3448 −0.424569
\(715\) 0 0
\(716\) 16.5472 0.618397
\(717\) 35.5948 1.32931
\(718\) −23.9342 −0.893217
\(719\) −11.9444 −0.445450 −0.222725 0.974881i \(-0.571495\pi\)
−0.222725 + 0.974881i \(0.571495\pi\)
\(720\) 0 0
\(721\) 27.7235 1.03248
\(722\) −8.45712 −0.314742
\(723\) 19.5864 0.728427
\(724\) −21.0858 −0.783646
\(725\) 0 0
\(726\) −13.3327 −0.494824
\(727\) 36.2954 1.34612 0.673061 0.739587i \(-0.264979\pi\)
0.673061 + 0.739587i \(0.264979\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) 0 0
\(731\) −27.0248 −0.999547
\(732\) −11.2838 −0.417062
\(733\) 7.17331 0.264952 0.132476 0.991186i \(-0.457707\pi\)
0.132476 + 0.991186i \(0.457707\pi\)
\(734\) 14.7114 0.543008
\(735\) 0 0
\(736\) −4.04892 −0.149245
\(737\) −0.219833 −0.00809764
\(738\) 2.83340 0.104299
\(739\) −4.39134 −0.161538 −0.0807690 0.996733i \(-0.525738\pi\)
−0.0807690 + 0.996733i \(0.525738\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 22.2107 0.815382
\(743\) 6.68233 0.245151 0.122576 0.992459i \(-0.460885\pi\)
0.122576 + 0.992459i \(0.460885\pi\)
\(744\) 3.91185 0.143416
\(745\) 0 0
\(746\) 14.7278 0.539223
\(747\) 22.2131 0.812736
\(748\) 1.80194 0.0658854
\(749\) −23.9976 −0.876853
\(750\) 0 0
\(751\) 8.16182 0.297829 0.148914 0.988850i \(-0.452422\pi\)
0.148914 + 0.988850i \(0.452422\pi\)
\(752\) 3.78986 0.138202
\(753\) 9.34183 0.340435
\(754\) 0 0
\(755\) 0 0
\(756\) 15.5308 0.564850
\(757\) 11.5603 0.420168 0.210084 0.977683i \(-0.432626\pi\)
0.210084 + 0.977683i \(0.432626\pi\)
\(758\) −34.5937 −1.25650
\(759\) −2.80194 −0.101704
\(760\) 0 0
\(761\) −27.1390 −0.983787 −0.491894 0.870655i \(-0.663695\pi\)
−0.491894 + 0.870655i \(0.663695\pi\)
\(762\) 12.2905 0.445239
\(763\) −9.52781 −0.344930
\(764\) −4.55496 −0.164793
\(765\) 0 0
\(766\) −9.69069 −0.350139
\(767\) 0 0
\(768\) 1.24698 0.0449965
\(769\) −25.7681 −0.929221 −0.464610 0.885515i \(-0.653806\pi\)
−0.464610 + 0.885515i \(0.653806\pi\)
\(770\) 0 0
\(771\) 25.1631 0.906229
\(772\) 14.6896 0.528691
\(773\) −15.6176 −0.561726 −0.280863 0.959748i \(-0.590621\pi\)
−0.280863 + 0.959748i \(0.590621\pi\)
\(774\) 12.0271 0.432307
\(775\) 0 0
\(776\) −10.1196 −0.363273
\(777\) −39.7144 −1.42475
\(778\) −29.1511 −1.04512
\(779\) 6.36658 0.228107
\(780\) 0 0
\(781\) 0.856232 0.0306384
\(782\) −13.1468 −0.470127
\(783\) −2.12870 −0.0760736
\(784\) 0.850855 0.0303877
\(785\) 0 0
\(786\) −12.7694 −0.455470
\(787\) 3.21121 0.114467 0.0572336 0.998361i \(-0.481772\pi\)
0.0572336 + 0.998361i \(0.481772\pi\)
\(788\) −9.97823 −0.355460
\(789\) 4.12200 0.146747
\(790\) 0 0
\(791\) −10.8509 −0.385812
\(792\) −0.801938 −0.0284956
\(793\) 0 0
\(794\) 1.31767 0.0467623
\(795\) 0 0
\(796\) −27.3448 −0.969211
\(797\) 43.9197 1.55572 0.777859 0.628439i \(-0.216306\pi\)
0.777859 + 0.628439i \(0.216306\pi\)
\(798\) 11.3448 0.401602
\(799\) 12.3056 0.435340
\(800\) 0 0
\(801\) 16.5700 0.585473
\(802\) −27.3327 −0.965152
\(803\) −2.24027 −0.0790576
\(804\) −0.493959 −0.0174206
\(805\) 0 0
\(806\) 0 0
\(807\) 13.4789 0.474480
\(808\) −16.7778 −0.590240
\(809\) −30.9385 −1.08774 −0.543870 0.839169i \(-0.683042\pi\)
−0.543870 + 0.839169i \(0.683042\pi\)
\(810\) 0 0
\(811\) −23.4470 −0.823334 −0.411667 0.911334i \(-0.635053\pi\)
−0.411667 + 0.911334i \(0.635053\pi\)
\(812\) −1.07606 −0.0377625
\(813\) 27.2664 0.956273
\(814\) 6.30798 0.221095
\(815\) 0 0
\(816\) 4.04892 0.141740
\(817\) 27.0248 0.945476
\(818\) 28.8340 1.00816
\(819\) 0 0
\(820\) 0 0
\(821\) 36.9976 1.29123 0.645613 0.763665i \(-0.276602\pi\)
0.645613 + 0.763665i \(0.276602\pi\)
\(822\) −26.8146 −0.935267
\(823\) 26.4838 0.923167 0.461584 0.887097i \(-0.347281\pi\)
0.461584 + 0.887097i \(0.347281\pi\)
\(824\) −9.89440 −0.344688
\(825\) 0 0
\(826\) −25.3545 −0.882196
\(827\) 21.3806 0.743476 0.371738 0.928338i \(-0.378762\pi\)
0.371738 + 0.928338i \(0.378762\pi\)
\(828\) 5.85086 0.203331
\(829\) −49.6233 −1.72349 −0.861743 0.507344i \(-0.830627\pi\)
−0.861743 + 0.507344i \(0.830627\pi\)
\(830\) 0 0
\(831\) 10.1618 0.352510
\(832\) 0 0
\(833\) 2.76271 0.0957222
\(834\) 12.5888 0.435915
\(835\) 0 0
\(836\) −1.80194 −0.0623213
\(837\) −17.3884 −0.601029
\(838\) 25.4480 0.879087
\(839\) −47.8980 −1.65362 −0.826811 0.562480i \(-0.809847\pi\)
−0.826811 + 0.562480i \(0.809847\pi\)
\(840\) 0 0
\(841\) −28.8525 −0.994914
\(842\) 11.1220 0.383289
\(843\) 29.4523 1.01439
\(844\) 18.7168 0.644258
\(845\) 0 0
\(846\) −5.47650 −0.188286
\(847\) 29.9584 1.02938
\(848\) −7.92692 −0.272212
\(849\) 1.55496 0.0533660
\(850\) 0 0
\(851\) −46.0224 −1.57763
\(852\) 1.92394 0.0659129
\(853\) −7.75063 −0.265376 −0.132688 0.991158i \(-0.542361\pi\)
−0.132688 + 0.991158i \(0.542361\pi\)
\(854\) 25.3545 0.867613
\(855\) 0 0
\(856\) 8.56465 0.292734
\(857\) 28.0054 0.956645 0.478323 0.878184i \(-0.341245\pi\)
0.478323 + 0.878184i \(0.341245\pi\)
\(858\) 0 0
\(859\) −2.21014 −0.0754091 −0.0377046 0.999289i \(-0.512005\pi\)
−0.0377046 + 0.999289i \(0.512005\pi\)
\(860\) 0 0
\(861\) 6.85086 0.233477
\(862\) −22.4373 −0.764217
\(863\) −26.9071 −0.915927 −0.457964 0.888971i \(-0.651421\pi\)
−0.457964 + 0.888971i \(0.651421\pi\)
\(864\) −5.54288 −0.188572
\(865\) 0 0
\(866\) 40.3008 1.36948
\(867\) −8.05190 −0.273457
\(868\) −8.78986 −0.298347
\(869\) −9.21983 −0.312761
\(870\) 0 0
\(871\) 0 0
\(872\) 3.40044 0.115153
\(873\) 14.6233 0.494922
\(874\) 13.1468 0.444696
\(875\) 0 0
\(876\) −5.03385 −0.170078
\(877\) 12.5961 0.425340 0.212670 0.977124i \(-0.431784\pi\)
0.212670 + 0.977124i \(0.431784\pi\)
\(878\) 0.346142 0.0116817
\(879\) 21.8401 0.736648
\(880\) 0 0
\(881\) −27.5883 −0.929475 −0.464737 0.885449i \(-0.653851\pi\)
−0.464737 + 0.885449i \(0.653851\pi\)
\(882\) −1.22952 −0.0414001
\(883\) −18.9506 −0.637739 −0.318869 0.947799i \(-0.603303\pi\)
−0.318869 + 0.947799i \(0.603303\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −30.0881 −1.01083
\(887\) −8.36658 −0.280922 −0.140461 0.990086i \(-0.544859\pi\)
−0.140461 + 0.990086i \(0.544859\pi\)
\(888\) 14.1739 0.475645
\(889\) −27.6165 −0.926229
\(890\) 0 0
\(891\) −1.42998 −0.0479060
\(892\) −11.8485 −0.396716
\(893\) −12.3056 −0.411791
\(894\) −23.7536 −0.794440
\(895\) 0 0
\(896\) −2.80194 −0.0936062
\(897\) 0 0
\(898\) 36.4825 1.21744
\(899\) 1.20477 0.0401812
\(900\) 0 0
\(901\) −25.7385 −0.857475
\(902\) −1.08815 −0.0362313
\(903\) 29.0804 0.967734
\(904\) 3.87263 0.128802
\(905\) 0 0
\(906\) 6.44803 0.214221
\(907\) −7.72992 −0.256668 −0.128334 0.991731i \(-0.540963\pi\)
−0.128334 + 0.991731i \(0.540963\pi\)
\(908\) −0.510353 −0.0169366
\(909\) 24.2446 0.804142
\(910\) 0 0
\(911\) −22.1140 −0.732668 −0.366334 0.930483i \(-0.619387\pi\)
−0.366334 + 0.930483i \(0.619387\pi\)
\(912\) −4.04892 −0.134073
\(913\) −8.53079 −0.282328
\(914\) 17.6571 0.584045
\(915\) 0 0
\(916\) −17.2295 −0.569279
\(917\) 28.6926 0.947514
\(918\) −17.9976 −0.594010
\(919\) −16.2067 −0.534609 −0.267305 0.963612i \(-0.586133\pi\)
−0.267305 + 0.963612i \(0.586133\pi\)
\(920\) 0 0
\(921\) 10.5074 0.346230
\(922\) −6.97823 −0.229816
\(923\) 0 0
\(924\) −1.93900 −0.0637885
\(925\) 0 0
\(926\) 40.5526 1.33264
\(927\) 14.2978 0.469602
\(928\) 0.384043 0.0126068
\(929\) 28.9541 0.949952 0.474976 0.879999i \(-0.342457\pi\)
0.474976 + 0.879999i \(0.342457\pi\)
\(930\) 0 0
\(931\) −2.76271 −0.0905441
\(932\) −10.4222 −0.341391
\(933\) 5.77777 0.189156
\(934\) 38.5676 1.26197
\(935\) 0 0
\(936\) 0 0
\(937\) 45.5400 1.48773 0.743864 0.668331i \(-0.232991\pi\)
0.743864 + 0.668331i \(0.232991\pi\)
\(938\) 1.10992 0.0362401
\(939\) −39.7144 −1.29603
\(940\) 0 0
\(941\) −25.6853 −0.837317 −0.418659 0.908144i \(-0.637500\pi\)
−0.418659 + 0.908144i \(0.637500\pi\)
\(942\) 13.6679 0.445323
\(943\) 7.93900 0.258529
\(944\) 9.04892 0.294517
\(945\) 0 0
\(946\) −4.61894 −0.150175
\(947\) −46.7434 −1.51896 −0.759479 0.650532i \(-0.774546\pi\)
−0.759479 + 0.650532i \(0.774546\pi\)
\(948\) −20.7168 −0.672850
\(949\) 0 0
\(950\) 0 0
\(951\) −20.0180 −0.649130
\(952\) −9.09783 −0.294863
\(953\) 2.37973 0.0770871 0.0385435 0.999257i \(-0.487728\pi\)
0.0385435 + 0.999257i \(0.487728\pi\)
\(954\) 11.4547 0.370861
\(955\) 0 0
\(956\) 28.5448 0.923205
\(957\) 0.265766 0.00859099
\(958\) 5.73125 0.185168
\(959\) 60.2519 1.94563
\(960\) 0 0
\(961\) −21.1588 −0.682543
\(962\) 0 0
\(963\) −12.3763 −0.398820
\(964\) 15.7071 0.505891
\(965\) 0 0
\(966\) 14.1468 0.455164
\(967\) 30.8388 0.991708 0.495854 0.868406i \(-0.334855\pi\)
0.495854 + 0.868406i \(0.334855\pi\)
\(968\) −10.6920 −0.343655
\(969\) −13.1468 −0.422335
\(970\) 0 0
\(971\) 13.2701 0.425857 0.212929 0.977068i \(-0.431700\pi\)
0.212929 + 0.977068i \(0.431700\pi\)
\(972\) 13.4155 0.430302
\(973\) −28.2868 −0.906833
\(974\) 27.6692 0.886578
\(975\) 0 0
\(976\) −9.04892 −0.289649
\(977\) −32.0428 −1.02514 −0.512570 0.858645i \(-0.671307\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(978\) 13.0435 0.417086
\(979\) −6.36360 −0.203382
\(980\) 0 0
\(981\) −4.91377 −0.156885
\(982\) 7.25906 0.231646
\(983\) 9.85623 0.314365 0.157182 0.987570i \(-0.449759\pi\)
0.157182 + 0.987570i \(0.449759\pi\)
\(984\) −2.44504 −0.0779451
\(985\) 0 0
\(986\) 1.24698 0.0397119
\(987\) −13.2416 −0.421485
\(988\) 0 0
\(989\) 33.6993 1.07158
\(990\) 0 0
\(991\) −16.5536 −0.525843 −0.262922 0.964817i \(-0.584686\pi\)
−0.262922 + 0.964817i \(0.584686\pi\)
\(992\) 3.13706 0.0996019
\(993\) −2.33645 −0.0741451
\(994\) −4.32304 −0.137119
\(995\) 0 0
\(996\) −19.1685 −0.607378
\(997\) −13.0406 −0.412999 −0.206499 0.978447i \(-0.566207\pi\)
−0.206499 + 0.978447i \(0.566207\pi\)
\(998\) −8.19136 −0.259293
\(999\) −63.0036 −1.99334
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.by.1.3 yes 3
5.4 even 2 8450.2.a.bw.1.1 yes 3
13.12 even 2 8450.2.a.bp.1.3 3
65.64 even 2 8450.2.a.cf.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8450.2.a.bp.1.3 3 13.12 even 2
8450.2.a.bw.1.1 yes 3 5.4 even 2
8450.2.a.by.1.3 yes 3 1.1 even 1 trivial
8450.2.a.cf.1.1 yes 3 65.64 even 2