Properties

Label 2-8450-1.1-c1-0-219
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.24·3-s + 4-s + 1.24·6-s − 2.80·7-s + 8-s − 1.44·9-s + 0.554·11-s + 1.24·12-s − 2.80·14-s + 16-s + 3.24·17-s − 1.44·18-s − 3.24·19-s − 3.49·21-s + 0.554·22-s − 4.04·23-s + 1.24·24-s − 5.54·27-s − 2.80·28-s + 0.384·29-s + 3.13·31-s + 32-s + 0.692·33-s + 3.24·34-s − 1.44·36-s + 11.3·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.719·3-s + 0.5·4-s + 0.509·6-s − 1.05·7-s + 0.353·8-s − 0.481·9-s + 0.167·11-s + 0.359·12-s − 0.748·14-s + 0.250·16-s + 0.787·17-s − 0.340·18-s − 0.744·19-s − 0.762·21-s + 0.118·22-s − 0.844·23-s + 0.254·24-s − 1.06·27-s − 0.529·28-s + 0.0713·29-s + 0.563·31-s + 0.176·32-s + 0.120·33-s + 0.556·34-s − 0.240·36-s + 1.86·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 - 1.24T + 3T^{2} \)
7 \( 1 + 2.80T + 7T^{2} \)
11 \( 1 - 0.554T + 11T^{2} \)
17 \( 1 - 3.24T + 17T^{2} \)
19 \( 1 + 3.24T + 19T^{2} \)
23 \( 1 + 4.04T + 23T^{2} \)
29 \( 1 - 0.384T + 29T^{2} \)
31 \( 1 - 3.13T + 31T^{2} \)
37 \( 1 - 11.3T + 37T^{2} \)
41 \( 1 + 1.96T + 41T^{2} \)
43 \( 1 + 8.32T + 43T^{2} \)
47 \( 1 - 3.78T + 47T^{2} \)
53 \( 1 + 7.92T + 53T^{2} \)
59 \( 1 - 9.04T + 59T^{2} \)
61 \( 1 + 9.04T + 61T^{2} \)
67 \( 1 + 0.396T + 67T^{2} \)
71 \( 1 - 1.54T + 71T^{2} \)
73 \( 1 + 4.03T + 73T^{2} \)
79 \( 1 + 16.6T + 79T^{2} \)
83 \( 1 + 15.3T + 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 + 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42090737249560494708028799450, −6.59696673486873133179202618124, −6.06202374907489289192150446468, −5.49614772187334508965510931961, −4.40702078242099648328008597018, −3.83173008935359370463452125292, −2.99835058288355761939885423522, −2.64335417685094178374750703090, −1.51559806645654557012172958144, 0, 1.51559806645654557012172958144, 2.64335417685094178374750703090, 2.99835058288355761939885423522, 3.83173008935359370463452125292, 4.40702078242099648328008597018, 5.49614772187334508965510931961, 6.06202374907489289192150446468, 6.59696673486873133179202618124, 7.42090737249560494708028799450

Graph of the $Z$-function along the critical line